
Consistent Estimation in Household
Surveys

Submitted in partial fulfillment of the requirements for the degree

Dr. rer. pol.

to the
Department IV

at Trier University

submitted by

Diplom Volkswirtin Anne Konrad, M.Sc.
Kloschinskystraße 12, 54292 Trier

born 06.08.1984 in Berlin

Supervisors:
Prof. Dr. Ralf Münnich (Trier University)

Ass. Prof. Dr. Yves Berger (University of Southampton)

March 2019





Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
German Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

1 Relevance of Consistent Estimation in Household Surveys 1

2 Preliminaries in Survey Statistics 4
2.1 Selection Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Estimation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Concepts of Statistical Inference . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Quality Measures for Estimators . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Horvitz-Thompson Estimator . . . . . . . . . . . . . . . . . . . . . . 8

2.3 GREG Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Approximate Design-Based Properties and Design-Based Variance . . . 11
2.3.2 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Optimal GREG Estimator . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 GREG Estimators as Calibration Estimators . . . . . . . . . . . . . . . 14
2.3.5 Avoiding Extreme Weights . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Cluster Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Integrated Weighting 21
3.1 Theory of Integrated Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 The Integrated Property . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Integrated GREG Estimator with Persons as Basis . . . . . . . . . . . 23
3.1.3 Integrated GREG Estimator with Households as Basis . . . . . . . . . 25
3.1.4 Combining Both Integrated GREG Estimators into One Single Estimator 27
3.1.5 Comparing an Ordinary and a Generalized Integrated GREG Estimator 29
3.1.6 Integrated Weighting According to Estevao and Särndal (2006) . . . . . 29

3.2 Consequences of Integrated Weighting . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Consequences of the Replacement of Original Auxiliaries with Con-

structed Household Mean Values . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Consequences of the One-to-One Weight Assignment . . . . . . . . . . 34

3.3 Empirical Evidence in the Literature . . . . . . . . . . . . . . . . . . . . . . . 35

iii



CONTENTS iv

3.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Results on Weights and Regression Coefficients . . . . . . . . . . . . . 41
3.4.3 Results on Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.4 Results on Variance Estimates . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Alternative Weighting Approaches 49
4.1 Methods to Combine Information from Independent Multiple Surveys . . . . . 50
4.2 Alternative Weighting Approaches to Ensure Consistent Estimates . . . . . . . 52

4.2.1 First Proposed Weighting Approach . . . . . . . . . . . . . . . . . . . 53
4.2.2 Second Proposed Weighting Approach . . . . . . . . . . . . . . . . . 63
4.2.3 Distinction between the Alternative Weighting Approaches and the Method

of Renssen and Niewenbroek (1993) . . . . . . . . . . . . . . . . . . . 68
4.3 GLS Estimator as a Benchmark Estimator . . . . . . . . . . . . . . . . . . . . 70

4.3.1 GLS Estimator According to Zieschang (1986, 1990) . . . . . . . . . . 70
4.3.2 GLS Estimator According to Merkouris (2004) . . . . . . . . . . . . . 78

4.4 Comparison of Our Alternative Approaches and the GLS Estimator . . . . . . 78
4.5 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5.1 Results on Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.2 Results on Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.3 Results on Variance Estimates . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Efficiency Comparison 94
5.1 Efficiency Comparison Given by Steel and Clark (2007) . . . . . . . . . . . . . 95

5.1.1 Original Theorems Given by Steel and Clark (2007) . . . . . . . . . . 95
5.1.2 Issues of the Theorems Given by Steel and Clark (2007) . . . . . . . . 97

5.2 Efficiency Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2.1 Separating the Effect of the Intercept from the Variance of an Integrated

Household-Level GREG Estimator . . . . . . . . . . . . . . . . . . . 107
5.2.2 Inserting the Decomposition of the Sum of Squared Residuals into the

Efficiency Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2.3 Relationship between the CoefficientsBp andBh . . . . . . . . . . . 120
5.2.4 Inserting the Relationship betweenBp andBh into the Efficiency Com-

parison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.2.5 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.3 Further Application Field for the Decomposition of the Coefficients . . . . . . 149
5.4 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6 The Variance Formula of GREG Estimators under Cluster Sampling 160
6.1 Consequences of the Variance Formula . . . . . . . . . . . . . . . . . . . . . . 161

6.1.1 Mismatch between the Residuals in the Minimization Problem and in
the Variance Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.1.2 Optimal Estimator at the Person Level . . . . . . . . . . . . . . . . . . 164



CONTENTS v

6.2 Literature on Alternative Variance Formulas for GREG Estimators under Clus-
ter Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.3 Proposed Hybrid GREG Estimator . . . . . . . . . . . . . . . . . . . . . . . . 166
6.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.4.1 Consequences of the Variance on Person-Level GREG Estimators . . . 176
6.4.2 Performance of the Hybrid GREG Estimator . . . . . . . . . . . . . . 176

6.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7 Conclusion and Outlook 180

A Additional Material for Chapter 3 184
A.1 Additional Table for the Simulation Study . . . . . . . . . . . . . . . . . . . . 184
A.2 Further Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B Additional Material for Chapter 4 190
B.1 Variance Estimator for the Second Weighting Approach . . . . . . . . . . . . . 190
B.2 Composite Estimator given by Renssen and Nieuwenbroek . . . . . . . . . . . 192
B.3 Variance Estimator for the GLS Estimator . . . . . . . . . . . . . . . . . . . . 194
B.4 Specialized Auxiliary Variable Sets . . . . . . . . . . . . . . . . . . . . . . . . 195
B.5 Additional Tables for the Simulation Study . . . . . . . . . . . . . . . . . . . 197

C Additional Material for Chapter 5 199
C.1 Theorems and Proofs Given by Steel and Clark (2007) . . . . . . . . . . . . . 199

C.1.1 Theorem 1: Optimal Estimator for Simple Cluster Sampling . . . . . . 199
C.1.2 Theorem 2: Explaining the Difference in the Asymptotic Variances . . 202

C.2 Additional Graphs for the Simulation Study . . . . . . . . . . . . . . . . . . . 204

Bibliography 209



Acknowledgements

First of all, I am profoundly grateful to my first supervisor Ralf Münnich for his support. He
created a comprehensive infrastructure at the Department of Economic and Social Statistics,
which enables us to work in a very productive environment.

I am also very grateful to my second supervisor Yves Berger for all his valuable and constructive
comments on my work and in general on scientific research. I really enjoyed this interchange.

I have to thank the RIFOSS project with the Federal Statistical Office of Germany, which pro-
vided the funding for my position as research associate at the University of Trier.

For the warmly, cooperative and productive working atmosphere and discussions I sincerely
thank all of my colleagues at the Department of Economic and Social Statistics.

My special gratitude is due to my family who always trust in me and their continuously support
in all life situations.

Finally, I owe my loving thanks to my boyfriend Matthias Braband. He has been my greatest
source of perpetual support, and encouragement throughout all these years.

vi



German Summary

Diese Dissertation beschäftigt sich mit konsistenten Schätzungen in Haushaltsstichproben. Haus-
haltsstichproben werden häufig als Klumpenstichprobe realisiert, das heißt auf der ersten Stufe
werden die Haushalte gezogen und auf der zweiten Stufe die Personen innerhalb eines Haus-
haltes. Dabei stellt sich die Frage, inwiefern konsistente Schätzungen auf Personen- und Haushalt-
sebene erreicht werden können. Beispielsweise sollte das geschätzte Gesamtein- kommen aller
Personen zu dem geschätzten Gesamteinkommen aller Haushalte gleich sein. Die Forderung
nach konsistenten Schätzungen spielt eine wichtige Rolle in der amtlichen Statistik und ist
als ein Prinzip im Verhaltenskodex für europäische Statistiken (European Code of Practice)
(Eurostat, 2011, Prinzip 14) verankert. In der bisherigen Praxis verwenden die Statistischen
Ämter die integrierte Gewichtung. Hierbei werden die individuellen Personenmerkmale durch
den Haushaltsmittelwert ersetzt. Aufgrund der identischen Ausprägungen der Hilfsmerkmale
sind auch die resultierenden Gewichte aller Personen innerhalb eines Haushaltes gleich. Auf
Haushaltsebene findet keine separate Berechnung der Gewichte statt, stattdessen erhalten die
Haushalte das Gewicht der Haushaltsmitglieder. Durch diese Gleichheit der Gewichte werden
konsistente Schätzungen auf Personen- und Haushaltsebene garantiert. Jedoch gehen aufgrund
der erzwungenen Gleichheit der Gewichte die individuellen Muster der Personen verloren,
ebenso wird die Heterogenität der Haushalte nicht beachtet. Die Motivation dieser Dissertation
ist es daher, die Auswirkungen dieser erzwungenen Gleichheit der Gewichte im integrierten
Ansatz zu untersuchen sowie alternative Gewichtungsstrategien vorzuschlagen.

Kapitel 1 betont die Relevanz von konsistenten Schätzungen auf Personen- und Haushaltsebene.
Wichtige Konzepte der Survey Statistik werden in Kapitel 2 eingeführt. Der Fokus liegt hierbei
auf dem GREG Schätzer und Klumpenstichproben.

In Kapitel 3 verdeutlichen wir, dass als Konsequenz gleicher Gewichte im integrierten Ansatz
die Anzahl möglicher Ausprägungen der Hilfsmerkmale ansteigt, die Within-Varianz der Haus-
halte ignoriert wird und Ecological Fallacy auftreten kann. Eine Simulationsstudie basierend
auf einer realitätsnahen synthetischen Grundgesamtheit zeigt, dass diese Auswirkungen zu vari-
ableren Gewichten und weniger effizienten Punkt- und Varianzschätzungen in kleineren Stich-
probenumfängen verglichen mit einem naiven GREG Schätzer führt.

Um diese Auswirkungen zu vermeiden, schlagen wir alternative Gewichtungsverfahren vor,
welche sowohl konsistente Schätzungen gewährleisten als auch individuelle Gewichte inner-
halb eines Haushaltes zulassen (Kapitel 4). Die Idee der alternativen Gewichtungsverfahren
ist es die Konsistenzbedingungen auf Variablen zu beschränken, die sowohl im Personen- als
auch im Haushaltsdatensatz vorkommen. Diese gemeinsamen Variablen werden als zusätzliche
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GERMAN SUMMARY viii

Hilfsmerkmale in die Schätzung auf Personen- und Haushaltsebene aufgenommen. Damit
wird Konsistenz direkter und nur für die relevanten Merkmale erreicht, anstatt indirekt durch
den Zwang gleicher Gewichte für alle Personen eines Haushaltes. Entscheidende Vorteile
unserer Gewichtungsstrategien sind, neben variablen Personengewichten, dass die originalen
Hilfsmerkmale verwendet werden können und dass auf Personen- und Haushaltsebene sepa-
rate Gewichtungsmodelle implementiert werden können, wodurch die Flexibilität in der Vari-
ablenselektion erhöht ist.

Um die Effekte der Konsistenzbedingung abschätzen zu können, vergleichen wir die asympto-
tischen Varianzen eines integrierten und eines naiven GREG Schätzers (Kapitel 5). Aus einem
solchen Effizienzvergleich schlussfolgern Steel and Clark (2007), dass der integrierte GREG
Schätzer einem naiven GREG Schätzer vorzuziehen ist. Da diese Schlussfolgerung unserer Ar-
gumentation in den vorangegangen Kapiteln und unseren Simulationsergebnissen widerspricht,
zeigen wir zunächst einige Schwächen in dem Beweis von Steel and Clark (2007) auf. Unter an-
derem vernachlässigen sie den Interzept im integrierten Modell. Anschließend leiten wir einen
eigenen Effizienzvergleich zwischen einem naiven und einem integrierten GREG Schätzer her.
Eine Herausforderung besteht unter anderem darin, dass die zu vergleichenden Schätzer unter-
schiedlicher Dimensionen sind. Um dieses Problem zu lösen, zerlegen wir die asymptotische
Varianz des integrierten GREG Schätzers in die Varianz eines reduzierten Schätzers ohne In-
terzept, der in der Dimensionen vergleichbar ist mit einem naiven GREG Schätzer und einen
Anpassungsterm, der die Effekte des Interzepts, welche durch den reduzierten Schätzer ver-
nachlässigt werden, erfasst. Anschließend schlagen wir für unsere Zerlegung ein weiteres
Anwendungsfeld in der Variablenselektion im Bereich der Ökonometrie oder Survey Statistik
vor.

In Kapitel 6 untersuchen wir die Varianzformel von GREG Schätzern in Klumpenstichproben.
Dabei zeigen wir auf, dass für einen GREG Schätzer, der auf Personenebene modelliert ist,
ein Trade-off zwischen der Optimalitätsbedingung und der Modellierungsebene besteht. Als
Abhilfe schlagen wir einen Hybridschätzer vor, welcher zwischen der Optimalitätsbedingung
und der Modellierung auf Personenebene abwägt.

Mit diesen Themen adressiert die Dissertation sowohl die praktische Anwendung in der amt-
lichen Statistik als auch theoretische Überlegungen zur Effizienzbetrachtung in der Survey
Statistik. Jedes Kapitel schließt mit einer Simulationsstudie ab, um zuvor aufgestellte theo-
retische Überlegungen zu validieren.
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1 Relevance of Consistent Estimation in
Household Surveys

Household surveys are an important source of socioeconomic and demographic data for sci-
entific researchers from different fields as well as for political decision makers. Almost every
country conducts household surveys. Such surveys are often drawn via cluster sampling, with
households sampled at the first stage and persons selected at the second stage. The collected
data provide information for estimation at both the person and the household level. However,
consistent estimates are desirable in the sense that the estimated household-level totals should
coincide with the estimated totals obtained at the person level.

In the literature, the terms coherence and consistency are often used synonymously. The term
coherence tends to be more prevalent in the official statistics context, whereas consistency pre-
vails in scientific research. Following Wallgren and Wallgren (2007, p. 219), “coherence refers
to the fact that estimates from different surveys can be used together.” On the other hand,
consistency is defined, according to the glossary of statistical terms, as logical and numerical
coherence (cf. OECD, 2007, p. 136). Särndal (2007) used the term consistency in the sense
of being consistent with known totals. Therefore, the term consistency is used throughout this
thesis because we are interested in numerical equal estimates of totals that are common to the
person- and household-level data set and coherence does not necessarily imply full numerical
consistency (cf. OECD, 2007, p. 120). It is important to note that here consistency does not
refer to the property of convergence in probability. We return to this distinction in Section
2.2.2.

Integrated weighting introduced by Lemaître and Dufour (1987) is the current practice in of-
ficial statistics to ensure consistent estimates. It produces one single weight for all persons
within the same household by substituting the original person-level auxiliary variables by the
corresponding household mean value. This single person-level weight is assigned one-to-one
to the corresponding household. Thus, consistent estimates at the person and household level
are ensured by the equality of the weights of the persons within a household and the household
itself.

However, assigning equal weights to all household members completely ignores the individual
differences between persons. Intuitively, for very volatile variables, such as income, the re-
sulting estimates are significantly influenced when the same weights are used for all household
members regardless of whether they are top earners, children, or inactive persons. Therefore,
this thesis proposes alternative weighting approaches that ensure consistent estimates while

1



1 RELEVANCE OF CONSISTENT ESTIMATION IN HOUSEHOLD SURVEYS 2

overcoming the strict requirement of equal weights for all persons within the same household
and the household itself. The underlying idea of our alternative weighting approaches is to con-
strain the consistency requirements to variables that are common to the person- and household-
level data set. Thereby, consistency is ensured directly and solely for the relevant variables
instead of indirectly by aggregating the individual information per household. With these alter-
native weighting approaches, we contradict the assumption prevailing in the literature that equal
weights of persons within the same household and the household itself are necessary to ensure
consistent estimates in household surveys (cf. Nieuwenbroek, 1993; Steel and Clark, 2007;
Estevao and Särndal, 2006; Lavallée, 1995; Verma et al., 2006). Furthermore, to quantify the
effect induced by the consistency requirements, this thesis provides an efficiency comparison of
the asymptotic variances of a naïve and an integrated GREG estimator.

The contribution of this thesis to the literature is two-fold. First, the proposed weighting ap-
proaches serve as alternatives to integrated weighting to ensure consistent estimates in house-
hold surveys. Consistent estimation plays a vital role for official statistics, because survey users
strive to obtain the same estimates for the same variable over different surveys (cf. Estevao and
Särndal, 2006, p. 128). Consistency is also anchored as a principle in the European Statistics
Code of Practice (cf. Eurostat, 2011, Principle 14), which sets the definition of quality crite-
ria. Therefore, this thesis addresses a topic of high practical importance for official statistics.
Second, we contribute to theoretical considerations in survey statistics. We propose a decom-
position of asymptotic variances that allows us to compare the efficiency of models exhibiting
different dimensions. Moreover, we initiate a discussion of the suitability of the variance for-
mula for person-level GREG estimators under cluster sampling, because the initial level of
modeling is ignored.

This thesis is organized into seven chapters.

Chapter 2 presents some basic preliminaries on survey statistics relevant for this thesis. The
focus herein lies on cluster sampling and on GREG estimators.

Chapter 3 discusses integrated weighting as current practice in official statistics to ensure con-
sistent estimates in household surveys. We explore the consequences of the strict requirement
of equal weights and validate its effects on point and precision estimation by means of a sim-
ulation study. These theoretical and empirical results build the justification for our proposed
alternative weighting approaches.

In Chapter 4, we introduce two alternative weighting approaches to guarantee consistent es-
timates. In contrast to integrated weighting, those approaches use the original auxiliary in-
formation and herein allow for different weights for the persons within a certain household.
For this purpose, we adopt the idea of incorporating the common variables as additional auxil-
iaries known from the literature on multiple independent surveys. The two proposed alternative
weighting approaches differ with respect to the implementation effort and the quality of the
estimated common variables totals. The superiority of our proposed alternative weighting ap-
proaches compared to integrated weighting is validated by a subsequent simulation study.
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Chapter 5, as the core part of the thesis, provides a theoretical comparison of the efficiency
between the asymptotic variances of a person-level GREG estimator and an integrated GREG
estimator. An efficiency comparison enables us to predict the factors on which the difference
between the two variances depends. Steel and Clark (2007) claimed that under cluster sam-
pling and for large samples, integrated weighting is more efficient than a person-level GREG
estimator. Because this statement contradicts our argumentation and the results based on the
simulation study given in Chapter 3, we detect some essential weaknesses on the given effi-
ciency comparison. One main weakness is that Steel and Clark (2007) neglected the intercept
in the integrated household-level model. Afterwards, we offer a correct efficiency comparison
between a person-level GREG estimator and an integrated GREG estimator, circumventing the
aforementioned insufficiencies. For this purpose, we contribute a procedure that decomposes
the asymptotic variance of a GREG estimator into individual variance terms in order to separate
the effect of a single variable. Finally, by extending the decomposition to multiple variables,
we suggest further application fields.

In Chapter 6, we investigate the asymptotic variance of GREG estimators under cluster sam-
pling. The corresponding formula implies a trade-off between person-level modeling and op-
timality. As a remedy, we introduce the hybrid GREG estimator as a compromise between
optimality and person-level modeling.

Chapter 7 summarizes the findings of this thesis and draws a overall conclusion. In addition,
we give an outlook for future research.

To facilitate the reading of this thesis, we introduce some general indications. Important con-
cepts and terms appear in bold letters. Variables are written in typewriter font. Estimators
and scenarios are characterized by capital letters. The main theoretical findings are presented as
lemmas or results. To reinforce the comprehension, we present the calculation steps in a step-
wise and very detailed manner. The correctness of individual calculation steps within the proofs
in Chapter 5 are verified by the corresponding R code. We present our formulas in the more
elaborate sum notation instead of in matrix notation, because the sum notation clearly indicates
the level of estimation. Notation is consistent across chapters. Equations are numbered only if
they are referenced later in the thesis.



2 Preliminaries in Survey Statistics

In scientific research, the need for statistical information is continuously increasing. Surveys
gather statistical information about items such as total population sizes, unemployment rates,
number of immigrants, poverty rates, or retail sales volumes. The German Federal Statistical
Office is mandated by law by the Bundesstatistikgesetz (cf. Destatis, 2016) to provide statistical
information. The advantage of drawing a random sample instead of a complete census of the
whole population is that a sample (1) can provide reliable information at lower cost, (2) is less
time-consuming, and (3) produces estimates that are often more accurate than those based on a
census because the reduced amount of data to be collected enables greater care in the collecting
process (cf. Lohr, 2009, p. 18).

Survey statistics supply methods to select random samples from a population (selection process)
and use the sample data to compute estimates of unknown population parameters (estimation
process). This chapter only briefly sketches preliminaries of the selection and estimation pro-
cess to embed this thesis in the framework of survey statistics. In this context, only topics
relevant for the thesis are addressed. The interested reader is referred to the quoted literature.
The selection process and a general definition of probability sampling are outlined in Section
2.1. Section 2.2 presents the estimation process and introduces three distinct concepts of statis-
tical inference as well as quality measures to evaluate different estimators. Because the thesis
deals with generalized regression (GREG) estimators and cluster sampling, both topics are out-
lined as representatives of the estimation and selection process in more detail in Sections 2.3
and 2.4, respectively.

2.1 Selection Process

In the selection process, rules and operations define which units from the finite population are
selected into the sample (cf. Kish, 1965, p. 4). In survey statistics, the randomness results
from the sampling process. Therefore, it is fixed to which unit the observed values belong. In
contrast, in econometrics, the realization of the values is stochastic. We start with introducing
some basic notation and terminology. Consider a finite population U = {1, . . . , i, . . . , N} of
size N . It is assumed that N is known. If the population size is unknown in practice, it has to be
estimated. A sample s ⊂ U of size nwith s = {1, . . . , i, . . . , n} is selected from the population.
A sample is called a probability sample if and only if the conditions of the following definition
are fulfilled. The definition originates from Särndal et al. (1992, p. 8).

4
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Definition 1. Probability Sampling
Probability sampling is an approach to sample selection that satisfies certain conditions, which
for the case of selecting elements directly from the population are described as follows:

1. We can define the set of samples, S = {s1, . . . , sv}, that are possible to obtain with the
sampling procedure.

2. A known probability of selection p(s) is associated with each possible sample s.

3. The procedure gives every element in the population a nonzero probability of selection.

4. We select one sample by a random mechanism under which each possible s receives
exactly the probability p(s).

For any sample satisfying these conditions, we can calculate the distribution of an estimator
if repeatedly applied to the same population (cf. Cochran, 1977, p. 9). The probability p(·)
referred in point 2 of Definition 1 is called sampling design. It determines the probability
distribution on the set of all 2N different samples of the finite population U (cf. Lehtonen and
Pahkinen, 2004, p. 13). The probability referred to in point 3 is called first-order inclusion
probability of unit i denoted as πi = Pr(i ∈ s) = ∑

s∈U :i∈s p(·) (cf. Breidt and Opsomer,
2017, p. 190). In the design-based and model-assisted approach (defined in the following),
statistical inference is based on the inclusion probabilities reflecting the design. The inverse
of the inclusion probability is called design weight di = π−1

i . The second-order inclusion
probability is denoted by πij = Pr(i, j ∈ s) = ∑

s∈U :i,j∈s p(·). It gives the probability that both
units i and j will be sampled. Note that πii = πi. A sampling design is called measurable if
πi > 0 for all i ∈ U and πij > 0 for all i 6= j ∈ U (cf. Fuller, 2009, p. 11). This implies that all
units in the population have a positive chance to be selected (cf. Hansen et al., 1953, p. 15).

The random mechanism referred to in point 4 of Definition 1 determines which units of the
population listed in a frame are sampled. A sampling frame is defined as a list identifying all
units in the population (cf. Lohr, 2009, p. 3). In practice, the compilation of such a list might be
problematic. Kish (1965, pp. 53-59) gave an extensive overview of frame errors and remedies
to reduce these errors.

On the basis of the concept of a frame, one can differentiate between direct element sampling
and multistage sampling. In direct element sampling, a frame is available, and the population
elements are the sampling elements (cf. Särndal et al., 1992, p. 61). Examples for direct el-
ement sampling designs are simple random sampling (SRS), systematic sampling, probability
proportional-to-size and stratified sampling, Bernoulli sampling, and Poisson sampling. The
interested reader is referred to Kish (1965), Särndal et al. (1992), Lohr (2009), and Cochran
(1977) for a more detailed description of direct element sampling. In contrast, in multistage
sampling, the population elements cannot be used as sampling elements, either because no sam-
pling frame exists or because the population elements are widely scattered (cf. Särndal et al.,
1992, p. 124). Section 2.4 discusses cluster sampling as one example of multistage sampling
in more detail, because this thesis primarily deals with household surveys, which are frequently
sampled by means of cluster sampling.
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2.2 Estimation Process

In the estimation process, methods are applied to estimate finite population parameters such as
means, totals, and ratios given the information of the selected units in the sample. In this section,
three distinct concepts of statistical inference are briefly outlined (Section 2.2.1). Subsequently,
we introduce certain quality measures to evaluate different estimators (Section 2.2.2). Finally,
the well-known Horvitz-Thompson estimator is presented (Section 2.2.3).

2.2.1 Concepts of Statistical Inference

Statistical inference can be based on the design-based, design-assisted, and model-based ap-
proaches. The design-based approach was originated in the early work of Neyman (1934).
In the design-based approach, statistical inference depends on the distribution generated by
the sampling design while the population parameters are treated as fixed (cf. Lehtonen and
Veijanen, 2009, p. 219). This implies that the randomness is induced by the probability to
be sampled. No model is assumed for the underlying selection process. The design-based ap-
proach is followed by traditional sampling theory books, for example Hansen et al. (1953), Kish
(1965), and Cochran (1977). A well-known design-based estimator is the Horvitz-Thompson
estimator (introduced in Section 2.2.3). Sometimes the design-based approach is referred to
as the randomization-based approach, for example in Kott (2005) or Lehtonen and Veijanen
(2009).

To improve the efficiency of the estimators, the model-assisted approach postulates a statistical
model of the unknown population parameter (cf. Breidt and Opsomer, 2017). It is closely
related to the design-based approach and sometimes treated as a special case of it, for example
in Särndal et al. (1978), Chambers (2011), and Little (2004). Design-based and model-assisted
estimators expand the observed outcome values by survey weights. Models are used to assist the
estimation process, whereby the resulting estimators are robust against model misspecification.
Both design-based and model-assisted estimators are evaluated with design-based properties
(introduced in Section 2.2.2) under repeated sampling from the fixed population with a given
design. These properties do not depend on the correctness of the model (cf. Särndal et al., 1992,
p. 239). A well-known model-assisted estimator is the GREG estimator presented in Section
2.3. The model-assisted approach is extensively discussed in Särndal et al. (1992).

The model-based approach is premised on the early work of Brewer (1963) and Royall (1970,
1976). Model-based estimators are motivated by the probability distribution of an assumed
underlying statistical model. The outcome values of the non-sampled units are predicted on
the basis of the model. The unknown population parameters are then estimated using both
the observed and predicted outcome values of the sampled and the non-sampled units, respec-
tively (cf. Valliant et al., 2000). In the model-based approach, randomness is induced because
of the stochastic population structure of the realized population values as one outcome of a
random variable (cf. Särndal et al., 1978). Statistical inference relies on the probability distri-
bution of the assumed statistical model. Therefore, in contrast to the model-assisted approach,
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model-based statistical inference depends on the correctness of the assumed model. Model-
based estimators are evaluated by model-based properties. With respect to the specification of
the model, one can differentiate between superpopulation modeling and Bayesian modeling (cf.
Little, 2004). Representatives of superpopulation modeling are Royall (1970) and Valliant et al.
(2000). An overview of underlying models is given in Cassel et al. (1977). Representatives of
the Bayesian approach include Ericson (1969, 1988), Binder (1982), Gosh and Meeden (1997),
and Basu (2010). An important field of application for model-based inference is small-area es-
timation, which is useful if sample sizes are too small to produce reliable estimates and if addi-
tional information is available (see Rao, 2003 and Münnich et al., 2013, 2012a for more details).
Because this thesis follows the design-based and model-assisted approaches, the model-based
approach is not pursued hereinafter.

2.2.2 Quality Measures for Estimators

In the design-based and model-assisted approach, the sampled units are used to produce esti-
mates for the unknown finite population parameters. Let y = (y1, . . . , yn)T be a vector of n
realizations out of a random vector Y = (Y1, . . . , YN)T of dimension N . A statistic θ̂ = f(y)
using the realizations y to estimate the unknown population value θ is called an estimator.
Before introducing certain estimators, we discuss how to evaluate the quality of different es-
timators at hand. A natural choice for a quality measure is how close an estimate is to the
parameter to be estimated. It is desirable that in the long run the mean of the realizations of
the estimator θ̂ equals the true population parameter θ. However, the realization of an estimator
is a random value, whereas the true population parameter is fixed. As a remedy, closeness can
be assessed in an expected or probabilistic sense (cf. Mittelhammer, 2013, p. 375). A measure
describing the closeness in an expected sense is the unbiasedness. The bias of an estimator θ̂
of the unknown population parameter θ is defined as

Bias(θ̂) = E(θ̂)− θ,

where E(·) denotes the expected value (cf. Särndal et al., 1992, p. 40). The estimator is consid-
ered as unbiased if E(θ̂)− θ = 0.

However, unbiased estimators can differ with respect to their sampling distributions around the
true population parameter. This property is captured by the efficiency of an estimator. An
unbiased estimator θ̂ of the unknown population parameter θ is called to be efficient if it has
minimum variance in the class of unbiased estimators.

A quality measure combining the bias and efficiency is the mean squared error (MSE). The
MSE of an estimator θ̂ of the unknown population parameter θ is defined as

MSE(θ̂) = E[(θ̂ − θ)2].

The MSE can be decomposed into MSE(θ̂) = V (θ̂)+Bias(θ̂)2, where V (·) denotes the variance.
This expression reflects the trade-off between variance and bias (cf. Schaich and Münnich, 2001,
p. 190). For unbiased estimators, it follows that MSE(θ̂) = V(θ̂).
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Unbiasedness, efficiency, and the MSE refer to finite sample properties, because the sample size
of s is assumed to be fixed. In contrast, large sample properties relate to asymptotic theory with
n → ∞. The minimum requirement for an estimator is given by consistency. An estimator θ̂n
of the unknown population parameter θ is called design-consistent, if

lim
n→∞

P (|θ̂n − θ| > ε) = 0

for all ε > 0 holds (cf. Schaich and Münnich, 2001, p. 197). In other words, an estimator
is design-consistent if its bias and variance tend to zero when the sample size increases (cf.
Lehtonen and Veijanen, 2009, p. 222). For further discussion of large sample properties, such
as sufficiency, asymptotic MSE, and asymptotic efficiency, the reader is referred to Fuller (2009,
pp. 41) and Mittelhammer (2013, Section 7.3.3).

2.2.3 Horvitz-Thompson Estimator

A well-known design-based estimator incorporating the sampling design into the estimation
process is the Horvitz-Thompson estimator (cf. Narain, 1951; Horvitz and Thompson, 1952).
Let yi be a non-random value of the variable of interest of unit i. For simplicity, we assume
full response, that implies yi is recorded for all i ∈ s. The objective is to estimate an unknown
population total T = ∑

i∈U yi. Further, more complex statistics can often be expressed as
explicit functions of finite population totals, such as means, ratios, or regression coefficients.
For the sake of convenience, the notation T̂y refers to the estimator itself as well as to one
realization of an estimate.

Result 1. The Horvitz-Thompson Estimator
A design-unbiased estimator for the population total Ty = ∑

i∈U yi is given by the Horvitz-
Thompson estimator

T̂HT
y =

∑
i∈s

yi
πi

with variance

V (T̂HT
y ) =

∑
i∈U

∑
j∈U
4ij

yi
πi

yj
πj
,

where4ij = πij − πiπj . Given that πij > 0 for all i, j ∈ U , an unbiased estimator of V (T̂HTy )
is given by

V̂ (T̂HT
y ) =

∑
i∈s

∑
j∈s

4ij

πij

yi
πi

yj
πj
. (2.1)

Proof. See Särndal et al. (1992, p. 44).
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Breidt and Opsomer (2017) and Isaki and Fuller (1982) showed that the Horvitz-Thompson
estimator is design-consistent under mild conditions. The design-unbiasedness is proven by
Fuller (2002). The Horvitz-Thompson estimator is frequently used in official statistics, as it is
simple to implement and robust for large sample fractions (cf. Münnich et al., 2012a, p. 39).

For equal probability sampling designs, the double sum in equation (2.1) vanishes. In the case
of SRS with πi = n/N and πij = n(n − 1)/N(N − 1) the variance formula (2.1) simplifies
to

V̂SRS(T̂HT
y ) = N2

n

(
1− n

N

) 1
n− 1

∑
i∈s

(yi − ȳ)2 (2.2)

with ȳ = n−1∑
i∈s yi as sample mean.

2.3 GREG Estimator

The efficiency of design-based estimators can be improved by incorporating auxiliary infor-
mation in the estimation process. A widely used model-assisted estimator incorporating aux-
iliary information is the GREG estimator established by Hansen et al. (1953), Cassel et al.
(1977), Särndal (1980), Isaki and Fuller (1982) as well as Wright (1983). Suppose that xi =
(xi1, . . . , xiq, . . . , xiQ)T is a vector containing Q auxiliaries. The corresponding totals Tx =
(Tx1 , . . . , Txq , . . . , TxQ)T are known from censuses, registers, or other reliable sources. The
GREG estimator relies on a linear regression model ξ that specifies the relationship between a
variable of interest and the auxiliaries given by

yi = xi
Tβ + εi for all i ∈ U (2.3)

with β as population regression coefficient and εi as unobserved random error. Note that
Eξ(εi) = 0, Vξ(εi) = viσ

2 and Eξ(εiεj) = 0 for all i 6= j. Eξ, and Vξ denote the expecta-
tion and the variance with respect to the model ξ. The variance parameter vi with vi > 0 has
to be known and describes the residual pattern. Information about the variance component may
be available from previous surveys. The choice vi = 1 corresponds to the assumption of ho-
moscedasticity. Homoscedasticity is often assumed in household surveys, because the variables
of interest are particularly categorical (cf. Steel and Clark, 2007, p. 52). In business surveys,
where the variables of interest are mainly metric, such as the amount of cash flow, heteroscedas-
tic is often assumed. The choice vi = xi results in the classical ratio estimator (cf. Breidt and
Opsomer, 2017, p. 195). The assisting model ξ is used only to motivate the GREG estimator.
Its unbiasedness does not depend on whether the population is really generated by the model.
The efficiency is, indeed, influenced by the predictive power of the model ξ (cf. Särndal et al.,
1992, p. 227, p. 239).

Definition 2. The Linear GREG Estimator
The linear GREG estimator for the unknown population total Ty = ∑

i∈U yi relying on the linear
regression model (2.3) is defined as

T̂GREG
y = T̂HT

y + B̂T (Tx − T̂ HT
x ) (2.4)
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with

B̂ =
(∑
i∈s

xixi
T

πivi

)−1∑
i∈s

xiyi
πivi

(2.5)

as a design-consistent least squares estimate for the population parameter β. It is assumed that
the matrix (∑i∈s xixi

T/πivi)−1 is nonsingular.

It should be noted that if the matrix (∑i∈s xixi
T/πivi)−1 is singular, the generalized inverse

can be applied for to invert the matrix.

In the following, we denote the GREG estimator given in Definition 2 as naïve GREG estima-
tor. According to Definition 2, the GREG estimator can be interpreted as Horvitz-Thompson
estimator expanded by an adjustment term. This adjustment term is composed of the difference
between known and estimated totals of the auxiliaries weighted by the magnitude of the rela-
tionship between the variable of interest and the auxiliary variables. If the underlying model
ξ has some predictive power, the adjustment term will often be negatively correlated with the
error in the Horvitz-Thompson estimator, and therefore the GREG estimator is usually more
precise than the Horvitz-Thompson estimator (cf. Särndal et al., 1992; Fuller, 2009).

The assisting models can have different forms. Firth and Bennett (1998) and Lehtonen and
Veijanen (1998) first discussed non-linear assisting models. Firth and Bennett (1998) proposed
canonical link generalized linear models and nonparametric models to include binary survey
variables. Lehtonen and Veijanen (1998) considered multinomial logistic models to capture
categorically distributed variables of interest. Local polynomial assisting models to derive a
nonparametric GREG estimator are first considered by Breidt and Opsomer (2000). Montanari
and Ranalli (2005) utilized nonparametric neural networks to assist the GREG estimator. Breidt
and Opsomer (2009) examined nonparametric and semiparametric models to estimate densities
and regression functions. Breidt et al. (2005) and McConville and Breidt (2013) discussed a
penalized spline GREG estimator. Regression models with random components are considered
by Park and Fuller (2009).

Remark 1. Categorical Variables as Auxiliaries
In practice, the auxiliaries are often categorical variables, such as sex, age classes, marital
status, or region. Consider a categorical variable with p = 1, . . . , P mutually exclusive and
exhaustive categories. Then, the P -vector xi = (γi1, . . . , γip, . . . , γiP )T with γip = 1 if unit i
belongs to category p of the auxiliary, and γip = 0 otherwise specifies the category to which
unit i belongs. An estimator only utilizing categorical variables as auxiliaries leads to the
post-stratification estimator (cf. Holt and Smith, 1979; Valliant, 1993).

The GREG estimator can alternatively be expressed in linearly weighted form

T̂GREG
y =

∑
i∈s

wiyi
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with

wi = 1
πi

+ xi
T

πivi

(∑
i∈s

xixi
T

πivi

)−1

(Tx − T̂ HT
x ). (2.6)

The weights wi depend only on the auxiliaries and inclusion probabilities. Once the auxiliaries
are determined, the respective weights can be applied to any variable of interest. In contrast,
non-linear or mixed-model GREG estimators require a separate model fitting for every single
variable of interest. Hence, a global weight expression like (2.6) is not representable. An im-
portant property of the GREG estimator is that the sum of the weighted auxiliaries is consistent
with the known population totals, that is

∑
i∈swixi = Tx. Särndal et al. (1992), Hidiroglou

et al. (1995), Fuller (2002), Särndal (2007), and Kim and Park (2010) gave an comprehensive
overview of the GREG estimator.

2.3.1 Approximate Design-Based Properties and Design-Based Variance

Because of the nonlinearity of the inverse within coefficient B̂ in (2.5), the GREG estimator is
nonlinear. The nonlinearity prevents an analytical expression of the design-based variance being
determined in a closed form. The Taylor linearization provides a remedy and approximates the
non-linear GREG estimator by using Taylor series expansion. Based on the linearized version
of the GREG estimator, an analytical expression of the design-based variance and design-based
properties can be approved. We follow the derivation of the Taylor linearization given by Särn-
dal et al. (1992, p. 173, p. 236). Rewriting the non-linear GREG estimator in (2.4) as function
f(·) depending on different estimators yields

T̂GREG
y = T̂HT

y + B̂T (Tx − T̂ HT
x )

= f(T̂HT
y , T̂ HT

x , D̂
−1
, d̂), (2.7)

where the non-linear coefficient can be decomposed into B̂ = D̂
−1
d̂ with

D̂ =
∑
i∈s

xixi
T

πi
as a Q×Q-matrix with elements d̂qq′ =

∑
i∈s

xiqx
T
iq′

πi
and

d̂ =
∑
i∈s

xiyi
πi

as a Q-vector with elements d̂q0 =
∑
i∈s

xiqyi
πi

.

A Taylor series of a real-valued function f(·), which is infinitely differentiable at a point a0, is
given by

f(a) =
∞∑
n=0

f (n)(a)
n! (a0 − a)n, (2.8)

where f (n)(a) denotes the n-th derivative of f(·) evaluated at the point a. Thus, to approximate
the non-linear function f(T̂HT

y , T̂ HT
x , D̂

−1
, d̂) by a linear function, we have to derive the first-

order element of (2.8) and neglect the remainder term. To determine the partial derivatives of
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B̂, we have to derive each element d̂qq′ and d̂q0 for q = 1, . . . , Q with respect to xq. The partial
derivatives of (2.7) are given by

∂f

∂T̂HT
y

= 1,

∂f

∂T̂HT
xq

= −Bq for all q = 1, . . . , Q,

∂f

∂d̂qq′
=
(
Tx − T̂ HT

x

)T(
− D̂−1 ∂D̂

∂d̂qq′
D̂
−1)
d̂

=
(
Tx − T̂ HT

x

)T(
− D̂−1

Λqq′D̂
−1)
d̂ for all q ≤ q′ = 1, . . . , Q,

∂f

∂d̂q0
= (Tx − T̂ HT

x )TD̂−1Λq for all q = 1, . . . , Q,

where Λqq′ is a Q×Q matrix with the value 1 in positions (q, q′) and (q′, q), and 0 elsewhere;
and Λq is a Q-vector with the value 1 in position q, and 0 elsewhere. Inserting these partial
derivatives evaluated at the expected values E(T̂HT

y ) = Ty, E(T̂HTx ) = Tx, E(D̂) = D and
E(d̂) = d into equation (2.8), we obtain the first-order Taylor approximation given by

T̂GREG
y

.= T̂ approx
y =

(
Ty + (Tx − Tx)TD−1d+ 1 · (T̂HT

y − Ty) + (−
Q∑
q=1

Bq(T̂xq − Txq)
)

= T̂HT
y +BT (Tx − T̂ HT

x ). (2.9)

Accordingly, for large samples, when T̂HT
y , T̂ HT

x , D̂, and d̂ take with high probability values
close to Ty,Tx,D and d, the GREG estimator T̂GREG

y will perform approximately as the linear
estimator T̂ approx

y (cf. Särndal et al., 1992, p. 174). The estimators T̂GREG
y and T̂ approx

y differ with
respect to the true coefficient B. Taylor linearization to approximate non-linear and complex
statistics is well-established in the literature, as for example in Keyfitz (1957), Woodruff (1971),
Demnati and Rao (2004), and Wolter (2007).

Based on the linearized estimator T̂ approx
y , Särndal (1980) showed that the GREG estimator is

approximately design-consistent. Cassel et al. (1976) proved the design-unbiasedness under
mild design conditions for the assisting model and for the sampling design. Moreover, the
design-based variance of T̂ approx

y provides a good approximation of the design-based variance of
T̂GREG
y . The following definition originates from Särndal et al. (1992, p. 235).

Result 2. The Design-Based Variance of the GREG Estimator
The approximate design-based variance of the GREG estimator, which is approximated through
Taylor linearization, is given by

V (T̂GREG
y ) =

∑
i∈U

∑
j∈U
4ij

Ri

πi

Rj

πj
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with residuals Ri = yi − xiTB. The variance estimator is obtained by

V̂ (T̂GREG
y ) =

∑
i∈s

∑
j∈s

4ij

πij
wiriwjrj (2.10)

with GREG weights wi defined by (2.6) and estimated residuals ri = yi − xiT B̂.

Proof. The linearized GREG estimator in (2.9) at the population level can be rewritten as

T̂ approx
y =

∑
i∈U

yi
πi

+BT
(∑
i∈U
xi −

∑
i∈U

xi
πi

)

=
∑
i∈U
xi

TB +
∑
i∈U

(
yi − xiTB

πi

)

=
∑
i∈U
xi

TB +
∑
i∈U

Ri

πi
.

As the first term is constant, the approximated design-based variance of the GREG estimator is
given by

V (T̂GREG
y ) =V (T̂ approx

y )

=V
(∑
i∈U

Ri

πi

)

=
∑
i∈U

∑
j∈U
4ij

Ri

πi

Rj

πj
.

V̂ (T̂GREG
y ) results by estimating V (T̂GREG

y ) from the sample s by the plug-in method.

Therefore, the variance of the GREG estimator can be estimated via the variance of the residuals
resulting from the assisting model ξ. Residuals indicate the distance between the predicted
and the observed values. Therefore, we learn from Result 2 that even if the unbiasedness of
the GREG estimator is independent of the correctness of the assisting model, its efficiency
depends on the residuals obtained from the model. The theoretical justification for weighting
the residuals in formula (2.10) with weights wi defined in (2.6) instead of weighting with design
weights di can be found in Särndal et al. (1989). Especially for small sample sizes, weighting
with wi reduces the bias of the variance estimator (cf. Deville et al., 1993). However, for small
sample sizes, the Taylor linearization method generally has a tendency to underestimate the
true variance (cf. Särndal et al., 1992, p. 176). Moreover, it should be noted that the variance
estimation via Taylor linearization requires a separate formula for every variable of interest.

Alternatively, the variance of the GREG estimator can be obtained via resampling methods,
such as jackknife, balanced repeated sampling or bootstrap methods. However, resampling
methods are outside the scope of the thesis. The interested reader is referred to Wolter (2007)
and Münnich (2008).
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2.3.2 Asymptotic Properties

Asymptotic properties are obtained by increasing the sample size to infinity. Under certain
conditions of the assumed model, Särndal (1980) and Wright (1983) showed that the GREG
estimator is asymptotically design unbiased. The asymptotic design-consistency was proven by
Isaki and Fuller (1982) and Robinson and Särndal (1983). The asymptotic design-unbiasedness
and design-consistency, which are based on large sample properties, should be differentiated
from approximate design-unbiasedness and design-consistency, which are based on Taylor lin-
earization arguments.

2.3.3 Optimal GREG Estimator

Montanari (1987, p. 196) derived the optimal GREG estimator within the class of GREG es-
timators in the sense of minimizing the design-based variance. We will use the concept of the
optimal GREG estimator in Chapters 5 and 6. Following Montanari (1987), the design-based
variance of T̂GREG

y = T̂HT
y +BT (Tx − T̂ HT

x ) is minimized by the coefficient

Bopt = [V(T̂ HT
x )]−1Cov(T̂ HT

x , T̂HT
y ).

Because V(T̂ HT
x ) and Cov(T̂ HT

x , T̂HT
y ) are typically unknown, they have to be replaced by its

consistent estimates V̂(T̂ HT
x ) and Ĉov(T̂ HT

x , T̂HT
y ) respectively, and we get

B̂opt = [V̂(T̂ HT
x )]−1Ĉov(T̂ HT

x , T̂HT
y ). (2.11)

The estimated coefficient B̂opt is only asymptotically optimal (cf. Guandalini and Tillé, 2017,
p. 3).

In practice, the estimation ofBopt might be intricate, because joint inclusion probabilities are re-
quired. As a remedy, for single-stage stratified sampling designs, Berger et al. (2003) proposed
to include a stratification variable into the GREG estimator. Their proposed estimator of Bopt

is easy to implement and relinquishes joint inclusion probabilities. Nangsue and Berger (2014)
extended this estimator for two-stage samplings. Further discussion of the optimal GREG esti-
mator can be found in Cochran (1977), Isaki and Fuller (1982), and Rao (1994).

2.3.4 GREG Estimators as Calibration Estimators

The GREG estimator can be seen as a special case of a broader class of calibration estimators,
which will be important in Chapter 4. The class of calibration estimators has the form

T̂ cal
y =

∑
i∈s

wcal
i yi,
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where the weights wcal
i satisfy the calibration constraints

∑
i∈s

wcal
i xi = Tx. (2.12)

Equation (2.12) guarantees that the sample sum of the weighted auxiliaries equals their known
population totals.

Deville and Särndal (1992) first introduced the term calibration. In their minimum distance
approach, the calibrated weights wcal

i are chosen as close as possible to the original design
weights di. Closeness between both weights is measured via a pre-specified distance function
G(wcal

i , di). Requirements for the distance function are (i) G(wcal
i , di) ≥ 0; (ii) strict convexity;

(iii) differentiability with respect to wcal
i with g(wcal

i ) = ∂G(wcal
i ,di)

∂wcal
i

, and (iv) G(1) = g(1) = 0
(cf. Haziza and Beaumont, 2017, p. 213). The latter property ensures that for wcal

i = di the
distance is zero. Then the minimization problem is given by

min
wi

∑
i∈s

diG(wcal
i , di)
αi

subject to calibration constraints (2.12),

where αi is a positive scale factor indicating the importance of unit i. The solution of the
minimization problem yields the calibration weights

wcal
i = diF (αixiTλ), (2.13)

where F (u) = g−1(u) is the inverse function of g(·) and λ = (λ1, . . . , λQ)T denotes a Q-vector
of Lagrange multipliers. Properties (i) and (ii) ensure that the inverse function F (u) exists. The
Lagrange multiplier λ is determined by solving∑

i∈s
dixiF (αixiTλ) = Tx. (2.14)

As (2.14) involves a system of G equations and G unknowns, it can be solved via the Newton-
Raphson algorithm (cf. Geiger and Kanzow, 2002, p. 235).

Applying the chi-square distance G(wcal
i , di) = 1

2(w
cal
i

di
− 1)2 and assuming α = 1, we obtain

g(wcal
i , di) =

(
wcal
i

di
− 1

) 1
di

and F (xiTλ) = g−1(xiTλ) = 1 + xiTλ.

Inserting 1 + xiTλ into (2.13) yields the calibrations weights

wcal
i = di(1 + αixi

Tλ)

with Lagrange multipliers λ = (∑i∈s αidixixi
T )−1(Tx−T̂ HT

x ). Hence, the minimization of the
chi-square distance leads to the GREG weights defined in (2.6) with variance parameter vi = 1
(cf. Särndal, 2007, p. 106). Calibration estimators associated with this distance function are
also called generalized least squares (GLS) estimators, for example in Alexander (1987), Wu
et al. (1997), Zieschang (1990), Verma and Clémenceau (1996), and Nieuwenbroek (1993).
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Deville and Särndal (1992) examined six further distance functions, such as the Hellinger dis-
tance or the minimum entropy distance. Deville et al. (1993) introduced generalized raking
estimators as a subclass of calibration estimators, which can be used when marginal counts of
the auxiliaries are known. In this case, the distance function is multiplicative. The subclass of
generalized raking estimators contains the classical raking estimator originated by Deming and
Stephan (1940). Raking is equivalent to iterative proportional fitting and the maximum entropy
approach by Wittenberg (2010) used in Chapter 3. Further distance functions are discussed in
Huang and Fuller (1978), Alexander (1987), Singh and Mohl (1996), and Stukel et al. (1996).

Deville and Särndal (1992) showed that under mild conditions on F (·) the calibration estimator
generated by different distance functions asymptotically equals the GREG estimator defined in
(2.4). Thus, for large sample sizes, the choice of the distance function has only a minor impact
on the properties of the calibration estimator. Singh and Mohl (1996) and Stukel et al. (1996)
extended this finding to modest sample sizes.

An alternative derivation of calibration weights is obtained by the functional form approach
considered by Estevao and Särndal (2000, 2006). Instead of a distance function, a simple func-
tional form is imposed, which depends on ui = (ui1, . . . , uiQ)T . The vector ui has to be of the
same dimension as the auxiliary vector xi. Then, the calibrated weights wcalF

i are determined
by the functional relationship

wcalF
i = diF (uiTλF ), (2.15)

where λF is a vector determined by the calibration constraints (2.12). F is a known real-valued
function. Superscript F indicates functional form approach. For the linear function F (z) =
1 + z the weights are given by wcalF

i = di(1 + λTui) with λ = (∑i∈s diuix
T
i )−1(τ x − τ̂HT

x ).
The resulting calibration estimator is given by

τ̂ calF
y =

∑
i∈s

wcalF
i yi.

Inserting λ in wcalF
i gives

wcalF
i = di + diui(

∑
i∈s

diuix
T
i )−1(τ x − τ̂HT

x )

which reminds us of an instrumental variables regression known from econometrics. Therefore,
the functional form approach was later termed as instrument vector approach by Estevao and
Särndal (2006), Kott (2003) and Kott (2006). The vector ui is supposed to be a function of the
observed auxiliaries xi. The simple choice ui = αixi and αi = v−1

i yields the GREG weights
defined in (2.6). The motivation of Estevao and Särndal (2000) behind the functional approach
was that the change from the initial weight di to the calibrated weight wcalFi can be controlled
by appropriate choices of ui. Irrespective from the choice of ui , the weights wcalF

i satisfy the
calibration constraints.

Deville and Särndal (1992) and Kim and Park (2010) showed that the calibration estimator
is design-consistent for Ty. Calibration estimators generated by different distance functions
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share the same large sample design-based variance (cf. Deville et al., 1993, p. 1014). Because
Deville and Särndal (1992) proved the asymptotic equivalence of the calibration and the GREG
estimator, the design-based variance of the calibration estimator can be approximated by the
design-based variance defined in (2.10).

GREG and calibration estimators build on two different concepts. The GREG estimator is based
on a linear relationship between the variable of interest and the auxiliaries. The calibration esti-
mator indeed focuses more on the weights than on the assumption of an underlying regression
model. A comprehensive discussion about the GREG thinking and the calibration thinking is
given in Särndal (2007).

2.3.5 Avoiding Extreme Weights

Weights calculated according to (2.6), (2.13) or (2.15) can be very large or negative. The rea-
sons for this might be small sample sizes or a variety of auxiliaries, or both. Weights reflect
the probability of a unit to be sampled. Thus, negative weights or weights less than one can
be interpreted as that the respective sampled unit does not even present itself, which is counter-
intuitive. Nevertheless, it should be noted that negative weights do not influence the statistical
properties of estimators. Large weights, in turn, can cause unstable estimations. Fortunately,
considerable literature exists on methods to reduce the range of the weights.

Huang and Fuller (1978) first proposed a procedure that prevents extreme weights. Deville
and Särndal (1992) and Deville et al. (1993) introduced some distance functions that produce
weights that lie within a given range. Singh and Mohl (1996) compared several bounded dis-
tances by means of numerical examples. Husain (1969) and Isaki et al. (2004) used quadratic
programming as an optimization method to set the weights boundary within a certain interval.
Quadratic programming is equivalent to truncated linear calibration (cf. Park and Fuller, 2005,
p. 8). Problems that arise due to bounding algorithms include slow convergence and multimodal
weight distributions.

Théberge (2000) deduced conditions under which a solution of the optimization problem ensur-
ing non-extreme weights exists. Tillé (1998) and Park and Fuller (2005) proposed a procedure
that produces weights that are positive for the most samples. Chambers (1996) considered
a ridge-type optimization problem under a certain coefficient matrix to produce non-negative
weights.

Another possibility for avoiding extreme weights is to relax some of the calibration constraints.
Rao and Singh (1997) studied a ridge shrinkage method for range-restricted weights, where the
calibration constraints are satisfied within certain tolerances. Münnich et al. (2012b) developed
a numeric algorithm that produces more stable and efficient solutions for calibration estimators,
in particular applying box constraints. Münnich et al. (2012b) reformulated the calibration
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problem as a constrained optimization problem and rewrote it as a nonlinear system of non-
differentiable equations. It is given by

min
wi

∑
i∈s

(wi − di)2

di

subject to

∑
i∈s

wixi = Tx

L ≤wi ≤ U

with L as lower bound and U as upper bound. The minimization problem was solved via a
Lagrangian approach using a highly efficient semi-smooth Newton method within a moderate
computing time even for problems of high dimensions.

2.4 Cluster Sampling

Household surveys are often realized by means of cluster sampling, where the finite population
is divided into subpopulations of units, called clusters. Potential subpopulations are geograph-
ical districts, city blocks, enterprises, establishments, schools, or some type of aggregate unit.
Cluster sampling is often implemented, if no complete, up-to-date and accessible list contain-
ing all population units that can serve as sampling frame is available (cf. Hansen et al., 1953, p.
243). A further reason to implement cluster sampling is that the cost of selecting clusters might
be negligible compared to the cost of selecting individual units (cf. Lohr, 2009, p. 170). That
may be the case if the data are collected through personal interviews. Dividing the population
into clusters, for example areas, can reduce travel costs of interviewers (cf. Valliant et al., 2013,
p. 203).

One can distinguish between two-stage cluster sampling and single-stage cluster sampling.
Single-stage cluster sampling is characterized by a complete enumeration within a selected
cluster. This implies that all units within a cluster are sampled. In contrast, in two-stage cluster
sampling, only a subsample of units is selected within a cluster. The focus of this thesis lies on
single-stage cluster sampling, because in household surveys, often all persons within a drawn
household are selected into the sample.

To formalize the sampling process of single-stage cluster sampling, we follow Särndal et al.
(1992, p. 127). A finite population Up = {1, . . . , i, . . . , N} of persons can be partitioned
into subpopulations called primary sampling units (PSU). In a household survey, the PSU are
households. The sampling process of household surveys involves two stages:



2 PRELIMINARIES IN SURVEY STATISTICS 19

1) At the first stage, from a finite population of households Uh = {1, . . . , g, . . . ,M} a sam-
ple sh is selected according to the sampling design p(·), where p(sh) is the probability
of selecting sh. The sample size of sh is m. Let Ug be the population of persons within
household g of size Ng. The probability sampling design generates for every household
g a known inclusion probability πg = Pr(g ∈ sh) = ∑

sh:g∈sh p(sh) with πg > 0.

2) At the second stage, all persons within a selected household, called secondary sampling
units (SSU), are sampled. The finite population and the sample of persons are denoted
by Up = ∪g∈UhUg and sp = ∪g∈shUg, respectively. The sample size is given by n =∑
g∈sh Ng. The first-order inclusion probability of person i induced by the design p(·) is

given by

πi = Pr(i ∈ sp) = Pr(g ∈ sh) = πg.

All first-order inclusion probabilities are equal for all i ∈ Ug. The second-order inclusion
probabilities are given by

πij = Pr(i, j ∈ sp) = Pr(g ∈ sh) = πg

if both i and j belong to the same household g, and

πij = Pr(i, j ∈ sp) = Pr(g & k ∈ sh) = πgk

if i and j belong to different households g and k. Note that πii = πi.

The efficiency of cluster sampling depends on the internal composition of the clusters. The more
homogeneous the clusters are, the less efficient the cluster sampling. In practice, many naturally
formed clusters are characterized to be rather homogeneous with small within-cluster variation
(cf. Lehtonen and Pahkinen, 2004, p. 83). General differences between cluster sampling and
simple random sampling are revealed by Hansen et al. (1953, pp. 259-270). A comparison
between cluster sampling and stratified sampling can be found in Lohr (2009, p. 167).

To clarify the difference between single-stage cluster sampling and simple random sampling, the
following result outlines the Horvitz-Thompson estimator under single-stage cluster sampling,
which is directly comparable with Result 1. Note that yg = ∑

i∈Ug yi.

Result 3. The Horvitz-Thompson Estimator under Single-Stage Cluster Sampling
Under single-stage cluster sampling, the Horvitz-Thompson estimator of the population total
T = ∑

g∈Uh yg is given by

T̂HT
y =

∑
g∈sh

yg
πg

with variance

V (T̂HT
y ) =

∑
g∈Uh

∑
k∈Uh
4gk

yg
πg

yk
πk
,
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where 4gk = πgk − πgπk. Given that πgk > 0 for all g, k ∈ Uh, an unbiased estimator of
V (T̂HTy ) is given by

V̂ (T̂HT
y ) =

∑
g∈sh

∑
k∈sh

4gk

πgk

yg
πg

yk
πk
. (2.16)

Proof. See Särndal et al. (1992, p. 128).

Comparing Results 1 and 3, it becomes obvious that the formulas are derived at the aggregated
cluster level in the latter case. The formulas in Result 3 are valid for various designs to sample
the households at the first stage. If the households are selected via simple random sampling, the
variance estimator in (2.16) simplifies to

V̂SSCS(T̂HT
y ) = M2

m

(
1− m

M

) 1
m− 1

∑
g∈sh

(yg − ȳh)2

with ȳh = m−1∑
g∈sh yg as mean value. Superscript h emphasizes the difference to the mean

value at the person level ȳ = n−1∑
i∈s yi used in (2.2). This sampling design is denoted as

simple single-stage cluster sampling (SSCS).



3 Integrated Weighting

Household surveys provide information about both person and household characteristics. When
estimating the same characteristic based on either a person- or a household-level data set, the
question arises of how to ensure consistency between both estimates. For example, the esti-
mated total of household income should coincide with the total income estimated at the person
level. The current practice of statistical offices to ensure consistent estimates in household
surveys is integrated weighting originated by Lemaître and Dufour (1987). The method of inte-
grated weighting produces one single weight for all persons within the same household by sub-
stituting the original auxiliary information at the person level by the corresponding household
mean values. This single integrated person weight is then assigned one-to-one to the household
to which the person belongs. Instead of calculating integrated person weights, Nieuwenbroek
(1993) proposed to calculate integrated household weights based on aggregated auxiliary infor-
mation. This integrated household weight is then assigned one-to-one to all persons within the
same household. Consistency is thereby ensured by the same weights used to estimate person-
and household-level characteristics. The use of the same weights for all persons within the same
household is supported by several authors:

• Lemaître and Dufour (1987, p. 199): “[...] a[n] [integrated] method [...] would be
appropriate for both individual and family estimation.“

• Nieuwenbroek (1993, p. 6): “[...] weighting methods that give one weight per household
are relevant.”

• Lavallée (1995, p. 27): “Note that the fact of allocating the same weight to all units has
the considerable advantage of ensuring consistency of estimates for units and clusters.”

• Estevao and Särndal (2006, p. 139): “It is practical to give all units within a cluster
the same weight in computing unit statistics, and use this weight for computing cluster
statistics.”

• Verma et al. (2006, p. 10): “It is desirable, therefore, to use a weighting procedure which
ensures consistency between analyses involving the two types of units. The recommended
procedure is integrative weighting [...].”

• Särndal (2007, p. 113): “Integrated weighting is often used in practice.”

• Steel and Clark (2007, p. 51): “It is sometimes convenient to have equal weights for
people within a household, for surveys which collect information on both household and
person level variables of interest.”

21
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• Branson and Wittenberg (2014, p. 20): “Given that the household is the unit that is
sampled, it makes more sense for person weights to be common within a household.”

• van den Brakel (2016, p. 149): “[...] it is relevant to apply a weighting method which
yields one unique household weight for all its members [...].”

For example, integrated weighting is currently implemented in the German Microcensus (cf.
Afentakis and Bihler, 2005), the Britain Integrated Household Survey (cf. ONS, 2012), the
Finnish Time Use Survey (cf. Väisänen, 2002), the Canadian Labor Force Survey (LFS) (cf.
Statistics Canada, 2017), and in the Swiss Household Panel (cf. Antal and Rothenbühler, 2015).
It is also recommended by Eurostat for EU-SILC (cf. European Commission, 2014, p. 37).

The support for integrative weighting seems surprising given that equal weights for all persons
within a household and the household itself is a very strict requirement. Equal weights no longer
reflect the heterogeneity of the individual persons within a household and the individual patterns
of the persons are lost. It is intuitive that for very volatile variables, such as income, the resulting
estimates might be significantly influenced when the same weights are assigned to all persons
within a household, independently of whether they are top earners, children, or inactive persons.
Therefore, this chapter aims to answer the following question: What are the consequences of
the strict restriction of equal weights for the estimation of person characteristics? We start
by reviewing the theory on integrated weighting in Section 3.1. Section 3.2 adduces potential
consequences of integrated weighting due to the enforcement of equal weights. Section 3.3
reviews the empirical evidence in the literature. A simulation study (Section 3.4) evaluates
the aforementioned consequences by comparing the performance of an integrated and a naïve
GREG estimator. Section 3.5 concludes with a summary.

3.1 Theory of Integrated Weighting

This section reviews the literature on integrated weighting as current practice in statistical of-
fices. After unveiling a considerably important property of integrated weighting (Section 3.1.1),
which is so far to the best of our knowledge neglected in the literature, we discuss two different
approaches of integrated weighting based on persons (Section 3.1.2) and based on households
(Section 3.1.3). In Section 3.1.4, we combine both approaches to one more general approach.
The generalization facilitates a comparison of both approaches in Section 3.1.5. Section 3.1.6
presents a different concept of integrated weighting.

3.1.1 The Integrated Property

In the integrated weighting approach, consistency between person- and household-level esti-
mates is ensured by calculating weights at one level and then assigning these weights one-to-one
to the other level. As a consequence thereof, it is not necessarily guaranteed that
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• the weights at the person level sum up to the number of persons in the population and
simultaneously

• the weights at the household level sum up to the number of households in the population.

We define the compliance to both points as the integrated property. An additional variable has
to be incorporated into the auxiliary variables to ensure the integrated property. Therefore, we
define

x◦
i = (xi0, xi1, xi2, . . . , xiQ)T =(N−1

g , 1, xi2, . . . , xiQ)T = (N−1
g ,xi)T

as the integrated auxiliary vector of person i of dimension (Q+ 1), which sums up within each
household g to

x◦
g = (xg0, xg1, xg2, . . . , xgQ)T =( 1, Ng, xg2, . . . , xgQ)T

as the integrated auxiliary vector of household g of dimension (Q+ 1). Superscript ◦ indicates
the integrated property. The additional auxiliary variable enforcing the integrated property at
the person level is xi0 = N−1

g , which sums to one per household. At the household level, the
additional auxiliary is given by xg1 = Ng, whose person-level counterpart is the intercept. We
differentiate between a person-level intercept, xi1 = 1, and a household-level intercept, xg0 = 1.
It is important to note that the integrated property is required only in the case of integrated
weighting where the weights are assigned one-to-one between the levels. For analytical and
programming purposes, the order of the auxiliaries is crucial. To the best of our knowledge,
the integrated property has so far been neglected, or at least not explicitly mentioned, in the
literature.

The corresponding known and estimated total vector of dimension (Q + 1) are denoted by
T x◦ = (M,T x)T and T̂

HT
x◦ = (T̂HT

x0 , T̂
HT
x )T , respectively.

3.1.2 Integrated GREG Estimator with Persons as Basis

Before integrated weighting was introduced, a widely used method to produce weights for
household surveys was the principal person method offered by Alexander (1987). Accord-
ing to this method, the design weights at the person level were adjusted via post-stratification
to meet known auxiliary totals. Because the individual auxiliaries differ from person to per-
son, the resulting weights also differ within a household. Household weights are determined by
the weight of one household member, the principal person. For example, in the Canadian LFS
and the U.S. Consumer Expenditure Survey, this principal person was the female spouse unless
there was a single male head. The choice of a female principal person was justified, as women
tend to have a better coverage rate than men (cf. Zieschang, 1990, p. 985). The main disad-
vantage of the principal person method is that regardless of who is declared as principal person,
consistency between person- and household-level estimates is not guaranteed. Moreover, the
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household decomposition is not taken into account. A comprehensive overview of the principal
person method can be found in Hanson (1978, Chapter 5) and in Alexander (1987).

To overcome these disadvantages, Lemaître and Dufour (1987) first introduced integrated weight-
ing. Their proposed integrated GREG estimator produces one single weight for all persons
within a household. The integrated weights are appropriate for both person- and household-
level estimation. In the following, integrated weighting and integrated GREG estimator will
be used interchangeably. To produce equal weights, the original auxiliaries x◦

i are replaced
by the corresponding household mean values. The household mean value is determined by
x̄◦g = N−1

g

∑
i∈Ug x

◦
i which is assigned to all persons within the household. Then, at the person

level the household mean value is denoted as x̄◦i . It should be noted that x̄◦
i is the mean value per

household, not the mean value of all sampled persons. We choose the subscript i to emphasize
that x̄◦

i is a person-level variable, even if it has the same value for all persons within the same
household. Replacing x̄◦

i as auxiliaries into the assisting linear regression model ξ yields

yi = x̄◦
i
Tβp + εi for all i ∈ Up (3.1)

with βp as population regression coefficient at the person level and εi as unobserved random
error. Note that Eξ(εi) = 0, Vξ(εi) = viσ

2, and Eξ(εiεj) = 0 for all i 6= j. Lemaître and Dufour
(1987) assumed a constant variance parameter vi = 1 for all i ∈ Up. This is equivalent to
assuming homoscedasticity. The assisting linear regression model (3.1) results in the integrated
person-level GREG estimator for the unknown total Typ = ∑

i∈Up yi

T̂ LD
yp = T̂HT

yp + B̂LD
p

T (Tx◦ − T̂ HT
x◦ ) (3.2)

with

B̂LD
p =

(∑
i∈sp

x̄◦
i x̄

◦
i
T

πi

)−1 ∑
i∈sp

x̄◦
i yi
πi

as vector containing (Q+ 1) coefficients. The superscript LD refers to Lemaître and Dufour. It
is assumed that the matrix (∑i∈sp x̄

◦
i x̄

◦
i
T/πi)−1 is nonsingular. Tx◦ and T̂ HT

x◦ are the known and
estimated (Q+ 1)-vectors of the integrated auxiliary totals, respectively. The integrated person
weights generated by (3.2) are given by

wLD
i = 1

πi
+ x̄◦

i
T

πi

∑
i∈sp

x̄◦
i x̄

◦
i
T

πi

−1

(Tx◦ − T̂ HT
x◦ ). (3.3)

Note that under single-stage cluster sampling, πi = πj for all i, j ∈ Ug. The weights (3.3) are
equal for all persons with the same household, because the household members share the same
auxiliary vector x̄◦

i . The person weight is assigned one-to-one to the corresponding household;
consequently, wLD

g = wLD
i for all i ∈ Ug. Hence, consistency is ensured by assigning the same

weight to all persons within a household and to the household itself. Given that
∑
i∈Up x̄

◦
i =

Tx◦ = ∑
g∈Uh x

◦
g, it is easy to verify that

∑
i∈sp w

LD
i x̄

◦
i = Tx◦ and

∑
g∈sh w

LD
g x

◦
g = Tx◦ . That is,

the sample sums of the weighted auxiliaries meet the known totals at both levels.
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As the integrated GREG estimator is a special case of the GREG estimator as defined in Sec-
tion 2.3, it is also asymptotically unbiased. The variance estimator under single-stage cluster
sampling approximated by Taylor linearization can be obtained by

V̂ (T̂ LD
yp ) =

∑
g∈sh

∑
k∈sh

4gk

πgk
wLD
g rLD

g wLD
k rLD

k

with 4gk = πgk − πgπk and wLD
g defined in (3.3). The estimated residuals are determined by

rLD
g = yg − x̄◦

g
T B̂LD

p .

The integrated GREG estimator differs from the naïve GREG estimator in two respects. Firstly,
constructed household mean values are utilized instead of the original auxiliaries. Secondly,
the integrated GREG estimator requires an additional auxiliary variable, N−1

g , to ensure the
integrated property (see Section 3.1.1).

Alternatively to the integrated GREG estimator (3.2) with persons as basis, Branson and Wit-
tenberg (2014) suggested producing integrated person weights using minimum cross-entropy
estimator. The cross-entropy estimation approach is based on arguments of information theory
(cf. Golan et al., 1997). It attempts to minimize the information loss from moving a prior weight
distribution to a post-calibration distribution (cf. Branson and Wittenberg, 2014, p. 26). The
information loss is minimized subject to the linear constraints that the final weights (i) meet the
known totals, (ii) be close as possible to the initial weights, and (iii) be equal for all household
members. The last constraint ensures consistency between person- and household-level esti-
mates. Wittenberg (2010) showed that the minimum cross-entropy approach is equivalent to
raking introduced by Deming and Stephan (1940) and to a calibration estimator with a multi-
plicative distance function introduced by Deville and Särndal (1992) and Deville et al. (1993).
Compared to the weights suggested by Lemaître and Dufour (1987) generated by formula 3.3,
the minimum cross-entropy weights are prevented from being negative. However, extreme
weights might occur.

3.1.3 Integrated GREG Estimator with Households as Basis

Nieuwenbroek (1993) proposed calculating the integrated weights at the household level. Sup-
pose x◦

g = ∑
i∈Ug x̄

◦
i is the per-household aggregated person-level information. The assumed

linear regression model ξ relating the variable of interest and the auxiliaries at household level
is given by

yg = x◦
g
Tβh + εg for all g ∈ Uh (3.4)

with βh as population regression coefficient at the household level and εg as unobserved ran-
dom error. Note that Eξ(εg) = 0, Vξ(εg) = vgσ

2, and Eξ(εgεk) = 0 for all g 6= k. To estimate
household-level variables of interest, Nieuwenbroek (1993) suggested to set the variance com-
ponent vg proportional to the household size. For variables not correlated with the household
size he suggested vg = 1. The same recommendations for the variance components can be
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found in van den Brakel (2013, 2016). As we are interested in the estimation of person charac-
teristics, we assume vg = 1 in the following. The assisting model (3.4) results in the integrated
GREG estimator for the unknown population household-level total Tyh = ∑

g∈Uh yg

T̂N
yh

= T̂HT
yh

+ B̂N
h

T (Tx◦ − T̂ HT
x◦ ) (3.5)

with

B̂N
h =

∑
g∈sh

x◦
gx

◦
g
T

πg

−1 ∑
g∈sh

x◦
gyg

πg
. (3.6)

It is assumed that the matrix (∑g∈sh x
◦
gx

◦
g
T/πg)−1 is nonsingular. The superscript N refers to

Nieuwenbroek. It should be remarked that since the integrated GREG estimator uses the same
auxiliaries at the person and household level, the vectors Tx◦ and T̂ HT

x◦ are valid at both levels.

The integrated household-level weights generated by (3.5) are given by

wN
g = 1

πg
+
x◦
g

πg

T
∑
g∈sh

x◦
gx

◦
g
T

πg

−1

(Tx◦ − T̂ HT
x◦ ). (3.7)

The household weight wNg is then assigned one-to-one to all persons within the same house-
hold; consequently, wN

i = wN
g for all i ∈ Ug. It is easy to verify that

∑
g∈sh w

N
g x

◦
g = Tx◦ =∑

i∈sp w
N
i x̄

◦
i . This implies that consistent estimates at both levels are guaranteed.

Nieuwenbroek (1993) proved that for vg = Ng, the integrated weights with persons as basis
defined in (3.3) and the integrated weights with households as basis defined in (3.7) are equiv-
alent. However, Nieuwenbroek (1993) neglected that the equality of both integrated weights is
valid if and only if the auxiliary vector at the person level contains N−1

g and the auxiliary vector
at the household level contains Ng as additional variables. Therefore, the derived equivalence
of both approaches is valid only if the integrated property is fulfilled.

Analogously to its person-level counterpart, the integrated GREG estimator at the household
level is asymptotically unbiased. The variance estimator under single-stage cluster sampling
approximated by Taylor linearization can be obtained by the residual variance

V̂ (T̂N
yh

) =
∑
g∈sh

∑
k∈sh

4gk

πgk
wN
g r

N
g w

N
k r

N
k

with estimated residuals rN
g = yg − x◦

g
T B̂N

h and wN
g as defined in (3.7).

As an alternative to the integrated GREG estimator (3.5) with households as basis, Zieschang
(1986), Luery (1986), and Alexander (1987) discussed a GLS approach to produce household
weights by minimizing the distance between the initial design weights and the resulting cali-
bration weights. When these weights are applied for both person and household characteristics,
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the GLS approach is asymptotically equivalent to (3.5). Verma and Clémenceau (1996) sug-
gested extending the household auxiliaries in the GLS approach to include person information.
For this purpose, the sample distribution of the person auxiliaries is inflated by the household
size. The weights produced by the extended GLS estimator are asymptotically equivalent to the
integrated household weights generated by (3.7) with additional person-level information.

Isaki et al. (2004) used quadratic programming to produce household weights suitable for the
estimation of person and household characteristics. Quadratic programming seeks household
weights that minimize a quadratic objective function subject to the linear constraints that the
final weights (i) are as close as possible to the initial weights, (ii) are within certain bounds,
(iii) meet known person- and household-level totals, and (iv) are design-consistent. Park and
Fuller (2005, p. 8) showed that quadratic programming is equal to the truncated linear distance
function introduced by Deville and Särndal (1992). When dropping the bounds in constraint
(ii), quadratic programming generates weights that are asymptotically equivalent to the weights
(3.7) suggested by Nieuwenbroek (1993).

The (extended) GLS calibration estimator and quadratic programming with an integrated GREG
estimator with households as basis introduced in this section show equivalence. Thus, we do
not pursue the different approaches separately in the following.

3.1.4 Combining Both Integrated GREG Estimators into One Single
Estimator

The weights are calculated at one level and then assigned one-to-one to the other level for both
integrated GREG estimators introduced in Sections 3.1.2 and 3.1.3. These weights are used for
person- and household-level estimation. Note that with x◦

g = Ngx̄
◦
i for i ∈ Ug, πi = πg and∑

i∈sp = ∑
g∈sh

∑
i∈Ug , the integrated household-level coefficient (3.6) can be rewritten as

B̂N
h =

∑
g∈sh

x◦
gx

◦
g
T

πg

−1 ∑
g∈sh

x◦
gyg

πg

=
∑
g∈sh

Ngx̄
◦
iNgx̄

◦
i
T

πi

−1 ∑
g∈sh

Ngx̄
◦
i yg

πi

=
∑
g∈sh

∑
i∈Ug

Ngx̄
◦
iNgx̄

◦
i
T

Ngπi

−1 ∑
g∈sh

∑
i∈Ug

Ngx̄
◦
i yi

πi

=
∑
i∈sp

Ngx̄
◦
i x̄

◦
i
T

πi

−1 ∑
i∈sp

Ngx̄
◦
i yi

πi
(3.8)

given
∑
g∈Uh x

◦
g = ∑

g∈Uh
∑
i∈Ug x̄

◦
i /Ng. According to (3.8), the coefficient B̂N

h can either be
calculated at the household level based on the assisting model (3.4), or it can equivalently be
calculated at the person level under the assisting model (3.1) with variance parameter vi = N−1

g .
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Therefore, we generalize both integrated GREG estimators defined in (3.2) and (3.5) to one
single estimator calculated at the person level but with different variance parameters.

Definition 3. The Integrated GREG Estimator
The integrated GREG estimator relying on the assisting person-level model (3.1) can be ex-
pressed by

T̂ INT
yp = T̂HT

yp + B̂◦
p

T (Tx◦ − T̂HTx◦ ), (3.9)

where

B̂◦
p =

∑
i∈sp

x̄◦
i x̄

◦
i
T

πivi

−1 ∑
i∈sp

x̄◦
i yi
πivi

(3.10)

is a vector containing (Q + 1) person-level coefficients. The corresponding integrated person
weights are given by

wINT
i = 1

πi
+
∑
i∈sp

x̄◦
i
T

πivi

∑
i∈sp

x̄◦
i x̄

◦
i
T

πivi

−1

(Tx◦ − T̂HTx◦ )

which are equivalent to the household weights

= 1
πg

+
∑
g∈sh

x◦
g
T

πgvg

∑
g∈sh

x◦
gx

◦
g
T

πgvg

−1

(Tx◦ − T̂HTx◦ )

= wINT
g

for all i ∈ Ug. Note that vg = ∑
i∈Ug vi. The variance estimator can be approximated by Taylor

linearization

V̂ (T̂ INT
yp ) =

∑
g∈sh

∑
k∈sh

4gk

πgk
wINT
g rINT

g wINT
k rINT

k (3.11)

with residuals rINT
g = yg − x◦

g
T B̂◦

p and4gk = πgk − πgπk.

According to Definition 3, the introduced integrated GREG estimators based on persons (see
Section 3.1.2) and based on households (see Section 3.1.3) differ with respect to the variance
component. Inserting a variance component of vi = 1 into B̂◦

p in (3.10) yields the integrated
GREG estimator proposed by Lemaître and Dufour (1987). Inserting vi = N−1

g , in turn, results
in the integrated GREG estimator proposed by Nieuwenbroek (1993). This general definition
considerably facilitates the comparison of these two integrated GREG estimators. In the fol-
lowing, we will no longer distinguish between a person- and household-level GREG estimator.
Instead, we refer to an ordinary, in case of vi = 1, or a generalized, in case of vi = N−1

g ,
integrated GREG estimator. We choose the terms ordinary and generalized to make references
to underlying ordinary least squares (OLS) and generalized least squares (GLS) methods to
determine the parameters in the integrated regression model.
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3.1.5 Comparing an Ordinary and a Generalized Integrated GREG
Estimator

Obviously, an ordinary and a generalized integrated GREG estimator differ with respect to the
variance component in the assisting model ξ. In the ordinary case, with vi = 1, the variance
is assumed to be constant and thus homoscedastic. In contrast, the generalized case, with vi =
N−1
g , entails that the variance of the variable of interest decreases with the household size

and is thus heteroscedastic. The model properties of the estimated coefficients depend on the
true underlying variance structure of the variable of interest. Provided that the true variance is
heteroscedastic, a generalized coefficient is more efficient than an ordinary one, but no longer
efficient in the sense of the Gauss-Markov theorem. It is only asymptotically efficient (cf. von
Auer, 2007, p. 379).

In the literature, there is disagreement with respect to the efficiency of an ordinary (vi = 1) and
a generalized (vi = N−1

g ) integrated GREG estimator. Wu et al. (1997) indicated that a general-
ized integrated coefficient minimizes the variance under cluster sampling. Their argument relies
on the theory of optimal regression as introduced by Montanari (1987) (see Section 2.3.1). A
similar explanation was given by Steel and Clark (2007, Theorem 1). However, both Wu et al.
(1997) and Steel and Clark (2007) ignored the integrated property (see Section 3.1.1). Conse-
quently, the design-based variance is minimized by a GREG estimator utilizing xg instead of
the integrated auxiliary vector x◦

g as claimed by the mentioned authors. This result strongly
depends on the variance formula of a person-level GREG estimator under cluster sampling, as
we will discuss in detail in Chapter 6.

In contrast, Estevao and Särndal (2006) stated that a ordinary integrated GREG estimator (with
vi = 1) has a smaller variance, because the person-level residuals are based on a more proper
regression and thus have a smaller magnitude than their ordinary counterparts. In a simulation
study (Section 3.4), we verify which integrated GREG estimator is more efficient.

3.1.6 Integrated Weighting According to Estevao and Särndal (2006)

Estevao and Särndal (2006) introduced a different concept of integrated weighting in the con-
text of two-stage cluster sampling. We consider their arguments with respect to single-stage
cluster sampling with households sampled at the first stage and selecting all persons within a
household at the second stage. Estevao and Särndal (2006) claimed that integrated weights are
characterized by a convenient relationship. According to them, the person- and household-level
weights do not necessarily have to be consistent, they only have to be related. It is assumed that
the auxiliaries are available at both levels. Let xi = (xi1, . . . , xiQ)T be the auxiliary vector for
person i, as defined before. Let ag = (ag1, . . . , agK)T be the auxiliary vector for household g.
The known population totals are given by Tx and Ta. Estevao and Särndal (2006) then defined
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the following combined person- and household-level vectors

x̃i = (xiT , N−1
g ag

T )T

ãg = (
∑
i∈Ug

xi
T ,ag

T )T . (3.12)

Accordingly, the auxiliary vectors xi and ag are combined to vectors of dimension (Q+K) by
assigning the information from one level to the respective other level. Based on the constructed
auxiliary vectors (3.12), Estevao and Särndal (2006) specified three integrated calibration esti-
mators. The comparability of these calibration estimators with the integrated GREG estimators
introduced in the previous Sections 3.1.2 and 3.1.3 is guaranteed, as calibration weights are
asymptotically equal to GREG weights (see Section 2.3.4).

In the first proposed calibration estimator, the weights wES1
i are calibrated at the person level to

satisfy the constraints

∑
i∈sp

wES1
i x̃i =

∑
i∈Up

wES1
i

(
xi

N−1
g ag

)
=
(
Tx
Ta

)
.

Superscript ES1 refers to the first estimator proposed by Estevao and Särndal. The resulting
calibration weights wES1

i can differ within a household, because of the original individual infor-
mation received in the calibration. The household weights are then computed as the mean value
of the person-level weights

wES1
g =

∑
i∈Ug

N−1
g wES1

i .

Because of differing person weights, the weights at the person and at the household level do
not necessarily have to be equal. Hence, consistent estimates between both levels are not guar-
anteed. In addition, the household weights wES1

g no longer satisfy the person-level constraints:∑
g∈Uh w

ES1
g xg 6= Tx. Consistent results are only ensured if xi in (3.12) is replaced by the con-

stant household mean values N−1
g xi. The weights wES1

i then simplify to the integrated weights
suggested by Lemaître and Dufour (1987), defined in (3.3), with additional household-level
auxiliaries.

In the second proposed estimator, the weights wES2
g are calibrated at the household level to

satisfy the constraints

∑
g∈sh

wES2
g ãg =

∑
g∈Uh

wES2
g

(∑
i∈Ug xi
ag

)
=
(
Tx
Ta

)
.

Superscript ES2 refers to the second estimator proposed by Estevao and Särndal. The person
weights are computed by

wES2
i = wES2

g for all i ∈ Ug.

Since the person weights within a household and the household weight itself are equal, con-
sistency is ensured. Obviously, this proposed estimator is equivalent to the integrated GREG
estimator suggested by Nieuwenbroek (1993) with additional person-level auxiliaries.
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The third proposed estimator is computed in a two-step procedure. Superscript ES3 refers to
the third estimator proposed by Estevao and Särndal. In the first step, the person weights wES3

i

are calibrated to satisfy solely the person-level constraints∑
i∈sp

wES3
i xi = Tx.

In the second step, the household-level weights wES3
g are computed to satisfy the constraints(∑

g∈sh w
ES3
g ag∑

i∈Ug w
ES3
i

)
=
(

Ta
Ngw

ES3
g

)
=
(
Tx
Ta

)
.

This implies that every household g in the sample sh imposes a unique constraint, which results
in cumbersome computations in the case of household surveys.

With respect to the objective of this thesis, ensuring consistent estimates at the person and
household level, we conclude the following:

• The first proposed estimator ensures consistent person- and household-level estimates
only if the person-level auxiliaries are replaced by their household mean values. This
results in the integrated GREG estimator introduced in Section 3.1.2.

• The second proposed estimator is equivalent to the integrated GREG estimator with
households as basis introduced in Section 3.1.3.

• The third proposed estimator is not feasible in the context of household surveys.

Consequently, we do not pursue the approach of Estevao and Särndal (2006) hereinafter.

3.2 Consequences of Integrated Weighting

In this section, we adduce the consequences of the strict requirement of equal weights for all per-
sons within a household and the household itself. We differentiate between the consequences of
the replacement of the original auxiliaries with constructed household mean values (see Section
3.2.1) and the consequences due to the one-to-one weight assignment between the estimation
levels (see Section 3.2.2). On the basis of these consequences, we deduce expectations about
the performance of point and variance estimates of integrated weighting. The focus of this
chapter lies on estimating person characteristics, as we expect the most consequences from the
restriction of equal weights at this level.

To underpin our argumentation, we compare the integrated GREG estimator and naïve GREG
estimator. The latter uses the original auxiliary information and does not ensure consistency. We
use the synthetic data set AMELIA, which is based on EU-SILC (cf. Burgard et al., 2017). To
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Table 3.1: Auxiliary variables I

Variable Description

sex Sex with two categories (male, female)

age Age classes with four categories (younger than 19, 20-39, 40-59, 60 and older)

ms Marital status with four categories (unmarried, married, separated or divorced,

widowed)

reduce computational burden, we use the data of only one out of four regions. Then our popula-
tion consists of approximately 2.6 million persons and 0.9 million households. The auxiliaries
of the integrated and naïve GREG estimator are given in Table 3.1.

It is noteworthy that all numbers presented in this section refer to the population. A simulation
study with random draws of samples to study the sampling distribution of the estimators follows
in Section 3.4.

3.2.1 Consequences of the Replacement of Original Auxiliaries with
Constructed Household Mean Values

In addition to the integrated GREG estimator requiring an additional auxiliary variable to en-
sure the integrated property, the difference between a naïve and an integrated GREG estimator
is that the latter uses constructed household mean values instead of the original individual infor-
mation. Obviously, the aggregation of the individual auxiliaries to a higher level causes some
reduction of sample information. Sometimes, the technique of aggregation is used for reasons
of disclosure control of sensitive data (cf. Bethlehem et al., 1990).

3.2.1.1 Increased Number of Outcome Values

Through the construction of household means, the outcome values of the original categories
might be redistributed within a household. In explanation, suppose that a household g con-
tains three household members: mother, father, and daughter. The original auxiliary vector for
the variable sex is then given by (x1 = 0, x2 = 1, x3 = 0)T . In contrast, in the integrated
weighting approach, the value x2 = 1 will be redistributed to all other household members:
(x̄1 = 1/3, x̄2 = 1/3, x̄3 = 1/3)T . Whereas the original variable sex has only two outcome
values, 0 or 1, the number of possible values in the integrated approach increases with the
number of household members: for a single-person household it is 0 or 1; for a two-person
household 0, 1/2, 1; for a three-person household 0, 1/3, 2/3, 1; for a four-person household 0,
1/4, 2/4, 3/4; and so on. Table 3.2 shows that the number of possible outcome values for the
constructed auxiliaries x̄i significantly exceeds the number of possible outcome values for the
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Table 3.2: Number of possible outcome values for xi and x̄i

age1 age2 age3 age4 sex0 sex1 ms1 ms2 ms3 ms4

xi 2 2 2 2 2 2 2 2 2 2

x̄i 43 42 40 39 36 36 45 43 26 24

original auxiliary information xi. The increased number of outcome values might increase the
range of the integrated weights and thus affect the efficiency. We evaluate this expectation, and
all following expectations, in the simulation study in Section 3.4.

3.2.1.2 Ignoring the Heterogeneity within a Household

Because of the replacement of the original person-level auxiliaries with a constructed vector of
household mean values, the variances of the auxiliaries are changed. The covariances with a
variable of interest also differ. This becomes evident when decomposing the variance of an ar-
bitrary original auxiliary vector x = (x1, . . . , xN)T into the within and the between variance

V (x) = (N − 1)−1 ∑
i∈Up

(xi − x̄)2

= (N − 1)−1 ∑
i∈Up

(xi − x̄i)2

︸ ︷︷ ︸
within variance

+ (N − 1)−1 ∑
i∈Up

(x̄i − x̄)2

︸ ︷︷ ︸
between variance

.

Analogously, the covariance with an arbitrary variable of interest y = (y1, . . . , yN)T can be
decomposed into

Cov(x,y) = (N − 1)−1 ∑
i∈Up

(xi − x̄)(yi − ȳ)

= (N − 1)−1 ∑
i∈Up

(xi − x̄i)(yi − ȳ)
︸ ︷︷ ︸

within covariance

+ (N − 1)−1 ∑
i∈Up

(x̄i − x̄)(yi − ȳ)
︸ ︷︷ ︸

between covariance

.

The respective second term on the right-hand side describes the variance of an arbitrary inte-
grated auxiliary vector x̄ = (x̄1, . . . , x̄N)T

V (x̄) = (N − 1)−1 ∑
i∈Up

(x̄i − x̄)2

and the integrated covariance

Cov(x̄,y) = (N − 1)−1 ∑
i∈Up

(x̄i − x̄)(yi − ȳ).
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As a consequence, the integrated approach captures only the between variance and between
covariance. Ignoring the within variance and within covariance implies that the heterogeneity
of the persons within a household is not taken into account. To assess the impact of ignoring the
within variance, we compute the share of the within and between variance on the total variance.
We continue with the same proceeding for the covariance with income (abbreviated with inc)
as the variable of interest. Table 3.3 depicts that neither the within variance nor the within
covariance (left columns) disregarded in integrated weighting are negligible. Additionally, the
within variance and within covariance exceed the between variance and between covariance for
any auxiliary variable. Hence, the integrated weighting approach does not exploit all available
auxiliary information.

Table 3.3: Share of the within and between variance or covariance on the total variance or total covariance
with income as variable of interest

within between within between

variance covariance

age1 0.67 0.33 0.71 0.29

age2 0.63 0.37 0.68 0.32

age3 0.62 0.38 0.65 0.35

age4 0.52 0.48 0.56 0.44

sex0 0.74 0.26 0.75 0.25

sex1 0.74 0.26 0.75 0.25

ms1 0.64 0.36 0.69 0.31

ms2 0.62 0.38 0.68 0.32

ms3 0.64 0.36 0.71 0.29

ms4 0.65 0.35 0.75 0.25

Both the variance and covariance affect the stability of the estimated coefficients. The higher
the variation of the auxiliaries, the more stable the projection onto the space spanned by the
auxiliaries. Therefore, we expect that the integrated coefficients vary more compared to the
coefficients resulting from a naïve GREG estimator. Moreover, the disregarded person-level
variation might also affect the efficiency of the estimators, because even if the GREG estimator
is model-assisted, and thus its design-based properties do not depend on the correctness of the
model, its efficiency relies on the strength of the relationship between the variable of interest
and the auxiliaries. These expectations will be validated in the simulation study.

3.2.2 Consequences of the One-to-One Weight Assignment

An interesting question is what consequences are caused by the one-to-one weight assignment
from the person to the household level. One obvious disadvantage of the one-to-one weight as-



3 INTEGRATED WEIGHTING 35

signment is that the same auxiliary information is demanded at the person and at the household
level. Thus, the explanatory power of level-specific variables of interest is ignored.

Moreover, because of the one-to-one weight assignment, the integrated approach tacitly as-
sumes that the strength of the relationship between the variable of interest and the auxiliary
variables are identical at both levels. However, Robinson (1950) showed that the correlations
for the same variables can be different at the individual level than at the aggregated level. This
phenomenon is known as ecological fallacy. Misleading results are generated if the causes
of variation between aggregated data differ from the causes of variation within the aggregated
data (cf. Gelman et al., 2001, p. 110). Table 3.4 confirms that the correlations of inc with the

Table 3.4: Correlations of the auxiliaries and inc

Cor(xi,yi) Cor(x̄i,yi)

age1 -0.23 -0.12

age2 0.14 0.07

age3 0.15 0.09

age4 -0.09 -0.06

sex0 0.10 0.05

sex1 -0.10 -0.05

ms1 -0.16 -0.08

ms2 0.12 0.06

ms3 0.05 0.02

ms4 0.03 0.01

original individual auxiliaries (left column) and with the household mean values (right column)
differ. In particular, the correlations with the original auxiliaries considerably exceed the ones
with the household mean values for every single variable. Therefore, we expect an efficiency
loss for the integrated approach, because its coefficients are based on Cor(x̄i,yi) instead of on
Cor(xi,yi).

3.3 Empirical Evidence in the Literature

Before validating the previously discussed consequences of integrated weighting using a simu-
lation study, we review the empirical evidence on integrated weighting found in the literature.
The first four empirical studies are based on one single sample. The last two studies are based
on repeatedly drawn samples from a fixed population.

Lemaître and Dufour (1987) compared the estimates of person characteristics obtained from
an ordinary integrated GREG estimator with that from a classical post-stratification estimator
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using the 1981 Canadian LFS. For household characteristics, the reference post-stratification
estimator used the principal person method presented in Section 3.1.2. The Canadian LFS is a
monthly rotating panel survey of approximately 48,000 households with 10 geographic strata.
Estimation was carried out for six different provinces of Canada with 24 sex by age groups
as auxiliaries. The variables of interest at the person level consisted of the number of persons
employed, unemployed, and unattached. The number of economic families, which comprise
all persons in a household related by blood, marriage, or adoption, provided a household char-
acteristic. The empirical study revealed that even if the integrated weights were more spread
compared to those from the post-stratification estimator, no substantially different point esti-
mates resulted. With respect to the precision of person characteristics estimates, almost no
differences were realized. However, substantial efficiency gains were achieved for economic
families. On the basis of these results, Lemaître and Dufour (1987) concluded that integrated
weighting could be implemented with little or no loss of efficiency for estimates of person-level
characteristics.

Using the Dutch Regional Income Survey (RIS), van den Brakel (2013, 2016) contrasted the
efficiency of an ordinary integrated, a naïve GREG, and a Horvitz-Thompson estimator. The
RIS is selected through stratified random sampling without replacement. Eighteen indicator
variables of household type, different cross-classifications of age by gender, and age by gen-
der by marital status served as auxiliaries. Variables of interest included the mean income
of households and of persons as well as the income distribution of households in 10 classes
where the categories are based on deciles. Point estimates and their corresponding standard
errors were computed for three municipalities of different sample sizes (171,400, 46,300, and
2,500 persons) and for three subsequent years (2006, 2007, and 2008). When the efficiencies of
Horvitz-Thompson and both GREG estimators are compared, the empirical results showed that
the differences were small for municipalities with larger sample sizes. For smaller samples, the
use of auxiliary information increased the precision of the GREG estimators. Comparing an in-
tegrated and a naïve GREG estimator, it becomes apparent that the latter is slightly less precise
when estimating the total household income. The opposite is true when estimating person-level
income. From that, van den Brakel (2013, 2016) concluded that the assumed variance struc-
ture of an ordinary integrated GREG estimator better fits to household- than to person-level
characteristics.

It should be remarked that even if Lemaître and Dufour (1987) utilized a post-stratification
estimator, their results are directly comparable to the results given by van den Brakel (2013,
2016) using a naïve GREG estimator. The reason for this is that only categorical auxiliaries are
included. Therefore, post-stratification and the linear naïve GREG estimator are equivalent (cf.
Zhang, 2000).

Isaki et al. (2004) used the 1990 U.S. Census of Population and Housing to adapt quadratic
programming with the original weighting method implemented at that time. When estimating
person characteristics, original raking was applied. When estimating household characteristics,
the principal person method was used. As mentioned in Section 3.1.3, quadratic programming
is equivalent to a calibration estimator with a truncated distance function. Thus, except for
the bounds, it is comparable with a generalized GREG estimator. Both methods under con-
sideration were assessed in terms of the agreement between estimates and census counts. The
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estimates were produced based on data out of one weighting area of the census containing 8,034
households and 25,145 persons. The variables of interest consisted of several categorical person
and household characteristics. The empirical results revealed that for household characteristics,
both methods perform similar. For person-level characteristics, the quadratic programming es-
timates better fit the census counts than the raking estimates. In their conclusion, Isaki et al.
(2004) emphasized the computational feasibility of producing one integrated weight rather than
separate person and household weights.

Branson and Wittenberg (2014) presented estimates from their proposed cross-entropy estima-
tion approach using the South African Household Survey, the LFS, and the General Household
Survey for the years from 1994 up to 2007. The post-stratification estimator that was currently
implemented, served as a benchmark estimator. All household surveys at hand were sampled by
means of a two-stage cluster design, with regional areas selected via simple random sampling1

at the first stage and households selected via stratification at the second stage. Neither the num-
ber of sampling units nor the auxiliary information was mentioned by the authors. However, it
can be presumed that the same auxiliaries were applied as available for the original weighting
procedure: provinces, age, sex, race, and urban or rural. The variables of interest comprised
the number of persons and households, age, sex, race, and regional variables. From the results,
Branson and Wittenberg (2014) claimed their cross-entropy estimates ensure consistent results
and form a smooth time series, whereas the original estimates exhibit jumps.

Using a simulation study as their basis, Steel and Clark (2007) investigated the relative root
MSE (see Section 2.2.2 for a definition) of a naïve, an ordinary, and a generalized integrated
GREG estimator. The 2001 Australian Population Census consisting of 187,178 households
and the 1995 Australian National Health Survey consisting of 210,132 persons served as the
population. From these populations, 5,000 samples of different sizes were drawn via simple
single-stage cluster sampling of households. The auxiliaries consisted of 12 indicator variables
of sex-by-age classes. The variables of interest included six variables out of the census (em-
ployed, employed female, income, low income, hours worked) and five health variables. For
the health variables, both integrated GREG estimators performed slightly better than the naïve
GREG estimator for a sample size of 1,000 households. The reverse is true for the census vari-
ables. The precision improvement of both integrated GREG estimators with respect to census
variables increased with the sample sizes. The efficiency loss with respect to health variables
decreased when increasing the sample size. For regional estimates, both integrated GREG es-
timators were slightly worse in all cases. Steel and Clark (2007) claimed that there is little
or no loss associated with the practical benefit of integrated weighting. This conclusion is in
accordance with the conclusion drawn by Lemaître and Dufour (1987).

Wu et al. (1997) contrasted an ordinary and a generalized integrated GREG estimator. A simula-
tion study was implemented with data from the 1990 Canadian LFS of Newfoundland consisting
of 9,152 persons. A two-stage cluster design was realized with selecting PSU via probability
proportional to size at the first stage and with selecting dwellings via simple random sampling
at the second stage. All persons within a dwelling were included into the sample. One thousand

1In South Africa, a sampling frame containing all households is available.
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samples of approximately 1,000 persons were drawn from the population. Twenty-four differ-
ent sex-by-age groups served as auxiliaries. The variables of interest included the number of
persons employed and unemployed in single-person households and the number employed in
households of four and more persons. For both single-person variables, the ordinary integrated
GREG estimator performs slightly worse than the generalized one. No difference occurred
for the number of employed for households of size four and more. These results confirmed
their theoretical expectation based on arguments of the theory of optimal estimators that the
generalized GREG estimator was preferable in terms of asymptotic efficiency. Both integrated
estimators had a negligible bias.

Comparing the presented studies, it becomes apparent that the point estimates from a naïve
and an integrated GREG estimator were only contrasted by Lemaître and Dufour (1987). They
found no considerable differences. With respect to the efficiency, Lemaître and Dufour (1987)
and van den Brakel (2013, 2016) agreed that the integrated GREG estimator is more efficient
when estimating household characteristics. However, the universal recommendation of an in-
tegrated GREG seems surprising, as van den Brakel (2013, 2016) and Steel and Clark (2007)
found less efficient results with respect to income, health variables, and regional estimates.

A key limitation of all the mentioned studies is that none stated the additional auxiliary variable
required to ensure the integrated property introduced in Section 3.1.1. The number of variables
of interest is very limited in all studies except for Steel and Clark (2007) and Isaki et al. (2004).
Also, the types of variables of interest are limited. Almost all variables are dichotomous except
for income. Moreover, the population from which Wu et al. (1997) drew the samples is very
small. Wu et al. (1997) and Lemaître and Dufour (1987) used the Canadian LFS as data base.
However, although the latter computed one single estimate for one single sample, the former
ran a simulation study with 5,000 samples. Both studies included the same auxiliary variables.
Nevertheless, their results are not directly comparable, as the focus of the studies differs: a com-
parison of an integrated and a post-stratification estimator versus a comparison of an ordinary
and a generalized integrated GREG estimator.

3.4 Simulation Study

The following Monte-Carlo (MC) simulation study compares the performance of the integrated
GREG estimators and a naïve GREG estimator in order to evaluate the aforementioned conse-
quences of integrated weighting. See Table 3.5 for the estimators under consideration.

3.4.1 Simulation Setup

The simulation study is based on the aforementioned synthetic population AMELIA (cf. Bur-
gard et al., 2017). The auxiliaries consist of an intercept and 18 indicator variables (see Table
3.6). Within the integrated GREG estimators, we also include the additional auxiliary, N−1

g ,
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Table 3.5: Estimators under consideration

Estimators Description

GREG Naïve GREG estimator determined by Definition 2

GREG2 Naïve GREG estimator determined by Definition 2 with household size

as additional auxiliary

INT1 Ordinary integrated GREG estimator determined by Definition 3

with vi = 1
INT2 Generalized integrated GREG estimator determined by Definition 3

with vi = N−1
g

INT1b Ordinary integrated GREG estimator determined by Definition 3

with vi = 1 without the integrated variable N−1
g

INT2b Generalized integrated GREG estimator determined by Definition 3

with vi = N−1
g without the integrated variable N−1

g

required to ensure the integrated property. The choice of solely categorical variables induces
that the GREG estimator is equivalent to a post-stratification estimator (cf. Zhang, 2000).

Table 3.6: Auxiliary variables II

Variable Description

intercept Intercept

sex Sex with two categories (male, female)

age Age classes with four categories (younger than 19, 20-39, 40-59, 60 and older)

ms Marital status with four categories (unmarried, married, separated or divorced,

widowed)

sex_age Cross-classifications of age by sex with four categories

ms_sex Cross-classifications of marital status by sex with four categories

We chose three different types of variables of interest (see Table 3.7). The cross-classifications
with the household size are included because, as mentioned in Section 3.3, Lemaître and Dufour
(1987) and van den Brakel (2013, 2016) emphasized the superiority of integrated weighting
with respect to household-level characteristics. We deliberately chose variables on different
scales: metric, dichotomous, and categorical. Income, moreover, is a skewed variable. The
broad range of different scales and different degrees of skewness induces varying difficulties
to produce unbiased and efficient estimates. Therefore, a comprehensive comparison of the
performance of an integrated and a naïve GREG estimator is guaranteed.
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Table 3.7: Variables of interest at the person level

Variable Description

Classical person-level characteristics

inc Personal income

soc Social income

sel Self-employment dummy

act Activity status with three categories (at work, unemployed, inactive persons)

Cross-classification with the household size

inc_hs Cross-classification of personal income by household size with six categories

Cross-classification with the auxiliaries

bene_age Cross-classification of unemployment benefits by age with four categories

We drew R = 1000 MC samples via simple random sampling. We chose a larger sample size
of m = 1500 households and a smaller sample size of m = 200. The average MC sample size
of persons is

∑1000
r=1 nr = 4333 in case of m = 1500 sampled households and

∑1000
r=1 nr = 577

for m = 200 sampled households.

Two aspects are relevant when evaluating the different methods: point and variance estimates.
First, we introduce some quality measures for point estimates based on the quality criteria pre-
sented in Section 2.2.2. Suppose T̂r as the resulting total estimate for the r-th MC replication
with r = 1, . . . , R. Define EMC(T̂ ) = R−1∑R

r=1 T̂r, where the quantity EMC(T̂ ) denotes the
empirical expectation of the estimator T̂ . Let T be the true value. Then, the empirical relative
bias (RB) of T̂ is given by

RB(T̂ ) = EMC(T̂ )− T
T

.

The RB measures the mean difference of the estimator from the true value in relation to the true
value itself. The empirical mean squared error (MSE) is defined as

MSE(T̂ ) =
(
EMC(T̂ )− T

)2
.

The empirical relative root mean squared error (RRMSE) is given by

RRMSE(T̂ ) =

√√√√(EMC(T̂ )− T
)2

T 2 .

The MSE and RRMSE take into account both the bias and the variability of the estimates. The
advantage of the RRMSE compared to MSE is that it allows a relative comparison between
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different variables. However, an issue arises is if the denominator in RRMSE is close to zero.
Because of this issue and because we are not interested in a comparison between the variables,
but between the estimators, we prefer the MSE as the quality measure in the following.

We continue by introducing quality measures for the variance estimates. Suppose V̂r(T̂ ) is
the variance estimate for the r-th MC replication with r = 1, . . . , R. Define EMC[V̂ (T̂ )] =
R−1∑R

r=1 V̂ (T̂ )r where the quantity EMC[V̂ (T̂ )] denotes the empirical expectation of the vari-
ance estimator V̂ (T̂ ). Consider V MC(T̂ ) = R−1∑R

r=1[T̂r −EMC(T̂ )]2 as the empirical variance
of T̂ . Then, the RB of the variance estimates is given by

RB[V̂ (T̂ )] = EMC[V̂ (T̂ )]− V MC(T̂ )
V MC(T̂ )

.

The RB, MSE and RRMSE produce one number for all MC replicates. Hence, we define a
replication-specific quality measure for the variance estimates. The replication-specific relative
bias of V̂ (T̂ ) is determined by

rsRBr[V̂ (T̂ )] = V̂r(T̂ )− V MC(T̂ )
V MC(T̂ )

.

The rsRBr measures the relative deviation of each r variance estimate from the empirical vari-
ance of the point estimator. We use R = 10, 000 MC replicates to compute V MC(T̂ ), because
the empirical variance of the point estimates V MC(T̂ ) converges slower than the empirical ex-
pectation of the variance estimates EMC[V̂ (T̂ )].

3.4.2 Results on Weights and Regression Coefficients

We start by analyzing the weight distributions generated by the methods under consideration
in order to evaluate whether the increased number of outcome values, as discussed in Section
3.2.1, might induce a wider range of the integrated weights. Figure 3.1 presents the weights at
the person level divided by the design weights for all R = 1000 MC replications. Per method
approximately 4.3 million data points are plotted. It becomes apparent that both integrated
weights have a wider range and a higher variation compared to the weights of a naïve GREG
estimator. A greater dispersion of the integrated weights was also found by Lemaître and Du-
four (1987) and Rottach and Hall (2005). Actually, negative weights occur for both integrated
GREG estimators. The GREG weights are positive throughout, even for the smaller sample
size. Consequently, the weight distribution of an integrated GREG estimator is significantly
influenced by the redistribution of the original auxiliaries to all household members.

Interestingly, the variation of the integrated person weights depends on the household size (see
Figure 3.2). All households of size > 6 were collapsed to one category. Although the weights
vary more for smaller households for INT1, the opposite is true for INT2. The reason is the
reverse assumed variance structure of the variable of interest in the assisting model.
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Figure 3.1: Boxplots for person weights

To evaluate whether the ignorance of the heterogeneity of the persons within a household (see
Section 3.2.1) affects the regression coefficients, we continue by analyzing the regression co-
efficients of the estimators under consideration. Figure 3.3 opposes B̂GREG

r , B̂INT1
r and B̂INT2

r

for = 1, . . . , 1000 MC replications. To center the coefficients around zero, we subtract the true
regression coefficients. For all auxiliaries, the coefficients of INT1 and INT2 considerably vary
more than the coefficients of GREG. It should be noted that a naïve GREG estimator does not
require the additional variable N−1

g ; thus there are no boxes for it. This result confirms our
expectation from Section 3.2.1.2 that the neglected within variance in the integrated weighting
approach results in less-stable coefficients.

3.4.3 Results on Point Estimates

Table A.1 in Appendix A validates the property that all estimators under consideration are
unbiased or nearly so. Table 3.8 summarizes the relative efficiency of the MSE for different
variables of interest and for different sample sizes. For m = 1500, GREG performs similarly to
INT1 and INT2 for person characteristics and slightly worse for variables related to household
size. This result is in accordance with the empirical studies given in Lemaître and Dufour
(1987) and van den Brakel (2013, 2016). For the smaller sample size m = 200, the efficiency
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Figure 3.2: Boxplots for person weights by household size for m = 1500

gains of GREG relative to INT1 and INT2 increase. As INT1 and INT2 contain the integrated
variable as an additional auxiliary, we include the household size, Ng, into the naïve GREG
estimator for a fair comparison. We denote this estimator as GREG2. GREG2 outperforms
INT1 and INT2 for all variables of interest including the variables related to household size.
This relative improvement ranges from 7% to 49%. Therefore, when including the household
size as an auxiliary into the naïve GREG estimator, the superiority of the integrated GREG
estimator with respect to household-level characteristics as claimed by Lemaître and Dufour
(1987) and van den Brakel (2013, 2016) vanishes. Our results indicate that the statement given
by Lemaître and Dufour (1987), Steel and Clark (2007) and van den Brakel (2013, 2016) that
the inefficiencies of integrated weighting would be limited, is valid only for larger sample sizes.
It is important to note that m = 200 refers to the number of households. The average number
of persons, on which the estimators are based, is n̄ = 577.

Table 3.9 contrasts the efficiency of INT1 relative to INT2. For m = 1500, INT2 performs
better for almost all variables related to household size. This is in line with the findings of Wu
et al. (1997) as discussed in Section 3.1.5. For person characteristics, there is no clear tendency
for the superiority of one estimator. However, for the smaller sample size, INT1 seems to be
slightly more efficient for most variables.
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Figure 3.3: Boxplots for the coefficients B̂GREG
r , B̂INT1

r and B̂INT2
r for r = 1, . . . , 1000 and m = 1500

3.4.4 Results on Variance Estimates

None of the empirical studies presented in Section 3.3 examined the variance estimates of an
integrated GREG estimator. Only the biases and efficiency of the point estimates were analyzed.
The rsRBr for r = 1, . . . , 1000 of the variance estimates are illustrated in Figure 3.4 The RB is
indicated in green. For the smaller sample size (upper plots) and more skewed variables (bene
and inc), the variance estimates are less precise than for the larger sample size (lower plots)
and less skewed variables (act). This observation is valid for all estimators. The higher ranges
of the RB and rsRBr for inc by hs and bene by age is caused by the decreased sample sizes in
the cross-classifications.

For m = 1500, the performances of the variance estimators under consideration are quite sim-
ilar. Except for inc_hs1, inc_hs2 and inc_hs6, GREG underestimates the empirical expec-
tation of the variances, but produces fewer outliers. For m = 200, however, GREG achieves
more precise variance estimates for most variables. Therefore, for smaller sample sizes the inte-
grated GREG estimators produces less precise variance estimates compared to the naïve GREG
estimator. This is in line with the results on the point estimates.

While exploring the consequences of integrated weighting, we generate several further simula-
tion results. We especially aimed at detecting whether the replacement of the original auxiliaries
might introduce some bias, which was not the case. The further simulation results can be found
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Table 3.8: Relative efficiency of the MSE of point estimates

m=1500 m=200
INT1

GREG
INT2

GREG
INT1

GREG2
INT2

GREG2
INT1

GREG
INT2

GREG
INT1

GREG2
INT2

GREG2

inc 1.00 1.00 1.00 1.00 1.04 1.04 1.02 1.02

soc 1.01 1.01 1.01 1.01 1.02 1.03 1.01 1.02

sel 1.00 1.00 1.00 1.00 1.01 1.02 1.00 1.01

act1 1.00 1.00 1.00 1.00 1.02 1.02 1.01 1.01

act2 1.00 1.00 1.00 1.00 1.02 1.03 1.01 1.02

act3 1.00 1.00 1.00 1.00 1.02 1.02 1.01 1.01

inc_hs1 0.94 0.90 1.13 1.08 1.03 0.90 1.24 1.10

inc_hs2 0.95 0.93 1.30 1.28 0.99 0.94 1.33 1.26

inc_hs3 1.00 1.00 1.38 1.36 1.03 1.02 1.45 1.44

inc_hs4 1.01 1.01 1.49 1.49 1.01 1.04 1.45 1.48

inc_hs5 0.98 0.99 1.10 1.11 1.00 1.04 1.07 1.11

inc_hs6 0.94 0.90 1.11 1.07 0.95 0.97 1.12 1.15

bene_age1 1.00 1.01 1.00 1.01 1.02 1.01 1.01 1.00

bene_age2 1.00 1.00 1.00 1.00 1.03 1.04 1.01 1.02

bene_age3 1.00 1.00 1.00 1.00 1.01 1.02 0.99 1.00

bene_age4 1.00 1.00 1.00 1.00 1.02 1.03 1.01 1.02

in Section A.2 in Appendix A. We addressed the topics of the estimation of subgroups and do-
mains, the influence of equal weights on regressions and the influence of ecological fallacy in
the integrated weighting approach.
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Table 3.9: Relative efficiency of the MSE of point estimates of INT1 and INT2

m=1500 m=200
INT1
INT2

INT1
INT2

inc 1.00 1.00

soc 1.00 0.99

sel 1.00 0.99

act1 1.00 1.00

act2 1.00 0.99

act3 1.00 1.00

inc_hs1 1.05 1.13

inc_hs2 1.02 1.06

inc_hs3 1.01 1.01

inc_hs4 1.00 0.98

inc_hs5 0.99 0.96

inc_hs6 1.04 0.98

bene_age1 0.99 1.01

bene_age2 1.00 0.99

bene_age3 1.00 0.99

bene_age4 1.00 0.99
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3.5 Conclusion

This chapter introduced integrated weighting as the current method used by statistical offices
to ensure consistent estimates at the person and household level. We emphasized an important
property of integrated weighting that is essential to ensuring that the person weights sum up
to the number of persons in the population and the household weights simultaneously sum
up to the number of households in the population. This property, which we denote as the
integrated property, is relevant only for integrated weighting, because the weights are calculated
at one level and then assigned one-to-one to the other level. To the best of our knowledge, the
integrated property is neglected in the literature.

To permit a comparison, we generalized the integrated GREG estimators introduced by Lemaître
and Dufour (1987) and Nieuwenbroek (1993) into one single integrated GREG estimator de-
rived at the person level with differing variance components (see Definition 3). To produce
consistent estimates, the original auxiliary information is replaced by constructed household
mean values. The person weights, which are equal for all household members, are then as-
signed one-to-one to the corresponding households. As a consequence of this approach, the
number of outcome values of the auxiliaries increases, the heterogeneity of persons within a
household is neglected by disregarding the within variance, and ecological fallacy can arise.
The simulation study confirms that these consequences result in more spread weights, more
varying coefficients, and a lower degree of explanation. Moreover, for smaller sample sizes, the
point estimates are less efficient compared to a naïve GREG estimator. For larger sample sizes,
our results are in accordance with the results given by Lemaître and Dufour (1987) and van den
Brakel (2013, 2016). However, in contrast to the aforementioned authors, we include the inte-
grated variable, which is essential for ensuring the integrated property. Therefore, the claimed
superiority with respect to the estimation of household characteristics mentioned by Lemaître
and Dufour (1987), van den Brakel (2013), van den Brakel (2016), and Steel and Clark (2007)
vanishes when including the household size as auxiliary variable in the naïve GREG estimator.
Indeed, when the household size is included, the naïve GREG estimator considerably outper-
forms the integrated GREG estimators. Furthermore, the variance estimator of an integrated
GREG estimator is less efficient than that of a naïve GREG estimator for smaller sample sizes.
To conclude, our results suggest that the consequences of integrated weighting outbalance that
a naïve GREG estimator misses the fact that all household members are sampled as a cluster,
as criticized for example by Steel and Clark (2007), Lemaître and Dufour (1987), and Wu et al.
(1997, p. 101).

Therefore, to avoid the reported undesirable consequences of integrated weighting, we in-
troduce in the following chapter two alternative weighting approaches that ensure consistent
person- and household-level estimates without the strict requirement of equal weight of all
household members and the household itself. The resulting individual person weights retain the
individual patterns within a household and thus capture the heterogeneity in a household.



4 Alternative Weighting Approaches

In statistical offices, it is common practice to use integrated weighting, which enforces equal
weights for all persons within the same household, to ensure consistent estimates. However, as
demonstrated in detail in Section 3.2, the strict requirement of equal weights entails some unde-
sirable consequences such as an increased number of outcome values of the auxiliary variables,
the disregarded heterogeneities within a household, and possible problems induced by ecolog-
ical fallacy. Therefore, in this chapter we introduce two weighting approaches as alternatives
to integrated weighting, which are capable of both ensuring consistent person and household
estimates and allowing for different weights of persons within a household.

The idea underlying our alternative weighting approaches is to constrain the consistency re-
quirements to variables that are common to the person and household data set. By incorporating
the common variables as additional auxiliaries, our alternative weighting approaches produce
consistent estimates of these variables. Thus, consistency is ensured more directly and only
for the relevant variables, instead of indirectly by aggregating the individual information per
household. To implement such alternative weighting approaches, we adapt the method given by
Renssen and Nieuwenbroek (1997), known from the literature on combining information from
multiple independent surveys. However, there are major differences between our proposed al-
ternative weighting approaches and the approach of Renssen and Nieuwenbroek (1997).

The main advantage of our alternative weighting approaches compared to integrated weight-
ing is that the original individual rather than the constructed aggregated auxiliaries are utilized.
Therefore, differing weights for the persons within a household are allowed that retain the in-
dividual pattern of the persons. Furthermore, our alternative weighting approaches consist of
separate person- and household-level estimators, providing two further advantages. Firstly, the
different calculation levels of person and household characteristics, which prevent the problems
caused by ecological fallacy, are considered. Secondly, the variable selection process is more
flexible because different auxiliary variables can be incorporated in the person-level estimator
than in the household-level estimator. Finally, no additional auxiliary variable is required to
enforce the integrated property. As a result, our alternative weighting approaches contradict the
widespread opinion in the literature that equal weights are indispensable to ensure consistent
estimates in household surveys.

Therefore, the aim of this chapter is to derive point and variance estimators of the proposed al-
ternative weighting approaches. The chapter is organized as follows: Section 4.1 briefly reviews
the literature on methods to combine information collected from independent multiple surveys.
In Section 4.2, we introduce our two alternative weighting approaches to ensure consistency be-
tween person- and household-level estimates without the strict requirement of equal weights for

49



4 ALTERNATIVE WEIGHTING APPROACHES 50

all persons within the same household. To assess the impact induced by the consistency require-
ments, we decompose our proposed estimators into a naïve GREG estimator and an adjustment
term capturing the effect of the consistency requirements. Section 4.3 discusses the GLS ad-
justment algorithm suggested by Zieschang (1986, 1990) and Merkouris (2004) which can also
be adapted to guarantee consistent person- and household-level estimates. The GLS estima-
tor serve as a benchmark for our proposed weighting approaches. For a better comparability
with our proposed weighting approaches, we rewrite the GLS estimator as GREG estimator.
Subsequently, we decompose the rewritten estimator into a naïve GREG estimator and an ad-
justment term capturing the consistency requirements. Section 4.4 emphasizes the difference
between our proposed alternative weighting approaches and the GLS estimator. A simulation
study in Section 4.5 contrasts the estimation performance of our proposed alternative weight-
ing approaches, the GLS estimator, and integrated weighting. Section 4.6 contains concluding
remarks.

For a better overview, Table 4.1 summarizes all discussed estimators presented in the following.
At the end of Section 4.4, we complete this table with the corresponding formulas.

Table 4.1: Summary of the proposed and benchmark estimators I

Estimator Abbreviation Section

Proposed estimators

First weighting approach WA1 Section 4.2.1

Second weighting approach WA2 Section 4.2.2

Benchmark estimators

GLS estimator by Zieschang (1986, 1990) ZIE Section 4.3.1

GLS estimator by Merkouris (2004) MER Section 4.3.2

4.1 Methods to Combine Information from Independent
Multiple Surveys

Since the idea of our alternative weighting approaches is based on methods to combine infor-
mation from multiple independent surveys, we briefly review the literature on these methods.
Zieschang (1986, 1990) explored a GLS adjustment algorithm to link the estimates of two in-
dependent surveys. The application focused on the Diary Survey and the Interview Survey as
two separate components of the U.S. Consumer Expenditure Survey. The collected information
obtained from each survey overlaps for some items such as tenure status or region of residence.
To link the estimates of the overlapping variables, the auxiliary information of both surveys is



4 ALTERNATIVE WEIGHTING APPROACHES 51

pooled and additional linear constraints are imposed into the GLS estimator. Merkouris (2004)
modified the GLS adjustment algorithm to account for different samples sizes. We return to the
GLS adjustment algorithm in Section 4.3 since it can be adopted to ensure consistency between
person- and household-level estimates.

To align the estimates for variables common to two independent surveys, Renssen and Nieuwen-
broek (1997) introduced an adjusted GREG estimator. Common variables were defined as vari-
ables observed in two surveys for which the corresponding population totals are unknown. As
estimators for the unknown common variable totals, Renssen and Nieuwenbroek (1997) sug-
gested a weighted average of the estimates obtained from each of the independent surveys. By
including the common variables as additional auxiliaries, the adjusted GREG estimator aligns
the estimates of the respective common variables. We revive to the adjusted GREG estimator
in Section 4.2 because our proposed alternative weighting approaches are based on the idea of
including common variables as additional auxiliaries to ensure consistency.

Wu (2004) applied a pseudo-empirical likelihood (EL) approach to combine information from
multiple independent surveys. The pseudo-EL approach is a nonparametric method, where
estimation is based on a likelihood function (cf. Chen and Sitter, 1999). Wu (2004) showed that
under suitable regularity conditions the EL approach is asymptotically equivalent to the GREG
estimator, but with the advantage of producing only positive weights. The EL approach was also
used by Kabzinska and Berger (2015) to align estimates from different surveys. Their proposed
method differs from the EL approach suggested by Wu (2004) in that the inclusion probabilities
are imposed into the linear constraints rather than into the likelihood function. However, we do
not follow the EL approach in this thesis, because it does not provide an analytical expression
for the weights and because it is asymptotically equivalent to the GREG estimator.

To enforce consistency among contingency tables of surveys estimates, Boonstra et al. (2003)
and Houbiers (2004) introduced repeated weighting. Repeated weighting is a two-step proce-
dure: In a first step, the contingency tables are estimated by means of a GREG estimator. In
a second step, the table estimates are consecutively adjusted such that numerical consistency
between the estimates is obtained (cf. Knottnerus and van Duin, 2006). Nevertheless, we do
not pursue repeated weighting because the proposed method is applicable only for contingency
tables. The main concern of this chapter, in turn, is to produce global weights that are suitable
for all survey variables.

A considerable body of literature exists on the topic of combining information from multiple
surveys accompanied with keywords such as multipurpose surveys, split questionnaires, or dou-
ble sampling. However, this thesis focuses less on combining information from multiple sur-
veys and more on ensuring consistency between person- and household-level estimates. Hence,
we consider only the methods introduced by Zieschang (1986, 1990), Merkouris (2004), and
Renssen and Nieuwenbroek (1997) in the following.
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4.2 Alternative Weighting Approaches to Ensure Consistent
Estimates

The objective of our proposed alternative weighting approaches is to ensure consistency be-
tween person- and household-level estimates without the strict requirement of equal weights
for all persons within the same household as enforced by integrated weighting. Therefore, the
individual patterns within a household are preserved. The underlying idea is to reduce the con-
sistency requirements to variables that are common to the person and household data set. To
implement such a weighting approach, we adopt the idea of Renssen and Nieuwenbroek (1997)
to incorporate common variables into the estimation process. However, there are major dif-
ferences between our proposed weighting approaches and the original method by Renssen and
Nieuwenbroek (1997):

1) Renssen and Nieuwenbroek (1997) (and in general the literature on combining informa-
tion from multiple surveys) considered independent surveys selected in separated sam-
pling processes. In contrast, we deal with household surveys consisting of two highly
dependent data sets, namely the person data set and the household data set, collected
within one single sampling process.

2) A further considerable difference concerns the definition of common variables. Renssen
and Nieuwenbroek (1997, p. 368) defined common variables as variables observed in two
independent surveys for which the population totals are unknown. However, in the con-
text of household surveys, it is hardly conceivable that the same item is simultaneously
requested in the person and in the household questionnaire. Instead, it is more prevalent
that for some person characteristics, their corresponding values at the household level
are of interest. For such person characteristics, the per-household aggregated variables
are computed and supplementarily added to the household data set. Plausible examples
include household income, purchases, or the number of employees in a household. There-
fore, we define common variables as variables available at different aggregation levels,
once in their initial form at the person level and once in its aggregated form at the house-
hold level. It is notable that in our context practical complications induced by discrepan-
cies between varying definitions, sampling modes and reference periods as arising in the
context of multiple surveys, are irrelevant.

3) Lastly, Renssen and Nieuwenbroek (1997) assumed that the independent surveys at hand
refer to the same target population. In contrast, household surveys provide information
on both the population of persons and the population of households. As a consequence, in
our context consistency requirements target the estimation at different aggregation levels.

Considering these differences, we propose two alternative weighting approaches that ensure
consistency between the person- and household-level estimates. Because of these differences,
the proposed point and variance estimators differ from the estimators by Renssen and Nieuwen-
broek (1997). The differences in point and variance estimators are discussed in Section 4.4.
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The remainder of this section is organized as follows: Section 4.2.1 introduces our first pro-
posed weighting approach, where consistency is ensured only by the household-level estimator.
The estimator at the person level remains unaffected by the consistency requirements. As an
estimator for the unknown totals of the common variables, we suggest a person-level estimator,
because in household surveys the common variables might be primarily person characteristics,
as mentioned in point 2 (given above). Section 4.2.2 presents our second proposed weighting
approach, where we strive to improve the estimates of the unknown common variable totals.
Thus, for each common variable total, a separate model is implemented. Consistent estimates
between the person and the household level are guaranteed by incorporating the same estimated
common variable totals into the estimators at both levels.

4.2.1 First Proposed Weighting Approach

In the first proposed weighting approach, consistency is ensured by incorporating the common
variables in the household-level estimator. This subsection is organized as follows: The point
estimators and corresponding weights of our first alternative weighting approach are deduced in
Section 4.2.1.1. In this regard, we decompose the formulas for the estimator such that the effect
caused by the consistency requirements can be quantified. In Section 4.2.1.2, we derive the
analytical expression of the variance estimators that considers the additional source of random-
ness induced by the estimated common variable totals. Since the resulting variance formulas
are cumbersome, Section 4.2.1.3 employs the computational proceeding.

Before we introduce our alternative weighting approaches, we initially present some basic no-
tation for better readability of this chapter. The presentation here serves as an overview. The
detailed notation is repeated when it is explicitly used in the respective formulas.

Auxiliary variables
Let xi = (xi1, . . . , xiq, . . . , xiQ)T be the Q- dimensional auxiliary vector of person i. To em-
phasize that different auxiliary variables can be included at the person and household level,
we denote the auxiliary vector at the household level by an extra letter. Thus, consider ag =
(ag1, . . . , agk, . . . , agK)T as the K dimensional auxiliary vector of household g. The known
vectors of the totals are given by Tx and Ta. The person-level common variables vector
ci = (ci1, . . . , cil, . . . , ciL)T of dimension L sums up per household to

∑
i∈Ug ci = cg =

(cg1, . . . , cgl, . . . , cgL)T . The totals of the common variables are unknown and have to be es-
timated by T̃c. The GLS estimator is based on the combined person- and household-level auxil-
iary variables. To clearly differentiate between the level-specific and combined information, we
use the Greek letters γ, δ and κ for the combined auxiliaries. Their exact definitions are given
in Section 4.3.

Estimators and Subscripts
To distinguish between the total estimators at the person and household level, we use differ-
ent subscripts. T̂yp is the estimator at the person level and T̂yh is the estimator at the house-
hold level. However, we skip the subscript indicating the estimation level in T̂ HT

x and T̂ HT
a ,
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since the auxiliaries xi and ag are defined only at one level. We omit also the subscript in the
Horvitz-Thompson estimator for the common variables T̂ HT

c , to emphasize the equality of both
estimators at the person and household-level.

Coefficients
For the decomposition of the estimators into a naïve GREG estimator and an adjustment term,
we distinguish between various regression coefficients. The coefficients of the naïve GREG
estimator are denoted by B̂x or B̂a. The coefficients of auxiliary models to derive the adjust-
ment term are defined as F̂x and F̂a. For the coefficients of the estimators containing both the
auxiliary variables and the common variables, we use different letters for the person level and
the household level, since the common variables emerge at both levels. Thus, at the person
level, the coefficients are described by D̂x and D̂c. At the household level, the coefficients are
presented by Êa and Êc.

4.2.1.1 Point Estimation and Weights

The estimators of the first weighting approach are abbreviated with WA1. In contrast to inte-
grated weighting, separate estimators are implemented at the person level and the household
level. At the person level, the first proposed estimator is given by a naïve GREG estimator (as
clarified in Definition 2)

T̂WA1
yp = T̂GREG

yp = T̂HT
yp + B̂x

T (Tx − T̂ HT
x ), (4.1)

where T̂HT
yp is the Horvitz-Thompson estimator for the variable of interest. Estimated and known

vectors of dimensionQ of the auxiliary totals are denoted by T̂ HT
x and Tx. The coefficient vector

is expressed by

B̂x = (
∑
i∈sp

π−1
i xixi

T )−1 ∑
i∈sp

π−1
i xiyi.

Accordingly, the proposed estimator at the person level, T̂WA1
yp , contains only the auxiliary vari-

ables xi and thus remains unaffected by the consistency requirements. For simplicity, we as-
sume a constant variance component of vi = 1 (for a definition of the variance parameter see
Section 2.3). The weights of T̂WA1

yp are then defined as

wWA1
i = π−1

i + π−1
i xi

T (
∑
i∈sp

π−1
i xixi

T )−1(Tx − T̂ HT
x ). (4.2)

At the household level, a separate estimator is implemented. To ensure consistency between
person- and household-level estimates, we incorporate the common variables as additional aux-
iliaries. The totals of the common variables are unknown and have to be estimated by T̃c. We
skip the subscript indicating the level of estimation, because T̃c must be equal at the person and
household-level. Because the common variables are initially person characteristics, we suggest
estimating T̃c by a person-level estimator determined by

T̃c = T̂WA1
cp

= T̂ GREG
cp

=
∑
i∈sp

wWA1
i ci, (4.3)
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where wWA1
i is obtained from (4.2). Hence, T̃c is estimated by the proposed person-level esti-

mator.

The auxiliary vector at the household level is denoted by an extra letter, ag, to emphasize that
our alternative weighting approach allows inclusion of different auxiliaries at both levels. The
known and estimated total vectors of dimension K are denoted by Ta and T̂ HT

a , respectively.
Given (4.3), we propose the following estimator at the household level

T̂WA1
yh

= T̂HT
yh

+ Êa
T (Ta − T̂ HT

a ) + Êc
T (T̂ GREG

cp
− T̂ HT

cp
), (4.4)

where the coefficients Êa and Êc are simultaneously estimated by

(
Êa
Êc

)
=
∑
g∈sh

π−1
g

(
ag
cg

)(
ag
cg

)T−1 ∑
g∈sh

π−1
g

(
ag
cg

)
yg. (4.5)

It is assumed that the partitioned matrix
∑
g∈sh π

−1
g

(
ag
cg

)(
ag
cg

)T
is of full rankK+L. Subscript

h refers to the household level.

Remark 2. Even if the person- and household-level variables of interest and auxiliaries are
equal, and thus the person-level variables sum up to the household-level variables, the GREG
estimators for both the common variables and the variables of interest differ from each other:
T̂ GREG
cp

6= T̂ GREG
ch

and T̂GREG
yp 6= T̂GREG

yh
. The inequality is caused by the divergent strength of the

relationships between ci or yi and xi as well as between cg or yg and xg (see Section 3.2.2 for
details).

Now, we are interested in quantifying the impact of ensuring consistency on our proposed esti-
mator (4.4). For this purpose, we decompose the household-level estimator into a naïve GREG
estimator, which does not ensure consistent estimates, and an adjustment term capturing the ef-
fect caused by including the common variables as additional auxiliaries. For the decomposition
of the estimator, an orthogonal decomposition of the coefficients (cf. Seber, 1977) is applied.
The orthogonal decomposition is given by

Êa
(K×1)

= B̂a
(K×1)

− F̂a
(K×L)

Êc
(L×1)

, (4.6)

where B̂a arises from

T̂GREG
yh

= T̂HT
yh

+ B̂a
T (Ta − T̂ HT

a ) (4.7)

as a naïve GREG estimator at the household level solely containing ag as auxiliaries. The
product of F̂a and Êc captures the effects of the common variables on the variable of interest
neglected by B̂a. Coefficient matrix F̂a is obtained from

T̂ GREG
ch

= T̂ HT
ch

+ F̂a
T (Ta − T̂ HT

a )
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as an L-dimensional vector comprising the household-level GREG estimators for the unknown
common variable totals with ag as auxiliaries. Hence, F̂a describes the extent to which ag helps
to predict the common variables cg. Coefficient vector Êc is defined in (4.5) and describes the
effect of cg on the variable of interest yg controlled for the effects of the auxiliaries ag.

Inserting the orthogonal decomposition (4.6) into (4.4), we obtain

T̂WA1
yh

= T̂HT
yh

+ (B̂a − F̂aÊc)T (Ta − T̂ HT
a ) + Êc

T (T̂ GREG
cp

− T̂ HT
cp

)

= T̂HT
yh

+ B̂a
T (Ta − T̂ HT

a )︸ ︷︷ ︸
T̂GREG
yh

−Êc
T
F̂a

T (Ta − T̂ HT
a ) + Êc

T (T̂ GREG
cp

− T̂ HT
cp

)

= T̂GREG
yh

+ Êc
T
(
T̂ GREG
cp

− T̂ HT
cp
− F̂a

T (Ta − T̂ HT
a︸ ︷︷ ︸

T̂GREG
ch

)
)

= T̂GREG
yh︸ ︷︷ ︸
a)

+ Êc
T (T̂ GREG

cp
− T̂ GREG

ch
)︸ ︷︷ ︸

b)

. (4.8)

Therefore, the first proposed estimator at the household level T̂WA1
yh

can be decomposed into:

a) a naïve GREG estimator defined in (4.7) omitting the common variables and

b) an adjustment term capturing the impact induced by the consistency requirements and
thus incorporating the common variables into the estimator.

Adjustment term b) depends on the coefficient vector Êc defined in (4.5) and the difference be-
tween the person- and household-level estimates for the common variable totals. The greater the
difference between the two estimators, the greater the adjustment term. The partial coefficient
Êc can, alternatively to (4.5), be expressed in terms of residuals, given by

Êc =
( ∑
g∈sh

rFag r
Fa
g

T
)−1 ∑

g∈sh
rFag rBag (4.9)

with rBag = yg − B̂a
T
ag and rFag = cg − F̂a

T
ag resulting from regressing the variable of

interest or common variables on the auxiliaries. The following remark helps to comprehend the
notation of Êc in terms of residuals in (4.9).

Remark 3. Expression of Partial Coefficients in Terms of Residuals
DefineA = (a1

T , . . . ,ag
T , . . . ,aTm) as m×K auxiliary matrix and y = (y1, . . . , yi, . . . , yn)T

as n-vector describing the variable of interest. Then, Êc = (∑g∈sh r
Fa
g r

Fa
g

T )−1∑
g∈sh r

Fa
h rBag

is the vector pendant to the residual maker matrix representation of Êc = (ATMA)−1ATMy
known from econometric textbooks (cf. Greene, 2003, p. 244) with M = I −A(ATA)−1AT

as the idempotent residual maker matrix.
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In accordance with Remark 3, the weights of our first proposed household-level estimator are
determined by

wWA1
g = wGREG

g + rFag
T
( ∑
g∈sh

rFag r
Fa
g

T
)−1

(T̂ GREG
cp

− T̂ GREG
ch

) (4.10)

with wGREG
g obtained from the naïve household-level GREG defined in (4.7).

To conclude, in our first proposed weighting approach, the person-level estimator (4.1) is de-
termined by a naïve GREG estimator and remains unaffected by the consistency requirements.
Consistency between estimates of the common variables is ensured by inserting T̃c = T̂ GREG

cp
into the household-level estimator (4.4) or (4.8). The impact of the consistency requirements on
our first proposed household-level estimator is quantified by adjustment term b) in (4.8). Be-
cause only the household-level estimator is adjusted by the common variables, our first weight-
ing approach considerably facilitates the application for statistical offices.

For clarity, the following result summarizes the currently introduced point estimators of the first
alternative weighting approach.

Result 4. First Weighting Approach
In our first alternative weighting approach, we suggest T̃c = T̂ GREG

cp
as the estimator of the

unknown common variable totals. The person- and household-level estimators are given by

T̂WA1
yp = T̂GREG

yp

T̂WA1
yh

= T̂GREG
yh

+ Êc
T (T̂ GREG

cp
− T̂ GREG

ch
)

(4.11)

where T̂GREG
yp and T̂GREG

yh
are the naïve GREG estimators defined in (4.1) and (4.7). T̂ GREG

cp
and

T̂ GREG
ch

are the person- and household-level GREG estimators for the common totals with xi and
ag as auxiliaries, respectively. The household-level coefficient expressed in terms of residuals
is defined as

Êc =
( ∑
g∈sh

rFag r
Fa
g

T
)−1 ∑

g∈sh
rFag rBag

with rBag = yg−B̂a
T
ag and rFag = cg−F̂a

T
ag resulting from regressing the variable of interest

or common variables on the auxiliaries.

Proof. Given by Definition 2 and by inserting (4.6) into (4.4).

4.2.1.2 Variance Estimation

In the following, we differentiate between the variance estimation for ordinary and common
variables.
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Variance Estimation for Ordinary Variables
At the person level, the variance estimator of our first proposed estimator (4.1) is determined by
the variance of a naïve GREG estimator under cluster sampling

V̂ (T̂WA1
yp ) = V̂ (T̂GREG

yp ) =
∑
g∈sh

∑
k∈sh

4gk

πgk

∑
i∈Ug

wWA1
i ri

∑
j∈Uk

wWA1
j rj (4.12)

with4gk = πgk − πgπk, residuals ri = yi − xiT B̂x and wWA1
i defined in (4.2).

At the household-level, the variance estimator should take into account the additional source
of randomness induced by inserting the estimated common variables totals instead of known
population totals. To respect the additional random source in the Taylor linearization, we have
to supplementarily differentiate the random function with respect to the estimated common
variable totals. We use expression (4.8) in the Taylor linearization instead of (4.4) because the
former expression simplifies the derivatives.

Result 5. Variance Estimator of the First Household-Level Estimator
The variance estimator of the first proposed household-level estimator T̂WA1

yh
using the Taylor

linearization technique is given by

V̂ (T̂WA1
yh

) .= V̂1 + V̂2 + V̂3 + 2V̂12 − 2V̂13 − 2V̂23 (4.13)

with
V̂1 = V̂ (T̂GREG

yh
), V̂12 = Êc

T
Ĉov(T̂GREG

yh
, T̂ GREG

cp
),

V̂2 = Êc
T
V̂ (T̂ GREG

cp
)Êc, V̂13 = Êc

T
Ĉov(T̂GREG

yh
, T̂ GREG

ch
),

V̂3 = Êc
T
V̂ (T̂ GREG

ch
)Êc, V̂23 = Êc

T
Ĉov(T̂ GREG

cp
, T̂ GREG

ch
)Êc,

where Ĉov denotes the estimated covariance. Estimated variances and covariances can be
obtained by (2.10) by inserting the appropriate variables.

Proof. We deduce the Taylor linearization according to Särndal et al. (1992, p. 173, p. 236).
Equation (4.8) can be rewritten as function of random terms

T̂WA1
yh

= f(T̂GREG
yh

, Ẑ, ẑ, T̂ GREG
cp

, T̂ GREG
ch

), (4.14)

where the non-linear coefficient is decomposed into

Êc =
( ∑
g∈sh

rFag r
Fa
g

T
)−1 ∑

g∈sh
rFag rBag = Ẑ

−1
ẑ

with

Ẑ =
∑
g∈sh

rFag r
Fa
g

T

πg
as a L× L-matrix with elements ẑll′ =

∑
g∈sh

rFagl r
Fa
gl′
T

πg
and

ẑ =
∑
g∈sh

rFag rBag
πg

as a L-vector with elements ẑl0 =
∑
g∈sh

rFagl r
Ba
g

πg
.
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The residuals are obtained by rFag = cg − F̂a
T
ag and rBag = yg − B̂a

T
ag.

To approximate the non-linear function f(T̂GREG
yh

, Ẑ, ẑ, T̂ GREG
cp

, T̂ GREG
ch

) by a linear function, we

derive the partial derivatives with respect to all random terms. In Êc each element ẑll′ and ẑl0
has to be differentiated with respect to cl with l = 1, . . . , L. The following partial derivatives
result

∂f

∂T̂GREG
yh

= 1,

∂f

∂T̂GREG
cp,l

= Ecl for all l = 1, . . . , L,

∂f

∂T̂GREG
ch,l

= −Ecl for all l = 1, . . . , L,

∂f

∂ẑll′
= (T̂ GREG

cp
− T̂ GREG

ch
)T (−Ẑ−1 ∂Ẑ

∂zll′
Ẑ
−1)ẑ

= (T̂ GREG
cp

− T̂ GREG
ch

)T (−Ẑ−1
Λll′Ẑ

−1)ẑ for all l, l′ = 1, . . . , L and l ≤ l′,

∂f

∂ẑl0
= (T̂ GREG

cp
− T̂ GREG

ch
)T Ẑ−1

λl for all l = 1, . . . , L,

with Λll′ as L×L matrix with value 1 in position (l, l′) and (l′, l) and 0 elsewhere as well as λl
as L-vector with value 1 in position l and 0 elsewhere.

By inserting the partial derivatives into the Taylor series (2.8) and evaluating these at the ex-
pected values, E(T̂GREG

yh
) = Tyh , E(Ẑ) = Z, E(ẑ) = z, E(T̂ GREG

cp
) = Tc, E(T̂ GREG

ch
) = Tc,

the linearized household-level GREG estimator results in

T̂WA1
yh

.= (Tyh +EcT (Tc − Tc) + 1 · (T̂GREG
yh

− Typ) +
L∑
l=1

Ecl(T̂GREG
cp,l

− Tcl)

−
L∑
l=1

Ecl(T̂GREG
ch,l

− Tcl)

= T̂GREG
yh

+EcT (T̂ GREG
cp

− T̂ GREG
ch

).

It should be remarked that the expected values of both T̂ GREG
cp

and T̂ GREG
ch

equal Tc.

The approximated design-based variance of the linearized first proposed estimator at the house-
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hold level is given by

V(T̂WA1
yh

) .= V
(
T̂GREG
yh

+EcT (T̂ GREG
cp

− T̂ GREG
ch

)
)

= V(T̂GREG
yh

) + V(EcT T̂ GREG
cp

−EcT T̂ GREG
ch

)

+ 2Cov(T̂GREG
yh

,Ec
T T̂ GREG

cp
−EcT T̂ GREG

ch
)

= V(T̂GREG
yh

)︸ ︷︷ ︸
V1

+EcTV(T̂ GREG
cp

)Ec︸ ︷︷ ︸
V2

+EcTV(T̂ GREG
ch

)Ec︸ ︷︷ ︸
V3

− 2EcTCov(T̂ GREG
cp

, T̂ GREG
ch

)Ec︸ ︷︷ ︸
V23

+ 2EcTCov(T̂GREG
yh

, T̂ GREG
cp

)︸ ︷︷ ︸
V12

−2EcTCov(T̂GREG
yh

, T̂ GREG
ch

)︸ ︷︷ ︸
V13

with Cov as the approximate covariance matrix and V1 as population parameter of V̂1. V̂ (T̂WA1
yh

)
results by estimating V(T̂WA1

yh
) from the sample sh by the plug-in method.

Result 5 shows that the efficiency of our first household-level estimator T̂WA1
yh

depends on the
accuracy of the residual variance of the point estimates T̂GREG

yh
, T̂ GREG

cp
and T̂ GREG

ch
as well as

on their covariances. The higher the correlation between T̂ GREG
cp

and T̂ GREG
ch

, the higher the

precision gain of our first household-level estimator. Variance components V̂12 and V̂23 depend
on the observed dependence between the person- and household-level data set. Compared to
the variance of a naïve GREG estimator, given by V̂1, the complexity of the variance of the
proposed estimator is increased by five additional variance components: V̂2, V̂3, V̂12, V̂23 and
V̂23. We show in the next section that the additional computational effort is, however, limited.

Variance Estimation of the Common Variables
Note that the following formulas refer to theL common variables. We start with the person-level
estimator. Substituting the variables of interest by the common variables in (4.1) yields

T̂WA1
cp

= T̂ GREG
cp

= T̂ HT
cp

+ B̂x
T (Tx − T̂ HT

x ).

Its variance is simply estimated by

V (T̂WA1
cp

) = V (T̂ GREG
cp

). (4.15)

We continue with substituting the common variables into the household-level estimator (4.4),
which results in

T̂WA1
ch

= T̂ GREG
ch

+ Êc
T (T̂ GREG

cp
− T̂ GREG

ch
), (4.16)

where

Êc = (
∑
g∈sh

rFag r
Fa
g

T )−1 ∑
g∈sh

rFag r
Ba
g = diag(1, . . . , 1) = IL (4.17)
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is a coefficient matrix of dimension L × L with rBag = cg − B̂a
T
xg and rFag = cg − F̂a

T
xg.

Let IL be an identity matrix of dimension L. It is evident that in case of common variables as
variables of interest, rBag and rFag refer to the same variable of interest. It follows that rBag = rFag
and thus Êc = IL. The diagonal form of Êc = (Êc1 , . . . , Êcl , . . . , ÊcL) is straight forward,
because Êcl arises from a regression model with the common variable cil as variable of interest
on the left-hand side and simultaneously as explanatory variable on the right-hand side of the
regression. Thus, cil is completely explained via cil. Inserting Êc = IL into (4.16), we obtain

T̂WA1
ch

= T̂ GREG
cp

.

Then, the variance estimator at the household level can be expressed by

V (T̂WA1
ch

) = V (T̂ GREG
cp

). (4.18)

Accordingly, if the variable to estimate is common to the person and household level, the vari-
ance estimators coincide: V (T̂WA1

cp
) = V (T̂WA1

ch
).

4.2.1.3 Computational Proceeding to Calculate V̂ (T̂WA1
yh

)

Compared to the variance formula of a naïve GREG estimator, the computation of the first pro-
posed household-level estimator (4.13) is more complex. However, in this section, we explore
the additional computational effort to calculate V̂ (T̂WA1

yh
) and find it is limited to the computa-

tion of the residuals rFxg and rFag . To show this, we derive the formulas for every single variance
component in (4.13).

The first variance component V̂1 is determined by the variance of a naïve GREG estimator under
single-stage cluster sampling

V̂1 = V̂ (T̂GREG
yh

) =
∑
g∈sh

∑
k∈sh

4gk

πgk
wWA1
g rBag wWA1

k rBak

with residuals rBag = yg − xgT B̂a and wWA1
g defined in (4.10). Hence, the remaining variance

components V2,V3, V12, V13, and V23 constitute the additional computational effort of V̂ (T̂WA1
yh

)
compared to a naïve GREG estimator.

The second variance component V̂2 can be expressed by

V̂2
(1×1)

= Êc
(1×L)

T
V̂ (T̂ GREG

cp
)

(L×L)
Êc

(L×1)

=
(
Êc1, . . . , ÊcL

) V̂ (T̂GREG
cp1 )

Ĉov(T̂GREG
cp1 , T̂GREG

cp2 )

Ĉov(T̂GREG
cp1 , T̂GREG

cpL
) Ĉov(T̂GREG

cpL
, T̂GREG

cpL−1
) V̂ (T̂GREG

cpL
)






Êc1

...
ÊcL

 ,
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where

V̂ (T̂GREG
cpl

) =
∑
g∈sh

∑
k∈sh

4gk

πgk
wWA1
g rF

l
x

g w
WA1
k r

F lx
k for all l = 1, . . . , L

and

Ĉov(T̂GREG
cpl

, T̂GREG
cpt ) =

∑
g∈sh

∑
k∈sh

4gk

πgk
wWA1
g rF

l
x

g w
WA1
k r

F tx
k for all t 6= l

with rF
l
x

g = ∑
i∈Ug r

F lx
i = ∑

i∈Ug(cil − xiT F̂ l
x). Hence, the computation of V2 additionally

requires the calculation of the residual vector rFxg = (rF 1
x

g , . . . , rF
l
x

g , . . . , r
FLx
g )T obtained from

rFxg = ∑
i∈Ug r

Fx
i = ∑

i∈Ug(ci − Fx
Txi). It is important to note that rFxg is independent from

the variable of interest and has to be computed only once in each sample. The coefficient vector
Êc is already available from the point estimator in (4.4).

Variance component V̂3 is defined analogously to V̂2. The only difference is that V3 relates to the
household level and thus requires computing the residual vector rFag = (rF 1

a
g , . . . , rF

l
a

g , . . . , r
FLa
g )T

resulting from rFag = cg − FaTxg.

Variance component V̂4 is obtained by

V̂4
(1×1)

= Êc
(1×L)

T
Ĉov(T̂GREG

yh
, T̂ GREG

cp
)

(L×1)

=
(
Êc1, . . . , ÊcL

)
Ĉov(T̂GREG

yh
, T̂GREG

cp1 )
...

Ĉov(T̂GREG
yh

, T̂GREG
cpL

)

 ,
where

Ĉov(T̂GREG
yh

, T̂GREG
cpl

) =
∑
g∈sh

∑
k∈sh

4gk

πgk
wWA1
g rBag wWA1

k r
F lx
k for all l = 1, . . . , L

with rBag and rF
l
x

k as defined in V̂1 and V̂2. Thus, variance component V̂4 does not increase the

computational effort since the residuals rBag and rF
l
x

k are already available.

Variance component V̂5 is analogously defined as V̂4 but relates to the household level. It does
not involve additional computations.

Finally, variance component V̂6 can be expressed by

V̂6
(1×1)

= Êc
(1×L)

T
Ĉov(T̂ GREG

cp
, T̂ GREG

ch
)

(L×L)
Êc

(L×1)

=
(
Êc1, . . . , ÊcL

)
Ĉov(T̂GREG

cp1 , T̂GREG
ch1

) . . . Ĉov(T̂GREG
cp1 , T̂GREG

chL
)

... . . . ...
Ĉov(T̂GREG

cpL
, T̂GREG

ch1
) . . . Ĉov(T̂GREG

cpL
, T̂GREG

chL
)



Êc1

...
ÊcL

 ,
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where

Ĉov(T̂GREG
cpl

, T̂GREG
chl

) =
∑
g∈sh

∑
k∈sh

4gk

πgk
wWA1
g rF

l
x

g w
WA1
k rBak for all l = 1, . . . , L.

In summary, the additional effort to compute V̂ (T̂WA1
yh

) compared to the variance of a naïve
GREG estimator, determined by V̂1, is limited to the calculation of the following L-dimensional
residual vectors

• rFxg = ∑
i∈Ug r

Fx
i = ∑

i∈Ug(ci − Fx
Txi) and

• rFag = cg − FaTxg.

Both residual vectors are independent from the variable of interest and thus have to be calculated
only once in each sample. Variance components V̂2, V̂3, V̂12, V̂23, and V̂23 are computable by an
appropriate combination of these residuals. Hence, the additional computational effort depends
on the number of variables that are required to be consistent.

It is important to note that the discussed additional computational effort refers only to the pro-
posed household-level estimator. The person-level estimator, on the other side, remains unaf-
fected and equals a naïve GREG estimator.

4.2.2 Second Proposed Weighting Approach

In our second proposed weighting approach, we strive to improve the estimates of the unknown
common variable totals T̃c. The underlying idea is that every common variable cl, with l =
1, . . . , L, can be modeled by a separate set of specialized auxiliary variables zl. To ensure
consistency between person- and household-level estimates, we insert the same T̃c into our
proposed estimators at both levels. Point estimators and corresponding weights are introduced
in Section 4.2.2.1. Section 4.2.2.2 presents the variance estimators of our second proposed
alternative weighting approach.

4.2.2.1 Point Estimation and Weights

Let T̂ GREG
c∗p

= (T̂GREG
c∗p,1

, . . . , T̂GREG
c∗
p,l

, . . . , T̂GREG
c∗p,L

)T be the L-vector of estimates for the common
variable totals, where

T̂
GREG
c∗
p,l

= T̂
HT
cp,l

+ B̂zl(T zl − T̂
HT

zl
)

is estimated by zl and with the estimated coefficient B̂zl = (∑i∈sp π
−1
i zilz

T
il)−1∑

i∈sp π
−1
i zilcil.

The auxiliary variable set zl can be chosen for each l common variable separately. That could
be, for example, the auxiliary variable set with the highest explanatory power for the respective
common variable. The specialized auxiliary variables zl may contain some of the auxiliaries
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xi, but can also contain further auxiliaries with known totals. Our intention of separate mod-
eling is to use the best available estimate for T̃c. The second alternative weighting approach is
abbreviated with WA2. Inserting T̃c = T̂ GREG

c∗p
as estimator for the unknown common variable

totals yields our second person-level GREG estimator

T̂WA2
yp = T̂HT

yp + D̂x
T (Tx − T̂ HT

x ) + D̂c
T (T̂ GREG

c∗p
− T̂ HT

cp
), (4.19)

where the coefficients D̂x and D̂c are simultaneously estimated by(
D̂x

D̂c

)
=
∑
i∈sp

π−1
i

(
xi
ci

)(
xi
ci

)T−1 ∑
i∈sp

π−1
i

(
xi
ci

)
yi. (4.20)

It is assumed that the partitioned matrix
∑
i∈sp π

−1
i

(
xi
ci

)(
xi
ci

)T
is of full rank Q+ L.

To quantify the impact of the consistency requirements, we decompose T̂WA2
yp into a naïve GREG

estimator and an adjustment term capturing the effect caused by ensuring consistency. Anal-
ogously to the proceeding of the first weighting approach, an orthogonal decomposition (cf.
Seber, 1977) is applied to decompose D̂x into

D̂x
(Q×1)

= B̂x
(Q×1)

− F̂x
(Q×L)

D̂c
(L×1)

(4.21)

where B̂x arises from

T̂GREG
yp = T̂HT

yp + B̂x
T (Tx − T̂ HT

x ) (4.22)

as a naïve GREG estimator at the person level containing only xi as auxiliaries. The product of
F̂x and D̂c captures the effects of the common variables on the variable of interest omitted by
B̂x. Coefficient matrix F̂x is obtained from

T̂ GREG
cp

= T̂ HT
cp

+ F̂x
T (Tx − T̂ HT

x ),

a vector containing the person-level GREG estimators for the common variable totals with xi as
auxiliaries. Hence, F̂x describes the extent to which xi helps to predict the common variables
ci. The coefficient vector D̂c is already defined in (4.20) and describes the effect of xi on yi
controlled for the effects of ci.

By inserting the orthogonal decomposition (4.21) into (4.19), we obtain

T̂WA2
yp = T̂HT

yp + (B̂x − F̂xD̂c)T (Tx − T̂ HT
x ) + D̂c

T (T̂ GREG
c∗p

− T̂ HT
c )

= T̂HT
yp + B̂x

T (Tx − T̂ HT
x )︸ ︷︷ ︸

T̂GREG
yp

+D̂c
T
(
T̂ GREG
c∗p

− T̂ HT
c − F̂x

T (Tx − T̂ HT
x︸ ︷︷ ︸

T̂GREG
cp

)
)

= T̂GREG
yp︸ ︷︷ ︸
a)

+ D̂c
T (T̂ GREG

c∗p
− T̂ GREG

cp
)︸ ︷︷ ︸

b)

. (4.23)

Therefore, our second proposed estimator T̂WA2
yp can be decomposed into:
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a) a naïve GREG estimator for the variable of interest omitting the common variables and

b) an adjustment term capturing the impact induced by the consistency requirements.

Adjustment term b) depends on the difference between the estimated common variable totals at
the person and household level and on the coefficient vector D̂c defined in (4.20). According to
Remark 3, D̂c can alternatively be expressed in terms of residuals, given by

D̂c =
(∑
i∈sp

rFxi r
Fx
i

T
)−1 ∑

i∈sp
rFxi rBxi (4.24)

with rBxi = yi−B̂x
T
xi and rFxi = ci− F̂x

T
xi resulting from regressing the variable of interest

or the common variables on the auxiliaries, respectively.

At the household level, a separate estimator is implemented. To ensure consistent person- and
household-level estimates, we insert the same T̂c∗p into the household-level estimator as used for
the person-level estimator (4.19). Then, our second proposed estimator at the household level
is obtained by

T̂WA2
yh

= T̂GREG
yh

+ Êc
T (T̂ GREG

c∗p
− T̂ GREG

ch
) (4.25)

with Êc already defined in (4.9). We refrain from a detailed derivation of formula (4.25), since
it is analogously deduced as (4.23) and (4.8).

We learn from (4.23) and (4.25) that the higher the difference between the estimated common
variable totals, utilizing a specialized auxiliary sets zil, compared to xi or ag, the higher the
adjustment term.

Comparing our first and second weighting approach, it becomes apparent that the point estima-
tors differ with respect to the implementation expense and the quality of the estimated unknown
common variable totals. The implementation expense of our first weighting approach is lower,
because to ensure consistency only the household-level estimator is adjusted by the common
variables. As estimator for the unknown totals our proposed estimator at the person level is ap-
plied. The implementation expense of our second alternative weighting approach, on the other
side, is more demanding, because both the person- and household-level estimators are affected
by the consistency requirements. Moreover, the estimation of T̃c = T̂ GREG

c∗p
increases the com-

putational effort compared with the first weighting approach because for every single common
variable the specialized auxiliary variables zl has to be determined. However, we expect a pre-
cision gain for the estimates of the common variables and for all variables correlated with the
common variables. As a result, the choice between our first and second weighting approach
is determined by a trade-off between the implementation expense and the quality of the final
estimates.

For the special case of zil = zi = xi for all l = 1, . . . , L, our first weighting approach coincide
with our second weighting approach, that is T̂WA1

yp = T̂WA2
yp as well as T̂WA1

yh
= T̂WA2

yh
.
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The weights of our second alternative weighting approach are given by

wWA2
i = wGREG

i + rFxi
T (
∑
i∈sp

rFxi r
Fx
i

T )−1(T̂ GREG
c∗p

− T̂ GREG
cp

)

and

wWA2
g = wGREG

g + rFag
T (
∑
g∈sh

rFag r
Fa
g

T )−1(T̂ GREG
c∗p

− T̂ GREG
ch

).

For the sake of clarity, the following result summarizes our second weighting approach.

Result 6. Second Alternative Weighting Approach
Let T̂ GREG

c∗p
= (T̂GREG

c∗p,1
, . . . , T̂GREG

c∗
p,l

, . . . , T̂GREG
c∗p,L

)T be the L-vector of estimates for the common

variable totals, where T̂GREG
c∗
p,l

is estimated by zl, a specialized auxiliary variable set with the
highest explanatory power for cl, with l = 1, . . . , L. The estimators of our second proposed
alternative weighting approaches are then obtained from

T̂WA2
yp = T̂GREG

yp + D̂c
T (T̂ GREG

c∗p
− T̂ GREG

cp
) and

T̂WA2
yh

= T̂GREG
yh

+ Êc
T (T̂ GREG

c∗p
− T̂ GREG

ch
),

(4.26)

where T̂GREG
yp and T̂GREG

yh
are naïve GREG estimators defined in (4.1) and (4.7). T̂ GREG

cp
and

T̂ GREG
ch

are the person- and the household-level GREG estimators for the common totals with xi
or ag as auxiliaries, respectively. The person-level coefficient is defined by

D̂c =
(∑
i∈sp

rFxi r
Fx
i

T
)−1 ∑

i∈sp
rFxi rBxi ,

where rBxi = yi − B̂x
T
xi results from regressing the variable of interest on the auxiliaries and

rFxi = ci − F̂x
T
xi. The household-level coefficient can be expressed as

Êc =
( ∑
g∈sh

rFag r
Fa
g

T
)−1 ∑

g∈sh
rFag rBag ,

where rBag = yg− B̂a
T
ag and rFag = cg− F̂a

T
ag result from regressing the variable of interest

or common variables on the auxiliaries.

4.2.2.2 Variance Estimation

Analogously to the first weighting approach, we differentiate between the variance estimation
for ordinary and common variables.
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Variance Estimation for Ordinary Variables
In our second weighting approach, both the person- and household-level estimators contain
the estimated common variable totals. Therefore, both variance estimators take the additional
source of randomness into account. We refrain from deriving the variance estimators at this
point and present only the results, since they are analogously deduced as for our first weight-
ing approach, presented in Section 4.2.1.2. The interested reader is referred to Section B.1 in
Appendix B. The variance estimators of the second estimators using the Taylor linearization
technique are given by

V̂ (T̂WA2
yt ) .= V̂1 + V̂2 + V̂3 + 2V̂12 − 2V̂13 − 2V̂23 for t = {p, h}. (4.27)

At the person level, the variance components are given by

V̂1 = V̂ (T̂GREG
yp ), V̂12 = D̂c

T
Ĉov(T̂GREG

yp , T̂GREGc∗p
),

V̂2 = D̂c
T
V̂ (T̂ GREG

c∗p
)D̂c, V̂13 = D̂c

T
Ĉov(T̂GREG

yp , T̂ GREG
cp

),

V̂3 = D̂c
T
V̂ (T̂ GREG

cp
)D̂c, V̂23 = D̂c

T
Ĉov(T̂ GREG

c∗p
, T̂ GREG

cp
)D̂c.

(4.28)

At the household level, the variance components are obtained from

V̂1 = V̂ (T̂GREG
yh

), V̂12 = Êc
T

Ĉov(T̂GREG
yh

, T̂ GREG
c∗p

),

V̂2 = Êc
T
V̂ (T̂ GREG

c∗p
)Êc, V̂13 = Êc

T
Ĉov(T̂GREG

yh
, T̂ GREG

ch
),

V̂3 = Êc
T
V̂ (T̂ GREG

ch
)Êc, V̂23 = Êc

T
Ĉov(T̂ GREG

c∗p
, T̂ GREG

ch
)Êc.

(4.29)

Ĉov denotes the estimated covariance. Estimated variances and covariances can be obtained by
(2.10) by inserting the appropriate variables.

The variance components of the person-level estimator (4.28) depend solely on the person level,
whereas the variance components in (4.29) are influenced by person- and household-level esti-
mates. The computational proceeding to calculate (4.28) and (4.29) is analogously given as in
Section 4.2.1.3 by inserting the appropriate estimators.

Compared to our first weighting approach, the computation of the variance estimators of our
second alternative weighting approach is more demanding. The additional computational effort
confirms with the trade-off, as mentioned for the point estimator, between the implementation
expense and the quality of the final estimates.

Variance Estimation for the Common Variables
Inserting the common variables into our second proposed estimator (4.19), the following person-
level estimator results

T̂WA2
cp

= T̂ GREG
cp

+ D̂c
T (T̂ GREG

c∗p
− T̂ GREG

cp
),
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where the (L× L) coefficient matrix is given by

D̂c =
∑
i∈sp

rFxi r
Fx
i

T

−1 ∑
i∈sp

rFxi r
Bx
i = diag(1, . . . , 1) = IL.

The residuals rBxi = ci−B̂x
T
xi and rFxi = ci−F̂x

T
xi are equal, because both refer to the same

variable of interest. The diagonal form of D̂c = (D̂c1 , . . . , D̂cl , . . . , D̂cL) = diag(1, . . . , 1)
follows, since cil is completely explained via cil, as argued in detail in Section 4.2.1.2. Hence,
T̂WA2
cp

= T̂ GREG
cp

. Then the variance estimator of the second person-level estimator is given by

V (T̂WA2
cp

) = V (T̂ GREG
c∗p

). (4.30)

The second household-level estimator (4.25) for the common variables as variables of interest
can be expressed by

T̂WA2
ch

= T̂GREG
ch

+ Êc
T (T̂ GREG

c∗p
− T̂ GREG

ch
),

where Êc = diag(1, . . . , 1)T for the same reasons as given above. The variance estimator is
obtained from

V (T̂WA2
ch

) = V (T̂ GREG
c∗p

). (4.31)

Accordingly, it is valid that the variance estimators at the person level and the household level
coincide, V (T̂WA2

cp
) = V (T̂WA2

ch
), as in the first proposed weighting approach.

4.2.3 Distinction between the Alternative Weighting Approaches and the
Method of Renssen and Niewenbroek (1993)

In Section 4.2, we discussed extensively the differences between our alternative weighting ap-
proaches and the method proposed by Renssen and Nieuwenbroek (1997) including the de-
pendency between the surveys at hand, the definition of the common variables and the target
populations. This section aims to derive how our proposed point and variance estimators dif-
fer from the point and variance estimators of Renssen and Nieuwenbroek (1997) due to these
differences. For this purpose, we briefly review their suggested point and variance estimators.
At this point, we focus more on discussing the differences than on deriving the formulas in
detail. Therefore, we refer the interested reader to Section B.2 in Appendix B for a detailed
derivation.

We start with the point estimators. Adopting the method of Renssen and Nieuwenbroek (1997,
p. 371) to household surveys yields the following person- and household-level estimators

T̂ RN
yp = T̂GREG

yp + D̂c
T (T̃ RN

c − T̂
GREG
cp

) and

T̂ RN
yh

= T̂GREG
yh

+ Êc
T (T̃ RN

c − T̂
GREG
ch

),
(4.32)
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where T̂GREG
yp , T̂GREG

yh
, D̂c and Êc are defined as in (4.24) and (4.9), respectively. RN indicates

Renssen and Nieuwenbrok.

For the estimation of the unknown population total T̃c a composite estimator based on the
weighted average of the single estimates obtained from each of the independent surveys is
applied

T̃ RN
c = QT̂ GREG

cp
+ (1−Q)T̂ GREG

ch
,

whereQ is a weighting matrix of dimension (L×L) withQ+ (1−Q) = I . Different choices
forQ are discussed. Inserting T̃ RN

c into (4.32), we obtain

T̂ RN
yp = T̂GREG

yp − D̂c
T (1−Q)(T̂ GREG

cp
− T̂ GREG

ch
) and

T̂ RN
yh

= T̂GREG
yh

+ Êc
T
Q(T̂ GREG

cp
− T̂ GREG

ch
).

(4.33)

Therefore, their suggested point estimators differ from our proposed point estimators (4.11) or
(4.26) in two respects. First, Renssen and Nieuwenbroek (1997) suggested a composite estima-
tor for the unknown common variable totals requiring both the person-level and the household-
level estimates. Moreover, their composite estimator entails the computation of the weighting
matrix Q. In contrast, we suggest a person-level estimator for the unknown common variable
totals. Our choice is justified by the fact that in household surveys it is more prevalent that the
common variables are initial person characteristics, which are supplementarily assigned in ag-
gregated form to the household-level data set. Because of this, it is questionable to what extent
their composite estimator is appropriate for estimating the unknown person-level total. This dif-
ference between the estimated common variable totals of our proposed weighting approaches
and the approach by Renssen and Nieuwenbroek (1997) is mainly driven by the different defi-
nitions of common variables.

Second, both estimators (4.33) request the same auxiliary information, as can be seen from
equation (8) in Renssen and Nieuwenbroek (1997, p. 371) or from the fact that otherwise
inserting T̃ RN

c into (4.32) does not result in (4.33). In contrast, our alternative weighting ap-
proaches allow us to include different auxiliaries at both levels and are thus more flexible in
their variable selection. Hence, our alternative weighting approaches take into account that the
estimators refer to differing target populations.

There are also differences with respect to the variance estimators. Comparing the variance
estimators of (4.33) (given in Section B.2 in Appendix B) to our proposed variances estimators,
presented in (4.12), (4.13), (4.28) and (4.29), it becomes apparent that the main difference
arises from the covariances between the estimators of the variables of interest, and the common
variables, denoted by the covariance terms Ĉov12 and Ĉov13. These covariances are essential
in capturing the dependence between the person and the household data set. Therefore, the
differences between the variance estimators are driven by the dependence of the person and
household data sets, the weighting matrixQ and the signs of the variance components.
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4.3 GLS Estimator as a Benchmark Estimator

As presented in Section 4.1, Zieschang (1986, 1990) explored a GLS adjustment algorithm to
combine the information from two independent surveys. It can also be adopted to ensure consis-
tent estimates between person- and household-level estimates. Therefore, this section discusses
the GLS adjustment algorithm as a benchmark estimator for our proposed alternative weighting
approaches. Since the GLS adjustment algorithm is equivalent to a calibration estimator with a
chi-squared distance function (see Section 2.3.4), we call it GLS estimator hereinafter.

This section is organized as follows: Section 4.3.1.1 discusses the point estimators of the GLS
estimator. Furthermore, to conform the GLS estimator to our proposed alternative weighting
approaches, we embed the GLS estimator into the GREG estimation framework. This is a
promising exercise since having the same expressions allows us to directly compare our pro-
posed weighting approaches to the GLS estimator. Section 4.3.1.2 derives the variance estimator
of the GLS estimator. Finally, in Section 4.3.2, we briefly review the modified GLS estimator
established by Merkouris (2004) to account for the effective sample sizes of the independent
surveys.

4.3.1 GLS Estimator According to Zieschang (1986, 1990)

4.3.1.1 Point Estimation and Weights

We decided to initially present the GLS estimator in matrix notation, as originally introduced
by Zieschang (1986, 1990), because the intension of the estimator is more comprehensible in
matrix notation. Subsequently, we rewrite the matrix in vector notation to conform to the vector
notation of our proposed alternative estimators. Consider

X
(n×Q)

=



x1
T

...
xi

T

...
xn

T

 and A
(m×K)

=



a1
T

...
ag

T

...
am

T


as auxiliary matrices at the person and household level with xi = (xi1, . . . , xiL)T and ag =
(ag1, . . . , agL)T as defined in the previous section. The corresponding vectors of the known to-
tals are given by Tx and Ta. The matrices for the common variables at the person and household
level are denoted as

Cp
(n×L)

=



c1
T

...
ci
T

...
cn

T

 and Ch
(m×L)

=



c1
T

...
cg

T

...
cm

T

 .
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To pool the person- and household-level information, Zieschang (1986, 1990) combined the
auxiliary matrices to one single matrix Z, obtained by

Z
(n+m)×(Q+K+L)

=
(
X 0 Cp
0 A −Ch

)
.

The combined total vector of dimension (Q + K + L) is defined as TZ = (TxT ,TaT ,0T )T .
Suppose Π = diag(Πp,Πh) as combined (n+m)× (n+m)-weight matrix with submatrices
Πp = diag(π1, . . . , πn) and Πh = diag(π1, . . . , πm). The combined (n + m)-vector of design
weights is denoted by d = (dp,dh)T with dp = (d1, . . . , dn) and dh = (d1, . . . , dm).

The GLS estimator minimizing the GLS distance function (w−d)TΠ−1(w−d) subject to the
linear constraints ZTwZIE = TZ provides the calibrated weights

wZIE

(n+m)
= d+ ΠZ(ZTΠZ)−1(TZ −ZTd). (4.34)

Superscript ZIE indicates Zieschang. Note that wZIE = (wTp , wTh )T simultaneously delivers
person- and household-level weights.

To compare the GLS weights to our alternative weighting approaches, we translate the GLS
estimator into the GREG estimator framework. Subsequently, we aim at quantifying the effect
caused by the consistency requirements as done for our alternative weighting approaches. The
following result proves the equivalence of the GLS estimator introduced by Zieschang (1986,
1990) to a combined GREG estimator based on a combined data set.

Result 7. Equivalence of the GLS Estimator to a Combined GREG Estimator
The weights produced by the GLS estimator introduced by Zieschang (1986, 1990)

wZIE = d+ ΠZ(ZTΠZ)−1(TZ −ZTd)

are asymptotically equivalent to the weights produced by the combined GREG estimators

T̂ ZIE
yp = T̂GREG

yp − D̂κ
T (T̂ GREG

cp
− T̂ GREG

ch
) (4.35)

and

T̂ ZIE
yh

= T̂GREG
yh

+ Êκ
T (T̂ GREG

cp
− T̂ GREG

ch
) (4.36)

with T̂ GREG
cp

and T̂ GREG
ch

as person- and household-level GREG estimators for the common totals
with xi and ag as auxiliaries, respectively. The person-level coefficient is obtained by

D̂κ =
∑
i∈sp

rFxi r
Fx
i

T +
∑
g∈sh

rFag r
Fa
g

T

−1 ∑
i∈sp

rFxi rBxi
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with residuals rFxi = ci− F̂x
T
xi and rBxi = yi− B̂x

T
xi resulting from regressing the common

variables and the variable of interest on the auxiliaries. The household-level coefficient is given
by

Êκ =
∑
i∈sp

rFxi r
Fx
i

T +
∑
g∈sh

rFag r
Fa
g

T

−1 ∑
g∈sh

rFag rBag

with household-level residuals rFag = cg − F̂a
T
ag and rBag = yg − B̂a

T
ag resulting from

regressing the common variables and the variable of interest on the auxiliaries.

Proof. We start by introducing some notation required to rewrite matrices into vectors. Define
sc = sp ∪ sh = {1, . . . , n, n + 1, . . . , n + m} as an ordered set containing all persons and
households indexed by t. For a clear differentiation between the level-specific and combined
information, we use Greek letters for the combined information. Suppose

ζt
(Q+K+L)×1

=

(xi1, . . . , xiQ, 0, . . . , 0, ci1, . . . , ciL)T , for t ∈ {1, . . . , n}
(0, . . . , 0, ag1, . . . , agK ,−cg1, . . . ,−cgL)T , for t ∈ {n+ 1, . . . , n+m}

is a vector containing both the auxiliary and common variables. The combined variable of
interest at the person level, γt,p, has to be extended by zero if observation t initially belongs to
the household sample. It is denoted as

γt,p
(1×1)

=

yt, for t ∈ {1, . . . , n}
0, for t ∈ {n+ 1, . . . , n+m}.

The combined variable of interest at the household level, γt,h in turn equals zero if observation
t initially belongs to the person-level sample. It is given by

γt,h
(1×1)

=

0, for t ∈ {1, . . . , n}
yt, for t ∈ {n+ 1, . . . , n+m}.

Suppose Tζ = (Tx,Ta,0)T and T̂ HT
ζ = (T̂ HT

x , T̂ HT
a , T̂ HT

κ )T are vectors of dimension (Q+K+L)
containing the known and estimated totals of the auxiliary and common variables. Note that
πt = πi = πg.

In a first step, we embed the GLS estimator into the GREG estimation framework. As outlined
in Section 2.3.4, a calibration estimator minimizing a chi-squared distance function is asymp-
totically equivalent to a GREG estimator based on the combined sample sc and the combined
person- and household-level information. If the objective is to estimate a person-level total, the
combined GREG estimator is given by

T̂ ZIE
γp

(1×1)
= T̂HT

γp
(1×1)

+ Ψ̂p
T

1×(Q+K+L)
( Tζ
(Q+K+L)×1

− T̂ HT
ζ

(Q+K+L)×1
) (4.37)
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with Ψ̂p = (∑t∈sc π
−1
t ζtζt

T )−1∑
t∈sc π

−1
t ζtγt,p

T containing the person-level coefficients. If
the objective is to estimate a household-level total, the combined GREG estimator is defined as

T̂ ZIE
γh

(1×1)
= T̂HT

γh
(1×1)

+ Ψ̂h
T

1×(Q+K+L)
( Tζ
(Q+K+L)×1

− T̂ HT
ζ

(Q+K+L)×1
) (4.38)

with Ψ̂h = (∑t∈sc π
−1
t ζtζt

T )−1∑
t∈sc π

−1
t ζtγt,h

T containing the household-level coefficients.
Therefore, the only difference between T̂ ZIE

γp and T̂ ZIE
γh

is given by the combined variable of
interest γp or γh.

In a second step, we are interested in the impact caused by the consistency requirements. Thus,
ζt is partitioned into the auxiliary and common variables. Define

δt
(Q+K)×1

=

(xt1, . . . , xtQ, 0, . . . , 0)T , for t ∈ {1, . . . , n}
(0, . . . , 0, at1, . . . , atK)T , for t ∈ {n+ 1, . . . , n+m}

as combined auxiliary vector and

κt
(L×1)

=


(ctl, . . . , ctL)T , for t ∈ {1, . . . , n}
−( ∑

k∈Ut
ckl, . . . ,

∑
k∈Ut

ckL)T , for t ∈ {n+ 1, . . . , n+m}

as vector containing the common variables. It is valid that
∑
t∈sc δt = ∑

i∈sp xi +∑
g∈sh ag.

Then, given δt and κt, the person-level combined GREG estimator (4.37) can alternatively be
expressed by

T̂ ZIE
γp

(1×1)
= T̂HT

γp
(1×1)

+ D̂δ
T

1×(Q+K)
( Tδ
(Q+K)×1

− T̂ HT
δ

(Q+K)×1
) + D̂κ

T

(1×L)
( 0
(L×1)

− T̂ HT
κ

(L×1)
) (4.39)

with Tδ, T̂ HT
δ and T̂ HT

κ in obvious notation. Coefficients D̂δ and D̂κ are simultaneously esti-
mated by

(
D̂δ

D̂κ

)
=
∑
t∈sc

π−1
t

(
δt
γt

)(
δt
γt

)T−1 ∑
t∈sc

π−1
t

(
δt
γt

)
γt,p.

Analogously to the proceeding in Section 4.2, we decompose D̂δ using an orthogonal decom-
position (cf. Seber, 1977) into

D̂δ
(Q+K)×1

= B̂δ
(Q+K)×1

− F̂δ
(Q+K)×L

D̂κ
(L×1)

(4.40)

where B̂δ results from the model

γpt
(1×1)

= B̂δ
T

1×(Q+K)
δt

(Q+K)×1
+ rBδt

(1×1)
. (4.41)
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To better comprehend the effect of regressing the combined auxiliaries on the combined variable
of interest, we break down (4.41) to

(
yi
0

)
=
(
Bx1 . . . BxQ 0 . . . 0
0 . . . 0 Ba1 . . . BaK

)


xi1
...
xiQ
0
...
0


+
(
rBxi
0

)
.

Thus, B̂δ accounts only for the effects of the auxiliaries xi on the variables of interest yi. It
does not account for the effects of the common variables.

The product of F̂δ and D̂κ in (4.40) captures the effects of the common variables on the vari-
able of interest neglected by B̂δ. Coefficient matrix F̂δ arises from regressing the combined
auxiliaries on the vector of the combined common variable vector

κt
(L×1)

= F̂δ
T

L×(Q+K)
δt

(Q+K)×1
+ rFδt

(L×1)
(4.42)

which can be broken down to


ct1
...
ctL

 =


F c1
x1 . . . F c1

xQ
F c1
a1 . . . F c1

aK
... . . . ...

... . . . ...
F cL
x1 . . . F cL

xQ
F cL
a1 . . . F cL

aK





xi1
...
xiQ
0
...
0


+


rF

c1
x

t
...

rF
cL
x

t

 .

Hence, F̂δ describes the extent to which the person-level information of x helps to predict the
person- and household-level common variables. Inserting the orthogonal decomposition (4.40)
into (4.39), we obtain

T̂ ZIE
γp = T̂HT

γp + B̂δ
T (Tδ − T̂ HT

δ )︸ ︷︷ ︸
T̂GREG
γp

−D̂κ
T
F̂δ

T (Tδ − T̂ HT
δ ) + D̂κ

T (0− T̂ HT
κ )

= T̂GREG
γp − D̂κ

T(
T̂ HT
κ + F̂δ

T (Tδ − T̂ HT
δ )

)
.

Breaking down the combined vectors and matrices yields

= T̂GREG
γp − D̂κ

T
{(
T̂ HT
cp
− T̂ HT

ch

)
+
(
F̂x
F̂a

)[(
Tx
Ta

)
−
(
T̂HTx

T̂ HT
a

)]}

= T̂GREG
yp − D̂κ

T (T̂ GREG
cp

− T̂ GREG
ch

).
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According to Remark 3, the partial coefficient D̂κ can be rewritten as

D̂κ =
(∑
t∈sc

rFδt r
Fδ
t

T
)−1 ∑

t∈sc
rFδt r

Bδ
t .

Finally, given that
∑
t∈sc δt = ∑

i∈sp xi + ∑
g∈sh ag and inserting residuals (4.41) and (4.42)

into D̂κ, we obtain

=
(∑
i∈sp

rFxi r
Fx
i

T +
∑
g∈sh

rFag r
Fa
g

T
)−1

(∑
i∈sp r

Fx
i r

Bx
i

T

0

)
.

Thus, the person-level estimator (4.35) is proven.

We continue with deducing the GLS estimator at the household-level (4.36). The proceeding is
the same as for the person-level estimator. Given δt and κt and using an orthogonal decompo-
sition, (4.36) can be expressed by

T̂ ZIE
γh

= T̂GREG
yh

+ Êκ
T (T̂ GREG

cp
− T̂ GREG

ch
)

with

Êκ =
(∑
i∈sp

rFxi r
Fx
i

T +
∑
g∈sh

rFag r
Fa
g

T
)−1

(
0

−∑g∈sh r
Fa
g r

Ba
g

T

)
.

Therefore, Result 7 is proven.

An essential feature of the GLS estimator is that both the person- and household-level estimators
use the same combined auxiliary information ζt. The only difference is given by the variable
of interest. The impact of ensuring consistency is quantified by the second terms in (4.35) and
(4.36) and depends on the difference between the estimated common variable totals and the
corresponding coefficients.

The weights of the GLS estimators (4.35) and (4.36) are defined by

wZIE
i = wGREG

i − rFxi

∑
i∈sp

rFxi r
Fx
i

T +
∑
g∈sh

rFag r
Fa
g

T

−1

(T̂ GREG
cp

− T̂ GREG
ch

)

wZIE
g = wGREG

g + rFag

∑
i∈sp

rFxi r
Fx
i

T +
∑
g∈sh

rFag r
Fa
g

T

−1

(T̂ GREG
cp

− T̂ GREG
ch

).

(4.43)

Given these weights, it can be shown that the GLS estimator is consistent in terms of both the
totals of the auxiliary and common variables. We start by verifying the consistency in terms of
the known population totals. Given

∑
i∈sp xir

Fx
i

T = 0 as well as
∑
g∈sh agr

Fa
g

T = 0, known
from the least squares theory (cf. Greene, 2003, Section 6.4 or Wooldridge, 2013, Section
3.2), it is easy to show that the weights (4.43) simultaneously satisfy

∑
i∈sp w

ZIE
i xi = Tx and
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∑
g∈sh w

ZIE
g ag = Ta. This implies that the sums of the weighted auxiliaries meet the known

totals at both levels. We continue with deducing the consistency between the estimated common
variable totals. Following Merkouris (2004, p. 1134), it can be shown that

T̂ ZIE
cp

=
∑
i∈sp

wZIE
i ci

= T̂ GREG
cp

−
∑
i∈sp

cir
Fx
i

T (
∑
i∈sp

rFxi r
Fx
i

T +
∑
g∈sh

rFag r
Fa
g

T )−1(T̂ GREG
cp

− T̂ GREG
ch

)

inserting
∑
i∈sp cir

Fx
i

T = ∑
i∈sp r

Fx
i r

Fx
i

T
yields

= T̂ GREG
cp

−

1−
∑
i∈sp

rFag r
Fa
g

T (
∑
i∈sp

rFxi r
Fx
i

T +
∑
g∈sh

rFag r
Fa
g

T )−1

 (T̂ GREG
cp

− T̂ GREG
ch

)

= T̂ GREG
ch

+
∑
g∈sh

cgr
Fa
g

T (
∑
i∈sp

rFxi r
Fx
i

T +
∑
g∈sh

rFag r
Fa
g

T )−1(T̂ GREG
cp

− T̂ GREG
ch

)

=
∑
g∈sh

wZIE
g cg

= T̂ ZIE
ch
.

Therefore, the GLS approach guarantees consistency between the person- and household-level
estimates by the construction of γt, ζt and Tζ = (T̂x

T
, T̂a

T
,0T )T .

4.3.1.2 Variance Estimation

Zieschang (1990, p. 996) suggested applying balanced repeated replication to estimate the vari-
ance for the GLS estimator. However, to be comparable to our alternative weighting approaches,
we aim at deriving an analytical expression of the variance. For this purpose, we proceed anal-
ogously to Section 4.2 and approximate the nonlinear GLS estimator by linear functions. Due
to the analogy with Result 5, we refrain from deriving the formulas in detail and present only
the results. The interested reader is referred to Section B.3 in Appendix B for details.

Variance Estimation for Ordinary Variables
The variance estimator of the GLS estimator at the person level (4.35) using the Taylor lin-
earization technique is given by

V̂ (T̂ ZIE
yp ) .= V̂1 + V̂2 + V̂3 − 2V̂12 + 2V̂13 − 2V̂23, (4.44)

with
V̂1 = V̂ (T̂GREG

yp ), V̂12 = D̂κ
T

Ĉov(T̂GREG
yp , T̂ GREG

cp
),

V̂2 = D̂κ
T
V̂ (T̂ GREG

cp
)D̂κ, V̂13 = D̂κ

T
Ĉov(T̂GREG

yp , T̂ GREG
ch

),

V̂3 = D̂κ
T
V̂ (T̂ GREG

ch
)D̂κ, V̂23 = D̂κ

T
Ĉov(T̂ GREG

cp
, T̂ GREG

ch
)D̂κ.
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At the household level, the variance estimator of the GLS estimator (4.36) using the Taylor
linearization technique is obtained from

V̂ (T̂ ZIE
yh

) .= V̂1 + V̂2 + V̂3 + 2V̂12 − 2V̂13 − 2V̂23 (4.45)

with
V̂1 = V̂ (T̂GREG

yh
), V̂12 = Êκ

T
Ĉov(T̂GREG

yh
, T̂ GREG

cp
),

V̂2 = Êκ
T
V̂ (T̂ GREG

cp
)Êκ, V̂13 = Êκ

T
Ĉov(T̂GREG

yh
, T̂ GREG

ch
),

V̂3 = Êκ
T
V̂ (T̂ GREG

ch
)Êκ, Ĉov23 = Êκ

T
Ĉov(T̂ GREG

cp
, T̂ GREG

ch
)Êκ.

Ĉov denotes the estimated covariance. Estimated variances and covariances can be obtained in
(2.10) by inserting the appropriate variables.

Variance Estimation for Common Variables
When inserting the common variables as variables of interest into (4.35), the following person-
level estimators result

T̂ ZIE
cp

= T̂ GREG
cp

− D̂κ
T (T̂ GREG

cp
− T̂ GREG

ch
)

= (1− D̂κ
T )T̂ GREG

cp
+ D̂κ

T
T̂ GREG
ch

.

Accordingly, the person-level estimator for the common variables can be written as a composite
estimator with the single estimates weighted by D̂κ. In contrast to D̂c from our proposed
weighting approaches, D̂κ is not given by a diagonal matrix. The reason is that D̂κ arises from
a model with a vector containing the person-level common variables and zeros on the left-hand
side of the model and a matrix containing the person- and household-level common variable
information on the right-hand side. Therefore, it is evident that the person-level information is
not completely explained by the combined person- and household-level information.

The corresponding variance estimator is given by

V (T̂ ZIE
cp

) = (1− D̂κ
T )V (T̂ GREG

cp
)(1− D̂κ) + D̂κ

T
V (T̂ GREG

ch
)D̂κ

+ 2(1− D̂κ
T )Cov(T̂ GREG

cp
, T̂ GREG

ch
)D̂κ.

Inserting the common variables into the household-level estimator (4.36), we obtain the follow-
ing composite estimator

T̂ ZIE
ch

= T̂ GREG
ch

+ Êκ
T (T̂ GREG

cp
− T̂ GREG

ch
)

= (1− Êκ
T )T̂ GREG

ch
+ Êκ

T
T̂ GREG
cp

.

The corresponding variance estimator is obtained from

V (T̂ ZIE
ch

) = (1− Êκ
T )V (T̂ GREG

ch
)(1− Êκ) + Êκ

T
V (T̂ GREG

cp
)Êκ

+ 2(1− Êκ
T )Cov(T̂ GREG

cp
, T̂ GREG

ch
)Êκ.

Compared with the variance formulas of our proposed alternative estimators, introduced in
Section 4.2, V (T̂ ZIE

cp
) and V (T̂ ZIE

ch
) are computationally more demanding, because the variance

estimators at both levels and their covariances are required.
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4.3.2 GLS Estimator According to Merkouris (2004)

Merkouris (2004) modified the GLS estimator to account for the effective sample sizes of the
independent multiple surveys. We only briefly consider the modified estimator, because the
conceptual differences from the original GLS estimator proposed by Zieschang (1986, 1990)
are minor. Suppose

πt =

 deffsp/πtn for t ∈ {1, . . . , n}
deffsh/πtm for t ∈ {n+ 1, . . . , n+m}.

as the combined inclusion probability with deffs as design effect of sample s. The design effect
describes the ratio of the actual variance of a sample to the variance of a simple random sample
of the same number of elements (cf. Kish, 1965, p. 258). Inserting πt into (4.35) and (4.36)
yields the following modified estimators

T̂MER
yp = T̂GREG

yp − D̂MER
κ

T (T̂ GREG
cp

− T̂ GREG
ch

) (4.46)

and

T̂MER
yh

= T̂GREG
yh

+ ÊMER
κ

T (T̂ GREG
cp

− T̂ GREG
ch

) (4.47)

with T̂ GREG
cp

and T̂ GREG
ch

as person- and household-level GREG estimators for the common to-
tals with xi and ag as auxiliaries, respectively. Superscript MER refers to Merkouris. The
coefficients are obtained from

D̂MER
κ =

(
(1− q)

∑
i∈sp

rFxi r
Fx
i

T + q
∑
g∈sh

rFag r
Fa
g

T
)−1

(1− q)
∑
i∈sp

rFxi rBxg (4.48)

and

ÊMER
κ =

(
(1− q)

∑
i∈sp

rFxi r
Fx
i

T + q
∑
g∈sh

rFag r
Fa
g

T
)−1

q
∑
g∈sh

rFag rBag , (4.49)

where the weighting factor q = n/deffsp
n/deffsp +m/deffsh

is proportional to the effective sample

size. Therefore, the modified estimators introduced by Merkouris (2004) differ from the orig-
inal GLS estimators (4.35) and (4.36) only with respect to weighting factor q. The variance
estimators arises considering the weighting factor q in (4.44) and (4.45), as done in (4.48) and
(4.49).

4.4 Comparison of Our Alternative Weighting Approaches
and the GLS Estimator

This section aims to compare our alternative weighting approaches to the GLS estimator. All
estimators under consideration ensure consistency between person- and household-level esti-
mates. Table 4.2 summarizes the estimators under consideration, given in a similar expression
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to make the differences more accessible. It becomes evident that the differences arise from
the signs of the adjustment terms, the formulas of the coefficients, and the estimated common
variable totals.

Moreover, the two approaches differ conceptually on how consistency is ensured. Our weight-
ing approaches use the same estimated common variable totals in both the person- and house-
hold-level estimator. We suggest a person-level estimator as estimator for the unknown com-
mon variable totals, since in household surveys it is more prevalent that the common variables
are initial person characteristics that are assigned in aggregated form to the household-level data
set. In contrast, the GLS estimator enforces consistent person- and household-level estimates
more indirectly through the construction of the combined variable of interest γt and the auxil-
iary information ζt as well as through the known total vector Tζ = (T̂x

T
, T̂a

T
,0T )T . The final

estimates of the unknown common variable totals are determined by a weighted average of the
single person- and household-level estimates. Therefore, the same common variable informa-
tion is used twice, once in its initial form at the person level and once in aggregated form at the
household level. However, it is questionable to what extent the aggregated household-level in-
formation, supplementary to the person-level information, helps to predict the common variable
totals.

Furthermore, the variance estimators of the common variables differ. In our alternative weight-
ing approaches, the variance of the common variables totals depends solely on the person-level
variance estimator. In contrast, in the GLS approach the variance estimators of the common
variables are more elaborate, since the variance estimators both the person and household level
and their covariances are required.

In addition, the number of calculation steps differs. The GLS estimator is a one-step procedure.
Our proposed weighting approaches consist of two calculation steps. In a first step, the unknown
common variable totals are estimated. In a second step, based on the estimated common variable
totals from the first step, the final estimators are determined.

Finally, when comparing the coefficients of the adjustment terms accounting for the impact of
consistency, it becomes evident that the combined coefficients D̂κ and Êκ simultaneously use
person- and household-level information by the term (∑i∈sp r

Fx
i r

Fx
i

T +∑
g∈sh r

Fa
g r

Fa
g

T ). How-
ever, as mentioned in the previous paragraph, in the context of household surveys, it seems ques-
tionable to what extent the household-level auxiliary information helps to predict the person-
level variables.
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Ê
M

E
R

κ
=
( (1
−
q)
∑ i∈

s p
r
F
x
i
r
F
x
i

T
+
q
∑ g
∈
s h
r
F
a
g
r
F
a
g

T
) −1

(1
−
q)
∑ i∈

s p
r
F
x
i
rB

x
g

q
∑ g
∈
s h
r
F
a
g
rB

a
g



4 ALTERNATIVE WEIGHTING APPROACHES 81

4.5 Simulation Study

The following MC simulation study compares the performance of our alternative weighting
approaches, the GLS estimators as benchmark estimators and integrated weighting as current
practice in official offices (as presented in detail in Chapter 3). It should be noted that all
estimators under consideration (Table 4.3) ensure consistency between person- and household-
level estimates.

Table 4.3: Estimators under consideration

Estimator Description

Integrated weighting

INT1 Integrated GREG estimator according to Lemaître and Dufour (1987)

determined by Definition 3 with vi = 1
INT2 Integrated GREG estimator according to Nieuwenbroek (1993) determined

by Definition 3 with vi = N−1
g

Alternative weighting approaches

WA1 First alternative weighting approach determined by (4.1) and (4.4)

WA2 First alternative weighting approach determined by (4.19) and (4.25)

Benchmark estimators

ZIE GLS estimator proposed by Zieschang (1986, 1990) determined by

(4.35) and (4.36)

MER GLS estimator suggested by Merkouris (2004) defined in (4.46) and (4.47)

The simulation study is based on the same simulation setup as used in the previous chapters (see
Section 3.4.1 for details). We draw 1000 MC samples of m = 1500 and m = 200 households
by means of simple random sampling. The auxiliaries consist of the same auxiliary variables as
presented in Table 3.6. In the integrated GREG estimators, we also include the additional auxil-
iary variable N−1

g required to ensure the integrated property (see Section 3.1.1 for a definition).
For a fair comparison, we also incorporate the household size as further auxiliary variable into
the alternative weighting approaches and into the GLS estimators. The integrated weights are
computed at the person level and are then assigned one-to-one to the corresponding household.
Following, it is implicitly assumed that the household characteristics are explained by the same
auxiliary variables as the person characteristics but in aggregated form. Therefore, in order to
be comparable with integrated weighting, we use the same auxiliary variables in our alternative
weighting approaches and in the GLS estimators. However, it is important to note that our alter-
native weighting approaches allow us to utilize different auxiliaries at the person and household



4 ALTERNATIVE WEIGHTING APPROACHES 82

level. The variables of interest at the household level are presented in Table 4.4. As common
variables, emerging in both the person- and the household-level data set, we choose inc and
soc. RB, MSE and rsRBr introduced in Section 3.4.1 serve as quality measures. The simu-

Table 4.4: Variables of interest at the household level

Variable Description

inc Personal income

soc Social income

cap_inc Capital income (interest, dividends, profit from capital investments in

unincorporated business)

taxes Regular taxes on wealth

lation study consists of three parts: Section 4.5.1 investigates the distribution of the weights
obtained from the methods under consideration. Sections 4.5.2 and 4.5.3 present the results on
point and variance estimates.

4.5.1 Results on Weights

The weights of the competing methods divided by the design weight for different sample sizes
and for all 1000 MC samples are plotted in Figure 4.1. It becomes apparent that the person
weights of our alternative weighting approaches, WA1 and WA2, and of the GLS estimators,
ZIE and MER, have a considerably smaller range than the weights of INT1 and INT2. Actually,
for m = 200, INT1 and INT2 produce a considerable number of negative weights. Since
the integrated person weights are assigned one-to-one to the household level, the ranges of
the weights of INT1 and INT2 are equal between both levels. However, the interquartile ranges
differs. Form = 200 the household weights of WA1 and WA2 also vary less than the household
weights for INT1. At the household level, negative weights emerge in almost all approaches.
However, a considerable body of literature exists on avoiding negative weights, as presented in
Section 2.3.5. Weight distributions of WA1, ZIE, and MER are quite similar. Figure 4.2 depicts
that, in contrast to INT1 and INT2, the ranges of the person weights of WA1, WA2, ZIE and
MER are independent of the household size.

4.5.2 Results on Point Estimates

The empirical biases in Tables B.5 and B.5 in Appendix B confirm that all estimators under
consideration are asymptotically unbiased. Table 4.5 summarizes the ratios of the MSEs (see
Section 3.4.1 for a definition) of integrated weighting relative to our alternative weighting ap-
proaches and relative to the GLS estimators. It becomes evident that all numbers in the table
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Figure 4.1: Boxplots of the person- and household-level weights

are greater than or at least 1, except from one number for bene_age3 and m = 200. Therefore,
WA1, WA2, ZIE, and MER perform at least as well as integrated weighting. The greatest gains
in precision are realized for WA2. Here, all variables benefit from inserting improved estimates
for the common variable totals estimated by a specialized auxiliary variable set (the specialized
variables are given B.4 in Appendix B). Actually, the gains in precision for the common variable
inc ranges up to 73%. Even if the common variables are included as additional auxiliaries, no
considerable precision gains are realized for WA1, ZIE and MER with respect to the common
variables. Our results do not confirm the observation of Merkouris (2004, p. 1131) that MER
improves the precision compared to ZIE.
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Figure 4.2: Boxplots for person weights by household size for m = 1500
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4.5.3 Results on Variance Estimates

Figure 4.3 plots the rsRBr for r = 1, . . . , 1000 of the estimated variances at the person level.
The two lower rows present the larger sample size with m = 1500, the two upper rows show
the smaller sample size with m = 200. The RB of the variance estimates is indicated in green.
For m = 1500, the variance estimators of INT1, INT2, and WA1 perform very similar. WA2
also delivers accurate estimates although the variance estimator is more complex than for WA1,
INT1, and INT2 since it contains six variance components instead of one, as derived in Section
4.2.2.2. Actually, for bene_age2 and bene_age3, WA2 outperforms all other methods under
consideration. Only for inc and all variables related to it, do the distributions of the variance
estimates have a wider range. The reason for this is that due to the specialized estimates of
the unknown common variable totals more randomness and variation is introduced into the
variance estimator. For m = 200, the variance estimates of WA2 outperform all estimators
under consideration for bene_age1, bene_age2, bene_age3 and bene_age4.

The variance estimators of the benchmark methods ZIE and MER underestimate the empirical
variance of the point estimates, particularly for the common variables. This is likely because
the Taylor linearization does not capture the additional randomness introduced by the combined
estimate of the common variables. As a remedy, Zieschang (1990, p. 996) and Merkouris
(2004, p. 1137) recommended resampling methods. However, since ZIE and MER are only
benchmark methods, the variance estimation for our proposed weighting approaches works
very accurately, and resampling methods are out of the scope of the thesis, we refrain from
computing resampling variances.

Larger differences between the estimators under consideration can be found at the household
level. Figure 4.4 shows that also at the household level the variance estimation of WA1 works
accurately. As at the person level, the boxes of WA2 are wider for the common variables and
for variables related to them, as compared to WA1, INT1, and INT2. For taxes, the boxes
of WA1 and WA2 are nearly identical. However, INT1 and INT2 produce various outliers
and underestimates the empirical variance of taxes, which is characterized by a very skewed
distribution with several zeros. In contrast, our proposed weighting approaches WA1 and WA2,
as well the GLS estimators ZIE and MER, seem to be robust against outliers. Moreover, also
at the household level, the Taylor linearization for ZIE and MER does not produce reliable
variance estimates for the common variables.
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Regarding our alternative weighting approaches, we are interested in the relation between the
variance components. Figure 4.5 shows the total variance estimates and the variance compo-
nents for WA2 at the person level (see (4.19) and (4.28) for the formulas) for all variables of
interest except of the common variables. The latter variance estimator comprise only one sin-
gle variance component (see (4.30) and (4.31)). Variance components with a negative sign are
highlighted in red, variance components with a positive sign are highlighted in orange. It can be
seen that variance component V1, describing the variance estimates of the variable of interest,
exceeds the total variance estimates of WA2. In other words, the incorporation of common vari-
ables as additional auxiliaries decreases the total variance. Variance component V3 considering
the common variable totals estimated by the specialized auxiliary variable set z exceeds V2,
considering the variances estimates of the common variable totals estimated by the auxiliary
variable set x. This result is not surprising, because the number of variables in z is higher
than in x in our simulation setup. Moreover, the covariance terms V12 and V23 are very small
compared to V13. The reason for this is that the latter term concerns the covariance of estimates
based on different auxiliary variable sets.

An interesting question is whether the estimation of six instead of one variance components
in the variance estimator for our alternative weighting approaches affects their convergence
behavior. Figure 4.6 depicts the convergence plots of the rsRBr for r = 1, . . . , 1000 of the
estimated variances for the common variable inc at the household level. At this level, the
variance estimators of both WA1 and WA2 comprise six variance components. It becomes
evident that WA1 achieves nearly the same convergence behavior as the variance estimates of
INT1 and INT2. The difference between the variance estimates and the empirical variance
of the estimator of WA2 exceeds the difference for the other estimators up to R < 200. For
R ≥ 200, the convergence speed adjusts for the competitive variance estimators.
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Figure 4.6: Convergence plot of the relative bias of the estimated variances at the household level for
inc and m = 1500

4.6 Summary and Conclusion

In this chapter, we proposed two weighting approaches as alternatives to integrated weighting.
These alternative weighting approaches are capable of both ensuring consistent person- and
household-level estimates and allowing for different weights for the persons within the same
household. The advantages of the alternative weighting approaches compared to integrated
weighting are manifold. First, consistency is ensured more directly and only for the relevant
variables, instead of indirectly by aggregating the individual information per household. Sec-
ond, using the original auxiliary information allows divergent weights for the persons within
the same household. Therefore, the heterogeneity in a household, if it exists, is captured, and
individual patterns are retained. Thirdly, at the person and household level, different models
can be implemented, which ensures more flexibility in variable selection and prevents problems
induced by ecological fallacy. Finally, no additional auxiliary variable is required to enforce the
integrated property.
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To ensure consistent person- and household-level estimates, we included the variables common
to both the person- and household-level data sets in our weighting approaches as additional
auxiliary variables. For this purpose, we extended the method of Renssen and Nieuwenbroek
(1997) of combining information of independent multiple surveys. However, there are consid-
erable differences between multiple surveys and household surveys in terms of the definition of
common variables, the dependence of the surveys and differing target populations. The differ-
ence between our first and second weighting approach is given by the implementation effort and
the quality of the estimated totals of the common variables. Whereas the first approach is easier
to implement, since only the household-level estimator has to be extended by the common vari-
ables, the second weighting approach offers the best available estimate for the unknown com-
mon variable totals. The simulation results on point and variance estimates confirm the trade-off
between the implementation expense and the quality of the final estimates in the choice between
our two weighting approaches. The variance estimators of our proposed weighting approaches
account for the additional source of randomness induced by the estimated totals of the common
variables. Therefore, we derived the variance estimators for each proposed estimator via Taylor
linearization considering the additional randomness.

As a benchmark estimator for the alternative weighting approaches, we adopt the GLS esti-
mator introduced by Zieschang (1986, 1990), which combines information from independent
multiple surveys. In this approach consistency between person- and household-level estimates
is indirectly ensured by the construction of the pooled auxiliary variables and the linear con-
straints. Moreover, the estimates for the unknown common variable totals are produced by a
weighted average of the separate estimates obtained from each of the surveys. Therefore, the
same common variable information is used twice, once in its original person-level form and
once in aggregated form at the household level. In contrast, the unknown common variable
totals in our weighting approaches are based on the person level in order to account that it is
more prevalent that the common variables are initial person-level characteristics.

Our simulation study strongly supports the superiority of our alternative weighting approaches
compared to integrated weighting and the GLS estimators. In particular, our second proposed
weighting approach yields the most precise point estimates. The precision gains depend on
the strength of the relation between the common variables and variables of interest. Our first
weighting approach and the GLS estimators perform very similar. As a result, with the proposed
alternative weighting approaches we contradict the wide-spread perception in the literature that
equal weights are required to ensure consistent estimates.

The advantages of our proposed alternative weighting approaches become more obvious when
the weights are adjusted for nonresponse. In general, methods to prevent nonresponse bias
proceed at the person level. As a result, the adjusted person weights are no longer necessarily
equal within a household. In order to maintain consistency, Eurostat (cf. European Commis-
sion, 2014, p. 40) recommends averaging the adjusted person weights within a household and
assigning the average weight to all household members. Such an averaging process ignores the
individual response patterns in a household. In contrast, our alternative weighting approaches
allow a nonresponse adjustment at the person level, without the need for subsequent averaging
of the resulting weights. By including the common variables consistency is still ensured.



5 Efficiency Comparison of Person-Level
and Integrated GREG Estimators

In Chapter 3, we derived in detail the consequences of the strict requirement of equal weights
in the integrated weighting approach. Our MC simulation study strongly supports that these
consequences result in more varied weights and coefficients as well as in less efficient point and
variance estimates for small sample sizes. However, our deduced consequences and simulation
results contradict Steel and Clark (2007) who claimed, in contrast, that the variance obtained
by integrated weighting is less than the variance obtained by a person-level GREG estimator.
Because of these contradictions, this chapter examines the theorems given by Steel and Clark
(2007). Subsequently, we derive an efficiency comparison of both variances.

The remainder of this chapter is as follows: In Section 5.1, we reproduce the efficiency com-
parison given by Steel and Clark (2007). The main issues are, first, that they neglected the
intercept in the integrated household-level model and thus, second, that the underlying assisting
models are of different dimensions. Moreover, the interpretation of the difference between the
variances using the argument of controlling for is ambiguous. Considering the discussed issue,
in Section 5.2, we derive an own efficiency comparison. To be able to compare the variances of
models of different dimensions, we initially desire to separate the effect of the intercept from
the variance of an integrated GREG estimator. To solve this problem, we decompose the vari-
ance of an integrated GREG estimator into the variance of a reduced GREG estimator, which
underlying model is of the same dimensions as the person-level GREG estimator, and add a
constructed term that captures the effect of the intercept disregarded by the reduced model.
Subsequently, we deduce a relationship between the coefficients of the person-level model and
the household-level model to provide an interpretation of the efficiency comparison. At the end
of this section, we are able to correctly compare the efficiency of the variances of a person-level
and an integrated GREG estimator. The final outcome is explained by simulations results.

Finally, Section 5.3 suggests a further application field of the previously derived decomposition
of regression coefficients to predict the difference between two coefficients of determination
when adding or omitting explanatory variables. This further application can be relevant for
econometricians as well as for survey statisticians. Section 5.4 summarizes the results of this
chapter and draws conclusions.

To facilitate the reading of this chapter, we introduce some general indications. This chapter
focuses on theoretical findings; therefore, all derivations given in the following refer to the pop-
ulation level instead to the sample. As such, whenever we use the term variance, we consider

94
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the variance V (T̂y) instead of the estimated variance V̂ (T̂y). To better explain, we visualize our
problems or solutions with graphs, such as Venn diagrams. Since the illustration via graphs is
often limited to the case of having few variables, the proceeding in the following is twofold:
Initially, we focus on the one-dimensional case and visualize the problems or solutions using
graphs. Subsequently, we extend our findings to the multidimensional case. Our derived find-
ings are summarized by results. Intermediate outcomes, essential in considering the results, are
outlined within lemmas.

5.1 Efficiency Comparison Given by Steel and Clark (2007)

In Section 5.1.1, we reproduce two of the theorems derived by Steel and Clark (2007) consid-
ering the optimal estimator under single-stage cluster sampling and the difference between the
contradictions of a person-level GREG estimator and an integrated GREG estimator. Subse-
quently, in Section 5.1.2, we detect two issues with their theorems. To underpin our argumenta-
tion, we present some results based on the same simulation setup as introduced in Section 3.4.1.
Original text from Steel and Clark (2007) is indicated by boxes. For ease of understanding, we
change the original notation into the notation of the present thesis.

5.1.1 Original Theorems Given by Steel and Clark (2007)

Steel and Clark (2007) compared the efficiency of a person-level and an integrated GREG esti-
mator with households as basis. According to our Definition 3, the latter estimator is equivalent
to an integrated GREG estimator with persons as a basis and vi = N−1

g as variance parame-
ter. However, in this chapter, we retain the term integrated household-level GREG estimator,
as originally used by Steel and Clark (2007), for two reasons: a) the original denotation of
the estimator at hand facilitates better comparability with the original paper and, b) the term
household-level permits a more comprehensible interpretation of the neglected variable as an
intercept, as we will see in the following.

In their first theorem, the optimal estimator for person characteristics under simple single-stage
cluster sampling is derived. Optimal in this context means that the estimator has minimum
variance in a large class of GREG estimators (for details see Section 2.3.3). Their first theorem
is presented in the following box.
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First Theorem Given by Steel and Clark (2007, p. 53): Optimal Estimator for Simple
Cluster Sampling
Suppose that m households are selected by simple random sampling without replacement
from a population of M households, and all people are selected from selected households.
Consider the estimator of Ty given by

T̂y = T̂HT
y + hT (Tx − T̂ HT

x )

where h is a constant vector of dimension Q. It is assumed that there exists a vector λ such
that λTxi = 1 for all i ∈ U . The variance of this estimator is minimized by h∗ which are
solutions of ∑

g∈sh
(yg − hTxg)xg = 0

Hence T̂ INT
y with vi = N−1

g for all i ∈ Up is the optimal choice of T̂y.

Note that T̂ INT
y is the integrated GREG estimator. From their first theorem, Steel and Clark

(2007, p. 54) concluded that the variance of an integrated GREG estimator is less than or equal
to that of a person-level GREG estimator and that the information discarded by summing up
the original person-level information per household is irrelevant. Their theorem imply that the
strict requirement of equal weights in the integrated weighting approach has no consequences.
Moreover, the increased number of outcome values and the ignorance of the heterogeneity of
the persons within a household, resulting in more spread weights and coefficients, would not
affect the efficiency of the integrated GREG estimator. Even the one-to-one weight assignment
between the levels, ignoring the different strengths of the relationship between the auxiliaries
and the variable of interest, would cause any efficiency loss. These implications of their first
theorem strongly contradict our simulation results of a comparison between an integrated and a
person-level GREG estimator, comprehensively discussed in Section 3.4. Carrying their theo-
rem too far, this would entail that under cluster sampling, it is always recommended to substitute
the individual auxiliary information by the cluster-level aggregated information, independently
from cluster size or within variance. The object of the following section is to detect some
weaknesses on the theorem.

In their second theorem, Steel and Clark (2007) assessed the efficiency improvement of an
integrated compared to a person-level GREG estimator by calculating the difference between
both variances.
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Second Theorem Given by Steel and Clark (2007, p. 54): Explaining the Difference in
the Asymptotic Variances
Suppose that m households are selected by simple random sampling without replacement and
all people are selected from selected households. Let rBpi = yi − Bp

Txi and let Bc be the
result of regressing rBpi on x̄g over i ∈ Up using weighted least squares regression weighted
by Ng. Then

V (T̂GREG
y )− V (T̂ INT

y ) = M2

m

(
1− m

M

)
(M − 1)−1Bc

T
( ∑
g∈Uh

xgxg
T
)
Bc (5.1)

where T̂ INT
y is calculated using vi = N−1

g for all i ∈ Up.

From the second theorem, Steel and Clark (2007, p. 54) concluded that the reduction in the
variance from using an integrated household-level GREG estimator rather than a person-level
GREG estimator is a quadratic form in Bc. The discussion of this conclusion is given in detail
in Section 5.1.2.2.

In the next section, we deeply discuss the presented theorems and the corresponding proofs.
A detailed line-by-line discussion of the proofs of both theorems and further minor technical
issues can be found in Section C.1 in Appendix C.

5.1.2 Issues of the Theorems Given by Steel and Clark (2007)

The main issues of the theorems are as followings:

• Steel and Clark (2007) tacitly assumed that the auxiliaries of a person-level GREG es-
timator sum up per household to the auxiliaries of an integrated GREG estimator and
thus that both auxiliary vectors are of the same dimension. However, we show in Sec-
tion 5.1.2.1 that the per-household summation of the person-level information results in a
household-level auxiliary vector without an intercept.

• For the interpretation of their second theorem, Steel and Clark (2007) used the argument
of controlling for, which clearly implies a multiple regression interpretation. However,
we declare in Section 5.1.2.2 that their approach considerably differs from a multiple
regression interpretation.

5.1.2.1 Neglecting the Intercept in the Integrated Household GREG Estimator

Steel and Clark (2007) assumed throughout their paper that the auxiliaries of a person-level
GREG estimator sum up per household to the auxiliaries of an integrated household-level
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GREG estimator. However, the summation per household of the person-level auxiliary vec-
tor of dimension Q

xi = (xi1, xi2, . . . , xiQ)T = (1, xi2, . . . , xiQ)T

results in

∑
i∈Ug

xi = xg = (xg1, xg2, . . . , xgQ)T = (Ng, xg2, . . . , xgQ)T . (5.2)

Accordingly, xg does not contain an intercept. In contrast, the person-level auxiliary vector of
an integrated GREG estimator

x̄◦
i = (x̄i0, x̄i1, . . . , x̄iQ)T = (N−1

g , 1, x̄i2, . . . , x̄iQ)T

is of dimension (Q+ 1) and sums up per household to

∑
i∈Ug

x̄◦
i = x◦

g = (xg0, xg1, . . . , xgQ)T = ( 1, Ng, xg2, . . . , xgQ)T . (5.3)

Therefore, x◦
g contains an intercept, xg0 = 1, and the number of persons within a household,

xg1 = Ng. Consequently, the auxiliaries of a person-level GREG estimator at the person level
do not sum up to the auxiliaries of an integrated GREG estimator at the household level

xg 6= x◦
g.

It is important to note that we differentiate between a person-level intercept xi1 = 1, which
sums up per household to

∑
i∈Ug xi1 = Ng, and a household-level intercept xg0 = 1.

The equality of xg and x◦
g is valid if and only if

1) the integrated auxiliary variables x◦
g at the household level do not contain an intercept, or

2) the person-level auxiliary variables xi containN−1
g as an additional auxiliary, which sums

up to the intercept at the household level.

To point 1, including an intercept is crucial for several reasons. The first two reasons refer to
survey statistics, the latter is originated in econometrics. Firstly, an intercept guarantees that
the household weights sum up to the number of households in the population, M . Secondly,
the sufficient condition σ2 = 1 = λTxg, guaranteeing the unbiasedness of a GREG estimator,
is fulfilled for models comprising an intercept (cf. Särndal et al., 1989, p. 231). Thirdly, the
residuals from a model without an intercept no longer sum up to zero. This affects the design-
based variance formula, which has to be extended by the mean of the residuals.

To point 2, the additional auxiliary N−1
g is required only in an integrated estimator to ensure

the integrated property (see Section 3.1.1 for details). The integrated property induces that after
a one-to-one weight assignment between both levels, the integrated person weights sum up to
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the number of persons within a household, and simultaneously the integrated weights at the
household level sum up to the number of households. However, since the person-level weights
are not assigned from the person to the household level, this variable is not required.

To conclude, no argumentation justifies point 1 or point 2 is fulfilled and thus that the equality of
xg and x◦

g is valid. Instead, the auxiliary vectors of a person-level and an integrated GREG esti-
mator are of different dimensions. Consequently, Steel and Clark (2007) neglected the intercept
in the integrated GREG estimator.

At this point, the reason to use the name integrated household-level GREG estimator becomes
more obvious. At the household level, the variable that determines the difference in dimension
between the auxiliaries xg and x◦

g can be interpreted as household-level intercept xg0 = 1. In
contrast, at the person level the counterpart of the household-level intercept is xi0 = N−1

g , which
has no clear interpretation. In the following, we derive the consequences of this misleading
assumption for the previously presented theorems.

Consequence for Their First Theorem
In their first theorem, Steel and Clark (2007) derived the optimal estimator by differentiating the
variance of a person-level GREG estimator with respect to the coefficient within the estimator.
Certainly, the variance of a GREG estimator under simple single-stage cluster sampling

V (T̂GREG
y ) = M2

m

(
1− m

M

)
(M − 1)−1 ∑

g∈Uh

( ∑
i∈Ug

yi −
∑
i∈Ug

xi
Tb
)2

is minimized by

b∗ =
( ∑
g∈Uh

xgxg
T
)−1 ∑

g∈Uh
xgyg.

However, Steel and Clark (2007) drew a misleading conclusion for the optimality of the inte-
grated household-level estimator because the following applies

b∗ = (
∑
g∈Uh

xgxg
T )−1 ∑

g∈Uh
xgyg

6= (
∑
g∈Uh

x◦
gx

◦
g
T )−1 ∑

g∈Uh
x◦
gyg = B◦.

Accordingly, the variance of a person-level GREG estimator is not minimized by the integrated
coefficient B◦, as claimed by Steel and Clark (2007). Nevertheless, it is surprising that the
variance of a GREG estimator, constructed to estimate person characteristics, is optimized by a
coefficient depending on the per-household aggregated auxiliary information xg rather than on
the individual person-level information xi. The surprise is reinforced, as we learned in Section
3.2.2 that the coefficients at the person and household level differ because of ecological fallacy.
We come back to this paradox in Chapter 6 when discussing that the optimality is caused by the
order of the sum and square root in the variance formula.
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Consequence for Their Second Theorem
In their second theorem, Steel and Clark (2007) solved both variance formulas and combined
them to one single term (see Equation 5.1). However, their mathematical rearrangements, when
combining both formulas to derive (5.1), relies strongly on the assumption of the equality of xg
and x◦

g. Otherwise, it would not be feasible to combine the auxiliaries of the variance of an inte-
grated and a person-level GREG estimator into one single term. Consequently, Steel and Clark
(2007) compared the efficiency of a person-level GREG estimator with that of a household-
level GREG estimator without an intercept rather than with an integrated GREG estimator. We
denote a household-level GREG estimator without an intercept as reduced household-level
model, hereinafter.

To underpin that there is a distinction between, on the one hand comparing a person-level
GREG estimator with an integrated GREG estimator, as originally intended by Steel and Clark
(2007),

V (T̂GREG
y )− V (T̂ INT

y ), (5.4)

and on the other hand comparing a person-level GREG estimator with a reduced household-
level GREG estimator, as actually realized by Steel and Clark (2007),

V (T̂GREG
y )− V (T̂ SC

y ), (5.5)

we compute the densities for the correct difference (5.4) and for the difference indicated by Steel
and Clark (2007) (5.5) for R = 1000 MC replications. The densities are computed based on the
AMELIA data set within the same simulation setting introduced in Section 3.4.1. Superscript
SC refers to Steel and Clark. It should be remarked that the plots are given on different scales,
since we are interested in the comparison of both approaches and not a comparison of the
different variables of interest.

We learn from Figure 5.1 that in particular for variables related to the household, Steel and Clark
(2007) underestimate the correct difference between the variances of an integrated and a person-
level GREG estimator. Figure 5.2 plots the average household size within each MC replication
against the deviation between the correct approach and the approach by Steel and Clark (2007).
For this plot, we choose four variables of interest presented in Figure 5.1. inc_hs5 and inc_hs6
are characterized by a large deviation between the two approaches. bene_age4 and inc are
characterized by a small deviation between the two approaches. It becomes evident that for
inc_hs5 and inc_hs6 the deviation increases with the average household size. In contrast, for
bene_age4 and inc, both measures seems to be unrelated. Hence, the amount of the deviation
between including (correct approach) and not including (Steel and Clark approach) an intercept
in the household model depends on the average household size in the sample. In other words,
if large households prevail in the sample, Steel and Clark (2007) underestimate the correct
variance of an integrated GREG estimator.

5.1.2.2 Interpretation of the Difference between the Asymptotic Variances

To focus on the interpretation of the second theorem, we temporarily assume that either point 1)
or point 2) in Section 5.1.2.1 is fulfilled and thus that the assumption of the equality of xg and
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Figure 5.1: Density plots for the difference between the variances according to the correct approach and
the approach of Steel and Clark (2007) for m = 1500

x◦
g is valid. We skip this assumption in the next Section 5.2 when providing a correct efficiency

comparison.

The difference between the variances in (5.1) derived by Steel and Clark (2007) depends on the
coefficient

Bc =
( ∑
i∈Up

Ngx̄ix̄i
T
)−1 ∑

i∈Up
Ngx̄ir

Bp
i , (5.6)

which results from regressing rBpi = yi−Bp
Txi on x̄g using GLS. From their second theorem,

Steel and Clark (2007, p. 54) argued that: “The result shows that the reduction in variance from
using T̂ INT

y (vi = N−1
g ) rather than T̂GREG

y is a quadratic form in Bc. Hence the extent of the
improvement depends on the extent to which x̄i helps to predict yi after xi has already been
controlled for, i.e., the extent to which a linear contextual effect helps to predict rBci over i ∈ Up,
using a weighted least squares regression weighted by Ng.“1

1For a better understanding of the statement, we change the original notation into the notation of the present
thesis.
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Figure 5.2: Scatterplots for the deviation between the correct approach and the approach of Steel and
Clark (2007) for m = 1500

Using the argument controlling for is a clear hint for a multiple regression interpretation. In a
multiple regression, the interpretation is conducted ceteris paribus, meaning the coefficient of
a certain explanatory variable describes its effect on the variable of interest holding all other
explanatory variables constant (cf. Wooldridge, 2013, p. 70). However, we will show that Bc

does not describe the extent to which x̄i helps to predict yi after xi has already been controlled
for. To emphasize this presumption, we apply the Frisch-Waugh-Lovell theorem (cf. Frisch and
Waugh, 1933; Lovell, 1963) and Venn diagrams. Typically, Venn diagrams address the case of
having one or two explanatory variables. In the case of three explanatory variables a simplex
representation would be needed to draw Venn diagrams. Hence, we initially focus on the simple
case of two explanatory variables in order to visualize the ambiguous interpretation ofBc with
Venn diagrams. Subsequently, we extend our findings to the multiple variable case.

The Frisch-Waugh-Lovell (FWL) theorem is helpful for declaring the meaning of controlling
for. The FWL theorem states that in a multiple regression the coefficient of any single variable
can also be obtained by first partialing out the effects of all other explanatory variables from
both the specific single variable and the variable of interest, and then regressing the remaining
variation of the variable of interest on the remaining variation of the explanatory variables. For
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explanation, consider the following model,

yi = Hxxi +Hx̄x̄i + rHi , (5.7)

introduced by Steel and Clark (2007) to motivate the interpretation of their second theorem.
Applying the FWL theorem to Hx̄, we obtain the following two regressions,

yi = Bpxi + r
Bp
i , and

x̄i = Bxxi + rBxi ,
(5.8)

by partialling out the effect of xi from both yi and x̄i. Then, by regressing the remaining vari-
ation of the variable of interest, captured by rBpi , on the remaning variarion of the explanatory
variable, captured by rBxi , given by

r
Bp
i = Hx̄r

Bx
i + rHx̄i , (5.9)

the coefficient Hx̄ from the initial regression in (5.7) results. According to the ceteris paribus
interpretation, the coefficient Hx̄ describes the effect of x̄i on yi controlled for any effect of
xi. It should be remarked that the residual rHi in (5.9) exactly conforms with the residual from
model (5.7).

Venn diagrams help to visualize the difference between the meaning of controlled for and the
interpretation claimed by Steel and Clark (2007). We refer to the interpretation of Venn di-
agrams as suggested by Kennedy (1981, 2002) in the context of regression analysis.2 Figure
5.3 illustrates the multiple regression model (5.7). Each circle represents the variation of a
variable. Intersections between two variables are interpreted as variation common to both vari-
ables. The common variation of a variable of interest and an explanatory variable determines
the information used for estimating the corresponding regression coefficient. The green shaded
area between the circles yi and x̄i, for example, describes the information used to calculate the
coefficient Hx̄. The variation common to the variables xi and x̄i (not shaded) cannot be clearly
assigned to one variable and is thus are not used for calculating Hx̄. The remaining variation of
the variables, outside the intersections, determines the residuals of a regression.

Figure 5.4 visualizes the FWL theorem. According to this, Hx̄ obtained from the multiple
regression (5.7), can alternatively be calculated by regressing the residuals rBi (yellow shaded)
on the residuals rBxi (blue shaded).

In contrast to this, Venn diagram 5.5 illustrates the approach given by Steel and Clark (2007).
They skipped the second regression in (5.8) and regressed rBpi on x̄i which is given by

r
Bp
i = Bcx̄i + rBci (5.10)

instead of rBpi on rBxi given by (5.9) as it would be correct following the FWL theorem. There-
fore, Steel and Clark (2007) did to partial out the effect of x̄i on xi (second regression in (5.8)).
Nevertheless, for interpretation of Bc, they used the argument controlling for. A comparison

2Different concepts for interpreting Venn diagrams in regression analysis exist. In contrast to Cohen et al. (2013)
and Ip (2001), it is not Kennedy’s attempt to exposit R2.
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Hx Hx̄

xi

yi

x̄i

Figure 5.3: Venn diagram for a simple contextual model

xi

yi

x̄i

Hx̄

rBxi

r
Bp
i

Figure 5.4: Venn diagram illustrating the Frisch-Waugh-Lovell theorem

of Figures 5.4 and 5.5 makes evident that the difference between term controlling for and the
approach by Steel and Clark (2007), and thus the difference between Hx̄ and Bc, is quantified
by the intersection of xi and x̄i (red shaded in Figure 5.5). Thus, for calculating Bc the com-
plete variation of x̄i is used, including the variation common to x̄i and xi. As result, Hx̄, as the
coefficient describing the effect of xi on yi controlled for xi, and Bc, for which Steel and Clark
(2007) use this interpretation. The difference can be formalized by

Hx̄ =
∑
i∈Up Ngr

Bx
i r

Bp
i∑

i∈Up r
Bx
i rBxi

6=
∑
i∈Up Ngx̄ir

Bp
i∑

i∈Up x̄
2
i

= Bc.

(5.11)
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Figure 5.5: Venn diagram illustrating the approach of Steel and Clark (2007)

The inequality is valid, as long as the vectors x = (x1, . . . , xN)T and x̄ = (x̄1, . . . , x̄N)T are
not orthogonal. If x and x̄ are orthogonal, than there would be no common variation between
the two auxiliaries and the intersection between both circles in the Venn diagram would vanish.
Therefore, rBxi = x̄i and Hx̄ = Bc. However, the case of x and x̄ are orthogonal is very
unlikely, because x̄i, as the household mean value, is a function of xi.

Remark 4. Even if Bc 6= Hx̄ is valid, their corresponding shaded areas in Figures 5.4 and
5.5 seem to be of the same magnitude. Certainly, in a Venn diagram the intersection between
two variables is interpreted as common information used to calculate the regression coefficient.
Although both areas of Bc and Hx̄ are of the same magnitude, their corresponding numeric
values differ as their independent variables differ: rBx 6= x̄. The only reason for the same
amount of common variation between yi and rx̄i as well as between yi and x̄i is that in both
regressions the dependent variable is the same. In contrast, the magnitude of the area beyond
the intersection reflects the magnitude of a parameter estimate, which cannot be explained by
the regressors (cf. Kennedy, 2002).

The described inequality of the coefficients is also valid for vectors containing Q > 2 auxiliary
variables with xi = (xi1, . . . , xiQ)T and x̄i = (x̄i1, . . . , x̄iQ)T . In the multiple case, inequality
(5.11) is demonstrated by

Hx̄ =
∑
i∈Up

Ngr
Bx
i r

Bx
i

T

−1 ∑
i∈Up

Ngr
Bx
i r

Bp
i

6=
∑
i∈Up

Ngx̄ix̄i
T

−1 ∑
i∈Up

Ngx̄gr
Bp
i

= Bc.
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To conclude, although Steel and Clark (2007) used a different approach, they justified their
interpretation using the argument of controlling for. The difference between controlling for and
the approach of Steel and Clark (2007) is quantified by the common variation of xi and x̄i
determined by the intersection in Figure 5.5 (shaded in red). The magnitude of the intersection
depends on the household sizes: the smaller the households, the higher the correlation between
the two variables, the larger the intersection, and the greater the difference between controlling
for and the approach of Steel and Clark (2007).

5.2 Efficiency Comparison of a Person-Level GREG
estimator and an Integrated Household-Level GREG
Estimator

After elaborating the issues of the efficiency comparison given by Steel and Clark (2007), the
aim of this section is to provide a correct comparison of the variances of a person-level GREG
estimator and an integrated GREG estimator considering that the auxiliaries are of different
dimensions.

First, to be able to compare the variances of models of different dimensions, we separate in Sec-
tion 5.2.1 the effect of the intercept from the variance of an integrated household-level GREG
estimator. To solve this problem, we decompose the variance of an integrated household-level
GREG estimator into the variance of a reduced household-level GREG estimator, which under-
lying model is of the same dimension as the person-level GREG estimator, and construct a term
that captures the effect of the intercept disregarded by the reduced household-level model. The
decomposition allows us to compare the variances of models of different dimensions. By insert-
ing the decomposition into the efficiency comparison we obtain an intermediate result (Section
5.2.2).

Second, as we doubt the appropriateness of the interpretation of controlling for, the objective
of Section 5.2.3 is to derive a functional relationship between the coefficient from the reduced
household-level and the person-level GREG estimator, which are of the same dimension. To
solve this problem, we apply a model that simultaneously contains both the auxiliaries of the
person-level and the reduced household-level model. By inserting the functional relationship
into the intermediate result, derived before, the final result of our efficiency comparison results
(Section 5.2.4).

It is important to note that even if we are interested in an efficiency comparison of a person-level
and an integrated GREG estimator for person characteristics, we have to consider both auxil-
iary variable sets at the household level, because the variance formula under cluster sampling
refers to the aggregates of the variables (see Section 2.4). Therefore, instead of determining the
auxiliary vectors xi and x̄◦

i , we compare their aggregated values xg and x◦
g.

For a better understanding, we deduce the proofs in detail in the following sections. To verify
the correctness of the mathematical rearrangements in the proofs, we program every line as
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R code. For that, we draw a sample of m = 1500 households by means of simple random
sampling from the AMELIA data set.

5.2.1 Separating the Effect of the Intercept from the Variance of an
Integrated Household-Level GREG Estimator

The issue of correctly computing the difference of the variances between a person-level and an
integrated GREG estimator can be formalized by the following objective function(

V(T̂GREG
y )− V(T̂ INT

y )
)/

M2

m

(
1− m

M

)
(M − 1)−1

=
∑
g∈Uh

(
rBpg

)2
−
∑
g∈Uh

(
r
B◦h
g

)2
, (5.12)

where the residuals are obtained from a person-level model and an integrated household model

yi = Bp
Txi + r

Bp
i and yg = B◦

h
Tx◦

g + r
B◦h
g ,

respectively. We divide the objective function (5.12) by the term M2

m
(1− m

M
)(M−1)−1, as under

simple single-stage cluster sampling (see Section 2.4) it emerges in both variance formulas.
Thereby, we can neglect this term in the following.

Unfortunately, the auxiliaries xi and x◦
g of a person-level and integrated GREG estimator are

of different dimensions. The difference is constituted by the household-level intercept xg0 (see
Equations (5.2) and (5.3)). Therefore, to provide a correct efficiency comparison, we aim at
separating the intercept from the integrated household-level model. This issue is summarized
by the following problem.

Problem 1. Separating the Effect of a Variable from the Variance
We aim at separating the effect of a variable from the variance and constructing a term that
captures the disregarded effect of the variable on the initial variance.

To solve Problem 1, we decompose the sum of squared residuals of an integrated household-
level GREG estimator into the sum of squared residuals of a reduced-household-level GREG
estimator, whose underlying model is of the same dimension as the person-level GREG estima-
tor. We then construct a remaining term to capture the effect of the intercept we disregarded
previously. Translated into our objective (5.12), that means(

V(T̂GREG
y − V(T̂ INT

y )
)/

M2

m
(1− m

M
)(M − 1)−1

=
∑
g∈Uh

(rBpg )2 −
∑
g∈Uh

(rB
◦
h

g )2

=
∑
g∈Uh

(rBpg )2 −
∑
g∈Uh

(rBhg )2 + remaining term, (5.13)
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where rBhg is the residual of model

yg = Bh
Txg + rBhg , (5.14)

which we denote hereinafter as reduced household-level model. It does not contain an inter-
cept. According to (5.13), we have to quantify the remaining term.

The solution to Problem 1 consists of three steps:

• We start in Section 5.2.1.1 by decomposing the coefficient from an integrated household-
level model into a coefficient resulting from a reduced household model omitting an in-
tercept and a remaining factor that captures the effect of the intercept on the integrated
household-level coefficient that is disregarded by the reduced household-level model.

• We continue in Section 5.2.1.2 with translating the decomposition of the integrated coef-
ficient to the corresponding residuals, since we are initially interested in the separation of
the intercept from the variance.

• Finally, in Section 5.2.1.3, we extend our findings from the previous sections to the sum of
squared residuals, which is not straightforward as squaring is a non-linear transformation.

At the end of this section, we are able to correctly compare the variances of any GREG estima-
tors containing different numbers of auxiliaries.

5.2.1.1 Decomposition of the Coefficients of an Integrated Household-level Model

We start by decomposing the integrated coefficient B◦
h into a coefficient Bh resulting from a

reduced household model without an intercept (5.14) and additionally a remaining term. The
decomposition of the integrated coefficient is impressive, as in a multiple regression the co-
efficients are calculated ceteris paribus and therefore incorporate the covariances between the
variables.

For a better comprehension, we visualize our separation problem with Venn diagrams. There-
fore, as done before, we will initially focus i) on simple models comprising an intercept and
one auxiliary variable. Subsequently, we extend our findings to ii) multiple models comprising
an intercept and Q > 1 auxiliary variables.

i) Simple Models Comprising an Intercept and a Single Auxiliary Variable
Consider xi1 as an auxiliary variable at the person level which sum up to xg1 = ∑

i∈Ug xi1,
the auxiliary variable of the reduced household-level model. The integrated household-level
auxiliaries additionally contain an intercept: x◦

g = (xg0, xg1)T = (1, xg1)T .

The integrated household-level model in the simple case can be expressed as

yg = B◦
h
Tx◦

g + r
B◦h
g

= B◦x0xg0 +B◦x1xg1 + rB
◦

g (5.15)
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with B◦
h = (B◦x0 , B

◦
x1)T as coefficient vector. Omitting the intercept xg0 results in the one-

dimensional reduced household-level model

yg = Bhxg1 + rBhg . (5.16)

It should be noted that models (5.15) and (5.16) both explain the same variable of interest yg.
The coefficients B◦x1 and Bh refer to auxiliary xg1, which is common to both models. Their
relation is illustrated by Venn diagrams 5.6 and 5.73, with B◦x1 and Bh highlighted in blue. B◦x1

is a coefficient from the multiple regression model (5.15). This means that it captures the effect
of xg1 on yg controlled for the effect of xg0. In contrast, Bh describes the effect of the same
xg on yg not controlled for xg0. Hence, the green shaded area in Figure 5.7, describing the
information used to calculate Bh, exceeds the yellow shaded area in Figure 5.6, which in turn
is used to calculate B◦x1 .

xg0

yg

xg1

B◦x1B◦x0

I

Figure 5.6: Venn diagram illustrating the integrated coefficientB◦
h = (B◦x0 , B◦x1)T

Now, in order to separate the effect of the intercept xg0 from the integrated household model,
we aim to decompose the integrated coefficients B◦

h = (B◦x0 , B
◦
x1)T , shaded yellow in Figure

5.6, into the following:

• a coefficient B◦x0 (shaded gray in Figure 5.7) describing the effect of the intercept xg0 on
yg controlling for xg1,

• a coefficient Bh (shaded green in Figure 5.7) from the reduced household-level model
(5.16) excluding an intercept. It therefore equals in dimension xi1, the auxiliaries of the
person-level model, and

3In contrast to the Venn diagrams shown previously, the intercept xg0, as an independent variable, does not
vary. Thus, the circle of xg0 cannot be interpreted as variation of xg0. Nevertheless, one can calculate its
corresponding coefficient as we will derive in the following. Therefore, we still use Venn diagrams to illustrate
the decomposition, even though xg0 is constant.
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xg0

yg

xg1

BhB◦x0

Figure 5.7: Venn diagram illustrating the reduced household-level coefficient Bh

• a remaining factor capturing the common variation of xg1 and the intercept xg0 when
calculating B◦

h quantified by the intersection I between the circles of yg, xg0 and xg1
(shaded red in Figure 5.6).

Following Figures 5.6 and 5.7, we can rewriteB◦x1 as the difference betweenBh and the intersec-
tion I between the circles of yg, xg1 and xg0. Consequently, the decomposed household-model
coefficient is given by

B◦
h =

(
B◦x0

B◦x1

)
=
(

B◦x0

Bh − intersection I

)
. (5.17)

Accordingly, we need to quantify the intersection I (shaded in red in Venn diagram 5.7). Un-
fortunately, a simple decomposition of B◦

h into B◦x0 and B◦x1 and the FWL theorem does not
offer a solution. The reason is that B◦x0 and B◦x1 result from one common multiple regression
and thus are calculated as partial coefficients. However, we are interested in the residuals from
separated regressions, of which at least one regression excludes the intercept and thus has the
same dimension as the person-level regression.

Fortunately, the mediation model, known from psychology and sociology, provides a promis-
ing solution for quantifying the intersection I . Within this framework, it is assumed that the
relation between a variable of interest and an explanatory variable is more complex than a di-
rectly observed bivariate relation. Instead the explanatory variable may be intervened by a
non-observable so-called mediator variable which in turn influences the variable of interest (cf.
MacKinnon et al., 2007; MacKinnon, 2008). Mediator variables are also known in the liter-
ature as intermediary variables, intervening variables, suppressors, covariates, or moderators.
Figure 5.8 illustrates how the direct, observable relation between a variable of interest yg and
an explanatory variable xg is intervened by a mediator variable mg. The mediator variable mg

simultaneously represents a variable of interest (in relation to xg) and an explanatory variable
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xg

mg

yg

Bm
x

Byx

B
ym

Figure 5.8: Total, direct and indirect effects in a mediation model

(in relation to yg). For a detailed discussion, the interested reader is referred to Judd and Kenny
(1981), Frazier et al. (2004), and Fairchild and MacKinnon (2009).

Baron and Kenny (1986) proposed to differentiate between total, direct, and indirect effects.
Direct effects, here Bmx, Bym and Byx, cannot be intervened via third variables and arise from
the following regressions

mg =Bmxxg + rmg

yg =Byxxg +Bymmg + ryg .

The direct effects Bmx and Bym constitute the indirect effect of xg on yg via mg

Bindirect
mx·ym =Bmx ·Bym.

Then, the total effect resulting from a bivariate regression of xg on yg can be split into a direct
effect of xg on yg controlling for the effect of mg and an indirect effect of xg via mg

Btotal
yx =Byx +Bindirect

mx·ym . (5.18)

Even though we are interested in neither indirect effects nor in mediator models per se, we can
translate the splitting process into total, direct, and indirect effects to quantify the intersection I .
Applying the splitting process to our problem of the decomposition ofB◦

h, the intercept xg0 can
be interpreted as mediator variable (Figure 5.9). The coefficient Bh of the reduced household
model (5.16) represents the total effect resulting from regressing yg solely on xg1 (without an
intercept). The direct effects B◦x0 and B◦x1 are partial regression coefficients of the integrated
household-level model. The third direct effect Fx1 arises from a model with the intercept xg0 as
variable of interest

xg0 = Fx1xg1 + rFx1
g . (5.19)

We denote model (5.19) as the auxiliary model. The denotation auxiliary emphasizes that the
only purpose of the auxiliary model is to deliver Fx1 , which is required to determine the indirect
effect. We will refer to this kind of model below.
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xg1

xg0

yg

F x1

B◦x1

B ◦
x0

Figure 5.9: Total, direct and indirect effects applied to the decomposition ofB◦
h

In line with the mediation model and the equation in (5.18) we can rewrite Bh as

Bh = B◦x1 + B◦x0Fx1︸ ︷︷ ︸
intersection I

. (5.20)

As a result, the second term on the right-hand side in (5.20) exactly defines the intersection I
we need to decompose B◦

h. Thus, its magnitude depends on the relationship between xg0 and
xg1 and on the effect of xg0 on yg controlled for xg1.

When intersection I from (5.20) is inserted into (5.17), the decomposed household-level coef-
ficient immediately results

B◦
h =

(
B◦x0

B◦x1

)
=
(

B◦x0

Bh −B◦x0Fx1

)
. (5.21)

In the following, we briefly discuss how the coefficients of a reduced and an auxiliary model
differ compared to coefficients obtained from ordinary regressions.

Coefficients from the Reduced Household Model. The reduced household-level model (5.16)
omits an intercept. This implies that the regression line runs through the origin. Econometri-
cally speaking, a regression line through the origin means that when all auxiliaries are set to
zero, the expected value of the variable of interest also equals zero. Consequently, the inter-
pretation of the slope parameter, as remaining coefficient, changes. To clarify the difference
between the coefficients from models with and without an intercept, we derive the formulas.
We start with Bh as coefficient from the reduced household model (5.16). Straightforward from
the least squares theory (cf. Greene, 2003, Section 6.4; Wooldridge, 2013, Section 3.2) Bh is
determined by minimizing the sum of squared residuals

min
Bh

∑
g∈Uh

(rBhg )2 =
∑
g∈Uh

(yg −Bhxg1)2.
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Setting the first derivative of the minimization problem with respect to Bh equal to zero, we
obtain

∂
∑
g∈Uh(rBhg )2

∂Bh

= 2
∑
g∈Uh

(yg− Bhxg1)(−xg1) != 0

⇔
∑
g∈Uh

ygxg1 = Bh

∑
g∈Uh

x2
g1

⇔ Bh =
∑
g∈Uh ygxg1∑
g∈Uh x

2
g1

.

In contrast, the coefficient from an integrated household model yg = B◦x0xg0 + B◦x1xg1 + r
B◦h
g ,

as an ordinary model comprising an intercept, equals

B◦x1 =
∑
g∈Uh(yg − ȳ)(xg1 − x̄1)∑

g∈Uh(xg1 − x̄1)2

with ȳ = M−1∑
g∈Uh yg and x̄1 = M−1∑

g∈Uh xg1 as mean values. Comparing the formulas
of Bh and B◦x1 , both referring to the effect of x1 on yg, it becomes apparent that the former
coefficient no longer determines the covariance, as it does not include mean values.

Coefficients from the Auxiliary Model. The coefficient from the auxiliary model (5.19) also
differs from the coefficient from an ordinary regression, as it arises from regressing on a constant
variable of interest and additionally it does not contain an intercept. Setting the first derivative
of the following minimizing problem

min
Fx

∑
g∈Uh

(rFx1
g )2 =

∑
g∈Uh

(xg0 − Fx1xg1)2

equal to zero, we obtain

∂
∑
g∈Uh(rFx1

g )2

∂Fx1

= 2
∑
g∈Uh

(xg0− Fx1xg1)(−xg1) != 0

⇔ Fx1 =
∑
g∈Uh xg1∑
g∈Uh x

2
g1
.

Therefore, Fx1 no longer depends on the dependent variable.

However, the only aim of the reduced household and the auxiliary model is to decompose the
integrated household-level coefficient B◦

h. Hence, we are not interested in the interpretation of
the coefficients Bh and Fx1 per se. The interpretation of the coefficient B◦

h, on the other side,
remains unchanged.

ii) Multiple Models Comprising an Intercept and Multiple Auxiliary Variables (Q > 2)
This section aims at extending the findings about the decomposition of B◦h in (5.21) to multiple
models comprising an intercept and multiple auxiliary variables (Q > 2). Once again, we
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decompose the multiple coefficient B◦
h into a coefficient Bh from a reduced household-level

model without an intercept and a remaining term capturing the effect of the intercept on B◦
h

that was disregarded previously. To quantify the remaining term, we translate the findings from
paragraph i) about the mediation model to multiple models. The proof of the following lemma
is kept short as it is based on the same arguments as in the simple model.

Lemma 1. Decomposition of the Integrated Household-Level Coefficient
The integrated household-level coefficientB◦

h = (B◦x0 ,B
◦
x)T resulting from model yg = B◦x0xg0+

B◦
x
Txg + rB

◦
g can be decomposed into

B◦
h =

(
B◦x0

B◦
x

)
=
(

B◦x0

Bh −B◦x0Fx

)
, (5.22)

where Bh is the coefficient vector from the reduced household model: yg = Bh
Txg + rBhg .

Coefficient vector Fx results from the auxiliary model, xg0 = Fx
Txg + rFxg , which regresses the

intercept on the remaining auxiliaries.

Proof. According to the mediation model introduced in paragraph i) the multiple total effect
Bh can be split into the direct effect, B◦

x, of xg on yg controlled for xg0 and the indirect effect,
B◦x0Fx, which constitutes the effects of the auxiliaries xg on yg via the intercept xg0. Resolving
yields

B◦
x

(Q×1)
= Bh

(Q×1)
− B◦x0

(1×1)
Fx

(Q×1)
. (5.23)

Lemma 1 provides the first part for the solution of Problem 1, as it enables us to separate
the effect of the intercept from the integrated household-level coefficient B◦

h. In econometrics
the technique of splitting a total effect into a direct and an indirect effect is sometimes called
orthogonalization, for example, in Seber (1977).

5.2.1.2 Decomposition of the Integrated Household-Level Residuals

In the previous paragraph, we clarify the decomposition of the integrated coefficientB◦
h. In this

paragraph, we translate the decomposition to the residuals, since we initially aim to separate the
effect of the intercept from the variance of an integrated GREG estimator. The following lemma
shows that the total sum of the decomposed residuals resulting from the separated regressions
equals the residual from the initial integrated model for each household g ∈ Uh.
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Lemma 2. Decomposition of the Integrated Household-Level Residuals
The residuals from an integrated household-level GREG estimator rB

◦
g = yg−B◦x0xg0+B◦

x
Txg

can be decomposed into

r
B◦h
g = rBhg + r̃

B◦x0
g − r̃B

◦
x0 ·Fx

g (5.24)

where rBhg = yg − Bh
Txg is the residual of the reduced household-level model. We denote

r̃
B◦x0
g = yg−B◦x0xg0 and r̃

B◦x0 ·Fx
g = yg−B◦x0 ·Fx

Txg as artificially constructed pseudo-residuals.

Proof. Inserting the decomposition of the integrated household-level coefficient from Lemma
1 into the residuals rB

◦
h

g for all g ∈ Uh results in

r
B◦h
g = yg −B◦x0xg0 −B

◦
x
Txg

= yg −B◦x0xg0 − (Bh −B◦x0 · Fx
T )xg.

Substitution of ±yg yields

= (yg −Bh
Txg)︸ ︷︷ ︸

r
Bh
g

+ (yg −B◦x0xg0)︸ ︷︷ ︸
r̃
B◦x0
g

− (yg −B◦x0 · Fx
Txg)︸ ︷︷ ︸

r̃
B◦x0 ·Fx
g

.

It should be noted that the equality in (5.24) is true for the entire M -vector of residuals. We
define r̃

B◦x0
g and r̃

B◦x0 ·Fx
g as artificially constructed pseudo-residuals, since they differ from

residuals from ordinary regressions such as rBhg = yg −Bh
Txg. Whereas the ordinary residual

rBhg is given by the deviation between the observed value yg and the hyperplane ŷg = Bh
Txg

(or predicted values), pseudo-residuals are artificially constructed in a two-step procedure:

• In a first step, the coefficients B◦x0 and Fx are determined by the integrated household-
level model yg = B◦x0xg0 +B◦

x
Txg + r

B◦h
g and the auxiliary model xg0 = Fx

Txg + rFxg ,
respectively.

• In a second step, based on these coefficients, we artificially construct the pseudo-residuals
by r̃

B◦x0
g = yg −B◦x0xg0 and r̃

B◦x0 ·Fx
g = yg −B◦x0 · Fx

Txg.

The original auxiliaries, constituting the coefficients B◦x0 and Fx, do not fit to the auxiliaries
used to construct the pseudo-residuals. The construction of pseudo-residuals permits us to
exactly quantify the effect of the intercept on rB

◦
h

g disregarded by rBhg .

In the following, we derive some properties of residuals from regressions without an intercept
and pseudo-residuals.
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Properties of Residuals from Regressions without an Intercept. Omitting an intercept in a
regression model significantly affects the properties of the residuals. To contrast the properties
of the residuals with and without an intercept, we derive the first normal equations (cf. Greene,
2003, p. 243). We start with the integrated household-level model,

yg = B◦x0xg0 −B
◦
x
Txg + r

B◦h
g ,

as an ordinary model containing an intercept. Following the OLS theory, the first normal equa-
tion can be obtained by the first derivative of the sum of squared residuals with respect toB◦x0

∂
∑
g∈Uh(rB

◦
h

g )2

∂B◦x0

= 2
∑
g∈Uh

(yg −B◦x0xg0 −B
◦
x
Txg)︸ ︷︷ ︸

r
B◦
h

g

(−xg0).

Inserting xg0 = 1 for all g ∈ Uh as intercept yields

=
∑
g∈Uh

r
B◦h
g

!= 0. (5.25)

Accordingly, the first normal equation (5.25) states that the sum of squared residuals from a
model containing an intercept is equal to zero.

In contrast, for models without an intercept the first normal equation is no longer valid. Instead,
the first derivative of the sum of squared residuals of the reduced household model subject to
Bh is obtained by

∂
∑
g∈Uh(rBhh )2

∂Bh

= 2
∑
g∈Uh

(yg −Bh
Txg)︸ ︷︷ ︸

r
Bh
g

(−xg) != 0.

Consequently, since xg1 6= 1 for all g ∈ Uh, the residuals of a model omitting the intercept no
longer sum up to zero ∑

g∈Uh
rBhg 6= 0. (5.26)

Properties of Artificially Constructed Pseudo-Residuals. As aforementioned, artificially
constructed pseudo-residuals do not result from ordinary regressions. Therefore, even if the
initial coefficients B◦x0 and Fx, which are utilized to construct the pseudo-residuals, are deter-
mined by minimizing the sum of squared of residuals rB

◦
h

g and rFxg , the resulting constructed

pseudo-residuals r̃
B◦x0
g and r̃

B◦x0 ·Fx
g do not conform with the initial residuals rB

◦
h

g and rFxg . As a

result, the normal equations of the initial residuals rB
◦
h

g and rFxg are no longer valid. Thus, also
the pseudo-residuals no longer sum up to zero∑

g∈Uh
r̃
B◦x0
g 6= 0 and

∑
g∈Uh

r̃
B◦x0 ·Fx
g 6= 0. (5.27)
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The inequalities in (5.26) and (5.27) strongly influence the model unbiasedness of the estimated
coefficients, because they rely on the assumption that the mean value of the residuals is in
expectation equal to zero (cf. Wooldridge, 2013, p. 79). However, once more the only purpose
of the residuals from the reduced household-level and the auxiliary model is the decomposition
of the integrated residuals. Hence, we are not interested in the model properties of rBhg , r̃

B◦x0
g

and r̃
B◦x0 ·Fx
g per se. Conversely, the model properties of the integrated household-level residuals

r
B◦h
g remain unchanged. We refer the interested reader to an overview about model properties to

econometric textbooks such as Greene (2003, Section 6.6) or Wooldridge (2013, Section 2.5).

We denote the residuals rBhg , r̃
B◦x0
g and r̃

B◦x0 ·Fx
g as separating residuals hereinafter, since they

separate the effect of the intercept from r
B◦h
g . The following remark states a powerful result that

even if the single sum of the separating residuals is nonzero, their total sum, in turn, is equal to
zero.

Remark 5. Total Sum of the Separating Residuals
From the normal equation in (5.25) follows directly that

r̄Bh + ˜̄rB◦x0 − ˜̄rB◦x0 ·Fx = 0

with r̄Bh = M−1∑
g∈Uh rg

Bh as the mean of the residuals from the reduced household-level
model and ˜̄rB◦x0 as well as ˜̄rB◦x0 ·Fx in obvious notation.

Remark 5 considerably simplifies the proof of the result in the following section.

5.2.1.3 Decomposition of the Sum of Squared Integrated Household-Level Residuals

Given the decomposition of the integrated residuals in Lemma 2, the following result provides
the decomposition of the sum of squared integrated residuals as the last part of the solution
for Problem 1. The decomposition is thusfar powerful, as even if the power of two is a non-
linear transformation, the sum of the squared residuals of the original integrated household-level
model equals the sum of squared residuals for the separated regressions, as it would be with a
linear transformation. This fact crucially simplifies our calculations of the difference between
the variances of an integrated household-level GREG estimator and a person-level GREG esti-
mator in Section 5.2.2, because we can skip all mixed terms emerging when multiplying out the
product in a binomial formula.

The following result permits us to compare the variances of a person-level and an integrated
household-level GREG estimator, by comparing the variances of a person-level and a reduced
household-level GREG estimator, both of the same dimension, and finally adding a constructed
term which captures the effect of the intercept disregarded by the reduced household-level
GREG estimator.
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Result 8. Decomposition of the Sum of Squared Integrated Residuals
The sum of squared residuals of an integrated household-level model can be decomposed into

∑
g∈Uh

(
r
B◦h
g

)2
=
∑
g∈Uh

(
rBhg

)2
+
∑
g∈Uh

(
r̃
B◦x0
g

)2
−
∑
g∈Uh

(
r̃
B◦x0 ·Fx
g

)2
(5.28)

without any mixed terms emerging when solving binomial formulas. The residual of the re-
duced household-level model is determined by rBhg = yg −Bh

Txg. The pseudo-residuals are

constructed by r̃
B◦x0
g = yg −B◦x0xg0 and r̃

B◦x0 ·Fx
g = yg −B◦x0 · Fx

Txg.

Proof. We start with inserting the decomposition of the residuals from Lemma 2 into the sum
of squared residuals

∑
g∈Uh

(
r
B◦h
g

)2
=
∑
g∈Uh

(
rBhg + r̃

B◦x0
g − r̃B

◦
x0 ·Fx

g

)2
. (5.29)

As inequalities (5.26) and (5.27) induce that the separating residuals rBhg , r̃
B◦x0
g and r̃

B◦x0 ·Fx
g have

a nonzero mean, we actually have to subtract the corresponding mean values of the residuals in
the variance formula. However, following Remark 5, the total sum of the mean values of the
residuals equals zero, and thus we can neglect them. Solving the binominal formula in (5.29)
yields

=
∑
g∈Uh

((
rBhg

)2
+
(
r̃
B◦x0
g

)2
+
(
r̃
B◦x0 ·Fx
g

)2
+ 2rBhg r̃

B◦x0
g − 2rBhg r̃

B◦x0 ·Fx
g − 2r̃B

◦
x0

g r̃
B◦x0 ·Fx
g

)

=
∑
g∈Uh

(
rBhg

)2
+
∑
g∈Uh

(
r̃
B◦x0
g

)2
+
∑
g∈Uh

(
r̃
B◦x0 ·Fx
g

)2

+ 2
∑
g∈Uh

rBhg r̃
B◦x0
g − 2

∑
g∈Uh

rBhg r̃
B◦x0 ·Fx
g − 2

∑
g∈Uh

r̃
B◦x0
g r̃

B◦x0 ·Fx
g .

To recreate the solution of the binominal expansion, we add ±(r̃Bx0 ·Fx
g )2

=
∑
g∈Uh

(rBhg )2 +
∑
g∈Uh

(r̃B
◦
x0

g )2 −
∑
g∈Uh

(r̃B
◦
x0 ·Fx

g )2

+2
∑
g∈Uh

(r̃B
◦
x0 ·Fx

g )2 + 2
∑
g∈Uh

rBhg r̃
B◦x0
g − 2

∑
g∈Uh

rBhg r̃
B◦x0 ·Fx
g − 2

∑
g∈Uh

r̃g
B◦x0 r̃

B◦x0 ·Fx
g︸ ︷︷ ︸

term (I)

.

To prove equality (5.28), it remains to prove that term (I) equals zero. After some simple
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rearrangement of term (I) we get∑
g∈Uh

(yg −B◦x0Fx
Txg)2 +

∑
g∈Uh

(yg −Bh
Txg)(yg −B◦x0xg0)

−
∑
g∈Uh

(yg −Bh
Txg)(yg −B◦x0Fx

Txg)−
∑
g∈Uh

(yg −B◦x0xg0)(yg −B◦x0Fx
Txg)

=
∑
g∈Uh

y2
g − 2

∑
g∈Uh

ygB
◦
x0Fx

Txg +
∑
g∈Uh

B◦x0
2Fx

TxgFx
Txg

+
∑
g∈UI

y2
g −

∑
g∈Uh

ygBh
Txg −

∑
g∈Uh

ygB
◦
x0xg0 +

∑
g∈Uh

B◦x0xg0Bh
Txg

−
∑
g∈Uh

y2
g +

∑
g∈Uh

ygB
◦
x0Fx

Txg +
∑
g∈Uh

ygBh
Txg −

∑
g∈Uh

B◦xg0Fx
TxgBh

Txg

−
∑
g∈Uh

y2
g +

∑
g∈Uh

ygB
◦
x0Fx

Txg +
∑
g∈Uh

B◦x0xg0yg −
∑
g∈Uh

B◦x0
2xg0Fx

Txg.

Substituting the fact that xg0 is constant and thus xg0
∑
g∈Uh xg = ∑

g∈Uh xg, we obtain

=
∑
g∈Uh

B◦x0
2Fx

TxgFx
Txg +

∑
g∈Uh

B◦x0Bh
Txg −

∑
g∈Uh

B◦x0
2Fx

Txg −
∑
g∈Uh

B◦x0Fx
TxgBh

Txg.

(5.30)

Exploiting the following relation∑
g∈Uh

Fxxg
Txg = (

∑
g∈Uh

xgxg
T )−1 ∑

g∈Uh
xgxg0

∑
g∈Uh

xg
Txg

=
∑
g∈Uh

xg

it becomes evident that (5.30) simplifies to

=
∑
g∈Uh

B◦x0
2Fx

Txg +
∑
g∈Uh

B◦x0Bh
Txg −

∑
g∈Uh

B◦x0
2Fx

Txg −
∑
g∈Uh

B◦x0Bh
Txg.

Therefore, term (I) is equal to zero, and (5.28) is proven.

To conclude, Result 8 provides the final solution for Problem 1 of separating the effect of the
intercept from the integrated household-level variance. It not only permits a correct comparison
of the variances of an integrated household-level and a person-level GREG estimator, but it also
allows in general a comparison of variances of GREG estimators of different dimensions. By
artificially constructing pseudo-residuals, it is possible to exactly quantify the difference in the
variances and attribute it to the effects of the additional auxiliary variable(s). In Section 5.3,
we propose a further application of the decomposition derived in Result 8 in order to predict
the difference between two coefficients of determination when adding or omitting explanatory
variables.
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5.2.2 Inserting the Decomposition of the Sum of Squared Residuals into
the Efficiency Comparison

To continue with our initial aim to provide a correct comparison of the variances of the person-
level and integrated household-level GREG estimators, we insert Result 8 into the objective
function (5.13) from the beginning of the section(

V(T̂GREG
y )− V(T̂ INT

y )
)/

M2

m

(
1− m

M

)
(M − 1)−1

=
∑
g∈Uh

(
rBpg

)2
−
∑
g∈Uh

(
r
B◦h
g

)2

=
∑
g∈Uh

(
rBpg

)2
−
∑
g∈Uh

(
rBhg

)2
−
∑
g∈Uh

(
r̃
B◦x0
g

)2
+
∑
g∈Uh

(
r̃
B◦x0 ·Fx
g

)2

=
∑
g∈Uh

(
yg −Bp

Txg
)2
−
∑
g∈Uh

(
yg −Bh

Txg
)2

︸ ︷︷ ︸
I

−
( ∑
g∈Uh

(yg −B◦x0xg0)2 −
∑
g∈Uh

(yg −B◦x0 · Fx
Txg)2

)
︸ ︷︷ ︸

Effect of the intercept

. (5.31)

Thus, we have successfully quantified the remaining term capturing the effect of the intercept
disregarded by the reduced household-level model. The effects related to the intercept, excluded
from the integrated GREG estimator, are captured by the pseudo-residuals r̃

B◦x0
g and r̃

B◦x0 ·Fx
g .

Once the effect of the intercept is separated, the person-level model and the reduced household-
model in I are comparable in dimension, because the auxiliaries of the person-level model sum
up to the auxiliaries of a reduced household-level model. Now, to further simplify term I in
(5.31) we seek in the following section a relationship between Bp, the coefficient of a person
model, andBh, the coefficient of the reduced household model.

Remark 6. Alternative Proceeding for the Efficiency Comparison
Instead of separating the effect of the intercept from the integrated household-level model, we
could alternatively add an additional auxiliary, N−1

g , to the person-level model. This temporar-
ily added auxiliary variable sums up per household to the household-level intercept xg1 = 1.
Therefore, we are able to compare an augmented person-level model of dimension (Q + 1)
with the integrated household-level model of the same dimension. Finally, we have to sub-
tract the effect of the temporarily added auxiliary variable from the variance of the augmented
person-level model. However, we refrain from the alternative proceeding due to aforementioned
advantage that the intercept in a household model is interpretable.

5.2.3 Relationship between the CoefficientsBp andBh

After successfully separating the effect of the intercept from the integrated household-level
model, the person-level and the reduced household models in Equation (5.13) are of the same
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dimension. To assess the difference between both variances, we seek a functional relationship
between the coefficientsBp andBh, since we doubt the appropriateness of the interpretation of
Bh −Bp = Bc given by Steel and Clark (2007) (as argued in detail in Section 5.1.2.2). This
issue is formalized by the following problem.

Problem 2. The Functional Relationship betweenBp andBh

We are interested in a relationship between the coefficient of a person-level modelBp, resulting
from yi = Bp

Txi + r
Bp
i , and the coefficient of a reduced household-level model Bh, resulting

from yg = Bh
Txg + rBhg . In other words, we aim to writeBp as function ofBh, or vice versa.

Table 5.1 summarizes the models generating the coefficients under consideration Bp and Bh.
In the following, this table is continued to outline our proceeding.

Table 5.1: Models under consideration to derive a relationship betweenBp andBh I

Person-level model Reduced household-level model

yi = Bp
Txi + r

Bp
i yg = Bh

Txg + rBhg

withBp = (Bp1 , Bp2)T withBh = (Bh1 , Bh2)T

The idea to solve Problem 2 is to relate the coefficientsBp andBh by an overlap model that si-
multaneously contains the auxiliaries of both coefficients (see Table 5.1). Then, we decompose
Bp and Bh into the same coefficients obtained from such an overlap model. For the decompo-
sition of Bp and Bh, we apply the mediation model, introduced in Section 5.2.1.1. In the end
of this section, we can write one coefficient as function of the other coefficient.

For a better understanding, we visualize our proceeding to derive a functional relationship with
diagrams. Therefore, in Section 5.2.3.1, we initially focus on simple models comprising an
intercept and one single auxiliary variable. Subsequently, we extend our findings to multiple
models with Q > 2 auxiliary variables (Section 5.2.3.2).

5.2.3.1 Simple Models Comprising an Intercept and a Single Auxiliary Variable (Q = 2)

We start with the case of simple models comprising an intercept xi1 and one auxiliary variable
xi2. As done before, we define xi = (xi1, xi2)T = (1, xi2)T as auxiliary vector of a person-level
GREG estimator. It contains the person-level intercept xi1 = 1. The auxiliaries of a reduced
household-level model is determined by xg = (xg1, xg2)T = (Ng, xg2)T . Thus, it omits an
household-level intercept, xg0 = 1.

The fact that the person-level and the reduced household-level GREG estimators are constructed
at different estimation levels (see Table 5.1) hampers finding a relationship between its coeffi-
cients Bp and Bh. To handle this obstacle, we exploit our finding, shown in Section 3.1.4 in
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(3.8). According to this, the integrated household-level coefficient Bh can be calculated either
by OLS or GLS. Translating this finding to the reduced household-level coefficient Bh, we
obtain that

Bh =
( ∑
g∈Uh

xgxg
T
)−1 ∑

g∈Uh
xgyg, (5.32)

arising from the household-level model yg = Bh
Txg + rBhg using OLS, coincides with the

coefficient derived at the person level,

=
( ∑
g∈Uh

Ngx̄iNgx̄i
T
)−1 ∑

g∈Uh

∑
i∈Ug

Ngx̄iyg

=
( ∑
g∈Uh

∑
i∈Ug

Ngx̄iNgx̄i
TN−1

g

)−1 ∑
g∈Uh

∑
i∈Ug

Ngx̄iyi

=
( ∑
i∈Up

Ngx̄ix̄i
T
)−1 ∑

i∈Up
Ngx̄iyi, (5.33)

arising from the model yi = Bh
T x̄i + rBhi using GLS. To trace the rearrangement note that

xg = Ngx̄i and
∑
i∈Up = ∑

g∈Uh
∑
i∈Ug . The person-level auxiliary vector of an integrated

GREG estimator is determined by x̄i = (x̄i1, x̄i2)T = (1, x̄i2)T . In consequence, even if the
initial calculation levels differ, we can use two person models based on xi or x̄i in order to
derive a relationship between Bp and Bh. The reduced model at the person level is called the
reduced person-level model. Table 5.2 summarizes this result. To keep notation simple, we
refrain from denoting the computational level of Bh in (5.32) or (5.33) by an extra index. An
extra index would falsely imply that both coefficients are numerically different. Note that the
left-hand side of Table 5.2 remains unchanged.

Table 5.2: Models under consideration to derive a relationship betweenBp andBh II

Person-level model Reduced household-level model

yi = Bp
Txi + r

Bp
i yg = Bh

Txg + rBhg

The relationship betweenBp andBh can alternatively be derived by

Person-level model Reduced person-level model

yi = Bp
Txi + r

Bp
i yi = Bh

T x̄i + rBhi

It is important to note that the reduced model on the lower right-hand side of Table 5.2 in-
deed contains an person-level intercept. The reason for this is that in order to obtain the re-
duced model at the person level on the lower right-hand side, we have to inflate the auxiliary
vector xg from the model on the upper right side by N−1

g . Hence, it follows that N−1
g xg =
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N−1
g (xg1, xg2)T = N−1

g (Ng, xg2)T results in x̄i = (x̄i1, x̄i2)T = (1, x̄i2)T . According to this,
x̄i contains a person-level intercept xi1 = 1 as counterpart to the household-level auxiliary
x̄g1 = Ng. However, the term reduced in the model on the upper right hand-side of Table 5.2
refers to the household-level intercept denoted as xg0 = 1. Thus, once more it is important to
differentiate between person- and household-level intercepts.

Now, the idea is to derive a relationship between Bp and Bh by utilizing a model that simulta-
neously contains the auxiliaries xi and x̄i and thus determines an overlap between both models
at hand. In the context of multilevel studies, models are known that include the mean values of
the auxiliaries as additional explanatory variables to account for possible correlations between
the individual and the group level (cf. Wooldridge, 2013, p. 479; Gelman, 2006, p. 434). How-
ever, the classical multilevel model assumes a random effect structure at the individual level,
caused by the group to which the individual belongs (cf. Snijders, 2011; Stryhn et al., 2006).
Nevertheless, we are interested only in relatingBp andBh by modeling the overlap between the
person-level and the integrated model. We are not interested in explaining a variable of interest
by group effects. Thus, we appropriated the idea of incorporating xi and x̄i as auxiliaries, but
we do not assume an underlying random effect structure, which is the core idea of multilevel
model. Hence, we denote such models in the following as overlap models. The overlap model
in the one-dimensional case can be expressed by

yi = Dx1xi1 +Dx2xi2 +Dx̄2x̄i2 + rDi . (5.34)

It comprises xi2 and its corresponding household mean value x̄i2, both referring to the same
variable. Then, based on the overlap model, we decompose Bp and Bh, depending on either
xi or x̄i, into the same coefficients Dx1 , Dx2 and Dx̄2 . For the decomposition, we apply two
mediation models extensively discussed in Section 5.2.1.1. Finally, solving Bh for Dx2 and
inserting into Bp permits one to write Bp as function of Bh. The detailed calculations are
given in the proof of Result 9.

At this point, it becomes obvious why we transform the reduced household-level model to
person-level (see Table 5.2) rather than reverse-transform the person-level model to the house-
hold level. The reason for this choice is that only at the person level, can we relate the coeffi-
cients Bp and Bh by an overlap model. Instead, when transforming the reverse direction, and
thus deriving the relationship between Bp and Bh at the household level, both auxiliaries xi
and x̄i would sum up per household to the same vector xg = ∑

i∈Ug xi = ∑
i∈Ug x̄i. Therefore,

at the household level we were not able to model the overlap. For this reason, we decide to de-
rive the relationship at the person level. Notwithstanding, even when the relationship is derived
at the person level, it is also valid at the household level.

It is important to differentiate the proceeding in this section from the proceeding in the previous
section. In Section 5.2.1, we separate the effect of the intercept from the variance of an inte-
grated household-level GREG estimator. Since we deal with household surveys and since the
variance under cluster sampling refers to the aggregates of the variables, we derived the decom-
position at the household level. In this section, on the other hand, we are interested in deriving
a relationship betweenBp andBh by exploiting an overlap model at the person level.
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Unfortunately solving Bp and Dx2 from the overlap model (5.34) is not straightforward, be-
cause the arrays of the decomposed coefficients differ, as we will see later in this section. To
handle this obstacle, we derive Lemma 3. It describes the form of the coefficient resulting from
regressing the original auxiliary xi2 on its constructed household mean values x̄i2, whereas xi2
and x̄i2 refer to the same variable.

Lemma 3. The Form of the Coefficient Bx̄ from Regressing an Original Auxiliary on Its
Constructed Mean Values
The coefficient vectorBx̄ obtained from the model xi2 = Bx̄1x̄i1 +Bx̄2x̄i2 + rBx̄i is given by

Bx̄ =
(
Bx̄1

Bx̄2

)
=
(

0
1

)
. (5.35)

Note that x̄i1 = 1 is the intercept in the model.

Proof. The coefficients of a bivariate regression xi2 = Bx̄1x̄i1 +Bx̄2x̄i2 + rBx̄i are defined as

Bx̄2 = Cov(y,x2)
Var(x2) (5.36)

Bx̄1 = ȳ −Bx̄2x̄2 (5.37)

with y = (y1, . . . , yN)T andx2 = (x21, . . . , x2N)T (cf. von Auer, 2007, p. 58). ȳ = N−1∑
i∈Up yi

and x̄2 = N−1∑
i∈Up x̄i2 are denoted as mean values. The coefficient in (5.36) describes the

slope parameter, the coefficient in (5.37) defines the intercept.

To validate (5.35), we start to show that Bx̄2 = 1. Hence, we have to prove that the numerator
and denominator of the slope parameter,

Bx̄2 =
∑
i∈Up(xi2 − x̄2)(x̄i2 − x̄2)∑

i∈Up(x̄i2 − x̄2)2 , (5.38)

are equal4. Since the totals of xi2 and x̄i2 are equal, we define x̄2 as mean value of both auxil-
iaries.

Preliminarily, we verify two equalities∑
i∈Up

xi2x̄i2 =
∑
i∈Up

x̄i2
∑
i∈Ug

xi2
Ng

=
∑
i∈Up

x̄2
i2

∑
i∈Up

x̄2xi2 =
∑
i∈Up

x̄2
∑
i∈Ug

xi2
Ng

=
∑
i∈Up

x̄i2x̄2.
(5.39)

Note that the totals of xi2 and x̄i2 are equal. Given these equalities it is easy to verify that the
numerator and denominator in (5.38) are equal such that∑

i∈Up
(xi2 − x̄2)(x̄i2 − x̄2) =

∑
i∈Up

xi2x̄i2 −
∑
i∈Up

x̄2xi2 −
∑
i∈Up

x̄i2x̄2 +
∑
i∈Up

x̄2
2

=
∑
i∈Up

x̄2
i2 − 2

∑
i∈Up

x̄i2x̄2 +
∑
i∈Up

x̄2
2

=
∑
i∈Up

(x̄i2 − x̄2)2.

4The term 1/(N − 1) emerges in both the numerator and the denominator and thus is canceled out.
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Thus, Bx̄2 = 1. It remains to be shown that Bx̄1 = 0. Inserting Bx̄2 = 1 into (5.37), we obtain

Bx̄2 = 1
N

∑
i∈Up

xi2 −Bx̄2

1
N

∑
i∈Up

x̄i2

= x̄2 − x̄2

= 0.

Therefore, (5.35) is proven.

The result of the form ofBx̄ in Lemma 3 is not surprising. For explanation, consider xi denotes
the variable sex with value 1 if person i is a woman, and with value 2 if person i is a man. The
original value for sex, xi, is regressed on the household mean value for sex, x̄i. At first, in case
of x̄i = 0 for all i ∈ Ug all household members are male, which implies that the regression line
runs through the origin. This is equivalent with Bx1 = 0. Secondly, a slope of Bx2 = 1 induces
that a change from 0 to 1 of x̄i leads to a change from 0 to 1 of the xi for all i ∈ Ug. This is
because a change from 0 to 1 of the household mean value for sex implies that all household
members are either women or men. It should be noted that the result of Lemma 3 is valid only
for regressing xi on x̄i, but not for the reverse case of regressing x̄i on xi.

Now, we continue with deducing a functional relationship between the coefficientsBp andBh.
The idea is to exploit the fact that an overlap model comprises both auxiliaries xi and x̄i. We
then decompose Bp and Bh into the same coefficients obtained from the overlap model. For
the decomposition of the coefficients, we apply two mediation models introduced in Section
5.2.1.1 and interpret Bp and Bh as direct effects. The detailed explanation of the proceeding
is given within the proof. For a better understanding, we turn away from a classical proof and
include graphs and tables to underpin our argumentation.

Result 9. The Functional Relationship betweenBh andBp for Simple Models
The coefficient Bp, resulting from the person-level model yi = Bp

Txi + r
Bp
i , can be expressed

as

Bp = Bh +Dx̄2(Bx −Bx̄),

whereBh results from the reduced person-level model yi = Bh
T x̄i + rBhi . Dx̄2 arises from the

overlap model yi = Dx1xi1 + Dx2xi2 + Dx̄2x̄i2 + rDi and describes the overlap between the
person- and household-level auxiliaries. Bx and Bx̄ are obtained from the auxiliary models
x̄i = Bx

Txi + rBx̄i and xi = Bx̄
T x̄i + rBxi , respectively.

Proof. We start with decomposing the coefficients Bp and Bh with respect to the following
overlap model

yi = Dx1xi1 +Dx2xi2 +Dx̄2x̄i2 + rDi . (5.40)

For this purpose, we apply two mediation models, as introduced in Section 5.2.1: one for the
decomposition ofBp (see Figure 5.10) and one for the decomposition ofBh (see Figure 5.11).
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xi2

x̄i2

yi

B x̄
2

Dx2

D
x̄2

Figure 5.10: Mediation model applied to the auxiliary model I

x̄i2

xi2

yi

B x
2

Dx̄2

D
x2

Figure 5.11: Mediation model applied to the auxiliary model II

The difference between the Figures 5.10 and 5.11 is the direction of the auxiliary regression,
meaning whether x̄i is regressed on xi (results inBx) or vice versa (results inBx̄). Nevertheless,
the coefficients Dx2 and Dx̄2 refer in both figures to the same overlap model (5.40).

In order to decompose Bp, we interpret x̄i2 as mediator variable. Then, in accordance with
Figure 5.10, we split the total effect of Bp obtained from regressing yi on xi2, into the direct
effect of xi2 on yi, controlling for the mediator variable x̄i2 and the indirect effect of xi2 via
x̄i2. To quantify the indirect effect, we specify the auxiliary model x̄i = Bx

Txi + rBx̄i with
Bx = (Bx1 , Bx2)T . Hence, the total effectBp can be decomposed into

Bp =
(
Bp1

Bp2

)
=
(
Dx1

Dx2

)
+Dx̄2 ·

(
Bx1

Bx2

)
.

We analogously proceed with the decomposition of the household-level coefficient Bh accord-
ing to Figure 5.11. Table 5.3 summarizes the auxiliary models and resulting decomposed coef-
ficients from a person-level model and a reduced person-level model.
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Table 5.3: Models under consideration to derive a relationship betweenBp andBh III

Person-level model Reduced person-level model

yi = Bp
Txi + r

Bp
i yi = Bh

T x̄i + rBhi

withBp = (Bp1 , Bp2)T withBh = (Bh1 , Bh2)T

The auxiliary models for the decomposition are given by

x̄i = Bx
Txi + rBx̄i xi = Bx̄

T x̄i + rBxi

withBx = (Bx1 , Bx2)T withBx̄ = (Bx̄1 , Bx̄2)T

The coefficients are decomposed into

Bp =

Bp1

Bp2

 =

Dx1

Dx2

+Dx̄2 ·

Bx1

Bx2

 Bh =

Bh1

Bh2

 =

Dx1

Dx̄2

+Dx2 ·

Bx̄1

Bx̄2



As result, we can write Bp and Bh as functions of Dx1 , Dx2 as well as Dx̄2 among others.
Unfortunately, the positions of Dx2 and Dx̄2 in the arrays differ between the right- and the left-
hand side in Table 5.3. To solve this issue, we exploit the form of Bx̄ derived in Lemma 3.
According to this, we can resort the array of the household coefficient, because(

Bh1

Bh2

)
=
(
Dx1

Dx̄2

)
+Dx2 ·

(
0
1

)

is equivalent to

=
(
Dx1

Dx2

)
+Dx̄2 ·

(
0
1

)
.

The positions of Dx1 and Dx̄2 in the first and second line are swapped. Consequently, coeffi-
cientsBp andBh are both functions of the same

Dx =
(
Dx1

Dx2

)
and Dx̄2 . (5.41)

Table 5.4 outlines the resorting ofBh and continues the Table 5.3.
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Table 5.4: Models under consideration to derive a relationship betweenBp andBh IV

Person-level model Reduced person-level model

Bp =

Bp1

Bp2

 =

Dx1

Dx2

+Dx̄2 ·

Bx1

Bx2

 Bh =

Bh1

Bh2

 =

Dx1

Dx̄2

+Dx2 ·

Bx̄1

Bx̄2


=

Dx1

Dx2

+Dx̄2 ·

Bx̄1

Bx̄2


Bp = Dx +Dx̄2 ·Bx Bh = Dx +Dx̄2 ·Bx̄

Now, solvingBh = Dx +Dx̄2 ·Bx̄ forDx yieldsDx = Bh−Dx̄2 ·Bx̄. Finally, insertingDx

intoBp results in the functional relationship in demand

Bp =Bh −Dx̄2 ·Bx̄ +Dx̄2 ·Bx

=Bh +Dx̄2(Bx −Bx̄)

and completes the proof.

To conclude, Result 9 provides the solution of Problem 2 for simple models. In the following
section, we extend our findings about the functional relationship betweenBp andBh to multiple
models comprising Q > 2 auxiliary variables.

5.2.3.2 Multiple Models Comprising Q > 2 Auxiliary Variables

As a reminder, we definexi = (xi1, xi2, . . . , xiQ)T = (1, xi2, . . . , xiQ)T as an auxiliary vector of
the person-level model and x̄i = (x̄i1 = 1, x̄i2, . . . , x̄iQ)T as an auxiliary vector of the reduced
person-level model. The step to relate the multiple coefficients Bp and Bh is the same as in
Section 5.2.3.1. We start by deducing the form of the multiple coefficient vectorBx̄. The proof
is significantly more elaborate as for the dimension Q = 2. Hence, we divide the proof into two
parts. In the first part, we concentrate on the case of Q = 3 auxiliary variables. We show that
already for Q = 3 auxiliaries, the formulas become cumbersome. Therefore, we propose an
alternative proceeding to prove that the lemma is applicable for dimensions Q > 2 using partial
regression arguments and the FWL theorem. Subsequently, we derive the multidimensional
relationship betweenBp andBh by exploiting the form ofBx̄.
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Lemma 4. The Form of the Coefficient Bx̄ Resulting from Regressing the Original Auxil-
iaries on its Constructed Mean Values
Let q′ = 2, . . . , Q be an index without an intercept and let q = 1, . . . , Q be an index includ-
ing an intercept. Suppose the vector Bx̄′q

= (Bx̄1q′ , Bx̄2q′ , . . . , Bx̄qq′
, . . . , Bx̄Qq′

)T contains the
coefficients arising from

xiq′ = Bx̄q′
T x̄i + r

Bx̄′q
i

= Bx̄1q′ x̄i1 +Bx̄2q′ x̄i2 + . . .+Bx̄qq′
x̄iq + . . .+Bx̄QQx̄iQ + r

Bx̄q′
i .

(5.42)

Consider that all (Q − 1) coefficient vectors Bx̄q′ of dimension Q are summarized to a Q ×
(Q− 1)-matrixBx̄ = (Bx̄1 , . . . ,Bx̄q′ , . . . ,Bx̄Q)T . ThenBx̄ has the form

Bx̄ =



Bx̄12 . . . Bx̄1q′ . . . Bx̄1Q

Bx̄22 . . . Bx̄2q′ . . . Bx̄2Q
... . . . ...

Bx̄q2 Bx̄qq′
Bx̄qQ

... . . . ...
Bx̄Q2 . . . Bx̄Qq′

. . . Bx̄QQ


=



0 . . . . . . . . . 0
1 0 . . . . . . 0
0 . . . . . . ...
... . . . 1 . . . ...
... . . . . . . 0
0 . . . . . . 0 1


. (5.43)

It should be remarked that the index q′ of the variable of interest xiq′ on the left-hand side
of regression (5.42) runs from 2 to Q, excluding the intercept. The index of the explanatory
variable x̄iq, in turn, on the right-hand side of regression (5.42) runs from 1 to Q, including the
intercept. Therefore,Bx̄ is of dimension Q× (Q− 1).

Proof. Bx̄ in Case of Q = 3 Auxiliary Variables

For Q = 3 auxiliaries, the coefficient matrix

Bx̄ = (Bx̄2 ,Bx̄3)T =

Bx̄12 Bx̄13

Bx̄22 Bx̄23

Bx̄32 Bx̄33

 =

0 0
1 0
0 1

 (5.44)

is of dimension (3× 2). The first column vectorBx̄2 results from the regression

xi2 = Bx̄2
T x̄i + r

Bx̄2
i

= Bx̄12xi1 +Bx̄22x̄i2 +Bx̄32x̄i3 + r
Bx̄2
i ,

where

Bx̄2 =
( ∑
i∈Up

x̄ix̄i
T
)−1 ∑

i∈Up
x̄ix̄i2.

The problem arising is the analytical row-by-row representation of the inverse of
∑
i∈Up x̄ix̄i

T

inBx̄2 . The well-known Gauß-Jordan algorithm only provides a numerical solution. However,
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we are interested in an analytical solution. A possible remedy is constituted by the relation of
the inverse of a matrix to its adjugate and its determinate. If A is a (Q × Q) invertible matrix,
then the inverse of A is given by

A−1 = 1
det(A)adj(A). (5.45)

Thus, to determine the inverse of
∑
i∈Up x̄ix̄i

T , we have to compute its adjugate and determi-
nate. At first, the adjugate of a (3× 3) matrix

A =

a b c
d e f
g h i


is described by

adj(A) =



det
(
e f
h i

)
−det

(
d f
g i

)
det

(
d e
g h

)

−det
(
b c
h i

)
det

(
a c
g i

)
−det

(
a b
g h

)

det
(
b c
e f

)
−det

(
a c
d f

)
det

(
a b
d e

)



T

=

ei− fh fg − di dh− eg
ch− bi ai− cg bg − ah
bf − ce cd− af ae− bd


T

=

ei− fh ch− bi bf − ce
fg − di ai− cg cd− af
dh− eg bg − ah ae− bd

 .
In our case, the adjugate simplifies to a triangular matrix, since

∑
i∈Up x̄ix̄i

T is symmetric. It is
given by

adj(
∑
i∈Up

x̄ix̄i
T ) =

a11 a12 a13
a22 a23

a33

 , (5.46)
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where

a11 =
∑
i∈Up

x̄2
i2
∑
i∈Up

x̄2
i3 −

∑
i∈Up

x̄i3x̄i2
∑
i∈Up

x̄i2x̄i3

a12 =
∑
i∈Up

x̄i3
∑
i∈Up

x̄i2x̄i3 −
∑
i∈Up

x̄i2
∑
i∈Up

x̄2
i3

a13 =
∑
i∈Up

x̄i2
∑
i∈Up

x̄i3x̄i2 −
∑
i∈Up

x̄i3
∑
i∈Up

x̄2
i2

a22 =
∑
i∈Up

12 ∑
i∈Up

x̄2
i3 −

∑
i∈Up

x̄i3
∑
i∈Up

x̄i3

a23 =
∑
i∈Up

x̄i3
∑
i∈Up

x̄i2 −
∑
i∈Up

12 ∑
i∈Up

x̄i3x̄i2

a33 =
∑
i∈Up

12 ∑
i∈Up

x̄2
i2 −

∑
i∈Up

x̄i2
∑
i∈Up

x̄i2.

Secondly, the determinate of a (3 × 3) matrix A can be obtained from Laplace expansion (or
Sarrus’s rule)

det(A) = aei+ bfg + cdh− gec− hfa− idb.

Accordingly, the determinant of matrix
∑
i∈Up x̄ix̄i

T is obtained by

det(
∑
i∈Up

x̄ix̄i
T ) =

∑
i∈Up

1
∑
i∈Up

x̄2
i2
∑
i∈Up

x̄2
i3 +

∑
i∈Up

x̄i2
∑
i∈Up

x̄i2x̄i3
∑
i∈Up

x̄i3

+
∑
i∈Up

x̄i3
∑
i∈Up

x̄i2
∑
i∈Up

x̄i2x̄i3 −
∑
i∈Up

x̄i3
∑
i∈U

x̄2
i2
∑
i∈Up

x̄i3

−
∑
i∈Up

x̄i2x̄i3
∑
i∈Up

x̄i2x̄i3
∑
i∈Up

1−
∑
i∈Up

x̄2
i3
∑
i∈Up

x̄i2
∑
i∈Up

x̄i2. (5.47)

Inserting the adjugate (5.46) and determinant (5.47) into formula (5.45), we obtain the inverse
of the matrix

∑
i∈Up x̄ix̄i

T .

Now, given the row-by-row representation of the inverse, we start to prove that the first column
vectorBx̄2 in (5.44) equals

Bx̄2 =



∑
i∈Up

12 ∑
i∈Up

x̄i2
∑
i∈Up

x̄i3∑
i∈Up

x̄i2
∑
i∈Up

x̄2
i2

∑
i∈Up

x̄i2x̄i3∑
i∈Up

x̄i3
∑
i∈Up

x̄i3x̄i2
∑
i∈Up

x̄2
i3


−1

∑
i∈Up

xi2∑
i∈Up

x̄i2xi2∑
i∈Up

x̄i3xi2



=

Bx̄12

Bx̄22

Bx̄32

 =

0
1
0

 .
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To show that Bx̄22 = 1, we have to multiply the second line of adj(∑i∈Up x̄ix̄i) in (5.46) by∑
i∈Up x̄ix̄i2 given by

(
∑
i∈Up

x̄i3
∑
i∈Up

x̄i2x̄i3 −
∑
i∈Up

x̄i2
∑
i∈Up

x̄2
i3) ·

∑
i∈Up

1 · xi2

+ (
∑
i∈Up

12 ∑
i∈Up

x̄2
i3 −

∑
i∈Up

x̄i3
∑
i∈Up

x̄i3) ·
∑
i∈Up

x̄i2xi2

+ (
∑
i∈Up

x̄i3
∑
i∈Up

x̄i2 −
∑
i∈Up

12 ∑
i∈Up

x̄i3x̄i2) ·
∑
i∈Up

x̄i3xi2

=
∑
i∈Up

x̄i3
∑
i∈Up

x̄i2x̄i3 ·
∑
i∈Up

xi2 −
∑
i∈Up

x̄i2
∑
i∈Up

x̄2
i3 ·

∑
i∈Up

xi2

+
∑
i∈Up

12 ∑
i∈Up

x̄2
i3 ·

∑
i∈Up

x̄i2xi2 −
∑
i∈Up

x̄i3
∑
i∈Up

x̄i3 ·
∑
i∈Up

x̄i2xi2

+
∑
i∈Up

x̄i3
∑
i∈Up

x̄i2 ·
∑
i∈Up

x̄i3xi2 −
∑
i∈Up

12 ∑
i∈Up

x̄i3x̄i2 ·
∑
i∈Up

x̄i3xi2. (5.48)

Since
∑
i∈Up xi2 = ∑

i∈Up x̄2 and
∑
i∈Up x̄2xi2 = ∑

i∈Up x̄
2
i2 equation (5.48) is equal to the deter-

minant in (5.47). Therefore, it follows that Bx̄22 = 1.

In a similar manner, it can be shown that the first and the third row of adj(∑i∈Up x̄ix̄i
T ) in

(5.46) multiplied by
∑
i∈Up x̄ix̄i1 equals zero. Therefore, it is valid that Bx̄12 = Bx̄32 = 0.

The analogous proceeding can by employed to prove thatBx̄3 = (B13, B23, B33)T = (0, 0, 1)T .
Thereby, (5.43) is proven for the case of Q = 3 auxiliaries.

Unfortunately, in the case of Q > 3 auxiliary variables the representation of the inverse of∑
i∈Up x̄ix̄i

T becomes cumbersome. Following the Laplace expansion, the determinant of a
(Q × Q) matrix A is expressed by a weighted sum of determinants of Q submatrices of A of
size (Q − 1) × (Q − 1). This implies that already for Q = 4 auxiliary variables, we have
to solve 4 submatrices of

∑
i∈Up x̄ix̄i

T of size (3 × 3). The computational effort increases
disproportionally with Q. To handle this obstacle, we aim at reducing the dimension of the
matrix on which the inverse is applied.

Bx̄ in Case of Q > 3 Auxiliary Variables
Since the problem is the analytical representation of the inverse, the idea is to reduce the dimen-
sion of the matrix on which the inverse is applied without the reduction of Q itself. A solution
provides the concept of partial regression and the FWL theorem, presented in Section 5.1.2.2.

For a better comprehension of the formulas, we once again express matrixBx̄

Bx̄ =



Bx̄12 . . . Bx̄1q′ . . . Bx̄1Q

Bx̄22 . . . Bx̄2q′ . . . Bx̄2Q
... . . . ...

Bx̄q2 Bx̄qq′
Bx̄qQ

... . . . ...
Bx̄Q2 . . . Bx̄Qq′

. . . Bx̄QQ


=



0 . . . . . . . . . 0
1 0 . . . . . . 0
0 . . . . . . ...
... . . . 1 . . . ...
... . . . . . . 0
0 . . . . . . 0 1


.
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All coefficients withinBx̄ results from Q regressions

xiq′ = Bx̄′q
T x̄i + r

Bx̄′q
i for q′ = 2, . . . , Q

= Bx̄1q′ x̄i1 +Bx̄2q′ x̄i2 + . . .+Bx̄qq′
x̄iq + . . .+Bx̄QQx̄iQ + r

Bx̄′q
i .

Now, we divide the coefficient matrix Bx̄ into three parts: the first row, the diagonal, and the
minor diagonal. In order to prove Lemma 4, we have to show that

a) all first row elements Bx̄1q′ = 0 for q′ = 2, . . . , Q,

b) all diagonal elements Bx̄qq′
= 1 for q = 1, . . . , Q, q = q′ and q 6= 1, and

c) all minor diagonal elements Bx̄qq′
= 0 for q 6= q′ and q 6= 1.

a) We start by examining the coefficients on the diagonal

Bx̄qq′
=
( ∑
i∈Up

x̄iqx̄iq
T
)−1 ∑

i∈Up
x̄iqxiq′ = 1 for q = q′ and q 6= 1. (5.49)

That are all coefficients concerning the auxiliary and household mean value of the same variable.
In order to reduce the dimension of matrix

∑
i∈Up x̄iqx̄iq

T in (5.49), which has to be inverted,
we apply the FWL theorem. As pointed out in Section 5.1.2.2, the FWL states that in a multiple
regression the coefficient of any specific single variable can also be obtained by first partialing
out the effects of all other explanatory variables from both the specific single variable and
the variable of interest, and subsequently regressing the remaining variation of the variable of
interest on the remaining variation of the explanatory variables. According to this, we have to
partial out the effects of all Q household mean values except from the q-th variable from both
the q-th original variable xiq′ and its q-th mean value x̄iq. For this purpose, we define x̄i,−q as
vector without the q-th element of dimension (Q − 1). Then, to partial out the effects of all
other explanatory variables except for the q-th variable from xiq′ and x̄iq, we have to determine
the following two regressions

xiq′ = Hx̄
T x̄i,−q + rHx̄i

x̄iq = Kx̄
T x̄i,−q + rKx̄i

for q = q′ and q 6= 1 (5.50)

withHx̄ andKx̄ as vectors of dimension (Q−1) in obvious notation. Both variables of interest
on the left-hand side of the regressions (5.50) concern the same auxiliary. For explanation,
consider xiq′ is the variable sex. Then, x̄iq is determined by the household mean value of sex.
The explanatory variable x̄i,−q on the right-hand side of (5.50) contains the household mean
values of all remaining variables except for that of sex.

Applying the FWL theorem, the coefficients on the diagonal Bx̄qq′
can be calculated by regress-

ing the residuals rHx̄i on the residuals rKx̄i obtained from (5.50)

rHx̄i =Bx̄qq′
rKx̄i + r

Bx̄q
i ,
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where

Bx̄qq′
=
∑
i∈Up r

Kx̄
i rHx̄i∑

i∈Up(r
Kx̄
i )2

for q = q′ and q 6= 1. (5.51)

As a result, we have successfully reduced the dimension of the matrix that have to be inverted
from (Q×Q) of (∑i∈Up x̄iqx̄iq

T ) in (5.49) to the dimension (1× 1) of rKx̄i in (5.51).

It remains to show that the numerator and denominator of (5.51) are equal. It is valid that∑
i∈Up

rHx̄i rKx̄i =
∑
i∈Up

(xiq′ −Hx̄
T x̄i,−q)(x̄iq −Kx̄

T x̄i,−q)

=
∑
i∈Up

xiq′x̄iq −Kx̄
T
∑
i∈Up

x̄i,−qxiq′ −Hx̄
T
∑
i∈Up

x̄i,−qx̄iq

+Hx̄
T
∑
i∈Up

x̄i,−qx̄i,−q
TKx̄. (5.52)

Equation (5.52) can be simplified by the equivalence of

Hx̄ =
∑
i∈Up

(x̄i,−qx̄i,−qT )−1 ∑
i∈Up

x̄i,−q
Txiq

=
∑
i∈Up

(x̄i,−qx̄i,−qT )−1 ∑
i∈Up

x̄i,−q
T x̄iq

= Kx̄.

The equality of
∑
i∈Up x̄i,−q

Txiq = ∑
i∈Up x̄i,−q

T x̄iq follows directly from the equality of the
totals

∑
i∈Up x̄iq = ∑

i∈Up xiq.

Hence, withHx̄ = Kx̄ Equation (5.52) becomes

=
∑
i∈Up

x̄2
iq − 2Kx̄

T
∑
i∈Up

x̄iqx̄i,−q +Kx̄
T
∑
i∈Up

x̄i,−qx̄i,−q
TKx̄

=
∑
g∈Up

(x̄iq −Kx̄
T x̄i,−q)2

=
∑
i∈Up

rKx̄i
2
. (5.53)

The equality of
∑
i∈Up x̄

2
iq = ∑

i∈Up x̄i,−q
Txiq is already shown in the proof of Lemma 3 in

(5.39). Therefore, we have successfully proven the equality of the numerator and denominator
in (5.51) and thus that all diagonal elements Bx̄qq′

= 1 for all q = q′and q 6= 1.

b) We continue to show that all minor diagonal elements

Bx̄qq′
= (

∑
i∈Up

x̄iqx̄
T
iq)−1 ∑

i∈Up
x̄iqxiq′ = 0 for q 6= q′ and q 6= 1.
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For this purpose, we have to partial out the effects of all other explanatory variables from xiq′
and x̄iq by the following two regressions

xiq′ = H̃x̄
T
x̄i,−q + rH̃x̄i

x̄iq = Kx̄
T x̄i,−q + rKx̄i

for q′ 6= q and q 6= 1. (5.54)

The only difference to the aforementioned regressions in (5.50) is that the variable of interest
in the upper regression refers to a different variable than the variable of interest in the lower
regression. Thus, we denote the coefficient in the upper regression as H̃x̄ to differentiate it
fromHx̄ in (5.50). The explanatory variables and the complete lower regression are the same.

As before, we obtain the coefficient Bx̄qq′
by regressing rH̃x̄i on rKx̄i

rH̃x̄i = Bx̄qq′
rKx̄i + r

Bx̄q
i ,

where

Bx̄qq′
=
∑
i∈Up r

Kx̄
i rH̃x̄i∑

i∈Up(r
Kx̄
i )2

for q′ 6= q and q 6= 1. (5.55)

It remains to show that Bx̄qq′
= 0 in (5.55). We know from (5.53) that the denominator∑

i∈Up r
Kx̄
i

2 6= 0. Consequently, we analyze the numerator
∑
i∈Up r

H̃x̄
i rKx̄i given by∑

i∈Up
rH̃x̄i rKx̄i =

∑
i∈Up

(xiq′ − H̃x̄
T
x̄i,−q)(x̄iq −Kx̄

T x̄i,−q)

=
∑
i∈Up

xiq′x̄iq −
∑
i∈Up

xiq′Kx̄
T x̄i,−q −

∑
i∈Up

x̄iqH̃x̄
T
x̄i,−q

+ H̃x̄
T ∑
i∈Up

x̄i,−qx̄i,−q
TKx̄. (5.56)

The second term in (5.56) can be rewritten as∑
i∈Up

xiq′Kx̄
T x̄i,−q =

∑
i∈Up

xiq′(x̄iq − rKx̄i )

=
∑
i∈Up

xiq′x̄iq −
∑
i∈Up

xiq′r
Kx̄
i︸ ︷︷ ︸

=0

.

Note that
∑
i∈Up xiq′r

Kx̄
i = ∑

i∈Up(x̄iq−Kx̄
T x̄i,−q)xiq′ = 0, since it constitutes the minimization

problem of the lower regression in (5.54), which equals zero following the least squares theory
(cf. Greene, 2003, Section 6.4; Wooldridge, 2013, Section 3.2).

In a similar manner, the third term in (5.56) can be rearranged to∑
i∈Up

x̄iqH̃x̄
T
x̄i,−q =

∑
i∈Up

x̄iq(xiq′ − rH̃x̄i )

=
∑
i∈Up

x̄iqxiq′ −
∑
i∈Up

x̄iqr
H̃x̄
i︸ ︷︷ ︸

=0

.
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The latter term
∑
i∈Up x̄iqr

H̃x̄
i = ∑

i∈Up(xiq′ − H̃x̄
T
x̄i,−q)x̄iq is equal to zero for the same least

squares argumentation given above, as it determines the minimization problem of the upper
regression in (5.54).

Finally, it can also be shown that the fourth term in (5.56) equals the remaining terms

H̃x̄
T ∑
i∈Up

x̄i,−qx̄i,−q
TKx̄ =

∑
i∈Up

(xiq′ − rH̃x̄i )(x̄iq − rKx̄i )

=
∑
i∈Up

xiq′x̄iq −
∑
i∈Up

xiq′r
Kx̄
i︸ ︷︷ ︸

=0

−
∑
i∈Up

rH̃x̄i x̄iq︸ ︷︷ ︸
=0

+
∑
i∈Up

rH̃x̄i rKx̄i︸ ︷︷ ︸
=0

.

To summarize, inserting these rearrangements into (5.56), we obtain∑
i∈Up

rH̃x̄i rKx̄i =
∑
i∈Up

xiq′x̄iq −
∑
i∈Up

xiq′Kx̄
T x̄i,−q −

∑
i∈Up

x̄iqH̃x̄
T
x̄i,−q

+ H̃x̄
T ∑
i∈Up

x̄i,−qx̄i,−q
TKx̄

=
∑
i∈Up

xiq′x̄iq −
∑
i∈Up

xiq′x̄iq −
∑
i∈Up

xiq′x̄iq +
∑
i∈Up

xiq′x̄iq

= 0.

Therefore, we successfully proved that all minor elements Bqq′ = 0 for all q 6= q′ and q 6= 1.

c) It remains to prove that all elements on the first row of (5.43) concerning the intercept terms
equal to zero

Bx̄1q′ = (
∑
i∈Up

x̄iqx̄
T
iq)−1 ∑

i∈Up
x̄iqxi1 = 0 for q′ = 2, . . . , Q.

For this purpose, we have to partial out the effects of all other explanatory variables from xiq′
and x̄i1 by the following two regressions

xiq′ = Hx̄
T x̄i,−q + rHx̄i

x̄i1 = K̃x̄
T
x̄i,−q + rK̃x̄i .

(5.57)

These regressions differ from the regressions in (5.50) only with respect to the variable of in-
terest x̄i1. We denote the coefficient in the lower regression as K̃x̄ to differentiate it from Kx̄

in (5.50) and (5.54). On both sides of the lower regression in (5.57) emerge a constant term,
xi1 = x̄i1 = 1. Hence, the variable of interest x̄i1 is exactly explained through xi1 and no
remaining correlation between the variable of interest and the explanatory variables is captured
by the residuals, which results in rK̃x̄i = 0. Consequently, from the regression

rHx̄i = Bx̄1q′r
K̃x̄
i + r

Bx̄q
i

it immediately follows that Bx̄1q′ = 0.

As a result, applying arguments of partial regressions and the FWL theorem, we successfully
proved that all first row elements and minor diagonal elements equal zero and that all diagonal
elements equal 1. Therefore, Lemma 4 is proven.
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We learn from Lemma 3 that the only nonzero entities in Bx̄ are the coefficients Bx̄qq′
with

q = q′ and q 6= 0. These are the diagonal elements determining the influence of x̄iq on xiq′ when
the variable of interest and explanatory variable concern the same auxiliary variable holding all
other variables constant. As argued for simple models, the reason for the form ofBx̄ is that the
variation of the original auxiliary variables is exactly explained by the household mean values.
It is important to note that Lemma 3 holds only when regressing x̄iq on xiq′ . It does not hold
when regressing xiq′ on x̄iq.

We continue with deriving the relationship between Bp and Bh for multiple models. The
proceeding is analogous to the simple model case. Thus, we exploit the fact that an overlap
model comprises both auxiliaries xi and x̄i. Then, we decompose Bp and Bh into the same
coefficients obtained from the overlap model. For the decomposition, we apply two mediation
models and interpret the coefficients Bp and Bh as direct effects. As done before, for a better
comprehension we apply tables within the proof. The proof is kept short, as it is analogous to
the proof of Result 9.

Result 10. The Functional Relationship betweenBp andBh in Multiple Models
The coefficientBp, resulting from the person-level model yi = Bp

Txi + r
Bp
i , can be expressed

as

Bp = Bh +Dx̄(Bx −Bx̄), (5.58)

whereBh results from the reduced person-level model yi = Bh
T x̄i+rBhi . CoefficientEx̄1 arises

from the overlap model yi = Dx1xi1 +Dx
Txi +Dx̄

T x̄i + rDi describing the overlap between
the person-level auxiliary information xi and the household-level auxiliaries x̄i. Coefficient
vectors Bx and Bx̄ are obtained from the auxiliary models x̄i = Bx

Txi + rBx̄i and xi =
Bx̄

T x̄i + rBxi , respectively.

Proof. The overlap between the multiple auxiliary variables of a person-level and a reduced
person-level model, xi and x̄i, respectively, is constituted by the following overlap model

yi = Dx1x1 +Dx
Txi +Dx̄

T x̄i + rDi . (5.59)

withDx = (Dx2 , . . . , Dxq′
, . . . , DxQ)T andDx̄ = (Dx̄2 , . . . , Dx̄q′

, . . . , Dx̄Q)T for q′ = 2, . . . , Q
as coefficients.

To decompose Bp and Bh, we apply two mediation models, as introduced in Section 5.2.1.1,
and interpret both coefficients at hand as indirect effects. The results of the decomposition and
multiple auxiliary model are summarized in Table 5.5.
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According to Table 5.5, the decomposed coefficients can be expressed by

Bp =
(
Dx1

Dx

)
+Dx̄ ·Bx

and

Bh =
(
Dx1

Dx̄

)
+Dx ·Bx̄.

Fortunately, the different positions of Dx1 , Dx and Dx̄ prevent us from solving Bp for Bh.
However, we can resort the array of the household-level coefficient Bh by exploiting the form
ofBx̄ derived in Lemma 4. ResortingBh results in

Bh1

Bh2
...

Bhq
...

BhQ


=



Dx1

Dx̄2
...

Dx̄q′
...

Dx̄Q


+



Bx̄12 . . . Bx̄1q′ . . . Bx̄1Q

Bx̄22 . . . Bx̄2q′ . . . Bx̄2Q
... . . . ...

Bx̄q2 Bx̄qq′
Bx̄qQ

... . . . ...
Bx̄Q2 . . . Bx̄Qq′

. . . Bx̄QQ


·



Dx2
...

Dxq′
...

DxQ



=



Dx1

Dx̄2
...

Dx̄q′
...

Dx̄Q


+



0 . . . . . . . . . 0
1 0 . . . . . . 0
0 . . . . . . ...
... . . . 1 . . . ...
... . . . . . . 0
0 . . . . . . 0 1


·



Dx2
...

Dxq′
...

DxQ


,

swapping the positions ofDx andDx̄ yields

=



Dx1

Dx2
...

Dxq′
...

DxQ


+



0 . . . . . . . . . 0
1 0 . . . . . . 0
0 . . . . . . ...
... . . . 1 . . . ...
... . . . . . . 0
0 . . . . . . 0 1


·



Dx̄2
...

Dx̄q′
...

Dx̄Q


.

Hence, both coefficientsBp andBh are functions of the same D̃x = (Dx1 ,Dx
T )T =

(Dx1 , Dx2 , . . . , Dxq′
, . . . , DxQ)T andDx̄ = (Dx̄2 , . . . , Dx̄q′

, . . . , Dx̄Q)T . Then, it is valid that

Bp = D̃x +Bx ·Dx̄

and

Bh = D̃x +Bx̄ ·Dx̄.



5 EFFICIENCY COMPARISON 140

SolvingBh = D̃x+Bx̄ ·Dx̄ for D̃x yields D̃x = Bh−Bx̄ ·Dx̄. Inserting D̃x intoBp yields
the functional relationship in demand

Bp =Bh −Bx̄ ·Dx̄ +Bx ·Dx̄

=Bh + (Bx −Bx̄)Dx̄ (5.60)

and completes the proof.

To conclude, Result 10 provides the solution for Problem 2 and describes the functional rela-
tionship between Bp and Bh for multiple models. Given Result 9, we are able to explain the
difference between the variances of a person- and a reduced person-level GREG estimator in
objective function (5.31).

5.2.4 Inserting the Relationship betweenBp andBh into the Efficiency
Comparison

In this section, we reproduce our results derived so far and infer the implications for the ef-
ficiency comparison of a person-level and an integrated household-level GREG estimator. As
a short reminder, the objective function (5.31) determining the efficiency comparison is given
by (

V(T̂GREG
y )− V(T̂ INT

y )
)/

M2

m

(
1− m

M

)
(M − 1)−1

=
∑
g∈Uh

(rBpg )2 −
∑
g∈Uh

(rB
◦
h

g )2

=
∑
g∈Uh

(rBpg )2 −
∑
g∈Uh

(rBhg )2 −
∑
g∈Uh

(r̃B
◦
x0

g )2 +
∑
g∈Uh

(r̃B
◦
x0 ·Fx

g )2

=
∑
g∈Uh

(yg −Bp
Txg)2 −

∑
g∈Uh

(yg −Bh
Txg)2

︸ ︷︷ ︸
variance component I

−
( ∑
g∈Uh

(yg −B◦x0xg0)2 −
∑
g∈Uh

(yg −B◦x0 · Fx
Txg)2

)
︸ ︷︷ ︸

variance component II

. (5.61)

Result 8 derived in Section 5.2.1 provides the solution of the problem of different dimensions
of the auxiliary variables of a person-level and an integrated GREG estimator, and thus of the
corresponding residuals rBpg and rB

◦
h

g (line 2). Following, the variance of an integrated GREG

estimator,
∑
g∈Uh(rB

◦
h

g )2, can be decomposed into the variance of a reduced household-level
model,

∑
g∈Uh(rBhg )2, which is of the same dimension as

∑
g∈Uh(rBpg )2, and two remaining vari-

ances (line 3). The remaining variances (line 5) capture the effects of the intercept disregarded
by the reduced household model. To quantify the disregarded effect, we introduce the pseudo-
residuals r̃

B◦x0
g and r̃

B◦x0 ·Fx
g . Therefore, we can rearrange the objective function (5.61) into two
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variance components: the difference of variances of the same dimension, termed as variance
component I, and the effects caused by the intercept, termed as variance component II. The
sum of both variance components is denoted by total difference.

Now, we examine variance component I in more detail. To asses variance component I, Result
10 (or Result 9 for simple models) supplied a functional relationship between the coefficients
Bp andBh. Inserting Result 10 into variance component I in (5.61), we obtain∑

g∈Uh
(yg −Bp

Txg)2 −
∑
g∈Uh

(yg −Bh
Txg)2

=
∑
g∈Uh

(yg − (Bh +Dx̄(Bx −Bx̄))Txg)2 −
∑
g∈Uh

(yg −Bh
Txg)2

=
∑
g∈Uh

(yg −Bh
Txg −Dx̄(Bx −Bx̄)Txg)2 −

∑
g∈Uh

(yg −Bh
Txg)2

=
∑
g∈Uh

(yg −Bh
Txg)2 −

∑
g∈Uh

(yg −Bh
Txg)2 +

∑
g∈Uh

(Dx̄(Bx −Bx̄)Txg)2

− 2
∑
g∈Uh

(yg −Bh
Txg)Dx̄(Bx −Bx̄)Txg

=
∑
g∈Uh

(Dx̄(Bx −Bx̄)Txg)2 − 2
∑
g∈Uh

(yg −Bh
Txg)Dx̄(Bx −Bx̄)Txg︸ ︷︷ ︸

(III)

. (5.62)

If homoscedasticity is assumed in the integrated model, and thus also in the reduced household-
level model, which implies that vg = 1, term (III) equals zero, since

∑
g∈Uh(yg−Bh

Txg)Txg =
0 determines the first derivative of the minimization problem of a reduced household-level
model (5.16). This is not the case if heteroscedasticity is assumed and thus vg = N−1

g . The
former case describes the integrated model proposed by Nieuwenbroek (1993) and the latter
case determines the integrated model introduced by Lemaître and Dufour (1987). See Sections
3.1.2 and 3.1.3 for details on the different integrated models.

Finally, inserting Result (5.62) into variance component (I) (5.61) and differentiating two cases,
yields(

V(T̂GREG
y

)
− V(T̂ INT

y )
)/M2

m

(
1− m

M

)
(M − 1)−1

=
∑
g∈Uh

(rBpg )2 −
∑
g∈Uh

(rB
◦
h

g )2

case a) if homoscedasticity is assumed,

=
∑
g∈Uh

(Dx̄(Bx −Bx̄)Txg)2

︸ ︷︷ ︸
I - Reduced difference of same dimension

−
( ∑
g∈Uh

(yg −B◦x0xg0)2 −
∑
g∈Uh

(yg −B◦x0 · Fx
Txg)2

)
︸ ︷︷ ︸

II - Effects of the intercept

, (5.63)
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case b) if heteroscedasticity is assumed,

=
∑
g∈Uh

(Dx̄(Bx −Bx̄)Txg)2 − 2
∑
g∈Uh

(yg −Bh
Txg)Dx̄(Bx −Bx̄)T

︸ ︷︷ ︸
I - Reduced difference of same dimension

−
( ∑
g∈Uh

(yg −B◦x0xg0)2 −
∑
g∈Uh

(yg −B◦x0 · Fx
Txg)2

)
︸ ︷︷ ︸

II - Effects of the intercept

. (5.64)

Therefore, the total difference between the variance of a person-level and an integrated household-
level GREG estimator is determined by two variance components describing

I) the difference of the variances of a person-level and a reduced household-level GREG
estimator and

II) the effect of the intercept on the variance of an integrated GREG estimator ignored by the
reduced household-level model.

Variance component II was completely neglected in the theorem (5.1) given by Steel and Clark
(2007). In case a), variance component I is always positive, which implies that the variance of
a person-level GREG estimator exceeds the one of a reduced household-level GREG estimator.
This result is in accordance with the finding given in Section 5.1.2.1 that under single-stage clus-
ter sampling, the variance is optimized by an unweighted coefficient depending on the aggre-
gates of both the auxiliaries and variable of interest. In contrast, in case b) variance component
I can be either positive or negative. The following two sections analyze variance components I
and II in more detail to deduce predictions about their impact on the total difference in objective
functions (5.63) and (5.64).

5.2.4.1 Variance Component I - Reduced Difference of the Same Dimension

Variance component I in objective function (5.63) or (5.64) is driven mainly by

i) Dx̄

ii) (Bx −Bx̄)

iii) Bh (only in case b).

We start by analyzing term i). Dx̄ arises from the overlap model (5.59) and describes the effect
of the constructed household mean values x̄i on the variable of interest yi controlled for the
original auxiliaries xi. In other words, the higher the correlation between xi and x̄i, the lower
the variation of yi not explained by xi, and consequently the lower Dx̄. To visualize the effect
ofDx̄ on the variance component I, we once more utilize Venn diagrams extensively discussed
in Section 5.1.2.2. Typically, Venn diagrams address the case of having one or two explanatory
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variables. In the case of three explanatory variables, a simplex representation would be needed
to draw Venn diagrams. Therefore, consider the following one-dimensional overlap model

yi = Dxxi +Dx̄x̄i + rDi .

The left Venn diagram in Figure 5.12 illustrates the case of a high correlation between the
auxiliaries, indicated by a large intersection between the circles of x̄i and xi. The right Venn
diagram, in turn, depicts the case of a low correlation between x̄i and xi, resulting in a small
intersection between the circles. Comparing these Venn diagrams, it becomes apparent that the
higher the correlation between x̄i and xi, the lower Dx̄. The reason is the variation common to
both auxiliaries decreases. Of course, the result can easily be extended to the multiple variables.
To summarize, we presume that variance component I is significantly affected by the correlation
between the original auxiliaries, xi, and the constructed household mean values, x̄i.

xi x̄i

Dx̄

yi

xi x̄i

Dx̄

yi

Figure 5.12: Venn diagram illustrating Dx̄ with high (left side) and low (right side) correlation between
xi and x̄i

We continue with exploring term ii). It is noteworthy thatBx andBx̄ are independent from the
variable of interest yi. The coefficients are influenced only by the auxiliary variables xi and x̄i.
The coefficientBx, obtained from the auxiliary model

x̄i = Bx
Txi + rBxi ,

describes the effect of the constructed household mean values on the original auxiliaries. The
higher the correlation between xi and x̄i, the higherBx. Hence,Bx behaves contrarily toDx̄,
discussed in the previous paragraph. Bx̄ arises from the auxiliary model

xi = Bx̄
T x̄i + rBx̄i .

Nevertheless,Bx̄ is independent from the correlation between xi and x̄i. Exploiting its special
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form, described by Lemma 4, we get

Bx −Bx̄ =



Bx12 . . . Bx1q′ . . . Bx1Q

Bx22 . . . Bx2q′ . . . Bx2Q
... . . . ...

Bxq2 Bxqq′
BxqQ

... . . . ...
BxQ2 . . . BxQq′

. . . BxQQ


−



0 . . . . . . . . . 0
1 0 . . . . . . 0
0 . . . . . . ...
... . . . 1 . . . ...
... . . . . . . 0
0 . . . . . . 0 1



=



Bx12 . . . Bx1q′ . . . Bx1Q

Bx22 − 1 . . . Bx2q′ . . . Bx2Q
... . . . ...

Bxq2 Bxqq′
− 1 BxqQ

... . . . ...
BxQ2 . . . BxQq′

. . . BxQQ − 1


.

Hence, term ii) (Bx −Bx̄) is primarily constituted by Bx. Only from the diagonal elements,
comprising the coefficients concerning the same variable, an one is subtracted.

In case b), variance component I in (5.64) further depends on term iii). The extent of the
household-level coefficient Bh is influenced by the correlation between the variable of interest
yg and the auxiliary variable xg.

To conclude, we expect that (Bx − Bx̄) and Dx̄ behave in contrary ways with respect to the
correlation between xi and x̄i. Therefore, we diverge from Steel and Clark (2007, p. 54), who
claimed that the difference of the variance of a person-level and an integrated GREG estimator
(given in their second theorem see (5.1)) "[...] depends on the extent to which x̄i helps to
predict yi after xi has already been controlled for, i.e., the extent to which a linear contextual
effect helps to predict rBci over i ∈ Up, using a weighted least squares regression weighted
by Ng." This statement is equivalent with the following: the higher the correlation between
xi and x̄i, the lower the difference between the variances of a person-level and an integrated
GREG estimator. Therefore, the statement considers only the effect of i) Dx̄, but not of ii)
(Bx −Bx̄).

5.2.4.2 Variance Component II - Effects of the Intercept

Variance component II is equal in objective functions (5.63) and (5.64). It captures the effect of
separating the intercept from the integrated model and depends on

i) B◦x0 and

ii) Fx.
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We start by explaining term i). B◦x0 arises from the integrated household-level model

yg = B◦x0xg0 +B◦
x
Txg + rB

◦

g

and accounts for the effect of the intercept on yg when controlling for the remaining auxiliaries
xg. The interpretation of the intercept in a regression model should be treated with caution.
Geometrically speaking, the intercept indicates the intersection of the regression hyperplane
with the ordinate. As such, the intercept gives the value of the variables of interest when all
other explanatory variables are set to zero. The interpretation is not admissible if the zero lies
outside the range of the observed data. Thus, the intercept should be interpreted only from a
technical point of view (cf. von Auer, 2007, p. 61). The intercept affects a shift of the regression
hyperplane such that the residuals do not have an overall positive or negative bias. Hence, it is
difficult to predict on which factors the intercept B◦x0 depends.

We continue with discussing term ii). Fx is obtained from the auxiliary model

x0g = Fx
Txg + rFxg

and describes the influence of the auxiliaries xg on a constant, x0g. In Section 5.2.1.1, we
already derived that Fx = (∑g∈Uh xgxg

T )−1xg is independent from the variable of interest.
Instead Fx is affected only by the explanatory variables.

To conclude, a prediction about the impact of variance component II on the total difference is
difficult, because the intercept B◦x0 is of a more technical nature, and Fx depends only on the
auxiliaries xg.

5.2.5 Simulation Study

In order to explore the previously discussed presumptions on variance components I and II, we
run a MC simulation study. The simulation study is based on the same simulation setup as
introduced in Section 3.4.1. The presented results focus on case b) with vi = 1 and objective
function (5.64). The results for case a) are very similar and can be found in Appendix C.
One thousand samples of m = 1500 households are drawn via simple random sampling. The
auxiliary variables are presented in Table 3.1. As variable of interest, we choose inc, as defined
in Table 3.7.

We start by contrasting the total difference in (5.64) against variance components I and II. Figure
5.13 makes apparent that variance component I increases with the total difference, whereas
variance component II decreases. The red lines divided the plots into quadrants. Within the
lower left quadrant, all samples have negative signs for both variance components. Within the
lower right quadrant, all samples points show a negative sign for variance component II and
a positive sign for variance component I. It can be seen that the sign of the total difference
and the first variance component I coincide for most samples. In contrast, when plotting the
total difference against II, it becomes apparent that several samples emerge with different signs.
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Hence, variance component I, concerning the reduced difference between a person-level and an
integrated model, dominates the sign of the total difference, and thus gives a hint of whether
the variance of the person-level or of the integrated GREG estimator is larger. Figure C.1 in
Appendix C depicts a similar picture for case a). The only difference is that the total difference
is always positive. Figure 5.14 plots the average household size within every MC sample against
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Figure 5.13: Plots of the total difference against variance components I and II for case b) and m = 1500

variance components I and II. It becomes obvious that both terms are unrelated to the average
household size. The result can be explained through the fact that under normality and simple
random sampling, the sample distributions of the point and variance estimator are independent.
The average household sample size is not a point estimate, but a fixed value. The same is true
for Figure C.2 in Appendix C. Figure 5.15 plots the variance components against each other.
Positive total differences are indicated by circles, negative total differences by triangles. The
amount of the total difference is, moreover, highlighted by the color. Blue refers to a small
total difference, red to a large total difference. It becomes apparent that the higher variance
component I, the higher the total difference. In contrast, the higher variance component II, the
smaller the total difference. Therefore, if variance component I - describing the difference in
the variances of a naïve and a reduced household-level GREG estimator - is small, it is more
prevalent that variance of an integrated household-level GREG estimator exceeds the variance
of a naïve GREG estimator. The following two sections separately analyze variance components
I and II in more detail.
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Figure 5.14: Plots of the intercept and reduced difference against the average household size for case b)
and m = 1500

5.2.5.1 Variance Component I - Reduced Difference of the Same Dimension

To check the presumption that variance component I depends on the correlation between xi
and x̄i, denoted as Cor(xi, x̄i), we compute Dx̄ and (Bx −Bx̄) in the cases of low and high
correlation. For a better visualization via plots, we include only two auxiliaries concerning
the same variable: once in its original form, xi, and once as household mean value, x̄i. As
auxiliary variables, we choose age1 and age4. The former variable is characterized by a lower
correlation between xi and x̄i, Cor(xi, x̄i) = 0.51. The latter variable is characterized by a
higher correlation, Cor(xi, x̄i) = 0.69. Since xi and x̄i refer to the same variable, Cor(xi, x̄i) =
0.51 is the lowest correlation we found in our data set. Figure 5.16 plots the coefficients Dx̄ and
(Bx − Bx̄) against variance component I. Notice that the scales of the y-axes in the upper and
lower plots are equal. As expected, the point cloud in the upper left plot is higher located than
in the upper right plot, which confirms that a higher correlation between xi and x̄i negatively
affects Dx̄. Furthermore, we observe that Dx̄ and variance component I are positively related.
Also the relation between the correlation between xi and x̄i and (Bx − Bx̄) is in line with our
presumption explored in the previous section. Nevertheless, (Bx−Bx̄) has no effect on variance
component I. Therefore, it seems that variance component I is mainly driven by the coefficient
Dx̄, describing the effect of x̄i on yi when controlling for the effect of xi. Another question is
whether we can deduce which variance dominated the total difference from the relation between
the residuals. For this purpose, Figure C.3 in Appendix C plots the residuals of a person-level
and a reduced household-level GREG estimator in cases of a positive and a negative variance
component I. The residuals on the person-level model are aggregated per household, since its
aggregated form enters into the variance formula and otherwise the person- and household-level
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Figure 5.15: Plot of variance component I against variance component II for case b) and m = 1500

residuals cannot be presented in one plot. No differences are achieved between the left- and the
right-hand plots. Only slight differences can be observed between a high or low correlation.

In Section 3.2, we argued that the integrated GREG estimator considers only the between-
variance of the auxiliaries due to the replacement of the original auxiliary information by the
constructed household mean values. Thus, Figure C.4 in Appendix C plots the within variance
against variance component I. Surprisingly, the within variance seems to be unrelated from
variance component I. A possible reason is that the effect of the within variance is superimposed
by other effects.

5.2.5.2 Variance Component II - Effects of the Intercept

As mentioned in Section 5.2.4.2, the prediction of which factors affect variance component II is
critical, since the relevance of the intercept is of a more technical nature. We know only that Fx
depends on the auxiliaries. Even if Figure 5.17 approves that Fx is slightly higher for a lower
correlation, there seems to be no effect of Fx on variance component II. Hence, the amount of
variance component II, capturing the effect of the intercept, is difficult to predict.
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Figure 5.16: Plots of Dx̄ and (Bx −Bx̄) against variance component I for case b) and m = 1500

In conclusion, objective function (5.64), specifying the correct efficiency comparison between
a person-level and an integrated GREG estimator, is determined by variance components I and
II. Variance component I is mainly driven byDx̄ from the overlap model (5.59). We found that
the lower is the correlation between the original auxiliary variable xi and its household mean
value, the higher Dx̄. Then, the higher Dx̄, the higher variance component I, which describes
the difference between the variances of a person-level and a reduced household-level model.
Variance component I, describing the effect of the intercept, which determines the difference in
dimension between a person-level and an integrated GREG estimator, is difficult to predict.

5.3 Further Application Field for the Decomposition of the
Coefficients

Another promising application field for the decomposition of coefficients presented in Section
5.2.1.1 is econometrics. Econometrics applies statistical methods to empirical data to evaluate
and develop econometric theory (cf. Greene, 2003, p. 1; Wooldridge, 2013, p. 2). A widespread
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Figure 5.17: Plots of Fx against variance component II for case b) and m = 1500

econometric method is linear regression analysis, where the relationship between a variable of
interest and certain explanatory variables is modeled by a linear function. Often, various ex-
planatory variables are available from one (or more) data sources. This gives rise to the question
of which explanatory variables should be included into the model. Even if the foundation of
a model should always be built on economic theory or preliminary studies, several competi-
tive models containing different sets of explanatory variables can be chosen. The potential best
model can be assessed via goodness of fit criteria, which indicate how well a model fits the
observed data. A well-known goodness of fit criterion is the coefficient of determination, ab-
breviated by R2. Further measures are Mallow’s complexity parameter, the Akaike information
criterion, the Bayes information criterion or cross-validation. The interested reader is referred
to for example Fahrmeir et al. (2007, p. 162) for more details on goodness of fit criteria.

The coefficient of determination R2 evaluates the explanatory power of a linear regression
model via the ratio of the explained variation (regression sum of squares abbreviated by SSR)
and the total variation (total sum of squares abbreviated by SST) of a variable of interest

R2 = SSR

SST
=
∑
i∈Up(ŷi − ȳ)2∑
i∈Up(yi − ȳ)2

with yi as observed values of the variables of interest, ŷi as fitted values predicted by the linear
model, and ȳ as mean value (cf. Backhaus et al., 2008, p. 72). The value of R2 ranges from
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0 to 1. It can be interpreted as percentage explanation of the variation of a variable of interest
by the explanatory variables in the model. Thus, higher values of R2 indicate a good fit of the
predicted values ŷi (cf. Schlittgen, 2008, p. 420).

A question arising in this context regards how R2 is affected when additional explanatory vari-
ables are added to the initial model. The question is answered by the difference between the
coefficients of determination of two nested models

R2
II −R2

I .

Subscript I refers to the first model, whereas subscript II refers to the second model, which is
nested within model I .

Another field of application for R2
II − R2

I is survey statistics. Even if the GREG estimator
is model-assisted, and thus its unbiasedness is unaffected by the correctness of the model, its
efficiency depends on the explanatory power of the assisting model. The difference R2

II − R2
I

delivers a criterion to decide which auxiliary variables (with known totals) should be included
into the assisting model to increase the efficiency of the estimator.

The decomposition of coefficients presented above is helpful for explaining the differenceR2
II−

R2
I . The idea is to use the overlap of two nested models to relate their coefficients. Inserting

the decomposition into the difference R2
II −R2

I reveals a deeper understanding of which factors
influence the supplementary degree of explanation driven by including additional explanatory
variables.

As before, we initially focus on simple models containing two variables in order to visualize
the decomposition via graphs. Subsequently, we extend our findings to multiple explanatory
variables. Suppose that model I contains xi as initial explanatory variable and is therefore
given by

yIi = Bxxi + rBi .

Beyond xi, model II contains zi as an additional explanatory variable and is expressed as

yIIi = Dxxi +Dzzi + rDi .

Model I is nested within model II . Hence, the differenceR2
I−R2

II quantifies the supplementary
explained variation of yi when adding zi as additional explanatory variable besides xi into the
model. To apply the mediation model, we interpret the additional explanatory variable zi as the
mediator variable and Bx obtained from model I as the total effect. Then, the total effect Bx

can be decomposed into a direct effect of xi on yi controlling for zi plus an indirect effect of
xi via zi (illustrated by Figure 5.18). To quantify the indirect effect, we specify the following
auxiliary model

zi = Fxxi + rFxi .
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Figure 5.18: Mediation model applied to two nested models

Consequently, the decomposition of the total effect of the initial explanatory variable xi is given
by

Bx = Dx − FxDz.

Now, we translate the decomposition of Bx to the case of multiple explanatory variables. Let
xi = (xi1, . . . , xiq, . . . , xiQ)T and zi = (zi1, . . . , zik, . . . , ziK)T be two vectors of dimensions
Q and K of explanatory variables for individual i. Consider the following two multiple models,
whereby model II is nested within model I ,

yIi = Bx
Txi + rBi

yIIi = Dx
Txi +Dz

Tzi + rDi ,

with Dx = (Dx1 , . . . , DxQ)T and Dz = (Dz1 , . . . , DzK )T . Both models have the initial ex-
planatory variables xi in common. Beyond xi, model II contains the additional explanatory
variables zi. Due to multidimensionality, we have to specify for every k-th additional explana-
tory variable zik with k = 1, . . . , K an auxiliary model

zi1 = F 1
x

T
xi + r

F 1
x

i

...
...

zik = F k
x

T
xi + r

Fkx
i

...
...

ziK = FK
x

T
xi + r

FKx
i

with F k
x = (F k

x1 , . . . , F
k
xQ

)T . Thus, in each regression, the k-th additional explanatory variable
zik is regressed on the complete set of initial explanatory variables xi, which is common to both
models. Suppose all K vectors F k

x are combined to one matrix Fx = (F 1
x , . . . ,F

k
x , . . . ,F

K
x )
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of the form

Fx =



F 1
x1 . . . F k

x1 . . . FK
x1

...
...

...
F 1
xq . . . F k

xq . . . FK
xq

...
...

...
F 1
xQ

. . . F k
xQ

. . . FK
xQ


.

Then, analogous to the decomposition in Lemma 1 the multiple total effect Bx can be decom-
posed into

Dx
Q×1

= Bx
Q×1
− Fx

Q×K
· Dz
K×1

. (5.65)

For a better understanding of Fx ·Dz in equation (5.65), consider the q-th row given by (F 1
xq ·

Dz1 + . . .+F k
xq ·Dzk + . . .+FK

xq ·DzK ). Thus, by construction of Fx the multiplication Fx ·Dz

causes each auxiliary model the k-th coefficient F k
xq to be multiplied by Dzk , which is obtained

from model II with respect to the same k-th explanatory variable.

Given the multiple decomposition ofBx, the following result explains howR2
II−R2

I is affected
when additional explanatory variables are added to the initial model.

Result 11. Difference R2
II −R2

I of Two Nested Models
Consider two predicted values ŷIi = Bx

Txi and ŷIIi = Dx
Txi +Dz

Tzi, whereby model I is
nested within model II. Then the following applies

R2
II −R2

I =
∑
i∈Up(Dz

TrFxi )2∑
i∈Up(yi − ȳ)2 .

The residual vector rFxi = (rF
1
x

i , . . . , r
Fkx
i , . . . , r

FKx
i )T contains the residuals from allK auxiliary

models zik = F k
x

T
xi + r

Fkx
i with k = 1, . . . , K.

Proof. The difference of the coefficients of determination of two nested models is given by

R2
II −R2

I =
∑
i∈Up(ŷiII − ȳ)2∑
i∈Up(yi − ȳ)2 −

∑
i∈Up(ŷiI − ȳ)2∑
i∈Up(yi − ȳ)2

=
∑
i∈Up(ŷ2

iII − 2ŷiII ȳ + ȳ2)−∑i∈Up(ŷ2
iI − 2ŷiI ȳ + ȳ2)∑

i∈Up(yi − ȳ)2

=
∑
i∈Up(ŷ2

iII − ŷ2
iI)− 2ȳ∑i∈Up(ŷiII − ŷiI)∑
i∈Up(yi − ȳ)2 . (5.66)
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The first term in the numerator in (5.66) can be rewritten as∑
i∈Up

(ŷ2
iII − ŷ2

iI)

=
∑
i∈Up

(ŷiII + ŷiI)(ŷiII − ŷiI)

=
∑
i∈Up

(Dx
Txi +Dz

Tzi +Bx
Txi)(Dx

Txi +Dz
Tzi −Bx

Txi).

Inserting the multiple decompositionDx = Bx − FxDz from (5.65) yields

=
∑
i∈Up

(
(Bx − FxDz)Txi +Dz

Tzi +Bx
Txi

) (
(Bx − FxDz)Txi +Dz

Tzi −Bx
Txi

)
=
∑
i∈Up

(
2Bx

Txi −Dz
T (FxTxi − zi)

) (
−Dz

T (FxTxi − zi)
)
. (5.67)

Since zi − FxTxi determines the residual vector rFxi = (rF
1
x1

i , . . . , r
Fkx
i , . . . , r

FKx
i )T , (5.67) can

be rewritten as

=− 2
∑
i∈Up

Bx
Tx1iDz

TrFxi +
∑
i∈Up

(Dz
TrFxi )2

=− 2
∑
i∈Up

Dz
TrFxi x1i

TBx︸ ︷︷ ︸
=0

+
∑
i∈Up

(Dz
TrFxi )2. (5.68)

The first term in (5.68) can be rearranged to∑
i∈Up

Dz
TrFxi xi

TBx = Dz
T (
∑
i∈Up

rFxi xi
T )Bx.

From the least squares theory (cf. Greene, 2003, Section 6.4; Wooldridge, 2013, Section 3.2),
we know that the residuals from the k-th auxiliary model sum up to zero, if the model con-
tains an intercept (see Section 5.2.1.2), i.e.

∑
i∈Up r

Fkx
i = 0. From

∑
i∈Up r

Fkx
i xiq = 0 for all

k = 1, . . . , K and q = 1, . . . , Q, it follows that
∑
i∈Up r

Fx
i xi

T = 0, where in this case
∑
i∈Up

is defined as a component-wise summation within the matrix. Consequently, it is valid that∑
i∈UpDz

TrFxi xi
TBx = 0.

We continue with the second term in the numerator of (5.66). After some algebraic transforma-
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tions, we obtain

2ȳ
∑
i∈Up

(ŷiII − ŷiI)

=2ȳ
( ∑
i∈Up

(
Dx

Txi +Dz
Txz −

∑
i∈Up

Bx
Txi

))

=2ȳ
( ∑
i∈Up

(
(Bx − FxDz)Txi +Dz

Tzi
)
−
∑
i∈Up

Bx
Txi

)

=2ȳ
( ∑
i∈Up

Bx
Txi −

∑
i∈Up

Dz
T (zi − FxTxi)︸ ︷︷ ︸

rFxi

−
∑
i∈Up

Bx
Txi

)

=− 2ȳ
∑
i∈Up

Dz
TrFxi

=0.

Finally, inserting (5.68) into (5.66) yields

R2
1 −R2

2 =
∑
i∈Up(Dz

TrFxi )2∑
i∈Up(yi − ȳ)2 .

Therefore, Result 11 is proven.

We learn from Result 11 that R2
I −R2

II depends on

a) Dz describing the effect of the additional explanatory variables zi on yi controlling for
the effects of the initial explanatory variables xi already included in the model, and

b) rFxi describing the remaining variation of the additional explanatory variables zi not ex-
plained by the initial explanatory variables xi.

In other words, the differenceR2
I−R2

II depends on the effect of the additional explanatory vari-
ables not explained by the initial explanatory variables and on the degree to which the initial
explanatory variables help to explain the additional explanatory variables. Consequently, the
higher the correlation between the initial explanatory variables and the additional explanatory
variables, the lower the increased degree of explanation of the variation of the variable of in-
terest. With respect to the Venn diagrams, extensively introduced in Section 5.1.2.2, this result
is not surprising. The higher the correlation between the initial and the additional explanatory
variables, the higher the common variation not used to explain the variable of interest. In a Venn
diagram, the common variation is illustrated by the intersections of the circles of the initial and
the additional explanatory variables. In this regard, Result 11 is helpful within the process of
variable selection. It affords a deeper understanding of how the implementation of additional
explanatory variables causes supplementary explanatory power of the model. Further variable
selection strategies can be found in Bethlehem et al. (2011, pp. 261-274) or Fahrmeir et al.
(2007, pp. 152-180).
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It is important to remark that R2 always increases when additional variables are added to the
model (cf. Wooldridge, 2013, p. 254). As a remedy, the adjusted coefficient of determination
incorporates a penalty term to adjust for the number of explanatory variables and observations
(cf. Fahrmeir et al., 2007, pp. 98-100). A detailed discussion of the adjusted coefficient of
determination and further limitations of R2 are given in Backhaus et al. (2008, pp. 72-76) or
Schlittgen (2008, pp. 420-422).

A similar result for R2
I −R2

II as given in Result 11 can be found in Greene (2003, p. 254). Also
Seber (1977) derived the difference between two coefficients of determination. However, the
proof differs from our proof as it relies on geometric arguments of linear regression analysis.

To verify the correctness of Result 11, we run a simulation study based on the simulation setting
defined in Section 3.4.1. The variables of interest and the auxiliary variables are known from
Tables 3.6 and 3.7. The initial explanatory variable set xi contains sex and ms (six indicator
variables). The additional explanatory variable set zi consists of age (four indicator variables).
To determine the true value of R2

I − R2
II we use the R command lm(). The calculations are

based on one MC sample (r = 1). Table 5.6 validates the correctness of Result 11, since there
is no difference between the left and the right columns.

Table 5.6: Difference of R2
II −R2

I for various variables of interest and for r = 1

R2
II −R2

I

∑
i∈Up(Dx2

Tr
Fx1
i )2∑

i∈Up(yi − ȳ)2

inc 0.0207 0.0207

soc 0.0071 0.0071

sel 0.0083 0.0083

act1 0.0539 0.0539

act2 0.0099 0.0099

act3 0.0781 0.0781

inc_hs1 0.0118 0.0118

inc_hs2 0.0102 0.0102

inc_hs3 0.0042 0.0042

inc_hs4 0.0017 0.0017

inc_hs5 0.0012 0.0012

inc_hs6 0.0001 0.0001

bene_age1 0.0084 0.0084

bene_age2 0.0159 0.0159

bene_age3 0.0167 0.0167

bene_age4 0.0083 0.0083
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5.4 Summary and Conclusion

The objective of this chapter was to derive an efficiency comparison of a person-level and an
integrated household-level GREG estimator. Initially, we presented the efficiency comparison
of Steel and Clark (2007) and discussed two issues. At first, they tacitly assumed that the auxil-
iaries of a person-level GREG estimator sum up per household to the auxiliaries of an integrated
household-level GREG estimator. However, we showed that the per-household summation of
the person-level information results in a household-level auxiliary vector without an intercept.
In a MC simulation study, we clarified that, through the exclusion of the intercept, Steel and
Clark (2007) underestimated the correct variance of an integrated GREG estimator, in particu-
lar if large households prevail in the sample. Secondly, applying Venn diagrams and the FWL
theorem, we demonstrated that although Steel and Clark (2007) justified the interpretation of
their final result using the argument of controlling for, their approach considerably differs from
the concept of controlling for originated from multiple regressions. The difference between
both interpretation approaches is quantified by the common variation of the auxiliaries xi and
x̄i and depends on the household sizes.

Due to these issues, we derived in Section 5.2 an own efficiency comparison between a person-
level and an integrated household-level GREG estimator. The proceeding to provide such an
efficiency comparison was twofold. In a first step, we aim at separating the effect of the inter-
cept from the variance of an integrated GREG estimator. The intercept constitutes the difference
in dimension between a person-level and an integrated model. To solve this problem, we de-
composed the variance of an integrated household-level GREG estimator into the variance of a
reduced household-level GREG estimator and into a term that captures the effect of the intercept
disregarded by the reduced household-level model. The model of the reduced household-level
GREG estimator, excluding an intercept, is of the same dimension as the model of a person-
level GREG estimator. The decomposition consists of three steps. We started with decomposing
the coefficients of an integrated household-level model (Lemma 1) by applying mediation mod-
els known from psychology and sociology. The decomposition of the integrated coefficient is
impressive, as in multiple regressions the coefficients are calculated ceteris paribus and there-
fore incorporate the covariances of the auxiliary variables. We continued with translating the
decomposition of the integrated coefficient to the corresponding residuals (Lemma 2). For this
purpose, we introduced artificially constructed pseudo-residuals, which permit us to exactly
quantify the effect of the intercept on the variance disregarded by the reduced household-level
model. Finally, we extended our findings to the decomposition of the sum of squared residuals
(Result 8). The decomposition is powerful, as even if the power of two is a non-linear trans-
formation, the sum of the squared residuals of the original integrated household-level model
equals the sum of squared residuals for the separated regressions as it would be with a linear
transformation. Thus, when deriving the decomposition of the variance, we can skip all mixed
terms emerging when multiplying out the binomial formula. In consequence, with the decom-
position of the variance of the integrated GREG estimator, we are capable of deriving a correct
efficiency comparison between a person-level and an integrated GREG estimator.

For the decomposition of the variance of the integrated GREG estimator, we define coefficients
from models without an intercept, pseudo-residuals, and separating residuals. In order to elab-
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orate the differences between the coefficients and residuals obtained from originate regression
models to our defined coefficients and residuals, we deduced their properties.

In a second step, we derived a functional relationship between the Bp and Bh as coefficients
from the person-level and the reduced household-level GREG estimator. The fact that both
coefficients are computed at different levels hampers the pursuit of discovering a relationship
between them. As a remedy, we exploited that the reduced household-level coefficient can
either be computed at household-level, using OLS, or at person-level, using GLS. Hence, we
considered two person-level models to derive a relationship between Bp and Bh. Then, we
related both coefficients by constructing an overlap model, which simultaneously contains the
auxiliaries of both coefficients. With the overlap model as a common starting point, we decom-
posed Bp and Bh by applying two mediation models into the same coefficients obtained from
the overlap model. However, writing Bp as function of Bh is not straightforward, because the
arrays of the decomposed coefficients differ. To handle this obstacle, we made use of the form
of the coefficient resulting from regressing the original auxiliary on its constructed household
mean values derived in Lemma 4 (or in Lemma 3 for simple models). However, for dimensions
Q > 2, the proof becomes computationally cumbersome. Since the problem is the analytical
representation of the inverse of

∑
i∈Up x̄ix̄i

T , we proposed reducing the dimension of the matrix
on which the inverse is applied without the reduction of Q itself. For this purpose, we applied
the concept of partial regressions and the FWL theorem. Finally, Result 10 (or Result 9 for
simple models) allowed us to write Bp as function of Bh and certain coefficients required in
the decomposition.

To conclude, with Results 8 and 10 (or 9) we are capable to provide an efficiency comparison
between the variances of a person-level and an integrated GREG estimator. Accordingly, the
difference is determined by variance component I, describing the difference of the variances of a
reduced household-level and a person-level GREG estimator, and variance component II, which
captures the effects of the intercept on the variance of an integrated household-level model but
is disregarded by the reduced household-level model. Variance component I depends on the
correlation between the original auxiliaries and the constructed household mean values. The
effect of variance component I is difficult to estimate since it depends on the intercept.

It should be noted that the interpretation of the presented efficiency comparison has some limi-
tations. It offers only an answer to the following question: How is the efficiency of an integrated
GREG estimator affected by the consistency requirement compared with a person-level GREG
estimator? However, it does not answer the question: Is integrated weighting preferable to a
person-level GREG estimator? The reason for this is that both estimators under consideration
pursue different targets. If the objective is to ensure consistent estimates between the person and
household level, integrated weighting can be applied but not a person-level GREG estimator.
However, if consistent estimates are required, we suggest using our proposed modified extended
GREG estimator, introduced in Chapter 4 instead of integrated weighting. If, on the other hand,
consistency is not required, integrated weighting is never the preferable choice because it uti-
lizes constructed household mean values instead of the original person-level information and
enforces equal weights for all household members.

In Section 5.3, we discussed a further application field for the introduced decomposition of
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the coefficients within the context of variable selection in econometrics and survey statistics.
Hence, we analyzed the difference of two coefficients of determination R2 to answer the ques-
tion how it is affected when additional explanatory variables are added to the initial model. We
learn from Result 11 that the difference of two coefficients of determination depends on the
effect of the additional explanatory variables not explained by the initial explanatory variables
and the degree to which the initial explanatory variables explain the additional explanatory vari-
ables.



6 The Variance Formula of GREG
Estimators under Cluster Sampling and
the Proposed Hybrid GREG Estimator

In household surveys, information is collected on both the persons and households. Thus, the
assisting model of the GREG estimator can be established at either the person or the household
level. However, the variance formulas of both GREG estimators depend on the per household
aggregated variables (cf. Särndal et al., 1992, p. 307). The initial level of modeling is, there-
fore, disregarded in the variance formula. This can be interpreted that in the variance formula
the households, or in general the clusters, are treated as the ultimate sampling unit which corre-
sponds to fundamental surveys textbooks:

• Lohr (2009, p. 171): “No new ideas are introduced to carry out one-stage cluster sam-
pling; we simply use the results for simple random sampling with the PSU totals as the
observations.”

• Thompson (2002, p. 129): “[...] one could dispense with the concept of the secondary
units, regarding the primary units as the sampling units and using, as the variable of
interest of any primary unit, the total of the y-values of the secondary units within it.”

The aim of this chapter is twofold: First, we study the consequences of the aggregated form
of the variance formula under cluster sampling for person-level GREG estimators. One conse-
quence is that there is a mismatch between the residuals in the minimization problem, which
deliver the coefficient of the point estimator, and the residuals in the variance formula. Another
consequence is that the optimal estimator, which is the estimator that minimizes the variance,
is based on the per household aggregated variables. This implies that under cluster sampling
one should always use the aggregated person-level information even if the variable of interest
is a person characteristic. We elaborate that this implication is particularly critical for large and
heterogeneous households. Second, as a remedy, we develop a hybrid GREG estimator that
compromises between an optimal and a person-level GREG estimator.

The remainder of this chapter is organized as follows: Section 6.1 extensively discusses the
variance formula of GREG estimators under cluster sampling. Section 6.2 reviews the literature
on alternative variance formulas. In Section 6.3, we develop the hybrid GREG estimator that
balances between optimality and person-level modeling. A simulation study verifies the theoret-
ical discussed consequences for person-level GREG estimators and validates the performance
of the proposed hybrid GREG estimator (Section 6.4). Section 6.5 summarizes the results.

160
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6.1 Consequences of the Variance Formula on Person-Level
GREG Estimators

In this section, we recapitulate the variance formula of GREG estimators under cluster sampling
given for example in Särndal et al. (cf. 1992, p. 307).1 As a short reminder, the population of
the households is given by Uh = {1, . . . ,M}. The population of persons in a certain house-
hold g is described by Ug. The number of persons within a household g is denoted by Ng.
The auxiliary vector of person i is determined by xi = (xi1, . . . , xiQ)T = (1, xi2, . . . , xiQ)T .
The per-household aggregated person-level auxiliary vector is given by xg = ∑

i∈Ug xi =
(xg1, . . . , xgQ)T = (Ng, xg2, . . . , xgQ)T . It should be distinguished from the household-level
auxiliary vector ag, as xg contains the number of persons within the household, Ng, instead of
an intercept. The variable of interest of person i is denoted by yi. We assume single-stage clus-
ter sampling, which means all persons within a selected household are sampled. For the sake
of convenience, we use the terms single-stage cluster sampling and cluster sampling synony-
mously. Note that4gk = πgk − πgπk, with πg as first-order inclusion probability of household
g and πgk as second-order inclusion probability of households g and k.

Table 6.1: Point estimator and its variances of a person-level GREG estimator under cluster sampling I

Person-level GREG estimator

Assisting model ξ yi = xi
Tβp + εi

Point estimator T̂GREG
yp = T̂HT

yp +Bp
T (Tx − T̂ HT

x )

Variance V (T̂GREG
yp ) = ∑

g∈Uh

∑
k∈Uh
4gk

rBpg
πg

r
Bp
k

πk

with rBpg = ∑
i∈Ug

(yi − xiTBp) = yg − xgTBp

Table 6.1 summarizes the formulas of the point estimators and its variances. We complete this
table in the following. It becomes apparent from the table that the point estimator is unaffected
by the cluster sampling design compared to a simple random sampling. However, the variance
of the person-level GREG estimator depends on the per-household aggregates of the variable
of interest yg and the auxiliary variables xg, although the assisting model ξ refers to the person
level counterparts yi and xi. The following two sections elaborate the consequences of the
aggregated form of the variance for person-level GREG estimators.

1Initially, (Särndal et al., 1992, p. 307) derived the formulas under two-stage cluster sampling. For reasons of
simplification, we generalize their formulas to single-stage cluster sampling. For this purpose, we skip the
term in the variance accounting for the randomness emerging within the selection process at the second stage.
Nevertheless, our conclusion drawn in the following, are also valid for two-stage cluster sampling.
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6.1.1 Mismatch between the Residuals in the Minimization Problem and
in the Variance Formula

Following the least squares theory (cf. Greene, 2003, Section 6.4; Wooldridge, 2013, Section
3.2), we derive the coefficients of GREG estimators by minimizing the sum of squared residuals.
The minimization problem and the corresponding coefficient are outlined in Table 6.2.

Table 6.2: Point estimator and its variances of a person-level GREG estimator under cluster sampling II

Person-level GREG estimator

Assisting model ξ yi = xi
Tβp + εi

Point estimator T̂GREG
yp = T̂HT

yp +Bp
T (Tx − T̂ HT

x )

Variance V (T̂GREG
yp ) = ∑

g∈Uh

∑
k∈Uh
4gk

rBpg
πg

r
Bp
k

πk

with rBpg = ∑
i∈Ug

(yi − xiTBp) = yg − xgTBp

Minimization problem min
Bp

∑
g∈Uh

∑
i∈Ug

(
r
Bp
i

)2

with rBpi = yi − xiTBp

Resulting coefficient Bp = ( ∑
g∈Uh

∑
i∈Ug

xixi
T )−1 ∑

g∈Uh

∑
i∈Ug

xiyi

We learn that the coefficient Bp is derived by minimizing the sum of squared person-level
residuals rBpi . However, these residuals in the minimization problem (fourth row) do not match
to the per-household aggregated residuals rBpg used in the variance formula (third row). The
reason for the mismatch is the order of the sum and the product. In consequence, the point
estimator and its variance are not compatible.

To make the mismatch between the residuals in the minimization problem and in the variance
formula more obvious, we temporarily assume that the households are selected by simple ran-
dom sampling. Given the first- and second-order inclusion probabilities under simple single-
stage cluster sampling

πg = m

M
for g = {1, . . . ,M}

πgk = m

M

(m− 1)
(M − 1) for g, k = {1, . . . ,M}, g 6= k
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the variance formula of the person-level GREG estimator simplifies to

V (T̂GREGyp ) =
∑
g∈Uh

∑
k∈Uh
4gk

rBpg
πg

r
Bp
k

πk

=
∑
g∈Uh
4gg

rBpg
πg

2

+
∑
g∈Uh

∑
k∈Uh
k 6=g

4gk

rBpg
πg

r
Bp
k

πk

= M2

m

(
1− m

M

) 1
m− 1

∑
g∈Uh

rBpg
2
.

Table 6.3 summarizes the results under simple cluster sampling where the households are drawn
by simple random sampling. Note that the point estimators remain unchanged compared to
Table 6.1 with an arbitrary sampling design.

Table 6.3: Point estimator and its variances of a person-level GREG estimator under simple cluster sam-
pling

Person-level GREG estimator

Assisting model ξ yi = xi
Tβp + εi

Point estimator T̂GREG
yp = T̂HT

yp +Bp
T (Tx − T̂ HT

x )

Variance V (T̂GREG
yp ) = M2

m

(
1− m

M

) 1
M − 1

∑
g∈Uh

(∑
i∈Ug r

Bp
i

)2

with rBpg = yg − xgTBp

Minimization problem min
Bp

∑
g∈Uh

∑
i∈Ug

(
r
Bp
i

)2

with rBpi = yi − xiTBp

Resulting coefficient Bp = ( ∑
g∈Uh

∑
i∈Ug

xixi
T )−1 ∑

g∈Uh

∑
i∈Ug

xiyi

Table 6.3 clarifies the reason for the mismatch between the residuals in the minimization prob-
lem (fourth row) and the variance formula (third row). It is given by the order of the sum and
the power of two, which can be seen from∑

g∈Uh

∑
i∈Ug

(rBpi )2 6=
∑
g∈Uh

( ∑
i∈Ug

r
Bp
i

)2
. (6.1)

The left-hand side in (6.1) describes the minimization problem, the right-hand side the variance
formula. We expect that the mismatch in (6.1) increases with the household size because it
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is valid that (∑i∈Ug r
Bp
i )2 >

∑
i∈Ug r

Bp
i

2
. This inequality implies that the mismatch in (6.1)

depends on Ug and thereby on Ng, the number of persons in household g.

To conclude, under cluster sampling the residuals in the minimization problem, which delivers
the point estimator, contradict the residuals used in the corresponding variance formula. In
other words, the variance applied to person-level GREG estimators does not conform to its
underlying person-level model. In a simulation study, we examine whether the mismatch affects
the precision of the variance estimates and whether it depends on the household sizes.

6.1.2 Optimal Estimator at the Person Level

Following Montanari (1987), the optimal estimator has minimum variance in a large class of
estimators (see Section 2.3.1 for details on the optimal theory). Setting the first derivative of the
variance of the person-level GREG estimator (third row in Table 6.2) to zero,

∂V (T̂GREG
yp )

∂Bp

!= 0

⇔ BOPT
p =

( ∑
g∈Uh

xgxg
T
)−1 ∑

g∈Uh
xgyg, (6.2)

yields the optimal coefficient. Accordingly, the optimal coefficient (6.2) depends on xg and yg
instead on xi and yi as used in the assisting model ξ (first row in Table 6.2). OPT indicates
optimal estimator. Hence, at the person level the optimal GREG estimator is given by

T̂OPT
yp = T̂HT

yp +BOPT
p

T (Tx − T̂ HT
x ). (6.3)

As a result, from the optimal point of view, one should always aggregate the available person-
level variables and only use its household totals, even if the variable of interest is a person
characteristic. However, the general choice of (6.3) is critical, in particular when the households
tend to be heterogeneous. This problem is expected to be aggravate for clusters larger than
households, such as in area cluster sampling. If the areas also are diversified, for example, by a
mixture of social buildings and detached houses, and the variable of interest is volatile, such as
income, the total estimates of income might be inaccurate.

A further problem of the general choice of (6.3) arises from the fact that following Robinson
(1950), the correlations for the same variable computed at the person or at the household level
can differ. Hence, aggregating the person-level information per household can lead to wrong
conclusions about the true relationship between the auxiliaries and the variable of interest, re-
sulting in an incorrect coefficient in the optimal GREG estimator. In the literature, the wrong
inference is known as ecological fallacy (see Section 3.2.2 for details). The incorrect coefficient
affects the efficiency of the optimal estimator since even if the GREG estimator is asymptoti-
cally unbiased, regardless of the correctness of the assisting model, its efficiency depends on the
explanatory power of the model. Thus, in cases of ecological fallacy, we doubt the superiority
of the optimal estimator compared with a person-level GREG estimator.
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Moreover, the auxiliaries xg of the optimal estimator (6.3) do not contain an intercept. Conse-
quently, the resulting weights do not sum up to the number of persons in the population.

To conclude, we expect that the optimality of (6.2) is influenced by the size and heterogeneity
of the households and by the correlation between the auxiliaries and the variable of interest at
both levels. In the following simulation study, we verify these expectations. For a comparison,
table 6.3 summarizes the person-level GREG estimator against the optimal GREG estimator
under cluster sampling.

Table 6.4: Person-level and optimal GREG estimator under cluster sampling

Person-level GREG estimator Optimal GREG estimator

T̂GREG
yp = T̂HT

yp +Bp
T (Tx − T̂ HT

x ) T̂OPT
yp = T̂HT

yp +BOPT
p

T (Tx − T̂ HT
x )

Bp = ( ∑
g∈Uh

∑
i∈Ug

xixi
T )−1 ∑

g∈Uh

∑
i∈Ug

xiyi BOPT
p =

( ∑
g∈Uh

xgxg
T
)−1 ∑

g∈Uh
xgyg

V (T̂GREG
yp ) = ∑

g∈Uh

∑
k∈Uh
4gk

rBpg
πg

r
Bp
k

πk
V (T̂OPT

yp ) = ∑
g∈Uh

∑
k∈Uh
4gk

r
BOPT
p

g

πg

r
BOPT
p

k

πk

with rBpg = yg − xgTBp with r
BOPT
p

g = yg − xgTBOPT
p

6.2 Literature on Alternative Variance Formulas for GREG
Estimators under Cluster Sampling

The previously discussed consequences of the variance formula under cluster sampling for
person-level GREG estimators strongly depend on the aggregated form of the variance formula.
Therefore, in this section, we briefly review the literature on alternative variance formulas to
the design-based variance formula. In the model-based context, Royall (1992) examined the
best linear unbiased (BLU) estimator and derived its model-variance. As already outlined in
Section 2.2.1, in the model-based approach point and variance estimators are motivated by a
working model. When the working model is assumed to be linear, the BLU estimator is equiva-
lent to the GREG estimator. By relating the BLU estimator to the Horvitz-Thompson estimator
Royall (1992), built a bridge to the design-based approach. Tam (1995) extended the BLU
estimator to cluster sampling and assumed that the covariance matrix of the working model
is block-diagonal. However, since the block-diagonal covariance structure results in the same
per-household aggregation of person-level information as the design-based variance formula
(cf. Särndal et al., 1992, p. 307), we do not pursue the BLU estimator and its model-variance
in the following. Therefore, the critical disregard of the initial level of modeling remains un-
changed.



6 THE VARIANCE FORMULA OF GREG ESTIMATORS UNDER CLUSTER SAMPLING 166

Valliant (2002) offered a leverage-adjusted sandwich estimator to estimate the model variance
of a GREG estimator. The sandwich variance estimator consists of the squared residuals that
are adjusted by factors analogous to leverages known from econometrics. He showed that the
proposed sandwich estimator is approximately model- and design-unbiased. Kennel (2013)
extended the leverage-adjusted sandwich variance estimator to cluster sampling designs. How-
ever, the sandwich variance estimator is also based on household total residuals. Therefore, to
the best of our knowledge, there are no alternative variance formulas discussed in the literature,
which prevent the per-household aggregation of person-level information.

6.3 Proposed Hybrid GREG Estimator

As declared in Section 6.1, we assess the general choice of the optimal estimator (6.3), which
utilizes the per-household aggregates of the variables to estimate person-level characteristics
as critical, especially for large and heterogeneous households. As a remedy, we develop a
hybrid GREG estimator that compromises between the optimal and the person-level GREG
estimator. The proposed hybrid GREG estimator is implemented at the person level, since the
variables of interest are person-level characteristics. This proceeding inhibits ecological fallacy.
The intention of the hybrid GREG estimator is to incorporate the auxiliary information of the
household members additional to the information of the persons. We define the hybrid GREG
estimator as

T̂HYB
yp = T̂HT

yp +BHYB
p

T (Tx − T̂ HT
x ) (6.4)

where the coefficient is given by

BHYB
p =

( ∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

α̃ijxixj
T

)−1 ∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

α̃ijxiyj (6.5)

with weighting factors

α̃ij =

 αg for i = j

(1− αg) for i 6= j.

Abbreviation HYB indicates hybrid GREG estimator. The double sum in the coefficient (6.5)
allows us to utilize both the person- and household-level information of the auxiliaries and the
variable of interest. For explanation of the double sum and the weighting factor, consider the
case of Q = 2 auxiliary variables. Then, the first term in (6.5) is determined by

( ∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

α̃ijxixj
T

)−1

=


∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

α̃ijxi1xj1
∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

α̃ijxi2xj1∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

α̃ijxi1xj2
∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

α̃ijxi2xj2


−1

(6.6)
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with first diagonal element∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

α̃ijxi1xj1 =
∑
g∈Uh

αg
∑
i∈Ug

x2
i1︸ ︷︷ ︸

Info of the persons

+
∑
g∈Uh

(1− αg)
∑
i∈Ug

∑
j∈Ug
j 6=i

xi1xj1

︸ ︷︷ ︸
Info with all other household members

and with minor diagonal elements∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

α̃ijxi1xj2 =
∑
g∈Uh

αg
∑
i∈Ug

xi1xi2︸ ︷︷ ︸
Info of the persons

+
∑
g∈Uh

(1− αg)
∑
i∈Ug

∑
j∈Ug
j 6=i

xi1xj2.

︸ ︷︷ ︸
Info with all other household members

Accordingly, the diagonal elements in (6.6) concerns the auxiliary information of both the per-
sons and of all other household members with respect to the same variable. The minor diagonal
elements contain the cross-auxiliary information of the persons and the other household mem-
bers. The weighting factors αg and (1 − αg) allow us to differently weight information of the
persons and of other household members.

The second term in (6.5) can be rewritten as

∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

α̃ijxiyj =


∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

α̃ijxi1yj∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

α̃ijxi2yj

 (6.7)

with first row element∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

α̃ijxi1yj =
∑
g∈Uh

αg
∑
i∈Ug

xi1yi︸ ︷︷ ︸
Info of the persons

+
∑
g∈Uh

(1− αg)
∑
i∈Ug

∑
j∈Ug
j 6=i

xi1yj

︸ ︷︷ ︸
Info with all other household members

and second row element∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

α̃ijxi2yj =
∑
g∈Uh

αg
∑
i∈Ug

xi2yi︸ ︷︷ ︸
Info of the persons

+
∑
g∈Uh

(1− αg)
∑
i∈Ug

∑
j∈Ug
j 6=i

xi2yj.

︸ ︷︷ ︸
Info with all other household members

To make the difference between the hybrid GREG estimator (6.3) and a person-level GREG
estimator,

T̂yp = T̂HT
yp +Bp

T (Tx − T̂ HT
x ), (6.8)

more obvious, we express the coefficient

Bp =
( ∑
g∈Uh

∑
i∈Ug

xixi
T
)−1 ∑

g∈Uh

∑
i∈Ug

xiyi
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in a form comparable to that of the hybrid GREG estimator. For Q = 2, the coefficient Bp is
obtained from

( ∑
g∈Uh

∑
i∈Ug

xixi
T

)−1

=


∑
g∈Uh

∑
i∈Ug

x2
i1

∑
g∈Uh

∑
i∈Ug

xi2xi1∑
g∈Uh

∑
i∈Ug

xi1xi2
∑
g∈Uh

∑
i∈Ug

x2
i2


−1

and

∑
g∈Uh

∑
i∈Ug

xiyi =


∑
g∈Uh

∑
i∈Ug

xi1yi∑
g∈Uh

∑
i∈Ug

xi2yi

 .
Hence, the person-level GREG estimator (6.8) captures only the information of the persons
itself, but not the cross-household information. The main differences between BHYB

p and Bp

are driven by the second terms in (6.6) and (6.7) and by the weighting factor α̃ij .

Different choices of weighting factors are possible. One possible choice is that the weighting
factors are chosen to account for the heterogeneity of the households because as explained in
Section 6.1.2 the optimality of the GREG estimator depends on it. A measure of the hetero-
geneity is the within variance, given by

V within(y) = (M − 1)
∑
g∈Uh

∑
i∈Ug

(yi − ȳi)2

with ȳi = N−1∑
i∈Up yi as mean value. Then, we define

αg =


1 for g ∈ {1, . . . ,M : Ng = 1}∑
i∈Ug(yi − ȳi)2∑

g∈Uh
∑
i∈Ug(yi − ȳi)2 otherwise.

(6.9)

Accordingly, αg reflects the share of the within variance of household g on the total within
variance V within(y). The more heterogeneous household g, the higher αg that weights the in-
formation of the persons. For single-person households, there is no information from other
household members; thus per definition, the weighting factor equals 1. It should be noted that
ag can becomes very small if the number of households is large.

Another possible choice of αg is given by

αg =

 1 for g ∈ {1, . . . ,M : Ng = 1}
(1− 1

Ng
) otherwise.

(6.10)

Therefore, (6.10) respects the household size as a further factor influencing the optimality of
the GREG estimator. The intention behind of this choice is that the larger the household g, the
lower (1− αg) that weights the information of all other household members. The advantage of
(6.10) compared to (6.9) is that it is independent from the variable of interest.
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The compromise between the optimality and person-level modeling of our proposed hybrid
GREG estimator becomes clear for certain weighting factors. Thus, we show that for certain
choices of the weighting factors either the optimal or the person-level GREG estimator results.
Given the following equalities

∑
g∈Uh

xgxg
T =

∑
g∈Uh

( ∑
i∈Ug

xi
)( ∑

i∈Ug
xi
)T

=
∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

xixj
T

∑
g∈Uh

xgyg =
∑
g∈Uh

( ∑
i∈Ug

xi
)( ∑

i∈Ug
yi
)

=
∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

xiyj,

it can be shown that for α̃ij = 1, our proposed coefficient (6.5) can be expressed as the optimal
coefficient (6.2)

BHYB
p =

( ∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

xixj
T

)−1 ∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

xiyj

=
( ∑
g∈Uh

xgxg
T
)−1 ∑

g∈Uh
xgyg

= BOPT
p .

Consequently, for α̃ij = 1, the proposed hybrid GREG estimator simplifies to the optimal
estimator

T̂HYB
yp = T̂OPT

yp .

On the other hand, for αg = 1 the information of the other household members in the double
sums in (6.6) and (6.7) is weighted by zero. In result, the hybrid GREG estimator equals the
person-level GREG estimator

T̂HYB
yp = T̂GREG

yp .

Therefore, the optimal and the person-level GREG estimator can be seen as special cases of the
hybrid GREG estimator.

An estimator of the coefficient (6.5) is given by

B̂HYB
p =

( ∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

α̃ijxixj
T

πi

)−1 ∑
g∈Uh

∑
i∈Ug

∑
j∈Ug

α̃ijxiyj
πi

.

The variance of the proposed hybrid GREG estimator (6.4) is estimated by the residual vari-
ance

V (T̂HYB
yp ) =

∑
g∈Uh

∑
k∈Uh
4gk

r
BHYB
p

g

πg

r
BHYB
p

k

πk
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with r
BHYB
p

g = ∑
i∈Ug(yi − xiTBHYB

p ) as residual.

In conclusion, our proposed hybrid GREG estimator is derived at the person level but addition-
ally includes the information of the other household members. The receptive extent to which
the information of the persons and the households is incorporated is determined by the weight-
ing factors. The nearer ag is to 1, the more similar our proposed hybrid GREG estimator to
the person-level GREG estimator. The nearer αij is to 1, the more similar our proposed hybrid
GREG estimator to the optimal estimator.

6.4 Simulation Study

The simulation study is based on the same simulation setup as introduced in Section 3.4.1. The
objective of the simulation study is twofold: First, in Section 6.4.1, we examine the conse-
quences of the aggregated form of the variance formula under cluster sampling for person-level
GREG estimators. Second, in Section 6.4.2, we compare point and precision estimates of our
proposed hybrid GREG estimator with the optimal and the person-level GREG estimator. The
estimators under consideration are presented in Table 6.5.

Table 6.5: Estimators under consideration

Estimator Description

PERS Person-level GREG estimator defined in (6.8)

OPT Optimal GREG estimator defined in (6.3)

HYBa Hybrid GREG estimator (6.4) with weighting factors (6.9)

HYBb Hybrid GREG estimator (6.4) with weighting factors (6.10)

As explained in Section 6.1.2, we expect that the performance of the estimators is influenced
by the household size, by the heterogeneity of the households, and by the correlation between
the auxiliaries and the variable of interest at both levels. To study the influence, we conduct
different scenarios that are summarized in Table 6.6.

Table 6.6: Scenarios with different household decompositions

Scenario Description

HETEROGENEOUS Original household IDs from AMELIA

HOMOGENEOUS Generated household IDs depending on income

HETEROGENEOUS_large Collapsed original household IDs from AMELIA

HOMOGENEOUS_large Collapsed generated household IDs depending on income
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Figure 6.1: Boxplots of the median income of the households under different scenarios

In order to study the influence of the heterogeneity of the households, we generate households
of different decompositions. The base case is given by the original household identifier (ID)
from the AMELIA data set. Figure 6.1 illustrates the median income for every household under
different scenarios. We plot the median, since it is robust against outliers. The upper left plot
shows the base case. It can be seen that the median income of the original household IDs is very
volatile. Consequently, the households are heterogeneous with respect to income. We denote
this scenario as HETEROGENEOUS. To generate households that are very similar, on the other
side, we redistribute the persons in our data set to new households. For this purpose, we sort the
persons by income. Then, we generate a new household ID by randomly allocating the known
distribution of the household sizes from the original household ID to the sorted persons. We
call this scenario HOMOGENEOUS. As a result, the distributions of the household sizes are the
same for HETEROGENEOUS and HOMOGENEOUS. The right plot in Figure 6.1 shows that
the median income is similar for most households, except for the households with the highest
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income.

In order to examine whether the performance of the estimators is influenced by the house-
hold sizes, we increase the household size by collapsing 10 households of the original house-
hold ID to one larger cluster. We denote this scenario as HETEROGENEOUS_large. Analo-
gously to the proceeding in the second scenario, we sort the persons by income and generate a
new household ID by randomly allocating the known distribution of the household sizes from
the collapsed original household IDs to the sorted persons. We call this scenario HOMOGE-
NEOUS_large. The resulting household size distributions of HETEROGENEOUS_large and
HOMOGENEOUS_large are the same. The median income of the households is illustrated in
the lower plots in Figure 6.1. Of course, the total number of the households in the lower plots
is decreased by a factor 10 compared with the upper plots.

Finally, to explore the effect of the divergent strength of the relationship between the auxiliaries
and the variable of interest computed at the person or household level, we choose sex as the
auxiliary variable. As mentioned in Section A.2 in Appendix A, the sign of the correlation
between sex and inc, computed at the person or household level, differs. The signs of the
correlations between sex and the other variables of interest are the same at both levels.

We draw R = 1000 MC samples of m = 200 households in the first two scenarios and m = 20
households in the last two scenarios. Thus, the resulting sample sizes of persons is approxi-
mately the same in all four scenarios. To reduce the number of plots in the figures, we select
inc, soc, sel, act_2 and bene_age2 from Table 3.7 as variables of interest. The results for
the remaining variables of interest are very similar.

The coefficients, RB and rsRBr of point and variance estimates obtained from the estimators
under consideration are presented in Figures 6.2, 6.3 and 6.4. The mean values are indicated in
green. All figures confirm that the coefficients and the point and variance estimates vary less in
the heterogeneous than in the homogeneous scenarios. This is the expected result under cluster
sampling, but nevertheless, our main concerns are addressed in the following two sections.
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6.4.1 Consequences of the Variance on Person-Level GREG Estimators

For the discussion of the consequences of the aggregated form of the variance formula on
person-level GREG estimators, we focus on the person-level GREG estimator PERS and the
optimal GREG estimator OPT. In this section, we answer two questions:

First, are the variance estimates of the person-level GREG estimator affected by the mismatch
between the residuals in the minimization problem and in the variance formula? To answer
this question, we examine the RB and rsRBr for r = 1, . . . , 1000 of the variance estimates
in Figure 6.4 for PERS. The RB is highlighted in green. It can be seen that PERS tends
to underestimate the empirical variance of the person-level GREG estimator, particularly for
HOMOGENEOUS_large. This result is an indication that our expectation that the mismatch
of the residuals affects the precision of the variance estimates for larger and homogeneous
household, is confirmed. It should be noted that the rsRBr of inc is very large for some MC
replicates. The reasons include that inc has a very skew distribution, HOMOGENEOUS and
HOMOGENEOUS_large are the worst case scenarios under cluster sampling and for HOMO-
GENEOUS_large the sample size is very small (m = 20).

Second, is the optimality of OPT influenced by the heterogeneity of the households, the house-
hold size or the correlation between the variable of interest and the auxiliaries? Table 6.2 depicts
that the ranges of the coefficients of OPT are considerably wider than the ranges of PERS, in
particular for the scenarios with the larger household sizes in the lower plots. The wider range
is caused by the differing signs of the correlations computed at the person and household level.
With respect to the point estimates in Figure, 6.3 OPT and PERS perform similar. However,
for HOMOGENEOUS_large, OPT slightly underestimates the true population total for inc and
sel. Figure 6.4 shows that the variance estimates of OPT considerably underestimates the vari-
ance for both scenarios of larger household sizes (lower plots). These results indicate that the
influence of the above factors on the point estimates of OPT compared to PERS is limited to the
worst case scenario of large and homogeneous households. The point estimates also demon-
strate that OPT is not necessarily superior to PERS, even if the former is the optimal estimator.
Also with respect to the variance estimates OPT suffers from the larger household sizes and the
heterogeneity. Therefore, we conclude that the decision between a person-level or an optimal
GREG estimator should be considered with caution and should take into account the size and
heterogeneity of the households.

6.4.2 Performance of the Hybrid GREG Estimator

In this section, we compare our proposed hybrid estimator with a person-level GREG estima-
tor and an optimal GREG estimator. The hybrid estimator is implemented with two different
weighting factors. HYBa is based on weighting factor (6.9) and accounts for the heterogeneity
of the households. HYBb relies on weighting factor (6.10) and respects the household size.
Figure 6.2 depicts that the coefficients of HYBb varies considerably more than the coefficients
of HYBa. Since the coefficients are the only difference between the point estimators, we expect
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the same pattern of both estimators for the point estimates. Compared with OPT, the boxes of
HYBa are smaller. The reverse is true compared with PERS. This observation is in accordance
with the fact that our proposed estimator is a hybrid between the optimal and the person-level
GREG estimator. For HYBb, this observation applies only for the scenarios with the larger
household sizes.

Figure 6.3 confirms that the point estimates of HYBa and HYBb are unbiased for all variables
and all scenarios. HYBa performs very similar compared with PERS and OPT. The boxes of
HYBb are slighly wider. The differences between HYBa and HYBb are less than expected from
the pattern in the coefficients. Table 6.7 presents the RRMSE of the point estimates. There is
a tendency that the RRMSE of HYBa and HYBb exceeds the RRMSE of PERS and OPT. This
results shows that further research on the optimization of the weighting factors is needed to
improve the efficiency of the point estimates.

With respect to the variance estimates in Figure 6.4 both proposed hybrid GREG estimators,
HYBa and HYBb, achieve the most precise results, in particular for inc and soc. Surprisingly,
this superiority is stronger for smaller households.

To conclude, the choice of a weighting factor accounting for the heterogeneity (HYBa) seems
to be preferable compared to a choice accounting for the household size (HYBb). This implies
that the heterogeneity of the households or clusters is more relevant for the quality of point and
variance estimates. With regard to point estimation, there is further need for improvement of
to weighting factors, and with regard to variance estimation, our hybrid estimator is superior
compared with the optimal GREG estimator and the person-level GREG estimator.

6.5 Summary and Conclusion

In this chapter, we explored the consequences of the per-household aggregation of the person-
level variables in the variance formula under cluster sampling for person-level GREG estima-
tors. A first consequence is that the residuals in the variance formula and the residuals that
determine the point estimator differ. Our simulation study showed that the variances estimates
for a person-level GREG estimator indeed tends to underestimate the empirical variance for
cases of large and homogeneous households.

A second consequence is that the form of the variance formula leads to an optimal estimator that
depends on the aggregates of both the variable of interest and the auxiliary variables, even if the
objective to estimate is a person-level characteristic. Our results have shown that the optimal
GREG estimator is not superior to a person-level GREG estimator. Furthermore, we found that
for larger homogeneous households it achieves less precise point and variance estimates than a
person-level GREG estimator. Therefore, we recommend to be careful with the general choice
of an optimal GREG estimator, especially for large and heterogeneous households.

To compromise between the optimal and the person-level GREG estimator, we propose the hy-
brid GREG estimator that incorporates both the person- and household-level information. The
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Table 6.7: Relative bias and relative root mean squared error of point estimates for different scenarios

RRMSE

PERS OPT HYBa HYBb

Heterogeneous

inc 0.06 0.06 0.07 0.10

soc 0.09 0.09 0.10 0.11

sel 0.17 0.17 0.17 0.18

act2 0.15 0.15 0.15 0.16

bene_age3 0.36 0.36 0.36 0.37

Homogeneous

inc 0.12 0.12 0.14 0.16

soc 0.10 0.10 0.11 0.12

sel 0.18 0.18 0.19 0.20

act2 0.15 0.15 0.16 0.17

bene_age3 0.36 0.36 0.37 0.37

Heterogeneous_large

inc 0.10 0.10 0.11 0.13

soc 0.11 0.12 0.12 0.13

sel 0.18 0.19 0.19 0.20

act2 0.16 0.16 0.16 0.17

bene_age3 0.37 0.38 0.37 0.38

Homogeneous_large

inc 0.36 0.34 0.41 0.44

soc 0.18 0.19 0.19 0.21

sel 0.31 0.31 0.33 0.36

act2 0.22 0.22 0.21 0.22

bene_age3 0.43 0.44 0.43 0.44

weighting factors determine the extent to which the person- and household-level information is
included in the estimation. Thus, the weighting factors balance the compromise between the
optimal and the person-level GREG estimator. The proposed hybrid GREG estimator is a very
flexible method because due to the weighting factors, it can be adjusted to the specific sample
conditions. The special case of α̃ij = 1 delivers the optimal GREG estimator, αg = 1 in turn
results in the person-level GREG estimator. Therefore, the hybrid GREG estimator builds a
bridge between the separated approaches of person- or household-level modeling. The simu-
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lation study verifies that the choice of a weighting factor accounting for the heterogeneity is
preferable compared to a weighting factor accounting for the household size. Future research
should deal with optimal weighting factors to increase the precision of point estimates. Con-
ceivable further choices are intraclass correlation coefficients. We discourage from using design
effects to weight the person- and household-level information, since the design effects depend
on the variance formula under cluster sampling with the disadvantages discussed in Section
6.1.

The hybrid GREG estimator can also be used to ensure consistency between person- and house-
hold-level estimates. For this purpose, the common variables have to be included as additional
auxiliaries into the estimator as proposed in Chapter 4.



7 Conclusion and Outlook

In this thesis, we focused on topics on consistent estimation in household surveys. In Chapter 3,
we investigated integrated weighting as current practice in official statistics to ensure consistent
estimates at the person and the household level. In order to compare the proposed integrated
weighting approaches introduced by Lemaître and Dufour (1987) and Nieuwenbroek (1993)
we combine both to one general integrated GREG estimator. The integrated GREG estimator
ensures consistency by replacing the original auxiliary information by constructed household
mean values. The person weights, which are equal for all household members, are assigned
one-to-one the corresponding households. Due to the one-to-one weight assignment between
the person and the household level an additional auxiliary is required that ensures that the person
weights sum up to the number of persons in the population and simultaneously the household
weights sum up to the number of households in the population. This property, which we denote
as integrative property, is to the best of our knowledge neglected in the literature. To deduce
the consequences of the strict requirement of equal weights for all persons within the same
household and the household itself, we opposed the integrated GREG estimator with a naïve
GREG estimator. As a result, the integrated GREG estimator is characterized by an increased
number of outcome values of the auxiliaries, neglects the heterogeneity of the household, and
raises possible problems induced by ecological fallacy. The simulation study confirmed that
these consequences result in more spread weights, more varied coefficients, and less efficient
point and variance estimates for smaller sample sizes compared with a naïve GREG estimator.

As an alternative to integrated weighting, in Chapter 4, we proposed two weighting approaches
that ensure consistent estimates and allow for differing weights within a household. Consis-
tency is guaranteed by incorporating the variables that are common to both the person and
household level data sets as additional auxiliaries. Our first weighting approach is easier to im-
plement, since only the household-level estimator is influenced by the common variables. The
person-level estimator, in turn, remains unaffected by the consistency requirements. In the sec-
ond weighting approach, both estimators incorporate the common variables. This enables us to
produce the best available estimate for the unknown totals of the common variables. Therefore,
in survey practice the choice for one of the weighting approaches should balance the reduced
implementation effort of the first weighting approach with the improved quality of the estimates
for the unknown common variable totals and the totals of variables related to them. The advan-
tages of the alternative weighting approaches compared to integrated weighting are manifold.
Firstly, consistency is ensured more directly and only for the relevant variables, instead of in-
directly by aggregating the individual information per household. Secondly, using the original
auxiliary information allows for divergent weights for the persons within the same household.
Therefore, the heterogeneity in a household, if existing, is captured, and individual patterns

180



7 CONCLUSION AND OUTLOOK 181

are retained. Thirdly, separated weighting models can be implemented at the person and at the
household level, which ensures more flexibility in variable selection and prevent from problems
induced by ecological fallacy. Finally, no additional auxiliary variable is required to enforce
the integrated property. Our simulation study strongly supports the superiority of our alterna-
tive weighting approaches relative to integrated weighting with respect to point and variance
estimates. In particular, the second proposed weighting approach yields the most precise esti-
mation results. The precision gains depend on the strength of the relation between the common
variables and the variables of interest. As a result, we contradict the widespread perception in
the literature that equal weights are required to ensure consistent estimates.

Future research should address the effects of consistency requirements on nonresponse adjust-
ment. In general, methods to prevent a nonresponse bias proceed at the person level. Hence,
the adjusted person weights are no longer necessarily equal within a household. In order to
still guarantee consistency, Eurostat (cf. European Commission, 2014, p. 40) recommends av-
eraging the adjusted person weights within a household and assign this average weight to all
household members. In contrast, our alternative weighting approaches allow a nonresponse ad-
justment at the person level without the need for a subsequent averaging process of the resulting
weights. The incorporation of the common variables guarantees consistency even in the case
of nonresponse adjustment. Therefore, individual response patterns are retained. This flexibil-
ity reinforces the superiority of our alternative weighting approaches compared to integrated
weighting.

The alternative weighting approaches are both expressed as GREG estimators. Since the GREG
estimator is analytically representable, we are able to derive explicit formulas for point and
variance estimators. The further advantage of the analytical expression is that we were able
to decompose the point estimators into a naïve GREG estimator and an adjustment term to
quantify the effects caused by the consistency requirements. However, all proposed GREG es-
timators can be embedded into the calibration estimation framework (as introduced in Section
2.3.4). An advantage of the calibration approach is that additional constraints can easily be
implemented such as box constraints that ensure the weights are within certain bounds. More-
over, our alternative weighting approaches can be combined with the generalized calibration
estimator proposed by Münnich et al. (2018). The intent of the generalized calibration esti-
mator is to relax some constraints when the total number of constraints are very large or some
constraints are measured with uncertainty for example by means of small area estimation meth-
ods. The combination of the alternative weighting approaches and the generalized calibration
estimator is particularly useful when the number of variables required for consistency increases
or consistency is required at different hierarchical levels.

Another application field for our proposed weighting approaches is integrated surveys such as
the German Microcensus 2020. The aim of the German Microcensus 2020 is to integrate the
household surveys in one survey with a common core sample and different subsamples (cf.
Riede, 2013). Now, the alternative weighting approaches can be applied to produce consistent
estimates between the core sample and the subsamples. Therefore, the alternative weighting
approaches not only ensure consistency within one household surveys, they can further be ex-
tended to ensure consistency at a higher level in an integrated system. The only requirement is
to determine the common variables for which consistency is desired.
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In addition the practical applications for official statistics, this thesis contributes to the theo-
retical literature. In Chapter 5, we derived an efficiency comparison between a person-level
GREG estimator and an integrated household-level GREG estimator. The difficulty was that
both underlying assisting models are of different dimensions. The difference is constituted by
the intercept in the household-level model. As a remedy, we decomposed the variance of an in-
tegrated GREG estimator into the variance of a reduced GREG estimator without an intercept,
which is of the same dimension as a person-level GREG estimator, and an additional variance
term that captures the effect of the intercept disregard by the reduced GREG estimator. For
this purpose, we initially decomposed the integrated coefficients by applying mediation models
known from psychology and sociology. Subsequently, we transferred the decomposition to the
integrated residuals by the construction of pseudo-residuals that permit us to exactly quantify
the effect of the intercept on the variance disregarded by the reduced household-level model.
Finally, we extended our findings to the decomposition of the sum of squared residuals. This
decomposition was inserted into the difference between the variances of a person-level GREG
estimator and an integrated household-level GREG estimator. To assess the resulting difference,
we deduced a relationship between the coefficients determining the differences. The idea was to
exploit an overlap model that contains both auxiliaries determining the coefficients. As a result,
the difference between both variances consists of two variance components. The first variance
component is given by the variances of a person-level and a reduced household-level GREG
estimator. It depends on the correlation between the original auxiliaries and the constructed
household mean values. The second variance component considers the effect of the intercept
disregarded by the reduced household-level model and is hardly predictable.

In Section 5.3, we applied our proposed decomposition to predict the difference between two
coefficients of determination when adding or omitting explanatory variables. Our result permits
a deeper understanding of how the implementation of additional explanatory variables causes
supplementary explanatory power of the model. This application of our decomposition can
be relevant for the variable selection process in econometrics and survey statistics. In survey
statistics our decomposition delivers a criterion to decide which auxiliary variables (with known
totals) should be included into the assisting model to increase the efficiency of the estimator.

In the last chapter, we explored the consequences of the variance formula under cluster sam-
pling on the person-level GREG estimator. One consequence is that the form of the variance
formula leads to an optimal estimator that depends on the aggregates of both the variable of
interest and the auxiliary variables regardless of the level of the variable of interest. Therefore,
there is a trade-off between person-level modeling as the appropriate level to estimate person-
level characteristics and optimality induced by an estimator using the per-household aggregated
variables. As a remedy, we introduced the hybrid GREG estimator that balances between a
person-level and an optimal GREG estimator. The proposed hybrid GREG estimator is a very
flexible method because due to the weighting factors, it can be adjusted to the specific sample
conditions. Our simulation results showed that a weighting accounting for the heterogeneity
achieves more precise point and variance estimates than a weighting factor accounting for the
household sizes. Compared to a person-level and an optimal GREG estimator, our proposed
hybrid GREG estimator is superior with respect to variance estimates. To improve the precision
of the point estimates, further research to be conducted should include the optimal choice of
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the weighting factors to balance between person-level modeling and optimality. Conceivable
choices of weighting factors are the intraclass correlation coefficients.



A Additional Material for Chapter 3

A.1 Additional Table for the Simulation Study

Table A.1: Relative bias of point estimates at the person level

m=1500 m=200

GREG INT1 INT2 GREG INT1 INT2

inc 0.00 0.00 0.00 -0.00 0.00 -0.00

soc 0.00 0.00 0.00 0.00 0.00 0.00

sel -0.00 -0.00 -0.00 0.00 0.00 0.00

act1 0.00 0.00 0.00 0.00 0.00 0.00

act2 0.00 0.00 0.00 0.00 0.00 0.00

act3 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00

inc_hs1 -0.00 -0.01 -0.00 0.01 -0.01 -0.00

inc_hs2 -0.00 -0.00 -0.00 0.01 0.01 0.00

inc_hs3 0.00 0.00 0.00 -0.00 0.00 -0.00

inc_hs4 0.00 0.00 0.00 -0.00 -0.00 0.00

inc_hs5 -0.00 -0.00 0.00 -0.00 0.00 0.00

inc_hs6 -0.01 -0.01 -0.01 -0.00 -0.01 -0.01

bene_age1 0.01 0.01 0.01 0.01 0.01 0.01

bene_age2 0.01 0.01 0.01 0.02 0.02 0.02

bene_age3 0.00 0.00 0.00 0.02 0.01 0.01

bene_age4 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02

A.2 Further Simulation Results

While exploring the consequences of integrated weighting, we generate several further sim-
ulation results. We start by estimating certain subgroups and domains. Next, we analyze

184
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whether the integrated GREG estimator suffers from ecological fallacy. Moreover, we inves-
tigate whether the enforcement of equal weights for all household members leads to faulty
inferences in regressions.

First, in practice, estimates for subgroups or domains are often of as much interest as population
totals. Thus, we analyzed whether the estimates for specific subgroups suffer from the replace-
ment of the original auxiliaries. As subgroups, we chose various cross-classifications of sex,
age, ms, hs, and inc. Surprisingly, we observe neither a higher RB (Table A.2) nor a higher
MSE A.3 compared to the results given in Tables A.1 and 3.8.

Table A.2: Relative bias of point estimates for domains

m=1500 m=200

GREG INT1 INT2 GREG INT1 INT2

age4_sex1_ms2 0.00 0.00 0.00 0.00 0.00 0.00

age2_sex0_ms4 -0.00 -0.01 -0.00 -0.02 -0.02 -0.02

age4_sex0_ms2 -0.00 -0.00 0.00 0.01 0.00 0.01

age2_sex1_ms4 0.00 0.01 0.01 -0.02 -0.03 -0.02

age4_sex1_ms4 -0.00 -0.00 -0.00 0.00 0.00 0.00

act1_sex1 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00

act1_hs1 0.00 0.00 0.00 0.01 -0.02 -0.01

act1_sex0 0.00 0.00 0.00 0.00 0.00 0.00

act1_hs6 -0.00 -0.00 -0.00 0.00 -0.00 -0.00

act2_hs1_age1 -0.01 -0.01 -0.01 -0.02 -0.02 -0.05

act1_hs1_age4 0.02 0.01 0.01 0.03 0.00 0.02

act1_hs6_age1 0.02 0.02 0.02 -0.01 -0.01 0.00

inc_ms1 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00

inc_ms2 0.00 0.00 0.00 -0.00 0.00 0.00

inc_ms3 -0.00 -0.00 -0.00 0.01 0.01 0.01

inc_ms4 0.00 0.00 0.00 -0.00 -0.00 -0.00

Second, we observe that for inc and sex the sign of the true correlations actually differs be-
tween the person and household level

Cor(xi,yi) = −0.10 versus Cor(xg,yg) = 0.32.

Therefore, the tacit assumption in the integrated weighting approach that the relationship be-
tween the auxiliary variable, here sex, and the variable of interest, here inc, are the same,
causes ecological fallacy as described by Robinson (1950) (see Section 3.2.2 for details). The
question arises whether the allegedly wrong sign of the correlation at the household level, which
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Table A.3: Relative efficiency of the mean squared error of point estimates for domains

m=1500 m=200
INT1

GREG
INT2

GREG
INT1

GREG2
INT2

GREG2
INT1

GREG
INT2

GREG
INT1

GREG2
INT2

GREG2

age4_sex1_ms2 0.99 0.99 0.99 0.99 1.02 1.03 1.03 1.01

age2_sex0_ms4 1.01 1.01 1.01 1.00 1.03 1.04 1.03 1.03

age4_sex0_ms2 1.01 1.00 1.00 1.01 1.03 1.03 1.03 1.03

age2_sex1_ms4 1.00 0.99 0.99 1.00 1.01 1.01 1.01 1.00

age4_sex1_ms4 1.00 1.00 1.00 1.00 1.02 1.02 1.02 1.01

act1_sex1 1.00 1.00 1.00 1.00 1.02 1.03 1.03 1.02

act1_hs1 0.93 0.87 0.95 1.21 0.97 0.88 0.96 1.30

act1_sex0 1.00 1.00 1.00 1.00 1.02 1.03 1.03 1.00

act1_hs6 0.93 0.90 0.97 1.14 0.96 0.98 1.04 1.13

act2_hs1_age1 1.02 1.00 1.00 1.02 1.14 0.98 0.99 1.14

act1_hs1_age4 1.02 0.98 0.99 1.04 1.07 0.98 1.00 1.08

act1_hs6_age1 0.99 0.99 1.00 1.02 1.01 1.07 1.08 0.99

inc_ms1 1.00 1.00 1.00 1.00 1.02 1.02 1.02 1.01

inc_ms2 1.00 1.00 1.00 1.00 1.04 1.05 1.05 1.03

inc_ms3 1.01 1.00 1.00 1.00 1.03 1.02 1.01 1.01

inc_ms4 1.00 1.00 1.00 1.00 1.03 1.02 1.03 1.02

determines the sign of the coefficients within the estimators, introduces some bias. To answer
this question, we calculate GREG, INT1, and INT2 for inc with sex as a single auxiliary vari-
able. Furthermore, we compute INT1b and INT2b, which do not contain the integrated variable,
N−1
g , as an additional auxiliary. From Table A.4 in the Appendix A, it becomes apparent that

even if the integrated GREG estimators uses the coefficient with the wrong signs, no biased
estimates results. Moreover, the MSEs are equal for GREG, INT1, and INT2. However, when
excluding the integrated variable from the auxiliaries, the point estimates of INT1b and INT2b
are considerably less efficient than those produced by GREG. In other words, including the
integrated variable as additional auxiliary reverses the negative effect of the wrong sign on the
efficiency in cases of ecological fallacy.

Table A.4: Relative bias of point estimates with sex as auxiliary for different sample sizes

m=1500 m=200

GREG INT1 INT2 INT1b INT2b GREG INT1 INT2 INT1b INT2b

inc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table A.5: Relative efficiency of the MSE of the point estimates with solely sex as auxiliary

m=1500 m=200
INT1

GREG
INT2

GREG
INT1b
GREG

INT2b
GREG

INT1
GREG

INT2
GREG

INT1b
GREG

INT2b
GREG

inc 1.00 1.00 1.10 1.10 1.00 1.00 1.08 1.08

To further analyze whether the wrong sign of a coefficient, and thus ecological fallacy, might
produce some biased results, we generated several synthetic populations with different correla-
tion structures between yi and xi or x̄i. Our results show once more that even when Cor(y, x)
and Cor(y, x̄) have different signs, the integrated GREG estimator does not perform signifi-
cantly worse than a naïve GREG estimator with respect to RB and MSE when the integrated
variable is included. Therefore, we refrain from tabulating the similar results.

These results prove the robustness of the approximate and asymptotic design-unbiasedness of
GREG estimators. This property is independent of the quality of the auxiliaries or the sign of
the coefficient in the adjustment term of the GREG estimator.

We also investigated the consequences of applying integrated weights in regressions. To analyze
this issue, we run weighted regressions with sex, age, and ms as defined in Table 3.6 as inde-
pendent variables. Because how well the independent variables explain the dependent variable
is not of interest, we included the same independent variables in all estimators to ensure com-
parability. The issue is rather whether it matters if equal weights are used for all persons within
a household when predicting person-level characteristics. Table A.6 summarizes the dependent
variables of different types.

Table A.6: Dependent variables

Variable Description

empl_inc Employee cash or near-cash income

unemp_bene Unemployment benefits

sick_bene Sickness benefits

mana_pos Managerial position with two categories (supervisory responsible,

non-supervisory responsible)

Figure A.1 depicts the RB of the coefficients of the weighted regressions. It becomes appar-
ent that no considerable differences arise when individual GREG weights or equal integrated
weights are applied. We used different scales in the table because the ranges of sex1 and
mana_pos are large. Also, the number of MC replications with p-values < 0.05 are more or
less equal for both integrated GREG estimators and a naïve GREG estimator (Table A.7 in
Appendix A). The results shown in Figure A.1 and Table A.7, disprove that using integrated
weights for regression analysis has considerable consequences.
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coefficients from weighted regressions
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To conclude, even when the relationship between the variables of interest and the auxiliaries
is reversed from the person to household level, we did not succeed in proving a bias for the
integrated GREG estimator, which shows the robustness of the asymptotic design-unbiasedness
of GREG estimators. In addition, the regression results are not influenced when equal integrated
weights are used instead of individual weights.

Table A.7: Number MC replications with pvalue < 0.05 out of R = 1, 000 for different variables of
interest

Intercept age2 age3 age4 sex1 ms2 ms3 ms4

empl_inc GREG 782 807 550 365 60 389 430 864

INT1 785 803 548 361 58 383 426 859

INT2 787 804 549 362 54 383 427 860

unempl_bene GREG 1000 1000 1000 67 1000 977 883 334

INT1 1000 1000 1000 66 1000 981 878 335

INT2 1000 1000 1000 70 1000 981 873 334

sick_bene GREG 544 995 853 22 61 114 49 75

INT1 548 995 852 21 61 117 54 75

INT2 549 996 852 22 60 117 54 73

mana_pos GREG 1000 1000 999 251 44 997 651 714

INT1 1000 1000 998 250 49 998 645 708

INT2 1000 1000 999 255 49 997 645 711



B Additional Material for Chapter 4

B.1 Variance Estimator for the Second Weighting Approach

The following result describes the variance estimator for the second proposed weighting ap-
proach. Its proof is analogously given to the proof of Result 5.

Result 12. Variance Estimator for the Second Proposed Weighting Approach
The variance estimator of the second proposed person-level estimator T̂WA2

yp using the Taylor
linearization technique is given by

V̂1 = V̂ (T̂GREG
yp ), V̂12 = D̂c

T
Ĉov(T̂GREG

yp , T̂ GREG
c∗p

),

V̂2 = D̂c
T
V̂ (T̂ GREG

c∗p
)D̂c, V̂13 = D̂c

T
Ĉov(T̂GREG

yp , T̂ GREG
cp

),

V̂3 = D̂c
T
V̂ (T̂ GREG

cp
)D̂c, V̂23 = D̂c

T
Ĉov(T̂ GREG

c∗p
, T̂ GREG

cp
)D̂c.

At the household level, the variance components are obtained from

V̂1 = V̂ (T̂GREG
yh

), V̂12 = Êc
T

Ĉov(T̂GREG
yh

, T̂ GREG
c∗p

),

V̂2 = Êc
T
V̂ (T̂ GREG

c∗p
)Êc, V̂13 = Êc

T
Ĉov(T̂GREG

yh
, T̂ GREG

ch
),

V̂3 = Êc
T
V̂ (T̂ GREG

ch
)Êc, V̂23 = Êc

T
Ĉov(T̂ GREG

c∗p
, T̂ GREG

ch
)Êc.

Ĉov denotes the estimated covariance. Estimated variances and covariances can be obtained
by (2.10) by inserting the appropriate variables.

Proof. The linearized second proposed estimator at person-level is given by

T̂WA2
yp

.= T̂GREG
yp +Dc

T (T̂ GREG
c∗p

− T̂ GREG
cp

).

190
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Its variance is derived by

V(T̂WA2
yp ) .= V(T̂GREG

yp +Dc
T (T̂ GREG

c∗p
− T̂ GREG

cp
))

= V(T̂GREG
yp ) + V(Dc

T T̂ GREG
c∗p

−Dc
T T̂ GREG

cp
)

+ 2Cov(T̂GREG
yp ,Dc

T T̂ GREG
c∗p

−Dc
T T̂ GREG

cp
)

= V(T̂GREG
yp ) +Dc

TV(T̂ GREG
c∗p

)Dc +Dc
TV(T̂ GREG

cp
)Dc

− 2Dc
TCov(T̂ GREG

c∗p
, T̂ GREG

cp
)Dc

+ 2Dc
TCov(T̂GREG

yp , T̂ GREG
c∗p

)− 2Dc
TCov(T̂GREG

yp , T̂ GREG
cp

)

with Cov as approximate covariance. V̂ (T̂WA2
yp ) results by estimating V(T̂WA2

yp ) from the sample
sp by the plug-in method. We continue with the household-level proposed estimator which is
linearized by

T̂WA2
yh

.= T̂GREG
yh

+EcT (T̂ GREG
c∗p

− T̂ GREG
ch

).

Its variance is derived by

V(T̂WA2
yh

) .= V(T̂GREG
yh

+EcT (T̂ GREG
c∗p

− T̂ GREG
ch

))

= V(T̂GREG
yh

) + V(EcT T̂ GREG
c∗p

−EcT T̂ GREG
ch

)

+ 2Cov(T̂GREG
yh

,Ec
T T̂ GREG

c∗p
−EcT T̂ GREG

ch
)

= V(T̂GREG
yh

) +EcTV(T̂ GREG
c∗p

)Ec +EcTV(T̂ GREG
ch

)Ec
− 2EcTCov(T̂ GREG

c∗p
, T̂ GREG

ch
)Ec

+ 2EcTCov(T̂GREG
yh

, T̂ GREG
c∗p

)− 2EcTCov(T̂GREG
yh

, T̂ GREG
ch

).

V̂ (T̂WA2
yh

) results by estimating V(T̂WA2
yh

) from the sample sh by the plug-in method.
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B.2 Composite Estimator given by Renssen and
Nieuwenbroek

Renssen and Nieuwenbroek (1997) introduced the composite GREG estimator to align the esti-
mates for variables common to two independent surveys. To estimate to unknown totals of the
common variables they suggest using a weighted average of the estimates obtained from each
of the independent surveys. Adopting this method to household surveys yields the following
person- and household-level estimators

T̂ RN
yp = T̂GREG

yp + D̂c
T (T̃ RN

c − T̂
GREG
cp

) , and

T̂ RN
yh

= T̂GREG
yh

+ Êc
T (T̃ RN

c − T̂
GREG
ch

),
(B.1)

where T̂GREG
yp , T̂GREG

yh
, D̂c and Êc are defined as in (4.24) and (4.9), respectively.

Renssen and Nieuwenbroek (1997, p.371) suggested a composite estimator for the unknown
population total T̃c based on the weighted average of the single estimates obtained from each
of the independent survey. Their suggested estimator was given by

T̃ RN
c = QT̂ GREG

cp
+ (1−Q)T̂ GREG

ch
, (B.2)

where Q is a weighting matrix of dimension (L × L) with Q + (1 − Q) = I . An optimal
choice in the sense of minimizing the variance of the composite estimator uT T̃c for an arbitrary
L-vector u and considering the dependence between the person and the household data set is

Q = [V (T̂ GREG
ch

)− Cov(T̂ GREG
cp

, T̂ GREG
ch

)][V (T̂ GREG
cp

) + V (T̂ GREG
ch

)− 2Cov(T̂ GREG
cp

, T̂ GREG
ch

)]−1

with V (T̂ GREG
cp

) and Cov(T̂ GREG
cp

, T̂ GREG
ch

) as variance and covariance. As the variance and co-
variance are unknown,Q is replaced by its estimate.

Inserting (B.2) into (B.1) yields

T̂ RN
yp = T̂GREG

yp − D̂c
T (1−Q)(T̂ GREG

cp
− T̂ GREG

ch
) , and

T̂ RN
yh

= T̂GREG
yh

+ Êc
T
Q(T̂ GREG

cp
− T̂ GREG

ch
).

(B.3)

It can be seen that the higher the difference between the person- and the household-level es-
timate of the common variables, the higher the adjustment term. The resulting weights from
(B.3) are obtained by

wRN
i = wGREG

i −
∑
i∈sp

rFxi
T (
∑
i∈sp

rFxi r
Fx
i

T )−1(1−Q)(T̂ GREG
cp

− T̂ GREG
ch

) , and

wRN
g = wGREG

g +
∑
g∈sh

rFag
T (
∑
g∈sh

rFag r
Fa
g

T )−1Q(T̂ GREG
cp

− T̂ GREG
ch

).
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The estimated variances of the person-level estimator using the Taylor linearization technique
is given by (Renssen and Nieuwenbroek, 1997, p.371)

V̂ (T̂ RN
yp ) .= V̂1 + V̂2 + V̂3 − 2V̂12 − 2V̂13 + 2V̂23

with

V̂1 = V̂ (T̂GREG
yh

),

V̂2 = D̂c
T (1−Q)V̂ (T̂ GREG

cp
)(1−Q)TD̂c,

V̂3 = D̂c
T (1−Q)V̂ (T̂ GREG

ch
)(1−Q)TD̂c,

V̂12 = D̂c
T (1−Q)Ĉov(T̂GREG

yh
, T̂ GREG

cp
)

V̂13 = D̂c
T (1−Q)Ĉov(T̂GREGyh

, T̂ GREG
ch

),

V̂23 = D̂c
T (1−Q)Ĉov(T̂ GREG

cp
, T̂ GREG

ch
)(1−Q)TD̂c.

Estimated variances and covariances can be obtained by (2.10) by inserting the appropriate vari-
ables. The variance estimator of the household-level estimator is given in a similar manner.
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B.3 Variance Estimator for the GLS Estimator

The following result describes the variance estimators via Taylor linearization for the GLS
estimator given by Zieschang (1986, 1990).

Result 13. Variance Estimators for the GLS Estimator
The variance estimator for the combined calibration estimator at person-level (4.35) using the
Taylor linearization technique is given by

V̂ (T̂ ZIE
yp ) .= V̂1 + V̂2 + V̂3 − 2V̂12 + 2V̂13 − 2V̂23

with
V̂1 = V̂ (T̂GREG

yp ), V̂12 = D̂κ
T

Ĉov(T̂GREG
yp , T̂ GREG

cp
),

V̂2 = D̂κ
T
V̂ (T̂ GREG

cp
)D̂κ, V̂13 = D̂κ

T
Ĉov(T̂GREG

yp , T̂ GREG
ch

),

V̂3 = D̂κ
T
V̂ (T̂ GREG

ch
)D̂κ, V̂23 = D̂κ

T
Ĉov(T̂ GREG

cp
, T̂ GREG

ch
)D̂κ.

At household-level the variance estimator of the combined calibration estimator (4.36) using
the Taylor linearization technique is obtained from

V̂ (T̂ ZIE
yh

) .= V̂1 + V̂2 + V̂3 + 2V̂12 − 2V̂13 − 2V̂23

with
V̂1 = V̂ (T̂GREG

yh
), V̂12 = Êκ

T
Ĉov(T̂GREG

yh
, T̂ GREG

cp
),

V̂2 = Êκ
T
V̂ (T̂ GREG

cp
)Êκ, V̂13 = Êκ

T
Ĉov(T̂GREG

yh
, T̂ GREG

ch
),

V̂3 = Êκ
T
V̂ (T̂ GREG

ch
)Êκ, V̂23 = Êκ

T
Ĉov(T̂ GREG

cp
, T̂ GREG

ch
)Êκ.

Ĉov denotes the estimated covariance. Estimated variances and covariances can be obtained
by (2.10) by inserting the appropriate variables.

Proof. Analogously to the proof of Result 5, the Taylor linarization technique for the person-
level estimator yields

T̂ ZIE
yp

.= T̂GREG
yp −Dκ

T (T̂ GREG
cp

− T̂ GREG
ch

).

Its variance is derived by

V(T̂ ZIE
yp ) .= V(T̂GREG

yp −Dκ
T (T̂ GREG

cp
− T̂ GREG

ch
))

= V(T̂GREG
yp ) + V(Dκ

T T̂ GREG
cp

−Dκ
T T̂ GREG

ch
)

− 2Cov(T̂GREG
yp ,Dκ

T T̂ GREG
cp

−Dκ
T T̂ GREG

ch
)

= V(T̂GREG
yp ) +Dκ

TV(T̂ GREG
cp

)Dκ +Dκ
TV(T̂ GREG

ch
)Dκ

T

− 2Dκ
TCov(T̂ GREG

cp
, T̂ GREG

ch
)Dκ

T

− 2Dκ
TCov(T̂GREG

yp , T̂ GREG
cp

) + 2Dκ
TCov(T̂GREG

yp , T̂ GREG
ch

)
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with Cov as approximate covariance. V̂ (T̂ ZIE
yp ) results by estimating V(T̂ ZIE

yp ) from the sample
sp by the plug-in method. We continue with the household-level proposed estimator which is
linearized by

T̂ ZIE
yh

.= T̂GREG
yh

+EcT (T̂ GREG
c∗p

− T̂ GREG
ch

).

Its variance is derived by

AV(T̂ ZIE
yh

) .= V(T̂GREG
yh

+EcT (T̂ GREG
cp

− T̂ GREG
ch

))

= V(T̂GREG
yh

) + V(EcT T̂ GREG
cp

−EcT T̂ GREG
ch

)

+ 2Cov(T̂GREG
yh

,Ec
T T̂ GREG

cp
−EcT T̂ GREG

ch
)

= V(T̂GREG
yh

) +EcTV(T̂ GREG
c∗p

)Ec +EcTV(T̂ GREG
ch

)Ec
− 2EcTCov(T̂ GREG

cp
, T̂ GREG

ch
)Ec

+ 2EcTCov(T̂GREG
yh

, T̂ GREG
cp

)− 2EcTCov(T̂GREG
yh

, T̂ GREG
ch

).

V̂ (T̂ ZIE
yh

) results by estimating V(T̂ ZIE
yh

) from the sample sh by the plug-in method.

B.4 Specialized Auxiliary Variable Sets to Estimate the
Unknown Common Variable Totals

Table B.1: Specialized auxiliary variable set to estimate inc

Variable name in AMELIA Description

AGE Age with four categories

SEX Sex with two categories

MST Marital status with three categories

BAS Basic activity status with four categories

HHS Household size

PY090 Unemployment benefits
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Table B.2: Specialized auxiliary variable set to estimate soc

Variable name in AMELIA Description

AGE Age with four categories

SEX Sex with two categories

MST Marital status with three categories

BAS Basic activity status with four categories

HHS Household size

PY090 Unemployment benefits

PY010 Employee cash or near-cash income

SEM Self-employment dummy
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B.5 Additional Tables for the Simulation Study
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C Additional Material for Chapter 5

C.1 Theorems and Proofs Given by Steel and Clark (2007)

In this section, we deeply discuss the theorems and proofs given by Steel and Clark (2007).
When enriching the comprehension we declare skipped intermediate calculations. Original text
from Steel and Clark (2007) is indicated by boxes. For a better understanding, we change the
original notation into the notation of the present thesis.

C.1.1 Theorem 1: Optimal Estimator for Simple Cluster Sampling

First theorem given by Steel and Clark (2007, p. 53): Optimal estimator for simple
cluster sampling
Suppose that m households are selected by simple random sampling without replacement
from a population of M households, and all people are selected from selected households.
Consider the estimator of Ty given by

T̂y = T̂HT
y + hT (Tx − T̂ HT

x ),

where h is a constant Q-vector. It is assumed that there exists a vector λ such that λTxi = 1
for all i ∈ U . The variance of this estimator is minimized by h∗ which are solutions of∑

g∈sh
(yg − hTxg)xg = 0. (C.1)

Hence T̂ INT
y with vi = N−1

g for all i ∈ Up is the optimal choice of T̂y.

199
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C.1.1.1 Proof of Theorem 1:

Let Ȳ = Ty
M

and X̄ = Tx
M

be the population means of yg and xg. The variance of T̂y is

V (T̂y) = V
[
T̂HT
y + hT (T x − T̂

HT
x )
]

= V

(
M

m

∑
sh

(yg − hTxg)
)
,

= M2

m

(
1− m

M

)
S2
r (C.2)

where S2
r = (M − 1)−1∑

g∈Uh

(
yg − hTxg − (ȲI − hTX̄)

)2
.

Since the proof is based on large sample properties in general and in particular also the formula
of S2

r refers to the population
∑
Uh it should be

∑
Uh , not

∑
sh .

To minimize with respect to h, we set the derivative of S2
r to zero

0 = (M − 1)−1 ∑
g∈Uh

(
yg − hTxg − (Ȳ − hTX̄)

)
(xg − X̄)

=
∑
g∈Uh

(
yg − hTxg − (Ȳ − hTX̄)

)
xg −

∑
g∈Uh

(
(yg − Ȳ )− hT (xg − X̄I

)
X̄I

=
∑
g∈Uh

(
yg − hTxg − (Y − hTX̄)

)
xg

=
∑
g∈Uh

(
yg − hTxg

)
xg − (ȲI − hTX̄I)Tx. (C.3)

0 should be declared as a vector.

For a better traceability, we add some skipped intermediate calculations

X̄
∑
g∈Uh

yg − X̄
∑
g∈Uh

Ȳ − X̄hT
∑
g∈Uh

xg + X̄hT
∑
g∈Uh

X̄

= Tx
M
Ty −

Tx
M
M
Ty
M︸ ︷︷ ︸

0

− Tx
M
hTTx + Tx

M
MhT

Tx
M︸ ︷︷ ︸

0

= 0.
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Now we show that (C.3) is satisfied by h∗. By assumption, h∗ satisfies

0 =
∑
g∈UI

(yg − xgTh∗)xg. (C.4)

Hence, the first sum in the right hand side of (C.3) is equal to zero for h = h∗.
Premultiplying both sides of (C.4) by λT gives

0 =
∑
g∈UI

(yg − xgTh∗)λTxg

0 =
∑
g∈UI

(yg − xgTh∗)

0 = Ty − TxTh∗. (C.5)

Dividing by M gives ȲI−X̄I
T
h∗ = 0. Hence, the rest of the right hand side of (C.3) is equal

to zero. So h∗ satisfies (C.3).

However, following their statement in Theorem 1 assuming λTxi = 1, the last paragraph of the
proof of Theorem 1 should be changed to

0 =
∑
g∈Uh

(yg − xgTh∗)λTxg

0 =
∑
g∈Uh

(yg − xgTh∗)Ng

0 = NȲ −NX̄T
h∗,

because it is valid that

λTxg = λT
∑
i∈Ug

xi =
∑
i∈Ug

λTxi =
∑
i∈Ug

1 = Ng.

To ensure that the calculations of Steel and Clark (2007) are correct, λTxi = Ng should be
assumed instead ofλTxi = 1. Nevertheless, their result is not affected by the wrong assumption
because NȲ −NX̄T

h∗ still equals zero.
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C.1.2 Theorem 2: Explaining the Difference in the Asymptotic Variances

Second theorem given by Steel and Clark (2007, p.54): Explaining the difference in the
asymptotic variances
Suppose that m households are selected by simple random sampling without replacement and
all people are selected from selected households. Let rBpi = yi − Bp

Txi and let Bc be the
result of regressing rBpi on x̄g over i ∈ Up using weighted least squares regression weighted
by Ng. Then

V (T̂GREG
y )− V (T̂ INT

y ) = M2

m

(
1− m

M

)
(M − 1)−1Bc

T
∑
g∈Uh

(
xgxg

T
)
Bc (C.6)

where T̂ INT
y is calculated using vi = N−1

g for all i ∈ Up.

C.1.2.1 Proof of Theorem 2:

Let “-“ denote a generalized inverse of a matrix. ThenBc is equal to

Bc =
∑
g∈Uh

∑
i∈Ug

Ngx̄gx̄g
T

− ∑
g∈Uh

∑
i∈Ug

Ngx̄gri

=
∑
g∈Uh

xgxg
T

− ∑
g∈Uh

xgrg. (C.7)

Now, ri = yi −Bp
Txi so rg = yg −Bp

Txg.

As a remark, the line is derived by
∑
i∈Ug ri = ∑

i∈Ug(yi−Bp
Txi) = ∑

i∈Ug yi−Bp
T ∑

i∈Ug xi =
yg −Bp

Txg = rg. Nevertheless, the aggregation does not imply that the aggregated residuals
per household rg equal the residuals from a household-level regression: yg = Bh

Txg + rBhg
withBp 6= Bh as well as rg 6= rBhg .

Hence, (C.7) becomes

Bc =
∑
g∈Uh

xgxg
T

− ∑
g∈Uh

xg
(
yg −Bp

Txg
)

=
∑
g∈Uh

xgxg
T

− ∑
g∈UI

xgyg −

∑
g∈Uh

xgxg
T

− ∑
g∈Uh

xgxg
TBp

= Bh −Bp (C.8)

sinceBh =
( ∑
g∈Uh

xgxg
T

) ∑
g∈Uh

∑
i∈Ug

xgyg.
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The resulting formula should beBh =
(∑

g∈Uh xgxg
T
)−∑

g∈Uh xgyg.

The difference in the variances is given by

V (T̂GREG
y )− V (T̂ INT

y ) =M
2

m

(
1− m

M

)
(M − 1)−1

( ∑
g∈UI

(yg −Bp
Txg)2 −

∑
g∈Uh

(yg −Bh
Txg)2

)

For a better traceability, we add some skipped intermediate calculations

V (T̂GREG
y )−V (T̂ INT

y ) = M2

m

(
1− m

M

)
(M − 1)−1

∑
g∈Uh

(
yg −Bp

Txg − (Ȳ −Bp
TX̄)

)2
−
∑
g∈Uh

(
yg −Bh

Txg − (Ȳ −Bh
TX̄)

)2

with Ȳ −Bp
TX̄ = Ȳ −Bh

TX̄ = 0.

which becomes

V (T̂GREG
y )−V (T̂ INT

y )
/
M2

m
(1− m

M
)(M − 1)−1

=
∑
g∈Uh

r2
g −

∑
g∈UI

(
rg +Bp

Txg −Bh
Txg

)2

=
∑
g∈Uh

r2
g −

∑
g∈UI

(
rg −Bc

Txg
)2

=
∑
g∈Uh

(
rg −Bc

Txg +Bc
Txg

)2
−
∑
g∈Uh

(rg −Bc
Txg)2

=
∑
g∈Uh

(
rg −Bc

Txg
)2

+
∑
g∈Uh

(
Bc

Txg
)2

+ 2
∑
g∈Uh

(
rg −Bc

Txg
)
xg

TBc
T

−
∑
g∈Uh

(
rg −Bc

Txg
)2

=
∑
g∈Uh

Bc
Txgxg

TBc + 2
∑
g∈UI

(
rg −Bc

Txg
)
xg

TBc. (C.9)

Now,Bc is an ordinary least squares regression of rg on xg so∑
g∈Uh

(
rg −Bc

Txg
)
xg = 0.

Hence, (C.9) becomes

V (T̂GREG
y )− V (T̂ INT

y ) = M2

m

(
1− m

M

)
(M − 1)−1Bc

T
∑
g∈Uh

xgxg
TBc. (C.10)
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C.2 Additional Graphs for the Simulation Study
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Figure C.1: Plots of the total difference against variances components I and II for case a) and m = 1500
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Figure C.2: Plots of the intercept and reduced difference against the average household size for case b)
and m = 1500
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Figure C.3: Plots of the residuals for case b)
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