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Abstract 

In order to investigate the psychobiological consequences of acute stress under 

laboratory conditions, a wide range of methods for socially evaluative stress induction have 

been developed. The present dissertation is concerned with evaluating a virtual reality (VR)-

based adaptation of one of the most widely used of those methods, the Trier Social Stress Test 

(TSST). In the three empirical studies collected in this dissertation, we aimed to examine the 

efficacy and possible areas of application of the adaptation of this well-established 

psychosocial stressor in a virtual environment. We found that the TSST-VR reliably incites the 

activation of the major stress effector systems in the human body, albeit in a slightly less 

pronounced way than the original paradigm. Moreover, the experience of presence is discussed 

as one potential factor of influence in the origin of the psychophysiological stress response. 

Lastly, we present a use scenario for the TSST-VR in which we employed the method to 

investigate the effects of acute stress on emotion recognition performance. We conclude that, 

due to its advantages concerning versatility, standardization and economic administration, the 

paradigm harbors enormous potential not only for psychobiological research, but other 

applications such as clinical practice as well. Future studies should further explore the 

underlying effect mechanisms of stress in the virtual realm and the implementation of VR-

based paradigms in different fields of application.  

 

Keywords: Stress; Hypothalamic-pituitary-adrenal axis; sympathetic-adrenal medullary 

system; Trier Social Stress Test; virtual reality; TSST-VR 
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1. General Introduction 

 

 

“Every stress leaves an indelible scar, and the organism pays for its survival after a stressful 

situation by becoming a little older.” 

(Selye, 1956) 

 

 

As the second decade of the twenty-first century is drawing to a close, the words by 

pioneering stress researcher Hans Selye seem as timely as when they were conceived for his 

seminal work The stress of life in 1956. In a time of rapid technological and societal 

developments that confront us with ever-changing demands, being able to quickly adapt to 

novel circumstances while maintaining one’s psychological and physiological equilibrium 

might be one of the most crucial capabilities of healthy individuals. In fact, the process of 

recognizing a stressful external event and putting up resistance via adaptations in bodily 

functions usually followed by a period of exhaustion was outlined early on by Selye in the 

General Adaptation Syndrome framework (G.A.S.; Selye, 1976).  

According to this influential model, the advent of a stressor is generally followed by a 

myriad of physiological processes as part of homeostatic systems that enable the organism to 

produce compensatory and anticipatory adjustments to maintain an ideal set of steady-states. 

This concept can be seen as the starting point for our understanding of the physiological 

mechanisms of stress coping and since then it has been further developed to incorporate the 

specific stress effector systems of the human body (which will be delineated in detail in section 

2.1.; Goldstein & McEwen, 2002). In this fashion, a healthy organism is able to adapt to adverse 

events in an effective manner and avoid detrimental consequences in the short term.  
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In the event that stressors persist and the physiological and psychological strain does 

not abate for an extended period of time, however, overactivity of these stress effector systems 

can eventually favor the development of numerous pathologies. As these pathologies 

encompass a wide range from decreased immune resistance to viral infections (McEwen et al., 

1997) through psychiatric disorders such as major depression or anxiety disorders (Leistner & 

Menke, 2018; Smoller, 2016) to the formation of tumors and increased metastatic spread 

(Reiche, Nunes, & Morimoto, 2004) stress has now widely been recognized to be one of the 

most  impactful noxious agents of our time (Hassard, Teoh, Visockaite, Dewe, & Cox, 2018). 

The importance of understanding the psychophysiological effects of acute and chronic 

stressors under highly controlled laboratory conditions can thus not be overstated. In the past 

decades, numerous paradigms of laboratory stress induction have been developed with the goal 

of simulating conditions akin to the ones perceived during real-life stressors. While the focus 

initially lay mostly on creating physically adverse circumstances in order to elicit physiological 

responses (e.g. via the immersion of body parts in painfully cold water; Hines, 1932), meta-

analytic assessment shows that a more pronounced stress response can be expected following 

paradigms that encompass adverse cognitive aspects such as social evaluation (Dickerson & 

Kemeny, 2004).  

One of the most commonly used stress induction paradigms that is based on this effect 

mechanism is the Trier Social Stress Test (TSST; Kirschbaum, Pirke, & Hellhammer, 1993). 

This method incorporates two of the key components that Dickerson and Kemeny deemed to 

be essential for the onset of a psychobiological stress response: Presenting participants with a 

sequence of ego-threatening socially evaluative tasks that largely unfold beyond their control.  

Over the years, this paradigm, often considered the gold standard of laboratory stress 

induction (Allen et al., 2017), has been adapted to fit the particular requirements of specific 

settings (e.g. group experiments; von Dawans, Kirschbaum, & Heinrichs, 2011) and specific 
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research populations (e.g. TSST for children, Buske-Kirschbaum et al., 1997). A common 

factor of all previous adaptations of the TSST, however, is their reliance on a panel of human 

judges in order to elicit socially evaluative stress, thus limiting standardization and making the 

paradigm somewhat resource-consuming.  

This might be changing with the advent of Virtual Reality (VR)-based research methods 

in psychology. As technical advancement in this field has brought forth sophisticated and 

affordable head-mounted displays, paradigms that immerse participants in computer-generated 

environments are becoming increasingly attractive for psychological research and application.  

In the clinical domain, Virtual Reality Exposure Therapy (VRET) has been found to show great 

promise for the treatment of specific phobias (Morina, Ijntema, Meyerbröker, & Emmelkamp, 

2015) and social anxiety disorders (Powers & Emmelkamp, 2008).  

Based on this empirical evidence that demonstrates the potential of simulating anxiety-

inducing scenarios in VR, Kelly, Matheson, Martinez, Merali, and Anisman (2007) were the 

first to utilize a VR-adaptation of the TSST that relied entirely on virtual avatars in order to 

elicit a psychobiological stress response. Although the technical implementation in this first 

study has to be considered comparatively limited, the results nevertheless demonstrate a 

tendency for successful neuroendocrine activation. In the following years, several research 

groups developed their own virtual adaptations of the TSST and tested their potential for 

laboratory stress induction (Hartanto et al., 2014; Jönsson et al., 2010; Kothgassner, Felnhofer, 

et al., 2016; Kotlyar et al., 2008). While most of the empirical evidence points towards a high 

effectiveness of the TSST-VR concerning the activation of one of the main stress effector 

systems, the sympatho-adrenal-medullary (SAM) system, results seem to be less conclusive 

regarding the response of the other, the hypothalamus-pituitary-adrenal (HPA) axis 

(Annerstedt et al., 2013; Shiban et al., 2016). Considering that stress reactivity to a virtual 

TSST will presumably be a function of several additional factors that have no relevance in the 
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original TSST such as graphical fidelity (Ocasio-De Jesús, Kennedy, & Whittinghill, 2013) or 

the subjective sense of presence (Gromer, Reinke, Christner, & Pauli, 2019), it can be assumed 

that not all relevant effect mechanisms of the TSST-VR have yet been elucidated.  

The present dissertation was composed with the aim of extending the existing research 

in this field with a systematic evaluation of the paradigm using a state of the art adaptation of 

the TSST in an immersive virtual environment. For this purpose, a study was carried out to 

compare the effects of the TSST-VR and the TSST in vivo to their respective control conditions 

in terms of the activation of both major physiological stress effector systems. In a second study, 

the influence of the subjective experience of presence in the virtual situation on stress reactivity 

was evaluated. The last study of this dissertation was meant to bridge the gap between 

methodological evaluation of the paradigm and application for research purposes and 

investigated the effects of acute psychosocial stress in VR on emotion recognition, one of the 

most crucial abilities needed to navigate our social environment.
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2. The Psychobiology of Virtual Stress 

The following chapter gives an overview of the theoretical framework that is needed to 

understand the merits of developing a standardized method for socially evaluative stress 

induction in a virtual environment. For this purpose, several time-honored stress induction 

paradigms will be reflected upon. Subsequently, the benefits of utilizing virtual environments 

in psychological research will be described. The last section of this chapter provides an 

overview of the development history of the particular stress induction paradigm under 

investigation in this dissertation. 

2.1. Laboratory Stress Induction and Associated Physiological Parameters 

 In order to achieve high external validity, a laboratory stress induction paradigm should 

fulfill the essential criterion of activating the two main stress effector systems in the human 

body, the HPA axis and the SAM system. As numerous studies have shown a link between 

psychological distress and physiological alterations attributed to the activation pattern of these 

two systems (Chrousos, 2009), they can be utilized as reliable indicators for the 

psychobiological stress response and thus provide scientists with a wide range of suitable 

physiological measures. To understand the role of the two stress effector systems in 

maintaining homeostasis, their main functioning pathways shall be briefly delineated, starting 

with the hypothalamic-pituitary-adrenal pathway. 

  Following the onset of a perceived stressful event, the hypothalamus releases 

corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) into a specialized 

portal blood system which stimulates the secretion of adrenocorticotropic hormone (ACTH; 

Tsigos & Chrousos, 2002) from the anterior pituitary. The secretion of ACTH in turn results in 

a heightened production and release of glucocorticoids from the adrenal cortex. 

Glucocorticoids can be understood as vital agents of the HPA axis that play a major part in the 

modulation of a multitude of metabolic, cardiovascular, immune, and behavioral functions 
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(Bamberger, Schulte, & Chrousos, 1996). Since it has been shown that the concentration of the 

glucocorticoid cortisol can be reliably assessed not only in blood plasma, but also in saliva 

(Vining, McGinley, Maksvytis, & Ho, 1983) it has proven to be a practical indicator of HPA 

axis activity for psychobiological science (Kirschbaum & Hellhammer, 1994). While there are 

other markers that are associated with HPA axis activity and well suited to laboratory 

assessment (such as ACTH or cytokines that give an indication of HPA axis reactivity like 

tumor necrosis factor-α, Interleukin-1β, or Interleukin-6; Tsigos & Chrousos, 2002), salivary 

cortisol is one of the most frequently measured compounds due to its high validity and 

economic sampling procedure (Hellhammer, Wüst, & Kudielka, 2009).  

 In addition to the HPA axis, the SAM system plays a crucial part in maintaining body 

homeostasis due to its role in the regulation of the autonomic nervous system (ANS). The SAM 

consists of the sympathetic nervous system and the adrenal medulla and mainly acts through 

the catecholamines epinephrine and norepinephrine that bind to adrenergic α and β receptors 

in order to stimulate rapid modulations in the activity of its effector organs (Turner, Keating, 

& Tilbrook, 2012). One of the main pathways of the SAM to appropriately react to stressors is 

the stimulation of the cardiovascular system via the autonomic nervous system to increase 

cardiac output and redistribute blood flow to the pulmonary blood system and necessary 

organs. As this process necessitates sympathetic activity and the suppression of the 

parasympathic nervous system, heart rate (HR) and heart rate variability (HRV) present 

meaningful indicators of the ANS (Taelman, Vandeput, Spaepen, & Van Huffel, 2009). 

Considering that these parameters can reliably be assessed in a non-invasive way both in the 

field and in the laboratory via the use of mobile ECG devices, it stands to reason that they have 

become some of the most predominant physiological measures of stress (Kim, Cheon, Bai, Lee, 

& Koo, 2018).  
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 As the aforementioned physiological changes can be understood as indicators of the 

efforts the body makes in order to re-establish homeostasis after an adverse event, they 

symbolize imperative measures of the criterion validity of laboratory stress induction 

paradigms. It is thus not surprising that one of the most commonly used stressors, the cold 

pressor test (CPT; Hines, 1932), was at first employed to measure vascular constriction to 

detect disturbances of the cardiovascular system and only later repurposed as a stress induction 

paradigm when it was discovered that the use of the method stimulates the stress effector 

systems outlined above (Nabel, Ganz, Gordon, Alexander, & Selwyn, 1988). During the CPT, 

participants are asked to submerge their hands or feet in 0-4°C cold water, thus activating the 

sympathetic nervous system via thermal and nociceptor afferents (Bullinger et al., 1984). 

Following the publication of Dickerson and Kemenys' (2004) influential meta-analysis that 

identified uncontrollability and social-evaluative threat as the two key components for 

successful stress induction in a laboratory setting, a refined version of the CPT was developed 

that incorporates the presence of an experimenter that judges participant’s behavior with the 

socially evaluated cold-pressor test (SECPT; Schwabe, Haddad, & Schächinger, 2008).  

This development toward stress induction via the means of negative social evaluation 

illustrates a trend that can be traced back to the conception of the Trier Social Stress Test in 

1993 (Kirschbaum et al.). the TSST is one of the most momentous stress induction paradigms 

that has since become the gold standard in psychobiological stress research (Allen et al., 2017). 

In order to elicit a psychological and physiological stress response, the TSST makes use of a 

real-life situation by presenting participants with a short preparation time after which they have 

to introduce themselves in a job interview for a desired position in front of a panel of 

interviewers. In contrast to a regular job interview, however, these interviewers are trained 

confederates that are dressed in white lab coats and have practiced to deflect any affiliative 

verbal or nonverbal behavior that participants employ to alleviate the tension of the situation. 
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Furthermore, after a set time limit (usually five minutes) the interviewers switch to a mental 

arithmetic task that involves subtracting from a high number. In addition to those tasks, 

participants are informed that their behavior will be recorded for later analysis of their 

performance. Numerous studies have demonstrated that this combination of factors produces a 

reliable increase in markers of the SAM system as well as the HPA axis. On average, exposure 

to the TSST prompts a twofold increase of free salivary cortisol in healthy adults and a 

significant stress-related change in most other physiological markers as well as a substantial 

amount of psychological distress (Kudielka, Hellhammer, & Kirschbaum, 2007).  

The TSST has therefore been adapted for several research contexts and populations, 

such as group settings (von Dawans et al., 2011) or children (Buske-Kirschbaum et al., 1997) 

and retains its stress-inducing qualities in these circumstances as well. Moreover, several non-

stressful control conditions have been developed that share similar characteristics with the real 

TSST without socially evaluative threat and uncontrollability, such as the Friendly TSST 

(Wiemers, Schoofs, & Wolf, 2013) or the Placebo TSST (Het, Rohleder, Schoofs, Kirschbaum, 

& Wolf, 2009). Lastly, in order to understand the scope of the present dissertation, reference 

must be made to the adaptations of the TSST into a computer-generated virtual environment 

(Kelly et al., 2007). In this version of the paradigm, participants interact solely with virtual 

avatars that are controlled by the experimenter instead of actual human judges. This method 

for stress induction and its potential for producing measurable responses of the HPA and SAM 

systems will be delineated in greater detail in section 2.3. after a brief overview of the 

application of VR-based paradigms in psychological research in section 2.2.  

2.2. Applications of Virtual Reality in Psychological Research 

 In the clinical domain, the utility of VR-based applications for the treatment of patients 

has been under investigation since the early 1990s, when Rothbaum and colleagues (1995) first 

used head-mounted displays to confront acrophobic participants with fear-inducing virtual 
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scenarios. Even though the technical realization of the scenarios they crafted (virtual elevator 

rides, balconies and suspension bridges) has to be considered seriously limited from a 

contemporary perspective, the results of repeated exposure give an indication of successful 

habituation that was in some cases accompanied by voluntary exposure to real-life height 

situations. This study can be understood as a predecessor to what would later be called Virtual 

Reality Exposure Therapy (VRET). In the following years, VRET has proven its efficacy in 

the therapy of numerous pathologies such as specific phobia (Maples-Keller, Yasinski, Manjin, 

& Rothbaum, 2017), post-traumatic stress disorder (Botella, Serrano, Baños, & García-

Palacios, 2015), social anxiety disorder (Bouchard et al., 2017), and panic disorder (Botella et 

al., 2007). Most noticeably, there is evidence for the assumption that repeated exposure to 

phobic stimuli in virtuo does not only lead to decreased physiological and psychological stress 

responses when phobic objects are encountered in virtuality. As several studies show, 

therapeutic progress made in the virtual realm carries over to real scenarios and thus helps 

participants to assuage their fears in phobic situations in vivo (Fodor et al., 2018; Morina et al., 

2015).  

VR-based approaches in psychotherapy have, however, not exclusively been used to 

generate scenarios of fear exposure but also to alter dysfunctional cognitions in other 

pathologies in a constructive manner. Riva and colleagues (Ferrer-Garcia, Gutiérrez-

Maldonado, & Riva, 2013; Riva, Bacchetta, & Cesa, 2001) integrated VR sessions into 

experiential cognitive therapy for the treatment of various eating disorders (among them 

anorexia nervosa and binge eating disorder) and obesity, reporting a high degree of success in 

modifying negative body image perceptions. In a similar vein, VR-based applications have 

been proven effective in reducing self-criticism and in promoting self-compassion in 

depressive patients (Falconer et al., 2016).  
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In medical research, there is mounting evidence that VR-based methods do not only 

alter cognition, but perception of the body and its various signals as well. Working with chronic 

pain patients, Gromala, Tong, Choo, Karamnejad, and Shaw (2015) demonstrated that a 

combination of mindfulness-based stress reduction techniques and a virtual environment are 

helpful in alleviating chronic pain over the long term. Furthermore, paradigms realized in VR 

have earned their place in rehabilitation science. It has been shown that VR provides an 

effective exercise setting for regaining upper limb movement after a debilitating brain injury 

(Levin, Weiss, & Keshner, 2015). In general terms, VR therapy seems to be able to facilitate 

recovery after brain damage, such as strokes (Lohse, Hilderman, Cheung, Tatla, & Van der 

Loos, 2014).  

In addition to the compensation of abilities that were lost through psychiatric or somatic 

illness or injury, VR has a lot of potential to be used as an educational tool to practice social 

skills and prepare for challenging societal situations. In children and adolescents with autism 

spectrum disorder, for example, VR-based interventions have been employed to practice 

socially acceptable behavior and emotional skills like emotion recognition and self-regulation 

(Fernández-Herrero, Lorenzo-Lledó, & Carreres, 2018). Furthermore, Smith and colleagues 

(2014) demonstrated improvements in performance and self-confidence in adults with autism 

spectrum disorder who repeatedly completed simulated job interviews. As this study and 

several others have demonstrated (e.g. Bell & Weinstein, 2011), the interaction with virtual 

agents in a job interview context can be an adequate practice ground for self-confident 

appearance and to make corrective experiences in relation to one’s self-efficacy under 

psychological pressure.  

2.3. Devising a Paradigm for Standardized Stress Induction in VR 

 The continually expanding fields of application of VR-based technology highlighted in 

the previous section hint at the wide array of possibilities yet to be explored in psychological 
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research. Encouraged by a developing body of evidence that suggests that VR is indeed able to 

provoke strong emotional responses (Felnhofer et al., 2015), researchers of psychobiological 

stress have started to employ computer-generated environments to confront participants with 

taxing situations that are devised to elicit distress on a somatic and psychological level (e.g. 

Kelly et al., 2007). The approach that was predominantly followed in this regard was to attempt 

and convert well-established stress induction procedures into the virtual realm.  

However, one potential pitfall of this endeavor that must be taken into consideration is 

the fact that the most potent stressors often involve a certain degree of social evaluation in order 

to elicit the stress response (Dickerson & Kemeny, 2004). It is therefore imperative to critically 

examine whether an interaction between a human agent and a programmed entity in a virtual 

space abides by the same rules and can therefore even be considered a “social” exchange. In 

this regard, Reeves and Nass (1996) were among the first scientists to examine how social rules 

and expectations are applied to computers and computer-generated characters. The findings 

that they summarized in what they coined The Media Equation predominantly attest to the fact 

that people tend to behave towards computers in the same manner as towards human agents 

when confronted with a social context. This holds true for the application of gender stereotypes 

to computer agents, identification with their ethnicity, adherence to social norms such as 

politeness and reciprocity, and more (Nass & Moon, 2000). Furthermore Garau, Slater, 

Pertaub, and Razzaque (2005) demonstrated that people experience presence and exhibit 

physiological adaptations (e.g. in heart rate and electrodermal activity) in interactions with 

virtual agents as long as they show a certain, albeit relatively low degree of responsiveness to 

the human participants. The concept of presence and its potential influence on the 

psychophysiological reactions of humans to virtual avatars will be further elaborated on in 

section 3.2. 
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In light of these findings, it is not surprising that a replication of one of the most 

audacious psychological experiments of the twentieth century, namely Stanley Milgram’s 

behavioral study of obedience (Milgram, 1963), would have the potential of succeeding in a 

virtual environment. Indeed, when they had their participants observe the reactions of a virtual 

avatar to supposedly painful electrical shocks that they themselves had to administer, 

Cheetham, Pedroni, Antley, Slater, and Jäncke (2009) observed heightened activity in brain 

areas associated with affective processing, such as the right amygdala, and several parts of the 

inferior frontal gyrus and superior temporal gyrus as well as posterior cingulate. In sum, 

empirical evidence supports the assumption that complex social interactions can, in fact, be 

realized in a simulated virtual environment with computer-generated avatars. The foregoing 

findings therefore constitute the necessary prerequisites for the adaptation of elaborate socially 

evaluative stress induction paradigms in the virtual realm.  

2.4. Development History of the TSST-VR  

In 2007, Kelly and colleagues conducted the first large-scale investigation into the 

utility of a virtual TSST as a method for standardized psychobiological stress induction. To 

determine whether their version of the TSST-VR was able to elicit a significant neuroendocrine 

response, they recruited a large sample of 274 students that consisted in equal parts of male 

and female subjects and tested different variations of the paradigm in a total of six experimental 

conditions. Although their version of the TSST-VR appears to have lacked responsiveness to 

the participants’ behavior and has to be considered very limited from a contemporary 

standpoint (“a helmet with a small viewing screen and headphones through which a 

prerecorded virtual audience was presented”; p. 659) they found a significant rise in subjective 

stress levels in the real TSST and three virtual stress conditions (VR task anticipation only, VR 

speech task only, VR speech and math tasks). There was, however, disparity between reported 

feelings of distress and the endocrine response as measured by salivary cortisol. While the in 
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vivo TSST elicited a significant cortisol release that persisted until 30 minutes after stress onset, 

the response to the virtual conditions was significantly lower and a return to baseline levels 

was detected at the 30 minute mark. This finding of a statistically significant, albeit 

comparatively small effect in cortisol reactivity to the TSST-VR was replicated in several 

studies in the following years (Annerstedt et al., 2013; Fich et al., 2014; Ruiz et al., 2010; 

Shiban et al., 2016). Although some studies that compare a virtual stressor to its counterpart in 

the real world do not find significant differences in terms of HPA axis reactivity (e.g. 

Kothgassner et al., 2016) an overall tendency toward a smaller effect size in virtual paradigms 

can be detected in the literature. While one might assume that a smaller cortisol response could 

mainly be attributed to technical constraints of the time, recent studies do not necessarily find 

larger effects (Linninge et al., 2018; Montero-López et al., 2018). Apparently, while technical 

capabilities and resources can be considered a crucial factor in the improvement of virtual 

stressors (as will be further elaborated on in a later part of this section) other aspects that go 

beyond technical implementation must be considered in order to maximize the neuroendocrine 

stress response. 

Concerning the activation of the sympathetic nervous system, ample evidence for a 

stimulating effect of the virtual TSST can be found. In 2008, Kotlyar and colleagues reported 

a significant increase in heart rate and systolic and diastolic blood pressure in response to their 

version of the TSST-VR. Two years later, Jönsson and colleagues (2010) utilized a TSST-VR 

in an immersive computer automatic virtual environment (CAVE) to confirm that the increase 

in heart rate begins in the preparation phase of the TSST, continues throughout the speech task 

and peaks during the mental arithmetic task. Subsequently, they were able to replicate this 

result in several studies (Annerstedt et al., 2013; Fich et al., 2014; Jönsson et al., 2015, 2010; 

Linninge et al., 2018). Moreover, the group also measured cardiac sympathetic activity in the 

T-wave amplitude in several of the previously mentioned studies (Annerstedt et al., 2013; Fich 
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et al., 2014; Jönsson et al., 2015, 2010; Wallergård, Jönsson, Johansson, & Karlson, 2011) and 

predominantly found effects that follow the same pattern as the heart rate measurements. 

Curiously, they found less conclusive results on high frequency heart rate variability. In line 

with the findings in heart rate, several studies report similar effects of the TSST-VR with regard 

to tonic skin conductance measures (Montero-López et al., 2016; Ruiz et al., 2010; Shiban et 

al., 2016). Although this parameter has to be considered somewhat unspecific (Dawson, Schell, 

& Filion, 2016), it lends further support to the conclusion that a virtual TSST is a suitable 

stressor for the activation of the SAM system.  

In sum, slightly less than twenty studies that employed a virtual TSST as a method for 

stress induction have been published since 2007. It now seems warranted to assume that the 

paradigm does indeed represent an effectual method for psychobiological stress induction. 

Nevertheless, some doubt can be raised as to whether it is reasonable to compare early studies 

on the TSST-VR with more contemporary adaptations. After all, the second decade of the 21st 

century has seen the advent of what some scholars termed “the virtual revolution” (Blascovich 

& Bailenson, 2011) to describe the vastly increased interest of large companies, such as 

Facebook, Sony, HTC, and Valve in the development of affordable and powerful VR-headsets 

and software. When the first of a new generation of high-end, cost-effective head-mounted VR 

displays became commercially available with the Oculus Rift Development Kit One (Oculus 

VR, Irvine, CA) in 2013, a new pathway for the development of VR-based scientific methods 

was opened that does no longer require large development teams in order to implement the 

relatively simple paradigms needed for psychological research and therapy. This trend towards 

improving accessibility for users that may not have a background in software development is 

also reflected in a new generation of VR-suited graphic engines, such as current iterations of 

Unreal (Epic Games, Raleigh, NC) and Unity Engine (Unity Technologies, San Fracisco, CA) 

that favor self-explanatory user interfaces and helpful toolboxes and thereby substantially 
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facilitate the creation of virtual environments and paradigms. While it has initially taken these 

developments some years to find their way into psychological research, they are now firmly 

established and used by research groups worldwide. As a consequence, psychobiological stress 

research should now command the means to devise a virtual adaptation of the TSST that might 

potentially lead to larger effects in stress induction by increasing subjective feelings of realism 

and presence (Steed et al., 2016). The primary focus of the present dissertation is therefore to 

systematically evaluate a state of the art TSST-VR and its psychobiological correlates and to 

identify effect mechanisms and possible applications of the paradigm.  

3. Aims of the Present Dissertation 

In the present dissertation, two empirical journal articles that have already been 

published and one manuscript that has recently been accepted for publication by the scientific 

journal Physiology and Behavior will be presented. The aim of the dissertation and the studies 

that are delineated in the publications was threefold: To begin with, an advanced version of the 

TSST-VR with a high degree of graphical fidelity and responsiveness was tested against the 

well-established in vivo procedure to determine its capabilities in terms of HPA axis and SAM 

system activation. Secondly, after having established that a sophisticated version of the 

paradigm in a virtual environment does indeed promote heightened reactivity of the stress 

effector systems, subjective sense of presence (Riva et al., 2007) was investigated as one 

potential moderator of the psychobiological stress response. Lastly, the paradigm was 

employed in a scientific use scenario in an attempt to investigate a novel research question: As 

some studies have proposed an increase of emotion recognition and processing after social 

threat (Deckers et al., 2015), we subjected participants to either a virtual TSST or a virtual 

control condition before testing emotion recognition performance in a novel paradigm based 

on signal detection theory.  
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3.1. Virtually Stressed? Investigating the Efficacy of a Psychosocial Stressor in VR 

Zimmer, P., Buttlar, B., Halbeisen, G., Walther, E., & Domes, G. (2019). Virtually 

stressed? A refined virtual reality adaptation of the Trier Social Stress Test 

(TSST) induces robust endocrine responses. Psychoneuroendocrinology, 101, 186-

192 doi:10.1016/j.psyneuen.2018.11.010 

 As outlined in section 2.4., several research groups have attempted to adapt the TSST 

for the virtual domain and thereby establish a fully standardized and economic procedure for 

psychobiological stress research. While successful activation of the sympathetic nervous 

system is reported in almost all studies using the paradigm (Jönsson et al., 2010; Kothgassner 

et al., 2016; Linninge et al., 2018), eliciting a reliable response of the HPA axis that is 

comparable to the magnitude of the regular TSST has been met with various degrees of success 

(Kothgassner et al., 2016; Shiban et al., 2016). However, since recent findings show a link 

between better graphical presentation and presence (Gromer et al., 2019), the assumption that 

a modernized version of the paradigm might elicit stronger physiological responses seems 

warranted.  

 The first study that is to be reported in the present dissertation was therefore concerned 

with the division of a procedure for a virtual TSST that utilizes the technological advantages 

in the field of VR hard- and software in order to maximize its stress-inducing characteristics. 

For this purpose, we incorporated the findings reviewed above and used them as a starting point 

to develop a virtual TSST that can be tailored to each participants’ individual behavior. We 

then tested this new alteration of the TSST-VR in an orthogonal experimental design that 

comprised of two TSST (in vivo vs. VR) and two non-stressful control conditions. Throughout 

the experimental procedure, participants’ subjective feelings of stress as well as salivary 

cortisol and alpha amylase were measured as indicators of the respective stress effector 

systems. Furthermore, during the TSST (or control) phase, heart rate and skin conductance 
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levels were recorded. The results of this experimental validation of the TSST-VR are mostly 

in line with the findings that are described in the published literature. While the TSST-VR did, 

in fact, cause a substantial raise of free salivary cortisol of about 100 percent, cortisol release 

in the TSST in vivo condition was still more pronounced and persisted for a longer period of 

time. Although the raise in heart rate was higher in the TSST in vivo condition as well, we did 

not find significant differences in alpha amylase secretion or subjective stress reports between 

the stress conditions. 

 In sum, this methodological evaluation of the paradigm demonstrates that the TSST-

VR is indeed suitable as a tool for psychobiological stress induction. Consequentially, further 

investigation into the precise effect mechanisms of psychosocial stress induction in virtual 

environments was needed.  

3.2. The Sense of Presence as a Potential Moderator of Virtual Stress 

Zimmer, P., Wu, C., & Domes, G. (in press). Same same but different? Replicating the 

real surroundings in a virtual Trier Social Stress Test (TSST-VR) does not 

enhance presence or the psychophysiological stress response. Physiology and 

Behavior. 

 As described in the previous section, the refined adaptation of the TSST-VR we 

evaluated differed from previous iterations in its stress-inducing capabilities. Although no 

changes were made to the experimental protocol by Kirschbaum and colleagues (1993), 

participants in the TSST-VR we employed showed a comparatively stronger response in stress 

reactivity parameters than reported in the previous literature. This might potentially be 

attributed to a higher degree of graphical fidelity, a higher responsiveness of the committee 

that reacted to the participants based on eye-tracking data and a parallelization of the real and 

virtual environment that was achieved via modelling the VR environment after the real 

laboratory. It could be assumed that these modulations have enhanced the experience of 
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presence in the virtual scenario (Sanchez-Vives & Slater, 2005). According to Wirth and 

colleagues (2007), presence is experienced when people have the sensation of being physically 

situated in a mediated space and perceive only those action possibilities that are relevant to this 

space instead of the ones in the real world. Considering that the sense of presence seems to be 

linked to the onset of strong emotional responses in VR, heightened presence might, in turn, 

have led to an increased stress response (Diemer, Alpers, Peperkorn, Shiban, & Mühlberger, 

2015). In order to examine whether a higher sense of presence leads to a stronger 

psychophysiological response to a virtual stressor, we conducted a second experiment in which 

we attempted to modulate presence. For this purpose, we had participants perform the TSST in 

either an environment that closely resembled their real surroundings (thus facilitating the 

transition from the real to the virtual world) or in foreign virtual surroundings that did not share 

any resemblance with the real surroundings. In addition to subjective stress and physiological 

responses (salivary cortisol, alpha amylase and heart rate), we measured the sense of presence 

via the use of the well-established IGroup Presence Questionnaire (IPQ; Schubert, Friedmann, 

& Regenbrecht, 2001). Intriguingly, participants in the parallelized environment did not report 

stronger subjective presence and did not exhibit a stronger increase in any of the subjective or 

physiological stress parameters than the participants that performed the TSST-VR in a 

substantially different environment. While the present study could therefore not entirely 

elucidate the relationship between presence and physiological responses in virtual 

environments, it does nonetheless have some practical implications for a potentially more 

widespread implementation of the paradigm. Namely, the results demonstrate that participants 

experience presence and react strongly to the virtual scenario regardless of how similar (or 

different) the real surroundings are, thus making the laborious recreation of environments in 

virtuality obsolete. With the degree of flexibility gained in this way, the paradigm offers a valid 
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alternative to conventional methods of laboratory stress induction in multi-center research 

endeavors. 

3.3. Socially Evaluative Stress and the Ability of Emotion Recognition 

Domes, G., & Zimmer, P. (2019). Acute stress enhances the sensitivity for facial 

emotions: a signal detection approach. Stress, 22(4), 455-460. 

doi:10.1080/10253890.2019.1593366 

 The ability to quickly recognize emotions in the facial expression of others is an 

important skill that is necessary to draw inferences about their mental state and to act 

accordingly. In the event of a threatening occurrence that challenges one’s coping abilities and 

resources, obtaining social support can often be an expedient strategy (Taylor et al., 2000).  

Curiously, very few studies have investigated the association between acute stress and emotion 

recognition performance. Although some findings point to a heightened emotion detection 

performance after psychosocial stress (Deckers et al., 2015), most studies provide far less 

conclusive results and indicate complex sex-dependent effects (Duesenberg et al., 2016; 

Smeets, Dziobek, & Wolf, 2009).  

In the third study of the present dissertation, the TSST-VR was used as a procedure for 

laboratory stress manipulation in order to further investigate whether a promotive effect of 

psychosocial stress on emotion recognition can be assumed. For this purpose, we recruited two 

groups of participants that were either subjected to the virtual TSST or a non-stressful virtual 

control condition (Placebo TSST; Het et al., 2009). Subsequently, all participants undertook a 

computer-based facial emotion recognition task that required them to decide whether a face 

that was presented to them displayed a target emotion (anger or happiness) as fast as possible. 

In a classical signal detection framework (Pessoa, Japee, & Ungerleider, 2005), we calculated 

discrimination index (average hit rate – average false alarm rate) and response bias and 

examined response latencies. In line with the findings by Deckers and colleagues (2015), we 
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discovered an overall increase in emotion detection performance for both valences after stress. 

Furthermore, participants not only showed higher discrimination indices, they also reacted 

significantly faster to stimuli containing emotional expressions. This enhancement of emotion 

detection and response time was, however, not predicted by the stress-induced alterations in 

biological markers such as salivary cortisol or alpha amylase. Taken together, these findings 

support the hypothesis that psychosocial stress sensitizes for social signals as a precursor to 

acquiring social support from one’s environment. Furthermore, this study again demonstrates 

the utility of the TSST-VR as a tool for standardized and economic psychobiological stress 

induction.  

4. Original Manuscripts  

The following chapter includes two published journal articles and one original 

manuscript that has recently been accepted for publication. The three original works can be 

understood as the centerpiece of this dissertation as they summarize the investigations that have 

been conducted in order to elucidate the research questions delineated in the previous chapter. 

While the two publications are included in the format in which they have been published in 

their respective journals, the manuscript that is awaiting production is inserted as it was 

formatted during submission for assessment by the editor and reviewers.  

4.1. Zimmer, P., Buttlar, B., Halbeisen, G., Walther, E., & Domes, G. (2019). Virtually 

stressed? A refined virtual reality adaptation of the Trier Social Stress Test 

(TSST) induces robust endocrine responses. Psychoneuroendocrinology, 101, 186-

192. doi:10.1016/j.psyneuen.2018.11.010 
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A B S T R A C T

In recent years, virtual reality (VR) technology has found its way into nearly all fields of psychology. Previous
studies indicated that virtual reality adaptations of the TSST are less potent in stimulating HPA-axis responses,
with lower salivary cortisol responses recorded as compared to the in-vivo TSST. (TSST-IV). In the present
experiment we tested the stress-induction potential of a refined version of the TSST-VR using a fully orthogonal
experimental design in which ninety-three healthy males were either assigned to the TSST condition or a cor-
responding control condition in a real or virtual environment. We found a significant increase of endocrine,
autonomic and self-reported stress markers in both stress conditions. Notably, we found a robust rise in salivary
cortisol to the TSST-VR comparable to that observed in the TSST-IV. Despite subtle differences in response
between virtual and in vivo settings, we conclude that VR adaptations of in-vivo stressors have the potential to
induce real physiological and subjective reactions.

1. Introduction

Over the last decades a number of highly standardized laboratory
stressors have been developed to induce psychosocial stress in the la-
boratory (e.g. the Socially-Evaluated Cold Pressor Test, SECPT,
(Schwabe et al., 2013); Maastricht Acute Stress Test, MAST, (Smeets
et al., 2012). Among these protocols, the Trier Social Stress Test (TSST;
Kirschbaum et al., 1993) has become widely used in psychobiological
stress research as it has been proven to evoke robust endocrine and
cardiovascular responses in the majority of participants.

The TSST mainly consists of a short mock job interview and a
mental arithmetic in front of an audience of two or three people. It thus
induces the two main factors for robust HPA-axis activation: Social
evaluative-threat and uncontrollability (Dickerson and Kemeny, 2004).
A recent meta-analysis provided evidence that the TSST is quite robust
against protocol variations (Goodman et al., 2017). As long as the
protocol comprises both tasks in front of evaluative judges, most par-
ticipants respond with a significant increase in free salivary cortisol
resulting in an overall average two-fold increase over baseline.

Aside from adaptations for specific environments (e.g. MRI, EEG,
groups) and populations (e.g. children, elderly), the TSST has been
adapted for the use in virtual realities (VR). Using the TSST-VR has
three main advantages: Firstly, it significantly reduces the resources

needed for research as it makes the presence of extensively trained
judges obsolete. Secondly, it offers maximum experimental control, as
the agents reliably behave in a highly controlled and standardized way.
Lastly, it provides an environment that easily allows for the manip-
ulation of contextual factors (characteristics of the panel, features of the
room etc.). It is thus not surprising that a number of preliminary studies
have tried to validate their specific adaptation of the TSST-VR (Kelly
et al., 2007; Kotlyar et al., 2008; Jönsson et al., 2010; Wallergård et al.,
2011) and to provide evidence that the TSST-VR induces a comparable
pattern and magnitude of psychobiological reactions as their in-vivo
counterpart.

Despite the fact that the published studies on variations of the TSST-
VR reported reliable subjective stress responses, most of them demon-
strated less robust or lower stress responses of the HPA-axis, concluding
that VR adaptations of the TSST are less potent in inducing psycho-
biological stress reactions. The explicit comparison to a comparable in
vivo stressor, however, was not made in most of these studies (e.g.
Jönsson et al., 2010; Ruiz et al., 2010; Fich et al., 2014; Montero-López
et al., 2016). One recent study by Shiban et al. (2016) implemented a
control in vivo condition, and found lower average HPA-axis re-
sponding and lower responder rates (using predefined response criteria;
Miller et al., 2013) suggesting that the TSST-VR is a milder stressor
compared to its in vivo original. One possible explanation is based on
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the assumption that emotional reactions in virtual environments are
associated with the individual’s feeling of presence (Diemer et al.,
2015). Immersion and interactivity have been associated with the
subjective presence in VR environments (Baños et al., 2004) and are
limited by technical factors such as the graphics engine modeling the
virtual environment and the extent to which the agents react to the
participants’ behavior. In the previous studies, these factors might have
limited immersion and interactivity and in consequence may have mi-
tigated the participant’s sense of presence which potentially led to
lower psychophysiological reactions to the stressful situation.

To overcome these limitations, we designed a virtual reality adap-
tation of the TSST, in which the virtual surroundings are precisely
modeled after the actual laboratory setting. Furthermore, an eye-
tracking device was used for real-time feedback of eye-to-eye contact
between the participant and the virtual judges. In addition, we modified
the VR judges to match their real counterparts as closely as possible,
thus maximizing interactivity and sense of presence.

We conducted a standard TSST (Kirschbaum et al., 1993) in VR and
in vivo and carefully parallelized both conditions. Similarly, we ad-
ministered a comparable, but non-stressful placebo version of the TSST
(Het et al., 2009) in vivo and in VR. This orthogonal design permitted
us to assess the effects of the social stress induction in vivo and in VR
independently and therefore detect potentially differential outcomes.
We hypothesized that in this rigorous experimental design that uses a
refined TSST-VR, similar physiological and psychological stress reac-
tions to a social evaluative stressor will be found in vivo and in VR.

2. Methods

2.1. Participants and design

The experimental design comprised two between-subjects factors:
Strain (stress or control) and Reality (VR or in vivo). An a priori cal-
culation of required sample size for the two-way interaction resulted in
a minimum of N = 84 for a power of 1-β= .95 and an effect of
d=0.8—an effect size which can be expected in combinations of public
speaking and cognitive tasks like the TSST (Dickerson and Kemeny,
2004).

Participants were recruited by on-campus advertisement and were
included into the study if they had a BMI between 19 and 26 kg/m2 and
an age between 18 and 50 years. Further exclusion criteria were (a)
acute or chronic somatic or psychiatric disease, (b) regular intake of
medication, (c) psychotherapeutic treatment during the last year, (d)
nicotine intake of more than five cigarettes per day, and (e) regularly
working night shifts (Niu et al., 2011). Participants were asked to re-
frain from physical exercise and alcohol at least 24 h prior to testing
and to refrain from consuming anything but water two hours prior. The
study was approved by the ethics committee at the University of Trier
and conducted in line with the Declaration of Helsinki. All participants
gave informed written consent and were paid 30€ for their participa-
tion.

Ninety-three male participants (M=25.02; SD=4.41; age range:
19–45) enrolled for the study and were randomly assigned to one of the
four conditions: Stress-VR (n=29; age range: 20–45; M=24.93;
SD=4.63), stress in vivo (n=21; age range: 21–44; M=26.05;
SD=4.80), control-VR (n=22; age range: 18–33; M=22.82;
SD=3.72), and control in vivo (n=21; age range: 19–32; M=24.30;
SD=3.61). A one-way ANOVA revealed no significant age differences
between the groups (F(3, 88)= 2.17 p= .097, ηp²= .07). Five parti-
cipants of the stress-VR group and one of the stress in vivo group had to
be excluded due to technical errors in the VR procedure, resulting in a
total sample of N= 87. Furthermore, due to technical errors, one
person had to be excluded from the heart rate (HR) data analysis and
another four people from the skin conductance level analysis.

2.2. Apparatus

The VR environment was generated using the Steam Source engine
(Valve Corporation, Bellevue, Washington, USA) and controlled by the
VR simulation software CyberSession 5.6 (VTPlus GmbH, Würzburg,
Germany). A Head-Mounted Display (HMD; Oculus Rift DK2, Oculus VR
LLC, Menlo Park, CA, USA) and headphones were used. Heart rate and
skin conductance were monitored and recorded with Brain Vision
Recorder (Version 1.20.0801, Brain Products GmbH, Gilching,
Germany). Further technical specifications can be found in the sup-
plementary methods published online with this article.

2.3. Measures

2.3.1. Saliva sampling and analysis
At seven time points throughout the experiment, participants were

asked to give saliva samples, using Salivettes (Sarstedt, Nümbrecht,
Germany), to determine salivary cortisol and alpha amylase (sAA) le-
vels. After the experiment saliva samples were stored at – 20 °C until
biochemical analysis was carried out by the University Laboratory. For
details of biochemical analyses, see supplementary methods online.

2.3.2. Heart rate
Heart rate (HR) was recorded using a finger-pulse-plethysmograph

(Becker Meditec, Karlsruhe, Germany). The sampling rate was 100 Hz.
Brain Vision Analyzer (Version 2.1.1.964, Brain Products GmbH,
Gilching, Germany) was used to export RR-intervals. ARTiiFACT
(Kaufmann et al., 2011) was used to correct artifacts and export mean
HR of the different experimental segments.

2.3.3. Skin conductance level
Skin conductance level (SCL) was recorded using two Ag/AgCl

surface electrodes (Ø=8 mm2) that were covered with isotonic elec-
trode gel and placed on the thenar and hypothenar area of the non-
dominant palm (Dawson et al., 2016). The sampling rate was 100 Hz.
Again, Brain Vision Analyzer was used to export SCL to Ledalab
(Benedek and Kaernbach, 2010) which allowed conduction of artifact
correction and exporting of mean SCL of the different experimental
segments.

2.3.4. Subjective measures
At five time points, participants rated their subjective feelings of

stress on visual analogue scales with a range of 0 (not at all) to 100
(very much) (cf. von Dawans et al., 2012).

2.4. Procedure

Experimental sessions were scheduled to start at 3.30 p.m. or 5.30
p.m. to control for the circadian rhythm of cortisol (Kudielka and Wüst,
2010). After giving informed consent, participants filled out the first
subjective stress ratings (VAS1) and gave the first saliva sample (S1)
before being lead into the VR laboratory. After application of the
equipment for the physiological measurements, participants in the VR
conditions put on the HMD and the TSST (or Placebo TSST (Het et al.,
2009), began.

After the baseline measurements—that doubled as a period of ac-
climatization to the new situation—in either the real laboratory or the
virtual environment (which was an exact replicate of the real labora-
tory), participants received instructions on the following task either by
the experimenter or via headphones and written on the screen. In the
stress conditions, they were told that they would have to do a job in-
terview in front of a panel of judges who would shortly enter. In the
control conditions, participants were told that they would have to talk
about a self-chosen topic in an empty room. Both conditions were
conducted in accordance with their respective original protocols
(Kirschbaum et al., 1993), and (Het et al., 2009) although minor
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changes were made to facilitate the implementation into a virtual en-
vironment. These changes included a shorter preparation time of 3min
in front of the panel after they had been introduced to the task instead
of preparing their speech for 10min in another room alone. In addition,
due to the virtual environment they were not able to take notes with
paper and pencil. These changes were made to both TSST conditions.

The entire procedure was controlled by the experimenter behind a
one-way mirror. Furthermore, prompts to maintain eye contact were
automatically triggered in the TSST-VR after five seconds without eye-
contact (i.e., not looking into a predefined area surrounding the judges’
heads). After the task, the judges left the room (and the screen turned
black in VR). The experimenter subsequently reentered the VR

laboratory and participants in the VR conditions took off the HMD. All
participants remained in the lab until 60min after TSST started and
provided five questionnaires with VAS and seven saliva samples in
total. Following the last sample, participants were debriefed and com-
pensated. Further details about the experimental procedure can be
found in Fig. 1 or in the supplementary methods.

2.5. Statistics

Mixed repeated-measures ANOVAs were conducted to test for ef-
fects of stress condition (TSST vs. Control), experimental environment
(VR vs. in vivo) and time over the course of the experiment (as a re-
peated-measures factor) on subjective and physiological measures. In
cases where Mauchly’s test indicated a violation of the assumption of
sphericity, we used Greenhouse-Geisser correction and calculated ε-
and corrected p-values. All analyses were conducted with SPSS for
Windows (Version 24). Significance level was set at p < .05. Effect
sizes are reported as ηp² with 95% Confidence Intervals. All pairwise
comparisons were Bonferroni corrected.

3. Results

3.1. Free salivary cortisol

The cortisol responder rates to the different experimental conditions
give a first indication of the success of the stress manipulation (see
Table 1). To further evaluate whether the manipulation of stress was
successful, we conducted two separate chi-square tests including the
factor Strain and cortisol response—using the conservative criterion of
a baseline-to-peak increase of 2.5 nmol/l—for the VR (χ² (1)= 3.81,
p= .051) and in vivo condition (χ² (1)= 17.53, p < .001). In line
with our hypothesis, the odds suggest that it is more likely to show a
cortisol reaction to stress than to the control conditions in VR (3.3
times) and in vivo (40 times).

To follow up on these analyses, we conducted a 2 (Strain [stress,
control]) x 2 (Reality [VR, in vivo]) x 7 (Time) repeated measures
ANOVA (see Fig. 2, upper panels) which revealed significant main ef-
fects for Time (F(6, 498)= 29.04, ε= .51, p < .001, ηp²= .26, 95%
CI [.19; .31]), Strain (F(1, 83= 13.36, ε= .51, p < .001, ηp²= .14,
95% CI [.03; .28]), and Reality (F(1, 83=4.10, ε= .51, p= .046,
ηp²= .05, 95% CI [.00; .16]). In line with our prediction, these main
effects were qualified by the significant two-way interaction between
the factors Time and Strain (F(6, 498)= 13.94, ε= .51, p < .001,
ηp²= .14, 95% CI [.08; .19]), but also by the three-way interaction
between the factors Time, Strain, and Reality (F(6, 498)= 3.86,
ε= .51, p= .01, ηp²= .04, 95% CI [.01; .07]). Pairwise comparisons
revealed that stress conditions differed from their corresponding con-
trol conditions (VR: +15 to+60min. post stress induction, all
ps< .016; in vivo: +20 to+60min post stress induction, all
ps< .011). Comparing in vivo and VR stress conditions using pairwise
comparisons revealed significant effects at+ 30min and+ 40min (all
ps< .004). All in all, and although cortisol rose and declined earlier in
the VR than in the in vivo stress condition, the results indicate that the
virtual TSST can activate the HPA-axis in a similar pattern.

Similar results were obtained when computing Area under the

Fig. 1. (a) Picture of the VR (upper panel) and the in vivo (lower panel) judges
in the stress conditions and (b) experimental procedure depicting experimental
phases and time of assessment of subjective stress ratings (VAS) and saliva
samples (S). Procedures in the preparation room are depicted in white; proce-
dures in the VR laboratory have been marked in grey. Hatched patterns re-
present crucial phases of the (placebo) TSST procedure.

Table 1
Cortisol Responder rates by conditions for a liberal and a conservative response
criterion (1.5 vs. 2.5 nmol/l baseline-to-peak increase in free salivary cortisol).

VR In vivo

Stress Control Stress Control

Response criterion n (%) n (%) n (%) n (%)
1.5 nmol/l increase 18 (75%) 9 (42.9%) 21 (100%) 10 (47.6%)
2.5 nmol/l increase 15 (62.5%) 7 (33.3%) 20 (95.2%) 7 (33.3%)
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Curve values using the formulas by (Pruessner et al., 2003) – see Fig. 2
lower panels. Conducting a 2 (Strain [stress, control]) x 2 (Reality [VR,
in vivo]) ANOVA with area under the curve with respect to ground
(AUCg) as the dependent variable, we found a significant main effect
for Strain (F(1, 83)= 11.70, p= .001, ηp²= .12, 95% CI [.12; .26])
while the factor Reality missed significance (F(1, 83)= 3.93, p= .051,
ηp²= .05). There was no significant Strain*Reality interaction (F
(1,83)= .06, p = .809, ηp²> .01). Similar results were found for area
under the curve with respect to increase (AUCi). Again, a significant
main effect for Strain was found (F(1, 83)= 27.86, p < .001, η²= .25,
95% CI [.10; .39]) while the main effect for Reality did not reach sta-
tistical significance (F(1, 84)= 2.84, p= .096, ηp² = .03). No sig-
nificant Strain*Reality interaction (F(1,83)= .46, p = .501, ηp² = .01)
was found. In sum, no differences between VR and in vivo stress con-
ditions were found when using area under the curve values as an in-
dicator of cortisol output in response to the experimental manipulation.

3.2. Salivary alpha amylase

As with cortisol, we conducted a 2 (Strain [stress, control]) x 2
(Reality [VR, in vivo]) x 7 (Time) repeated measures ANOVA (see
Fig. 3) testing the effects on salivary alpha amylase. This ANOVA
yielded a significant main effect of the factor Time (F(6, 498)= 10.57,
ε= .71, p < .001, ηp²= .11, 95% CI [.06; .16]). The main effects of
the factors Strain and Reality did not reach statistical significance (F(1,
83)= 1.57, ε= .71, p= .21, ηp²= .02 and F(1, 83)= .03, ε= .71,
p= .87, ηp²< .01, respectively).

Furthermore, the two-way interaction between the factors Time and
Strain (F(6, 498)= 2.89, ε= .71, p= .020, ηp²= .03, 95% CI [.00;

.06]) reached statistical significance while the two-way interaction
between Time and Reality (F(6, 498)= .35, ε= .71, p= .857,
ηp²< .01) and the three-way interaction between Time, Strain, and
Reality (F(6, 498)= .08, ε= .71, p= .992, ηp²< .01) did not. As
predicted, further examination of the significant two-way interaction
via pairwise comparisons revealed that the stress conditions differed
significantly from the control conditions at +15 (p= .037) but not at
any other time points (all ps> .105). Since the three-way interaction
did not reach significance, we did not obtain evidence suggesting dif-
ferences in the efficacy of in vivo and VR stressors concerning SAM-
activation as measured by sAA concentration.

3.3. Heart rate

To analyze another indicator of the SAM, we conducted a 2 (Strain)
x 2 (Reality) x 4 (Time) repeated measures ANOVA using HR as a de-
pendent variable (see Fig. 4). The four time points refer to the different
phases of the TSST: Baseline measurements while standing, TSST pre-
paration phase, TSST Interview, and TSST arithmetic task. This ANOVA
yielded a significant main effect of the factor Time (F(3, 246)= 112.40,
ε= .72, p < .001, ηp²= .58, 95% CI [.50; .63]) and Reality (F(1,
82)= 4.39, ε= .72, p= .039, ηp²= .05, 95% CI [.00; .17]). The main
effect of the Factors Strain did not reach statistical significance (F(1,
82)= .20, ε= .72, p= .656, ηp²> .01).

Furthermore, the two-way interactions between the factors Time
and Strain (F(3, 246)= 8.47, ε= .72, p < .001, ηp²= .09, 95% CI
[.03; .16]) and Time and Reality (F(3, 246)= 3.03, ε= .72, p= .047,
ηp²= .04, 95% CI [.00; .08]) reached statistical significance. These in-
teraction effects were qualified by the significant three-way interaction

Fig. 2. Concentration of free salivary cortisol in response to the stress and
control condition sampled at seven time points over the course of the experi-
ment and as a function of the experimental conditions. (a) VR vs. (b) In vivo
condition. (c) Area under the Curve with respect to ground (AUCg). (d) Area
under the Curve with respect to increase (AUCi). Error bars denote standard
errors.

Fig. 3. Concentration of salivary alpha amylase (a) VR vs. (b) in vivo. Error bars
denote standard errors.

Fig. 4. Average heart rate during the four phases. (a) VR vs. (b) in vivo con-
dition. Error bars denote standard errors.
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between Time, Strain, and Reality (F(3, 246)= 8.57, ε= .72, p <
.001, ηp²= .10, 95% CI [.03; .16]). Pairwise comparisons revealed that
in the in vivo conditions, stress differed significantly from control
during the TSST interview and arithmetic task (p= .021 and p=
.006). In the VR conditions, no significant effects emerged at any of the
TSST phases (all ps> .222). Comparing the respective VR and in vivo
conditions, pairwise comparisons revealed significant differences be-
tween the stress conditions in all stages of the experimental procedure
(all ps< .046); these differences in HR indicate that the in vivo stressor
was more efficient in activating the SAM.

3.4. Skin conductance level

Analogous to the HR analysis, we conducted a 2 (Strain) x 2
(Reality) x 4 (Time) repeated measures ANOVA with SCL as the de-
pendent variable. This ANOVA yielded only a significant main effect of
the factor Time (F(3, 237)= 10.41, ε= .69, p < .001, ηp²= .12, 95%
CI [.04; .19]), indicating a significant rise in SCL independent of con-
ditions. None of the other the main effects nor the interactions reached
statistical significance (all Fs< 1.39 and ps> .251).

3.5. Subjective measures

In accordance with previous research, we focused on the question
“How stressed are you at the moment?” to analyze participant’s sub-
jective stress ratings (Shiban et al., 2016). We conducted a 2 (Strain
[stress, control]) x 2 (Reality [VR, in vivo]) x 5 (Time) repeated mea-
sures ANOVA (see Fig. 5) that demonstrated a significant main effect of
the factor Time (F(4, 332)= 37.36, ε= .81, p < .001, ηp²= .31, 95%
CI [.23; .38]). Additionally, the two-way interaction between the fac-
tors Time and Strain (F(4, 332)= 6.27, ε= .81, p < .001, ηp²= .07,
95% CI [.02; .12]) reached significance. To examine this interaction,
pairwise comparisons were used revealing the predicted data pattern;
the stress conditions deviated from the control conditions at VAS3
(directly after the TSST, p= .002) but not at any other point in time (all
ps> .155). No other effects or interactions were significant (all
Fs< 2.09 and ps> .152). We therefore conclude that the VR and in
vivo stress conditions are equally efficient in inducing subjective stress.

4. Discussion

The present study assessed whether a refined version of the TSST in
VR poses a viable alternative to traditional face-to-face in vivo stress
induction methods in the laboratory. Overall, the results suggest that
subjective and physiological reactions to the VR and the in vivo version
of the TSST were largely comparable. To the best of our knowledge, this
is the first study to examine the effects of the TSST-VR and the TSST in

vivo in a completely controlled experimental design with control
groups in vivo and in VR. This orthogonal design enabled us to compare
both versions of the TSST with their respective control group and thus
assess the effect of the social stress induction independently. Taken
together, we found similar patterns of results on most of our dependent
subjective and physiological variables. While participants showed an
increase of stress levels on almost all of our psychobiological stress
markers, no such rise was observed in our control groups.

Focusing on salivary cortisol as a major endocrine stress marker, the
results are indeed consistent with the assumption that a robust and
reliable stimulation of the HPA-axis with a social-evaluative stressor is
possible in VR. With a 62.5% responder rate using the 2.5 nmol/l cri-
terion and an on-average twofold increase, our results are comparable
with the average cortisol reaction usually obtained with in vivo ver-
sions of the TSST (Goodman et al., 2017). The cortisol response to the
present, improved version of the TSST-VR was more pronounced and
more robust compared to previous studies that used variations of the
TSST in VR (e.g., Kelly et al., 2007; Ruiz et al., 2010; Shiban et al.,
2016). As stated above, this might be mainly due to rapid technological
progress, especially regarding advanced graphics, which can be con-
sidered a main prerequisite for an increased immersion and the sub-
jective feeling of presence in the virtual adaptation of the TSST. It is our
understanding that the current technological status at the time of ex-
perimentation plays an essential role in this field of research. In the
past, researchers often had to resort to VR headsets that are described as
rather clunky and uncomfortable, (e.g. Kelly et al., 2007 refer to their
headset as a helmet with a small viewing screen) and although tech-
nical aspects like weight, resolution, or viewing angle are often not
reported, it can be assumed that these devices might have hindered the
participants from experiencing the degree of presence that modern
HMDs achieve. This assumption is largely supported by the fact that
studies using a CAVE system to realize their VR conditions (an im-
mersive stereoscopic room in which images are projected onto the walls
and participants wear specifically designed glasses instead of HMDs)
tend to report large stress effects on physiological markers (Jönsson
et al., 2010; Fich et al., 2014). In a direct comparison of both modalities
of presentation, Juan and Pérez (2009) found that exposure therapy
provoked more anxiety and a higher sense of presence in acrophobic
patients when it was conducted in a CAVE system than with an HMD.
Since that time, however, technical progression and the introduction of
virtual reality headsets to a wider audience via the medium of video
games provided researchers with light, relatively comfortable HMDs
with high resolution displays and effective motion tracking mechan-
isms. It would thus be quite informative to experiment with both modes
of presentation with state of the art technology in order to elucidate
whether there are still significant differences in effectiveness.

In addition, we specifically aimed at maximizing comparability
between the different conditions by carefully emulating the in vivo
surroundings in the virtual environment and increasing interactivity by
introducing automated eye-tracking-based verbal feedback when the
participants did not maintain eye-contact with the agents. Both fac-
tors—the sophistication of the graphical presentation and the high level
of perceived interactivity—might have promoted immersion and pre-
sence and thus contributed to the comparability of psychobiological
stress responses in the stress conditions (Diemer et al., 2015).

Beyond examining cortisol responses, the comparability of psycho-
logical stress reactions in the virtual condition and in vivo can be shown
by the rise in sAA—a valid index of sympathetic activation (Nater and
Rohleder, 2009) —and the increase in subjective stress ratings. On
these measures, the TSST-VR elicited stress responses that were equally
high in the VR and the in vivo setting. This supports the conclusion that
stress induction paradigms in a virtual environment, such as the TSST-
VR, can be potent reflections of a stressful situation in reality.

Moreover, the orthogonal experimental design permits us to infer
that the observed stress reactions in the TSST-VR were indeed elicited
by the stressful characteristics of the task itself and not by the fact that

Fig. 5. Subjective ratings of stress (a) VR vs. (b) in vivo. Error bars denote
standard errors.
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it was performed in an unfamiliar artificial environment. As assessed
via self-report at the end of the experiment, almost all of our partici-
pants reported little or no previous experience with immersive virtual
reality technology. It is therefore conceivable that the novelty of being
immersed in a virtual environment that is entirely under the control of
the experimenter might be sufficient to make participants feel un-
comfortable and thus induce stress. This alternative explanation for the
observed stress effects in previous studies (Jönsson et al., 2010; Fich
et al., 2014) cannot be discarded without the implementation of a
control group in VR. In the present study, the comparison between the
TSST-VR and the control condition in VR showed differential patterns
of reactions. The fact that we found stress effects on our dependent
measures only in the stress condition suggests that the immersion in a
foreign virtual environment is not sufficient to elicit a stress response,
at least in terms of HPA-axis activation.

It should be noted, however, that cortisol and HR responses to the in
vivo stress condition were still slightly more pronounced than to the VR
stress condition, whereas the SCL response was not affected differently
in the conditions. Possible explanations for these findings may be that
the overall rise in heart rate in the virtual control condition might be
attributed to increased activation caused by the speaking task and an-
ticipatory arousal due to the unfamiliar virtual environment, and the
low reactivity in SCL to constraints of the measurement (e.g., very
sweaty palms). It may, however, also be the case that virtual adapta-
tions of the real world—although potent reflections of many aspects of
real situation—are still limited by technological restraints which lead to
slightly attenuated psychobiological reactions to these environments.
Furthermore and more specifically, the TSST might be especially diffi-
cult to replicate in a virtual environment because of its conceptualiza-
tion as a stressor that uses a performance situation in the presence of
unapproachable human judges to generate social evaluative stress.
These necessary characteristics—evaluation and negative feedback by
human experts and uncontrollability of the situation (Dickerson and
Kemeny, 2004)—should make the translation into virtual reality diffi-
cult, since participants will still be able to envision that they are not
actually performing in front of real human beings but programmed
entities. Nevertheless, previous studies and the present findings suggest
that a majority of participants still adhere to social conventions (Garau
et al., 2005) and experience social evaluative stress in the presence of
virtual agents, as indicated by the subjective and endocrine reactions
(Jönsson et al., 2010; Kothgassner et al., 2016; Montero-López et al.,
2016; Shiban et al., 2016).

As mentioned in the methods section, the implementation of the
TSST into virtual reality and the parallelization of the experimental
conditions required some alterations to the original study protocol
(Kirschbaum et al., 1993) mainly in the preparation phase. A recent
meta-analysis on protocol variations of the TSST has, however, shown
that the stress induction effect is quite robust against a variety of
changes that have been made to the paradigm over the years of its
application (Goodman et al., 2017). The substantial stress effects that
we report in both TSST conditions in our study seem to further support
the idea that the strict adherence to the original protocol might not be a
necessary precondition for successful stress induction as long as the
main stressful features, social threat and uncontrollability are realized
(Dickerson and Kemeny, 2004). It might be an interesting question for
future studies, whether the TSST protocol can be generally simplified
without reducing its stressfulness.

Some potential limitations of the present experiment should be
noted. As in many fundamental studies on endocrine stress reactivity,
we started by examining an exclusively male sample of participants.
Besides the fact that men and women differ in their endocrine profiles
and reactivity to social stress (Kudielka and Kirschbaum, 2005; Kelly
et al., 2008), some studies show a differential effect of gender on the
perception of virtual environments (Munafo et al., 2017), especially
regarding Sense of Presence (Felnhofer et al., 2012). Although the
widely assumed concept that men and women differ in their affinity to

video gaming and virtual environments in general is slowly being dis-
proved (Rehbein et al., 2016), video games still occupy a larger role in
men’s free time than in women’s (Borgonovi, 2016). Secondly, we as-
sessed the endocrine stress responses by using salivary measures of
cortisol and alpha amylase. Although these measures have been proven
valid indicators of HPA-axis and catecholaminergic stress reactivity
(Hellhammer et al., 2009; Nater and Rohleder, 2009), direct measures
of ACTH, cortisol and catecholamines in plasma would have possibly
been more sensitive in the assessment of subtle differences between the
VR and in vivo version of the TSST. Lastly, it should be noted that al-
though the participant was alone in the room during all VR procedures,
the experimenter was in the adjacent room behind a one-way mirror
and supervised the experimental sessions and controlled the agents’
reactions to the participants’ performance. Moreover, the necessity of
taking a saliva sample right before the start of the task required the
experimenter to re-enter the room and hand the participant the Saliv-
ette. In the VR groups, this was done while the participants were
wearing the headset so that they consequently saw neither the experi-
menter nor their own hands while chewing the cotton swab. We
therefore cannot rule out that the participants were, to some extent,
aware of the experimenter’s presence. Thus, the feeling of being socially
evaluated might not have been exclusively conveyed by the virtual
agents, but to some degree also by the experimenter. Future studies
should evaluate the influence of the experimenter’s presence on im-
mersion and presence in the virtual reality.

5. Conclusion

Taken together, the present study demonstrates that social evalua-
tive stress can be successfully induced in a virtual environment re-
sulting in stress responses on several physiological measures associated
with the HPA axis and the SAM system. By using a refined VR version of
the TSST, we could show that situations realized in VR have the po-
tential to realistically simulate complex social interactions and evoke
comparable subjective and physiological reactions. Due to its computer-
generated nature, the TSST-VR has several key advantages: First, it is
entirely standardized with no variation between testing sessions.
Secondly, it is very economic insofar as it reduces the necessary amount
of personnel from at least three to one and makes training judges ob-
solete. Lastly, it facilitates the variation of parameters of interest. In
sum, the present study demonstrates that a technologically sophisti-
cated version of the TSST-VR that maximizes interactivity and presence
might be a valuable alternative to the traditional in vivo stress induc-
tion for experiments in psychoneuroendocrinology.
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Abstract

In recent years, adaptations of the Trier Social Stress Test (TSST) have shown that 

socially evaluative stress can effectively elicit psychobiological responses in a standardized 

way in Virtual Reality (VR). While these methods hold many advantages, the underlying 

mechanisms of stress-induction effects via virtual avatars are still largely unclear. The present 

study tested whether the similarity of the real and virtual world modulates the stress response 

during a virtual TSST by intensifying the experience of presence. For this purpose, two 

groups performed the TSST-VR while their virtual surroundings were either a replication of 

the real laboratory or a foreign environment. Although a significant stress response with 

regard to salivary cortisol, salivary alpha amylase, heart rate and subjective feelings of stress 

was found in both groups, the parallelization of the real and virtual environment did not lead 

to an increase in physiological or subjective stress. Furthermore, both groups did not differ in 

self-reported presence. Beyond reproducing previous findings of successful psychobiological 

stress induction in VR, the results indicate that the paradigm is effective regardless of the 

context it is employed in and therefore could be a promising tool in multi-center research 

projects or clinical applications. 

Keywords: Stress; cortisol; heart rate; Trier Social Stress Test; TSST; virtual reality; TSST-

VR
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1 Introduction

For several decades, behavioral science has acknowledged the importance of 

understanding the physiological consequences of stressors induced by our social environment. 

The need for a paradigm that could reliably emulate the strains of demanding psychosocial 

situations prompted Kirschbaum, Pirke, and Hellhammer [1] to develop the Trier Social Stress 

Test (TSST). This procedure, consisting of a mock job interview and a mental arithmetic task, 

has demonstrated its stimulating capabilities on both stress effector systems in the human body, 

the sympatho-adrenal-medullary (SAM) system, and the hypothalamic–pituitary–adrenal 

(HPA) axis, in numerous circumstances [2].

In recent years, Virtual Reality (VR) based paradigms have gained popularity in almost 

all fields of application in psychology due to their versatility and nearly limitless potential to 

create scenarios that are difficult to implement in other ways. In 2007, the first adaptation of 

the TSST in a virtual environment demonstrated the potential of studying the effects of socially 

evaluative stress induction in VR with respect to subjective and neuroendocrine stress 

reactivity [3]. Since then, several research groups have furthered the development of this 

paradigm [4,5] confirming the assumptions collated in the Media Equation Concept [6] in 

1996. In this framework, Reeves and Nass summarize the findings of a large number of 

empirical studies that demonstrate that, for the most part, interactions with computers follow 

the same patterns as real social relationships, if there are sufficient social clues. To explain 

these findings, they rejected the notion that humans anthropomorphize computers (i.e. believe 

that computers are essentially human) in favor of what they termed Ethopoeia: Responding to 

a computer and programmed entities as if they were human while being aware that they, in 

fact, do not warrant the attribution of human characteristics [7]. 

While several studies point out the effectiveness of the TSST-VR in terms of 

psychological and autonomous stress responses [8,9], findings concerning the activity of the 
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HPA axis have been less reassuring with recent studies indicating an attenuated HPA-response 

in comparison to the traditional in vivo TSST [10]. 

In a previous study we demonstrated comparable HPA axis reactions in a refined VR-

adaptation of the TSST [11]. While retaining the original TSST protocol, the TSST-VR 

employed in this study differed from previous iterations in its graphical fidelity, eye-tracking 

based adaptive responses of the committee and parallelization of real and virtual surroundings 

by modelling the VR room after the real laboratory. All of these modulations presumably 

enhanced the sense of presence in the computer-generated scenario and might have 

consequently increased neuroendocrine stress reactivity. The sense of presence is a theoretical 

concept that describes crucial psychological processes that come into play whenever people 

interact with a mediated environment, be it simply through a book or via immersive virtual 

realities. A comprehensive definition of presence that encompasses all relevant aspects has 

been devised by Wirth and colleagues [12]. According to their two-dimensional model of 

spatial presence, people experience presence when they have the sensation of physically being 

in a mediated space and when they perceive only those action possibilities that are relevant to 

the mediated space and not those that would be possible in the real environment. While the 

concept of presence can be measured on several dimensions, it is perhaps best described by its 

transportation component: presence is considered to be experienced when people feel as if they 

have been transported into a fleshed-out virtual world that allows for the same actions as real 

environments [13]. In the clinical domain, experiencing presence is often considered a 

necessary prerequisite for the incurrence of an emotional response in virtual exposure therapy 

sessions [14]. 

Based on findings that link presence to a heightened fear response [15] and more 

pronounced feelings of anxiety [16], it also seems warranted to expect associations between 

presence and the physiological response to stress-inducing virtual scenarios. Some studies have 

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240



5

been able to detect correlations between presence and some markers of the SAM system and 

even inferred that physiological responses might potentially be suitable indicators of presence 

[17]. Supporting this conclusion, Slater, Brogni and Steed [18] showed that participants in a 

CAVE-like VR environment reacted with a skin conductance response and a spike in heart rate 

when they were interrupted during the exploration of the virtual environment by having to react 

to a stimulus from the real world (e.g. having to press a button when a colored ball was 

projected onto the wall of the CAVE). Based on these results, the authors infer that having to 

switch one’s attention from between the physical and the virtual world disrupts the sense of 

presence and thereby elicits physiological responses. Incorporating additional measures of 

presence in future studies would enable empirical investigation of the role of presence as a 

possible moderator of the effectiveness of psychobiological stress induction in virtual settings.

In the present study, we examined whether replicating the real surroundings in VR leads 

to an increase in presence and the physiological stress responses of both HPA axis and SAM 

systems. For this purpose, we tested two groups of participants in the TSST-VR in either 

substantially differing or parallelized environments. We hypothesized that an increased 

similarity of the real environment and VR would promote an increase of both the physiological 

stress reaction and heighten the probability of experiencing presence.

2 Methods

2.1. Participants and design

The experimental design comprised of one between-subjects factor with two levels that 

participants were randomly assigned to: VR same and VR different. In the first group, 

participants performed the TSST in a virtual environment that was meticulously modeled after 
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their real surroundings while participants in the second group found themselves in entirely 

different virtual surroundings. 

Participants were recruited via advertisements on the campus of the University of Trier 

and the Trier University of Applied Sciences. The following inclusion criteria were established: 

BMI between 19 and 25 kg/m2 and age between 18 and 50 years, no acute or chronic somatic 

or psychiatric disease, no regular intake of medication, no psychotherapeutic treatment in the 

last 12 months, not smoking more than five cigarettes per day and not working night shifts 

[19]. Furthermore, participants were asked to refrain from physical exercise and consumption 

of alcoholic or caffeinated beverages at least 24h prior to the start of the testing session and to 

abstain from consuming anything but water in the two hours before. The study was approved 

by the University of Trier ethics committee and conducted in accordance with the Declaration 

of Helsinki and the American Psychological Associations’ Ethical Principles of Psychologists 

and Code of Conduct. All participants gave informed written consent and received 30€. 

In total, fifty male participants (age range: 18-36; M = 24.84; SD = 4.00) were recruited 

and randomly assigned to the conditions VR same (n = 25; age range: 19-30; M = 24.20; SD = 

3.40) or VR different (n = 25; age range: 18-36; M = 25.48; SD = 4.49). A t-test was calculated 

to verify that there were no significant age differences between the groups (t(48)=1.14, p = 

0.262). We excluded one participant in the VR same group from all analyses due to a post-

stress increase in salivary cortisol of over five standard deviations above the mean. 

2.2. Apparatus

The virtual environment was generated using the Steam Source engine (Valve 

Corporation, Bellevue, Washington, USA), interfaced by the VR simulation software 

CyberSession 5.6 (VTPlus GmbH, Würzburg, Germany), and operated via the CSRemote IOS 

app running on an Apple IPad Air. The experiment ran on a desktop computer (Intel Core i7 
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4790K @ 4 Ghz, 16 GB Dual-Channel DDR3 RAM @ 3900 Mhz, NVidia Geforce GTX 980Ti 

with 6 GB of GDDR5 VRAM). A Head-Mounted Display (HMD; Oculus Rift DK2, Oculus 

VR LLC, Menlo Park, CA, USA; resolution: 1920 x 1080 [960 x 1080 pixels per eye]; field of 

view: 100°) with integrated head-tracking was used for VR simulation. Sound was presented 

via headphones. 

The virtual environment in the simulation was designed to closely resemble one specific 

VR laboratory experimentation room and share all of its distinctive features like the large one-

way-mirror (Fig. 1). Furthermore, to make the parallelization of the virtual and real 

surroundings as salient as possible, certain elements of the VR, such as the white desk and the 

microphone were also set up in the real laboratory in the VR same condition. 

In the VR different condition, a second laboratory was chosen that shared few properties 

with the VR laboratory (the second laboratory e.g. lacked its distinctive hexagon-like shape 

and the blue carpet flooring) and neither the desk nor any other noticeable elements of the VR 

were present (Fig. 1B). We thereby attempted to maximize the difference between the real and 

virtual environment so that participants in this group would constantly be reminded that they 

were put into fabricated virtual surroundings.
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Fig. 1. Depiction of the real laboratories and the virtual environment. (A) Laboratory in the VR 
same condition. (B) Laboratory in the VR different condition. (C) Virtual laboratory. (D) 
Participants’ view during the TSST. 

2.3. Measures

At seven time points (Fig. 2), participants were asked to give saliva samples by using 

Salivettes (Sarstedt, Nümbrecht, Germany). Samples were stored at – 20°C until biochemical 

analysis by the University Laboratory to determine concentrations of free salivary cortisol and 

alpha amylase (sAA). For cortisol analysis, a time-resolved fluorescence immunoassay [20] 

was used. 100μl of saliva were used for duplicate analysis (50μl per well). The Intra-assay 

coefficient of variation ranged between 4.0% and 6.7% and the corresponding inter-assay 

coefficients of variation were between 7.1% and 9.0%. 

For sAA analysis, the chromogenic molecule 2-Chloro-4-nitrophenyl-a-D-

maltotrioside was used [21]. Saliva was diluted 1:200 with assay diluent. 16μl of the diluted 

saliva were used for duplicate analysis (8μl per well). The intra-assay coefficient of variation 

was between 2.8% and 6.3%, and the corresponding inter-assay coefficients of variation were 

between 5.5% and 7.6%.
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Heart rate (HR) was recorded using an ANS Recorder flex mobile ECG device 

(Neurocor Ltd. & Co. KG, Trier, Germany). IBI files were exported using the most artifact-

free ECG derivation of the three possible alternatives and entered into ARTiiFACT [22] for 

automatic artifact detection and correction using cubic spline interpolation [23]. If necessary, 

automatically corrected files were reintroduced in ARTiiFACT and manually corrected after 

having undergone visual inspection.

Sense of presence was measured shortly after the stress induction using the Igroup 

Presence Questionnaire (IPQ; [24]), a self-report scale that measures presence on a one-item 

global scale (G) and three dimensions: Spatial presence (SP), involvement (INV), and realness 

(REAL). In total, the questionnaire consists of 14 items that participants have to rate on a Likert 

scale from -3 (total disagreement) to +3 (total agreement). The subscale SP measures how much 

participants have the feeling of finding themselves in a real environment with the potential of 

interacting with their surroundings in a meaningful and plausible way. INV measures how 

much the virtual environment captivates participants’ interest and to what extent they are still 

aware of their real-world surroundings. The third subscale REAL assesses the feeling of 

authenticity of the virtual environment in comparison to the real world. Schubert [24] 

investigated the reliability of the scale and found satisfying internal consistency scores for the 

three subscales. 

At -20, -10, +15, +40 and +60 minutes (in reference to TSST onset) participants rated 

their perceived levels of distress on eight visual analogue scales (VAS; range from 0—not at 

all—to 100—very much) with questions such as “how stressed do you feel?” or “how much do 

you feel physically unwell?” (c.f. Kothgassner et al., [25]). Additionally, participants filled out 

several visual analogue scales right after the stress induction that referred directly to the 

stressfulness of the previous task (such as “the situation was challenging for me” or “I felt 

threatened in the situation”). 
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Fig. 2. Experimental procedure depicting experimental phases and time of assessment of 
subjective stress ratings (VAS) and saliva samples (S). Procedures in the preparation room are 
depicted in white; procedures in the VR laboratory have been marked in grey. Hatched patterns 
represent the components of the TSST. 

2.4. Procedure

Testing sessions took place in the Virtual Reality laboratory of the University of Trier at either 

3 p.m. or 5 p.m. to control for the circadian secretion rhythm of cortisol [26]. Upon arrival, 

they were greeted by the experimenter and an assistant and informed about the following 

procedures before declaring their consent. They were then fitted with the ECG device and asked 

to fill out the first VAS and to give the first saliva sample. Depending on which group they had 

been assigned to they were either accompanied to the lab that had been replicated in VR (VR 

same condition) or the dissimilar lab (VR different condition). After filling out a second set of 

VAS, participants put on the HMD and headphones. They subsequently had ten minutes to 

familiarize themselves with their virtual surroundings. After this baseline phase, they received 

instructions on the following task via head phones and in writing on the screen. Both groups 

were told that they would have three minutes to prepare for a job interview in front of a panel 
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of judges. Afterwards, three virtual judges entered the room, took their places behind a desk 

and informed the participants that the preparation period was now beginning. Apart from the 

shorter preparation time and the need to prepare the job interview without being able to take 

notes, TSST procedures were directly adapted from the original paradigm [1]. During the tasks, 

the judges were controlled by the experimenter who triggered pre-recorded follow-up questions 

and instructions. After the arithmetic task, the judges stood up and left before the screen turned 

black. Participants were then assisted in taking off the HMD and asked to remain standing 

while giving the third saliva sample and filling out the IPQ, and several VAS. After completion, 

participants were led back to the preparation room where they periodically gave additional 

saliva samples and answered questionnaires. The experimental procedure ended 60 minutes 

after the beginning of the stress induction when participants gave the last saliva sample and 

questionnaires before being debriefed and compensated (Fig. 2). 

2.5. Statistical analyses

Student’s t-tests were calculated to compare subjective measures of stress as well as 

subscales of sense of presence between the two groups (VR same vs. VR different). For the 

main analyses, mixed repeated-measures ANOVAs were conducted to test for differential 

effects of the stress conditions on physiological and subjective stress markers (with time as the 

repeated-measures factor). When significant Group x Time interactions were found, we carried 

out Bonferroni-corrected pairwise comparisons. In cases of a violation of the assumption of 

sphericity (indicated by significant Mauchly’s tests), we used Greenhouse-Geisser correction 

and report ε- and corrected p-values. All analyses were performed with SPSS for Windows 

(Version 25). Significance level was set at p < .05. Effect sizes are reported as ηp².
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3 Results

3.1. Salivary cortisol

In order to test for a stress-related increase in secretion of salivary cortisol we conducted 

a 2 (VR same, VR different) x 7 (time) repeated measures ANOVA. The analysis revealed a 

highly significant main effect of the factor time (F(6, 282) = 20.20, ε = 0.34, p < 0.001, ηp² = 

0.30, 95% CI [0.22; 0.35]). An increase in salivary cortisol over time was found that reached 

its maximum at 20 minutes after stress onset. Pairwise post-hoc comparisons revealed that the 

groups did not differ significantly at any of the seven time points (all ps > 0.4). Neither the 

main effect of the factor group (F(1, 47) = 0.17, p = 0.680) nor the interaction of both factors 

(F(6, 282) = 0.76, ε = 0.34, p = 0.928) reached significance, indicating a lack of significant 

differences between the groups in terms of HPA reactivity (Fig. 3A). 

To corroborate these findings, Area under the Curve (AUC) values were calculated 

using the formulas proposed by Pruessner, Kirschbaum, Meinlschmid, & Hellhammer [25]. 

Student’s t-tests showed neither a significant difference between groups for the area under the 

curve with respect to ground (AUCg; t(47) = 0.44, p = 0.662) nor for the area under the curve 

with respect to increase (AUCi; t(47) = 0.26, p = 0.796; Fig 3B).
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Fig. 3. (A) Free salivary cortisol in response to the stress conditions over the course of the 
experiment. Preparation and Stressor represent the respective phases of the TSST. Error bars 
denote standard errors. (B) Area under the Curve (AUC) values with respect to ground 
(AUCg) and with respect to the increase (AUCi) calculated for free salivary cortisol. (C) 
Salivary alpha amylase in response to the stress conditions over the course of the experiment. 
Error bars denote standard errors. (D) Area under the Curve (AUCg and AUCi) values 
calculated for alpha amylase. 

3.2. Salivary alpha amylase

A 2 x 7 ANOVA was carried out with salivary alpha amylase (sAA) as the dependent 

variable. Again, a significant main effect of the factor time (F(6, 282) = 13.65, ε = 0.39, p < 

.001, ηp² = 0.23, 95% CI [0.14; 0.28]) was found. Pairwise post-hoc comparisons revealed an 

increase in sAA over time that reached its peak shortly after the end of the stress induction 

before dropping back to pre-stress-exposure levels. Furthermore, the groups did not differ 

significantly at any of the seven time points (all ps > 0.2). There was no differentiated release 

pattern of salivary amylase between groups as indicated by the nonsignificant main effect of 
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the factor group (F(1, 47) = 0.23, p = 0.634) and the nonsignificant group x time interaction 

(F(6, 282) = 1.74, ε = 0.39, p = 0.174; Fig. 3C).

Area under the curve (with respect to ground and increase) values were calculated for 

sAA secretion and t-tests were performed to test for differences between the groups. There was 

no significant difference for AUCg (t(47) = 0.50, p = 0.622) or AUCi (t(47) = 1.40, p = 0.169; 

Fig. 3D).

3.3. Heart rate 

Six mean HR segments of three to five minutes were calculated from IBI data. Due to 

missing ECG data in at least one of the experimental phases, one additional participant from 

each condition had to be excluded, leaving a sample of N = 47 for heart rate analysis.

A 2 x 6 (group x time) ANOVA yielded a significant main effect of the factor time (F(5, 

225) = 77.77, ε = 0.61, p < 0.001, ηp² = 0.63, 95% CI [0.57; 0.67]). Mean HR increased over 

the course of the experiment and reached its peak during the job interview task of the TSST 

before starting to readjust to normal values (Fig. 4). Pairwise post-hoc comparisons revealed 

that the groups did not differ significantly at any of the six time points (all ps > 0.2).

Both stress groups did not differ in terms of HR activity, as shown by the nonsignificant 

main effect of the factor group (F(1, 45) = 0.77, p = 0.385) and the nonsignificant interaction 

of both factors (F(5, 225) = 1.65, ε = 0.61, p = 0.179). 
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Fig. 4. Heart rate over the course of the experiment separated into six crucial time periods. 
(A) Averaged over the entire duration of each experimental phase (3-5 minutes). (B) 
averaged per minute. Error bars denote standard errors. 

3.4. Self-reported stress

At five time points throughout the experiment, participants were asked to rate the 

stressfulness of the experience on several VAS items from 0 to 100. Due to missing data of one 

participant in the VR same group, analyses were carried out with a sample of N = 48. A 2 x 5 

ANOVA for the item “How stressed do you feel at the moment?” showed a significant main 

effect of the factor time (F(4, 184) = 36.69, ε = 0.64, p < 0.001, ηp² = 0.44, 95% CI [0.35; 

0.51]). Self-reported stress increased substantially from before stressor onset to immediately 

afterwards (TSST onset +15) before falling back to baseline levels. Pairwise post-hoc 

comparisons revealed that the groups did not differ significantly at any of the five time points 

(all ps > 0.2). There was no significant difference between the two stress groups (F(1, 46) = 

2.30, p = 0.136) and no significant group x time interaction (F(4, 184) = 0.50, ε = 0.64, p = 

0.653; Fig. 5A).

Similar results emerged for the item “How much would you like to leave the present 

situation?” Again, a significant main effect of the factor time was found in the 2 x 5 ANOVA 

(F(4, 184) = 7.01, ε = 0.66, p < 0.001, ηp² = 0.13, 95% CI [0.05; 0.19]) indicating a heightened 
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desire to leave the experimental procedure right after stress induction. Pairwise post-hoc 

comparisons show that except for the second time point before stress onset, at which 

participants in the VR same group reported a significantly heightened inclination of leaving the 

situation (p = 0.035), the groups did not differ significantly (all ps > 0.1). No significant main 

effect of the factor group (F(1, 46) = 1.14, p = 0.292) and no significant interaction (F(4, 184) 

= 0.89, ε = 0.66, p = 0.439) were found (Fig. 5B).

Fig. 5. Subjective stress levels rated on VAS at five time points over the course of the 
experiment. Preparation and Stressor represent the respective phases of the TSST. (A) How 
stressed do you feel at the moment? (B) How much would you like to leave the present 
situation? Error bars denote standard errors. 

We analyzed one additional set of VAS collected immediately after the TSST that 

referred directly to the stressfulness of the VR tasks. Student’s t-tests were performed to test 

whether the groups differed in their ratings of the situation in any significant way. None of 

these questions yielded a significant group difference: for example, “I found the previous 

situation challenging” (t(47) = 0.33, p = 0.744), “I felt like I was in control of the situation” 

(t(47) = 0.32, p = 0.747), “The situation felt threatening to me” (t(47) = 0.57, p = 0.570) or “I 

am content with the outcome of the situation” (t(47) = 0.17, p = 0.865).
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3.5. Sense of presence 

Student’s t-tests were performed to determine whether the groups differed in the perceived 

realness of the virtual environment and tasks. There was no significant difference between the 

groups in the one-item-scale general presence (t(47) = 0.20, p = 0.841), perceived spatial 

presence (t(47) = 0.92, p = 0.362), involvement (t(47) = 1.86, p = 0.069), or realness (t(47) = 

1.97, p = 0.054). This indicates that there was no difference between the groups in the 

experience of presence. Individual scores for the three main subscales are depicted in Fig. 6. 

Fig. 6. Individual scores on the three main subscales of the IPQ measured after virtual stress 
exposure. (A) Spatial presence. (B) Involvement. (C) Realness. 

4 Discussion

The results of the present study replicate our previous findings that a refined version of 

the TSST-VR is an effective paradigm for psychobiological stress induction, including the 

activation of the HPA-axis [11,28]. Both groups showed a substantial physiological reaction 

on both stress effector systems in response to the virtual tasks that did not differ depending on 

the experimental condition. In addition to the on-average twofold increase in salivary cortisol 

that is comparable to the effects of the invivo TSST [29], participants reported significantly 
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heightened subjective stress levels after the tasks. Our hypothesis that simulating the real 

environment in VR would lead to an increase in presence and thus to a more pronounced stress 

response was, however, not confirmed. While both groups reported to have experienced 

presence in VR no significant differences in presence were detected. Furthermore, participants 

in the VR same condition did not exhibit a larger increase in physiological or subjective stress 

parameters. The finding that both groups experiences presence equally no matter whether the 

real environment was replicated in the VR implies that in order for participants to have a sense 

of presence, other factors must play a more pivotal role. 

Moreover, the results can be understood as further evidence for the theoretical 

framework described in the Media Equation [6]. Although participants were confronted with a 

fabricated environment and an interaction with programmed entities that should not trigger 

social responses, they nonetheless reacted as if faced with factual psychosocial pressure by 

other humans. In only very few instances, participants did not comply with the social demands 

imposed by the virtual judges on account of them not being real human beings. Overall, 

participants constantly adhered to the tasks the judges asked them to perform and even gave 

very personal information about their character traits as it would be expected in a real job 

interview situation. These findings are in line with numerous other studies that have 

demonstrated how humans employ social norms like politeness, attribution of personality traits, 

and reciprocity in interactions with computers and computerized agents [7,30,31]. 

 However, a factor that might have influenced subjective presence in the present study 

was that the management of the VR paradigm required the experimenter to be present at all 

times. The knowledge that there still was another person in the room while one was performing 

the job interview and arithmetic tasks might have added an additional layer of social evaluation 

that was not caused by the TSST-VR itself. While IPQ measures suggested that overall, 

participants have immersed themselves in the VR, it is possible that the presence of the 
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experimenter led to higher levels of self-awareness during the tasks and thus to a stronger 

experience of presence [32]. Specifically, if participants were still aware of the experimenter 

during the virtual stress exposure, they might have viewed him, instead of the virtual 

committee, as their primary interaction partner. This could have presumably led to an increase 

in social presence since it might have transformed a participants’ perception of the virtual 

environment from a self-contained situation to a medium through which to communicate with 

the experimenter [33]. To our knowledge, most VR systems that have been used in 

psychological research to date have, however, required the experimenter to be present in order 

to operate the system, and this would also be the case in a clinical setting, where only one room 

may be available. This makes the systematic evaluation of this factor imperative. Measuring 

not only spatial presence, but also social presence, might provide some insight concerning this 

issue.

The present study has some limitations. As described above, the presence of the 

experimenter might be a factor of influence that warrants further investigation. Additionally, 

both experimental groups were examined exclusively under laboratory conditions. Further 

evaluation is warranted in order to improve external validity if the procedure is to be applied 

in a non-laboratory environment, e.g. for clinical purposes. Furthermore, due to sex-dependent 

variations in hormonal parameters [34], we decided to test only male participants as a pilot 

investigation. Future investigations can enhance generalizability by including females as some 

studies have demonstrated differences in the perception of virtual environments associated with 

participants’ sex [35]. In this sense, the present experiment has to be understood as a pilot 

investigation that should be supported by future studies that include male and female 

participants.

Beyond replicating the previous findings of robust stress-induction in VR and 

elucidating the association of presence and physiological responses in stress-inducing virtual 
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scenarios, the present study might have practical implications. The fact that stress induction 

and stress-related physiological responses occurred independently of the specific surroundings 

of the laboratory in which the virtual stressor was applied, shows that the TSST-VR paradigm 

is a potential candidate to go beyond the exclusive application in science and a promising tool 

for clinical practitioners. A socially challenging situation like the TSST-VR might be a useful 

testing ground for patients with anxiety disorders such as social phobia [36] as either a method 

for therapeutic exposure [37] or to monitor efficacy of conventional therapy. The virtual 

environment would not have to match each individual clinic environment, making the potential 

therapy application more flexible and realistic to implement. More minor context variables 

however, can be changed with relative ease, so that variations of the paradigm with different 

levels of difficulty could be implemented depending on the progress of the patient. As an 

example, the TSST-VR could be performed in a calming environment with subsequent relaxing 

elements [8] when the patient has just recently started therapy in contrast to a more taxing 

scenario with additional spectators at a later stage [38]. In addition, the robustness of the TSST-

VR against variations of the laboratory environment demonstrated in this study is highly 

relevant for large-scale investigations needing evidence that different laboratory settings can 

be incorporated while still sustaining high levels of standardization. In particular, multi-center 

studies using the same virtual environment in different laboratories could thus be more feasible 

and more easily implemented. This exemplifies one of the strengths of stressors realized in 

virtual environments. While the original TSST could naturally be used in a multi-center 

research design, the TSST-VR achieves a maximum degree of standardization while 

maintaining high cost-efficiency. While further research is still necessary to determine whether 

the TSST-VR induces a reliable response to psychosocial stress [11], it can nevertheless be 

considered a promising addition to the canon of experimental paradigms for stress research.
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Acute stress enhances the sensitivity for facial emotions: a signal
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ABSTRACT
Facial emotion recognition is an important prerequisite for social cognition. There is, however, limited
evidence on how the ability to detect facial emotions is influenced by acute stress and the associated
physiological reactions. In this study, two groups of healthy male participants were either exposed to a
psychosocial stressor – an adaptation of the Trier Social Stress Test in virtual reality (n¼ 23) – or a non-
stressful control task in the virtual environment (n¼ 20). Afterwards, both groups completed a compu-
terized facial recognition task based on the signal detection theory presenting happy vs. angry faces
with three different expression intensities. Saliva samples were taken at seven time points over the
course of the experiment and used to analyze concentrations of free salivary cortisol and alpha amyl-
ase. Analyses using repeated-measures analyses of variance revealed a significant increase in emotion
detection performance and significantly shorter response latencies in the stress group independent of
emotional valence or emotion intensity. However, increased task performance in the stress group could
not be predicted by stress-induced cortisol or alpha amylase secretion. The results suggest that
enhanced detection of emotional cues after stress might be an adaptive response as an increased sen-
sitivity to social cues might help individuals to detect potential threats or sources of social support in
their social environment.

LAY SUMMARY

Socially evaluative stress facilitates the subsequent recognition of emotions. After having performed a
task in a virtual environment, two groups of participants were asked to detect emotion expressions on
pictures of faces that were presented to them on a computer screen. Statistical comparison of groups
indicates that the group that had previously been subjected to a stressful job interview showed better
results and became faster in detecting displayed emotions than the control group that had previously
performed a non-stressful task.

ARTICLE HISTORY
Received 6 November 2018
Accepted 6 March 2019

KEYWORDS
Facial emotion recognition;
psychosocial stress; Trier
Social Stress Test (TSST);
salivary cortisol; alpha
amylase;
hypothalamus–pituitary-
–adrenal axis

1. Introduction

Acute psychosocial stress activates the HPA-axis and the
sympathetic-adrenal system which results in the secretion of
glucocorticoids (cortisol in humans) and catecholamines
(Allen, Kennedy, Cryan, Dinan, & Clarke, 2014). Cortisol is
secreted from the adrenal cortex and binds to two different
classes of receptors: mineralocorticoid receptors (MR) and
glucocorticoid receptors (GR). Catecholamines in turn are
mainly secreted from the adrenal medulla. Being unable to
cross the blood brain barrier, they mainly act on adrenal
receptors in the periphery. Over the last decades, numerous
studies have demonstrated that stress affects cognitive func-
tion such as episodic memory as a result of complex interac-
tions of glucocorticoids and catecholamines at the level of
the amygdala, where a high concentration of MR can be
found (Roozendaal, McEwen, & Chattarji, 2009). In addition,
other basic cognitive processes such as perception, attention
and response selection are prone to the acute effects of psy-
chosocial stress as well (Liston, McEwen, & Casey, 2009).

The cognitive ability to recognize emotions from facial
expressions is fundamental to social interaction and largely
depends on brain regions also involved in the regulation of
the acute stress response (Pessoa & Adolphs, 2010).
Surprisingly, research examining the effect of acute psycho-
social stress and associated hormonal responses on such an
important facet of social cognition is scarce. Deckers et al.
(2015) found a general increase in recognition performance
following acute psychosocial stress, while Smeets, Dziobek,
and Wolf (2009) reported no such effect with a test probing
the ability to infer more complex mental states from the eye
region. Using blends of mixed emotions, Daudelin-Peltier,
Forget, Blais, Deschênes, and Fiset (2017) demonstrated a
stress-induced shift toward surprise away from disgust. In
contrast, a study in children revealed a shift toward recogniz-
ing fear in ambiguous faces (Chen, Schmitz, Domes, Tuschen-
Caffier, & Heinrichs, 2014). Following a pharmacological
approach, an MR-agonist (fludrocortisone) increased emo-
tional empathy in women (Wingenfeld et al., 2014), but did
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not alter emotion recognition performance (Schultebraucks
et al., 2016). Furthermore, a complex sex-dependent effect
was found for the administration of 10mg hydrocortisone
(Duesenberg et al., 2016). In sum, the few studies so far pro-
vide an inconsistent pattern of effects that might have origi-
nated in differences in the specific cognitive function studied
and the experimental paradigm followed (stress induction vs.
pharmacological challenge).

The present study therefore aimed to investigate the
effects of acute psychosocial stress on the ability to detect
facial emotions within a signal detection framework. We used
a virtual-reality adaptation of the Trier Social Stress Test
(TSST) that has been shown to serve as an efficient and
standardized alternative to the face-to-face TSST to induce
robust endocrine stress responses in a previous study
(Zimmer, Buttlar, Halbeisen, Walther, & Domes, 2019). In the
subsequent emotion recognition task, we chose happy and
angry facial expressions because they represent two opposite
social signals: a positive signal of social approach and a nega-
tive signal of social threat, and thus correspond to the two
contrasting reactions to acute stress: “tend-and-befriend”
(Taylor, 2006) and “fight-or-flight” (Cannon, 1932). Based on
the studies summarized above, we hypothesized that acute
stress elicited in a virtual environment would promote the
sensitivity for facial emotions, especially for social cues of
threat, i.e. angry faces. In addition, we explored the assumed
association between HPA axis, sympathico-adrenal activity
and emotion detection performance.

2. Methods

2.1. Participants

Healthy male participants were recruited by on-campus
advertisement and were included in the study if they fulfilled
the following criteria based on self-report given during a
telephone interview: age between 18 and 50 years, BMI
between 19 and 26 kg/m2, no acute or chronic somatic or
psychiatric disease, smoking less than five cigarettes per day,
free of any medication, not working on night shift. In all,
N¼ 51 met inclusion criteria and were randomly assigned to
one of two experimental conditions (acute stress vs. control
condition). An exclusively male sample was chosen to avoid
the confounding effects of sex and gonadal steroids related
to menstrual-cycle or oral contraceptives on stress-reactivity
and facial emotion recognition (Derntl, Kryspin-Exner,
Fernbach, Moser, & Habel, 2008; Kirschbaum, Kudielka, Gaab,
Schommer, & Hellhammer, 1999). Due to technical failure at
the beginning of the study, datasets of n¼ 6 participants in
the stress condition and n¼ 2 in the control condition had to
be excluded, leaving n¼ 23 participants in the stress group
and a total of N¼ 43 overall for the emotion recognition ana-
lysis. Participants were instructed to refrain from eating and
drinking anything other than water two hours before the
experimental session. To control for the circadian rhythm of
cortisol (Kudielka & W€ust, 2010), experimental sessions
started at 3.30 p.m. or 5.30 p.m. The present analysis was
part of a larger project that focused on the evaluation of the
virtual reality (VR) version of the TSST (Zimmer et al., 2019).

The study protocol was approved by the ethics committee of
the University of Trier. Participants were reimbursed with 30e
for their participation.

2.2. Procedures

After arriving at the laboratory, participants gave written
informed consent and were instructed in how to use the sal-
iva sampling device and how to fill in the visual analog scales
(VAS) in a preparation room. They were then brought to the
experimental room and familiarized with the VR goggles.
After an acclimatization period of 10minutes in the virtual
environment participants were given written and prerecorded
spoken instructions about the ensuing task. Subsequently,
three virtual judges entered, took their places behind a desk
and one informed the participants that they would now have
three minutes of preparation time. Thereafter, participants
performed a mock job interview and a mental arithmetic
task. The reactions of the virtual judges were controlled by
the experimenter from an adjacent room behind a one-way
mirror. After finishing the TSST-VR, participants were guided
back to the preparation room where they performed the
emotion detection task on a PC running ePrime (V. 2.0;
Psychology Software Tools Inc., Sharpsburg, PA) and com-
pleted state questionnaires.

2.2.1. Laboratory stressor – the Trier Social Stress Test in
virtual reality
As an acute psychosocial stressor, a VR adaptation of the
Trier Social Stress Test (TSST-VR) was used. Several previous
studies have demonstrated that other VR adaptations of the
TSST reliably elicit a robust physiological and subjective stress
responses (Fallon, Careaga, Sbarra, & OʼConnor, 2016; Shiban
et al., 2016). Detailed procedures and further evaluation of
the paradigm have been reported recently (Zimmer et al.,
2019). In brief, like the original in vivo TSST (Kirschbaum,
Pirke, & Hellhammer, 1993), the TSST-VR comprises of five
minutes of free talk (mock job interview) and a five minute
mental arithmetic task in front of a (virtual) audience of three
judges. A non-stressful “placebo version” of the TSST was
adapted for the VR environment as the control condition
(Het, Rohleder, Schoofs, Kirschbaum, & Wolf, 2009). This non-
stressful version of the TSST mainly differed in terms of the
lack of uncertainty and social threat but included comparable
cognitive demands as the stressful TSST-VR.

2.2.2. Facial emotion detection task
For the selection of stimuli and leveling of difficulty between
positive and negative facial expressions, a pilot study was
conducted. For details, refer to the online supplemental meth-
ods. The final task comprised of the two different expression
categories, anger and happiness, and three different inten-
sities (low, medium, high), resulting in a 2� 3 design, i.e. six
different conditions. In each block, 12 stimuli of a specific con-
dition were shown consecutively in random order (six faces
with the specific emotion and six neutral faces). Every block
was preceded by a written instruction to decide whether the
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face presented in the following trials showed an angry (or
happy) or a neutral emotion expression. Pictures were pre-
sented without a time limit. Participants were asked to decide
spontaneously whether the emotion was present or absent in
the specific face shown by pressing one of two buttons. The
six different blocks (conditions) within one run were pre-
sented randomly. Runs were repeated three times, resulting
in 18 trials per condition overall, and 216 trials in total, total-
ing approximately 10min.

Raw data were analyzed following a classical signal detec-
tion theory (SDT) approach previously used in facial emotion
recognition research (e.g. Pessoa, Japee, & Ungerleider, 2005).
Correct identifications of emotional faces were coded as hits,
misidentifications of neutral faces as emotional ones were
coded as false alarms. Average hit rate and average false
alarms rate of every stimulus category were z-transformed
and subtracted yielding the discrimination index d0 as a meas-
ure of signal detection performance (d0 ¼ z[hit rate] – z[false
alarms rate]). In addition, bias scores c were calculated
(c¼ –0.5�(z[hit rate]þz[false alarms rate]) – cf. Stanislaw and
Todorov (1999).

2.2.3. Saliva sampling and analysis
In reference to the start of the TSST-VR, salivary samples
using Salivette sampling devices (Sarstedt, N€umbrecht,
Germany) were taken at seven time points over the course
of the experiment: –20, –1, þ15, þ20, þ30, þ40, and
þ60minutes. Saliva samples were frozen and stored at –20 �C
until analysis. For details on biochemical analysis, see online
supplemental methods.

2.2.4. Self-reported stress – visual analog scales
After the TSST-VR/control condition, participants rated the
situation with regard to the perceived stressfulness, chal-
lenge, and threat on VASs with a range of 0 (not at all) to
100 (very much).

2.3. Statistical analysis

We calculated two mixed repeated-measures ANOVAs (two
groups by seven time points) for salivary cortisol and alpha
amylase. T-tests were used to test for significant differences
in subjective stress ratings of the situation between the
two groups.

Emotion detection performance was analyzed by conduct-
ing separate mixed repeated-measures ANOVAs (two groups
by two emotions by three intensities) for d0 and c-scores. In
addition, a similar exploratory analysis was conducted for
response latencies. To test for possible associations between
the physiological stress response and the emotion detection
performance, Pearson’s correlations for the AUC of free
salivary cortisol, alpha amylase and d0 and c-values were
calculated. In the case of non-sphericity, we used the
Greenhouse–Geisser correction and report e- and corrected p
values. All post hoc pairwise comparisons were Bonferroni
corrected. Effect sizes for significant tests are reported as gp

2

and Cohen’s d. All statistical analyses were run with SPSS for
Windows (Version 25, SPSS Inc., Chicago, IL). Significance
threshold was set at p< .05.

3. Results

3.1. Manipulation check – acute stress responses

The TSST-VR evoked a marked increase in free salivary corti-
sol as shown by the significant main effect of the factor time
(F(6, 246)¼ 9.81, e¼ 0.37, p< .001, gp

2¼ 0.19). True to
expectations, there was a significantly higher cortisol secre-
tion in the stress condition as indicated by the significant
main effect of the factor group (F(1, 41)¼ 6.54, p¼ .014,
gp

2¼ 0.14) and the significant group by time interaction (F(6,
246)¼ 6.03, e¼ 0.37, p¼ .003, gp

2 ¼ 0.13) – Figure 1(a). Also
in line with our expectations, pairwise comparisons revealed
significantly higher cortisol secretion in the stress group at
the first time point after the stress induction and all following
time points (all ps< .019).

Figure 1. Psychobiological response to the acute stressor. (A) Free salivary cortisol (nmol/L) and (B) alpha amylase (U/L) as a function of time and group. Asterisks
denote significant post hoc pairwise comparisons (�p< .05; ��p< .01). Error bars represent S. E.
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Although there was a significant increase in alpha amylase
over time (F(6, 246) ¼ 5.13, e¼ 0.64, p ¼ .001, gp

2 ¼ 0.11),
TSST-VR and control condition did not differ substantially as
indicated by the nonsignificant main effect of the factor
group (F(1, 41) ¼ 0.38, p ¼ .540) and the nonsignificant
group by time interaction (F(6, 246)¼1.09, e¼ 0.64, p ¼ .361)
– Figure 1(b). As expected, the TSST-VR was rated more
stressful (t(41) ¼ 3.52, p ¼ .001, d ¼ 1.10), more challenging
(t(41) ¼ 4.95, p< .001, d ¼ 1.55), and more threatening (t(41)
¼ 3.35, p ¼ .002, d ¼ 1.05) than the control condition.

3.2. Emotion recognition performance

Following the TSST-VR, participants showed an overall
increase in emotion detection performance, as indicated by a
significant main effect of group on d0 values (F(1, 41) ¼ 4.29;
p ¼ .045, gp

2 ¼ 0.10) – Figure 2, upper panels. There was
also a significant main effect of emotion (F(1, 41) ¼ 4.44, p
¼ .041, gp

2 ¼ 0.10) showing a higher discrimination index
for happy faces. The group by emotion interaction did not
reach statistical significance (F(1, 41) ¼ 0.08, p ¼ .778).
Moreover, there was a significant main effect of the factor
intensity of the presented emotion (F(2, 82) ¼ 264.26, p
< .001, gp

2 ¼ 0.87). Post hoc pairwise comparisons con-
firmed our expectation that the discrimination index signifi-
cantly differed between each level of intensity (low, medium,
high; all ps < .001). Still, neither the interaction of the factors

group and intensity (F(2, 82) ¼ 1.04, p ¼ .360) nor the three-
way interaction reached statistical significance (F(2, 82) ¼
0.85, p ¼ .429). Tables containing descriptive statistics of all
measures of emotion recognition performance can be found
in the supplemental materials online with this article.

There was no such overall effect of acute stress on
response tendency, as indicated by a non-significant main
effect of group on c values (F(1, 41) ¼ 0.49, p ¼ .489). There
was, however, a significant main effect of the specific emo-
tion (F(1, 41) ¼ 44.40, p < .001, gp

2 ¼ 0.52), indicating higher
bias scores for happy faces. Furthermore, there was no sig-
nificant interaction between the factors group and specific
emotion (F(1, 41) ¼ 1.77, p ¼ .191). The main effect of inten-
sity of the presented emotion reached significance (F(2, 82)
¼ 153.08, p< .001, gp

2 ¼ 0.79), showing a decrease in bias
score from lower to higher emotional intensity (all three ps <
.001). The interaction of the factors group and intensity (F(2,
82) ¼ 3.33, p ¼ .041, gp

2 ¼ 0.08) also reached significance.
The three way interaction of group, emotion and intensity,
however, did not (F(2, 82) ¼ 2.37, p ¼ .100).

Finally, following acute stress participants responded sig-
nificantly faster to trials showing an emotional expression as
indicated by a main effect of group (F(1, 41) ¼ 8.60, p
¼ .005, gp

2 ¼ 0.17). There was also a significant main effect
of the specific emotion (F(1, 41) ¼ 7.16, p ¼ .011, gp

2 ¼
0.15) indicating that it took all participants significantly lon-
ger to recognize happiness in facial expressions than anger.

Figure 2. Effects of acute stress on emotion detection performance. Upper panels show mean sensitivity index (d0) and lower panels show response latencies in ms
for (A) angry faces, (B) happy faces, and (C) averaged over all emotions and intensities. Asterisks denote significant post hoc pairwise comparisons (�p < .05). Error
bars represent S. E.
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Moreover, the main effect of the factor intensity also reached
statistical significance (F(2, 82) ¼ 18.31, e¼ 0.79, p < .001,
gp

2 ¼ 0.31), indicating no significant difference in response
latencies for low and medium intensity (p ¼ 1.00) but a sig-
nificantly shortened response time for high emotional inten-
sities (both ps < .001). There was no significant interaction
between the factors group and specific emotion (F(1, 41) ¼
0.41, p ¼ .841) or between the factors group and the inten-
sity of the presented emotion (F(2, 82) ¼ 0.29, e¼ 0.79, p
¼ .699). The three-way interaction did also not reach statis-
tical significance (F(2, 82) ¼ 2.16, p ¼ .122).

3.3. Correlation analyses

Overall, within the stressed group, the individual stress-
induced increase in cortisol or alpha amylase did not predict
emotion detection performance, response bias or response
latencies, i.e. after correction for multiple testing, none of the
correlations remained significant (all p> .05).

4. Discussion

In sum, the present results support the hypothesis that stress
sensitizes for social signals of affective states in general.
Within a highly standardized VR environment, acute stress
evoked increased detection accuracy for angry and happy
facial expressions largely regardless of the specific expression
shown or the emotion intensity displayed. In addition, higher
detection performance did not come at the cost of increased
response latencies; on the contrary, the stress group showed
higher detection rates at lower response latencies.
Furthermore, increased sensitivity was not associated with
altered response tendencies. The present findings are in line
with the study by Deckers et al. (2015) who also employed a
modified version of the TSST, demonstrating a general
increase in emotion recognition performance when partici-
pants had to identify the emotions on faces in video sequen-
ces that were slowly morphed from low to high intensity.
The results of the current study suggest that this perform-
ance increase might be based on a heightened sensitivity for
subtle facial cues that leads to enhanced detection accuracy.

The present findings of increased detection performance
might also relate to more complex social affect and decision
making. Studies in this domain demonstrated that stressed
participants react with a heightened emotional empathetic
response to positive and negative social stimuli (Wolf et al.,
2015), and show increased prosocial behavior such as trust
(von Dawans, Fischbacher, Kirschbaum, Fehr, & Heinrichs,
2012). Enhanced cognitive performance in detecting and
evaluating subtle social cues as found in the present study
might in part promote more complex social cognition and
decision-making and thus foster positive social interaction as
suggested by some previous studies. However, a more gen-
eral interpretation is that enhanced detection of socio-emo-
tional cues might be adaptive since an increased sensitivity
to social cues could help individuals to detect potential
threats or, conversely, sources of social support and thus
navigate their social environment.

The fact that we did not observe substantial correlations
between indicators of the stress-induced endocrine response
(cortisol and sAA) and detection performance suggests that
there was no close relationship between psychobiological
stress markers and cognition in the present study. This find-
ing is at odds with a large body of experimental evidence
from animal studies clearly demonstrating that glucocorti-
coids and catecholamines modulate neural activity involved
in cognitive functions such as memory consolidation (as
reviewed in Roozendaal et al., 2009). However, some previous
studies using experimental stressors and pharmacological
challenges in humans also failed to provide congruent evi-
dence for a causal role of these hormones in modulating
social cognition (Duesenberg et al., 2016; Wingenfeld et al.,
2014; Wolf et al., 2015). Furthermore, the crucial role of tim-
ing and the different time courses of action of glucocorti-
coids and catecholamines as well as the indirect
measurement of these hormones in saliva need to be consid-
ered as limiting factors that might play a part in the discrep-
ancy of findings between the present and previous studies.
Another possible explanation for the inconsistency between
the present study and some previous studies which did not
report effects of acute stress on emotion recognition relates
to the VR setting. For example, it might be speculated that
the interaction with the virtual judges in the stress condition
(compared to the control condition) might have promoted
social priming that subsequently enhanced participants’ emo-
tion detection performance from stimuli resembling the artifi-
cial agents in the TSST-VR. In line with this notion, Daher
et al. (2017) found that the short interaction with a virtual
confederate influenced subsequent social interactions with a
virtual avatar, resulting in higher scores in several affective
and socio-cognitive self-reported parameters. Thus, general
conclusions should be drawn with caution until the effects
have been replicated with other face-to-face stressors such as
the classical TSST.

The present study has some general limitations. First, our
sample consisted exclusively of male participants and thus
the results might not generalize to women. Furthermore, we
employed a merely performance-oriented computer-based
measure that operationalizes detection of emotional cues via
the SDT approach. Although this task was highly sensitive for
the effects of acute stress, it is unclear how this detection
rate and response time based measure relates to more com-
plex social cognition and behavior, such as decision making
and social interaction in naturalistic settings. Finally, we
followed a correlational approach to explore the potential
involvement of stress hormones in emotion recognition.
Future studies focusing on the causal role of specific stress-
induced physiological factors could combine stress induction
with pharmacological interventions to isolate the specific
effects of the candidate hormones suspected to cause cogni-
tive effects under stress (e.g. Andrews & Pruessner, 2013).

In sum, the present study extends previous findings
regarding the cognitive effects of stress on social cognitive
functioning by demonstrating that moderate acute stress
promotes facial emotion recognition on a basal level.
Enhanced detection performance in a signal detection frame-
work provides evidence for heightened sensitivity for social
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signals after acute stress regardless of the specific valence.
This heightened sensitivity might help individuals to detect
subtle signals of social threat or support in order to adapt to
social stress, and modulate more complex social behavior
and decision-making.
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5. General Discussion 

With the present dissertation, I aimed to investigate the potential of the TSST-VR as a 

standardized and economic procedure for psychobiological stress induction. The three original 

manuscripts presented in this work indicate that a state of the art version of the TSST-VR with 

a high level of graphical fidelity and an increased degree of responsiveness does indeed reliably 

activate the physiological stress effector systems of the HPA axis and the SAM system 

(Zimmer, Buttlar, Halbeisen, Walther, & Domes, 2019). In this sense, it can be considered a 

promising addition to the canon of laboratory stress induction paradigms. We further pursued 

this line of investigation and conducted a second study to examine the influence of the real 

context and with it the experience of presence on the psychobiological stress response 

(Zimmer, Wu, & Domes, in press). Lastly, we employed the TSST-VR in a laboratory use 

scenario by testing the effect of virtual psychosocial stress exposure on emotion recognition 

performance (Domes & Zimmer, 2019). The results of our investigations will be summarized 

and their practical implications discussed in the following sections.  

5.1. A Psychobiological Investigation of Stress in Virtual Environments 

 Approximately ten years since the first study that employed the TSST-VR (Kelly et al., 

2007), we have conducted a series of investigations using a current iteration of the paradigm. 

Although our methodological evaluation brought forth evidence that the original TSST still 

appears to elicit a somewhat stronger neuroendocrine response (Zimmer et al., 2019), we found 

high cortisol responder rates to the virtual stressor (75% or 62.5% of participants depending on 

which criterion is used; Miller, Plessow, Kirschbaum, & Stalder, 2013) and an on-average 

doubling of salivary cortisol. This effect is comparable to the stress-induced changes that are 

found in most studies that use the original version of the paradigm (Goodman, Janson, & Wolf, 

2017). Although HR increased over the course of the preparation phase and peaked during the 

virtual TSST, the same trajectory was observed in the control conditions with only the TSST 
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in vivo displaying a stronger increase. Furthermore, no significant differences between the 

TSST and control conditions could be discerned in terms of skin conductance levels. In 

contrast, both salivary alpha amylase and subjective stress levels were significantly elevated in 

the TSST conditions in comparison to the control conditions.  

 Taken together, the results of this first study demonstrate the potential of an interactive 

and immersive version of the TSST-VR for psychobiological research. Although the fact that 

cortisol secretion is still somewhat less pronounced in comparison to a well-executed TSST in 

vivo might lead researchers to tread cautiously when considering the TSST-VR as a valid 

alternative, activation of the HPA-axis has consistently been found in all studies on the 

paradigm that we conducted hereafter (e.g. Domes & Zimmer, 2019). Furthermore, it might be 

explained by the higher degree to which social evaluation, one of the crucial elements in the 

origin of stress (Dickerson & Kemeny, 2004), is present in the confrontation with the real 

human committee. However, as the boundaries of realism and immersiveness are pushed 

further by rapidly improving technology, the gap between the effects of real and virtual stress 

induction can be expected to diminish even further.  

5.2. Sense of Presence and the Stress Response in VR  

The presented findings, which indicate that psychosocial stress can be induced by 

virtual entities, invite the question of what the underlying effect mechanisms responsible for 

the onset of the stress response in virtual environments might be. In the second study, we 

attempted to elucidate the role of the concept of presence that Wirth and colleagues (2007) 

defined as the experience of physically being in a mediated space with all entailing 

consequences. Contrary to our initial hypothesis, facilitating the transition from the real to the 

virtual environment by parallelizing the two settings did not lead to differences in presence in 

comparison to a control group with differing environments. Moreover, we did not detect any 

significant differences in endocrine, enzymatic, sympathetic or subjective stress indicators. 
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This finding is, however, in accord with current theories on spatial presence that propose that 

when presence is experienced, the impression of being in the respective virtual space is 

ubiquitous and the real environment is no longer perceived as relevant (Hartmann et al., 2015). 

Instead, action possibilities in the virtual realm gain in importance, even when committing to 

them is physically impossible (e.g. escaping through a purely virtual window; Fich et al., 2014).  

Beyond the investigation of presence in stressful virtual scenarios, the present study 

was conducted to answer some pragmatic questions with implications for a more widespread 

application of the paradigm. Namely, we set out to investigate whether modelling the 

environment in which the TSST-VR is to be used represents a necessity for successful 

psychobiological stress induction. The result that the paradigm induces stress even if the user 

is transported into a virtual environment that in no way bears resemblance to their physical 

surroundings substantiates its flexibility and makes it an ideal candidate for multi-center 

research studies in which collaborators wish to test different populations in a standardized 

environment. Furthermore, it paves the way for clinical application where it will not always be 

feasible to invest the resources required to program virtual environments. As several studies 

have shown that the response to the TSST can be used to reflect improvements made over the 

course of a therapeutic intervention (Britton, Shahar, Szepsenwol, & Jacobs, 2012; Strachowski 

et al., 2008), employing the virtual adaptation of the TSST in a clinical context is much more 

feasible due to its cost-efficiency.  

5.3. The Influence of Virtual Stress on Social Cognition 

In the third study presented in this dissertation, the TSST-VR was employed as a 

procedure for examining the effects of psychosocial stress on social cognition. Beyond 

investigating emotion recognition performance, this study was intended to provide a test bed 

for the scientific application of the TSST-VR in an experimental context. With respect to the 

research question we sought to examine, the results provide support for the hypothesis that 
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stress sensitizes perception for emotional cues, such as facial expressions of emotions. The 

participants who were confronted with the virtual stressor had higher values in the 

discrimination indices for both emotional valences than the control group. Not only did they 

display higher emotion detection performance, they furthermore showed significantly 

shortened response latencies over all emotional valences and intensities. This improvement in 

the processing of displayed emotions can potentially be interpreted as an indication that social 

threat (in this case represented by the taxing interview situation with the committee) promotes 

individuals to seek out social support. In this case, detecting emotional cues from others in the 

vicinity might be a prerequisite for more complex social cognition and decision making. This 

interpretation is supported by empirical findings that demonstrate not only increases in emotion 

processing (Deckers et al., 2015), but also in empathy (Wolf et al., 2015) and prosocial behavior 

(von Dawans, Fischbacher, Kirschbaum, Fehr, & Heinrichs, 2012) after psychosocial stress 

exposure.  

Over and above the findings delineated above, the study provides a proof of concept for 

the application of the TSST-VR in psychobiological stress induction. In addition to the result 

that the paradigm appears to elicit a physiological and subjective stress response, it also seems 

to promote processes that are expected to be heightened specifically after social stress. This 

assumption is in line with the theoretical framework that Reeves and Nass (1996) proposed in 

the Media Equation concept for the interaction with virtual entities. Specifically, they argue 

that humans apply the rules of social engagement to mediated spaces as well and that social 

behavior, such as reciprocity, politeness, and gender stereotyping are displayed even if they 

know that their interaction partners are programmed entities that do not warrant the attribution 

of human characteristics or the application of social behavior (Ethopoeia; Nass & Moon, 2000).  

In conclusion, possible advantages of employing a VR-based stressor when conducting 

experimental procedures such as the ones described above shall be considered. The most 
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obvious, perhaps, is that using a computer-based stress induction procedure greatly cuts 

personnel costs by making the use of a committee of judges obsolete and thereby reducing the 

required number of experimenters to one. Furthermore—and of equal importance—it provides 

an experimental frame in which all stress-inducing procedures are conducted in a fully 

standardized manner. While a degree of unsystematic variance in the committees’ behavior in 

the real TSST is arguably unavoidable, interventions in the TSST-VR are fully standardized 

with a wide range of possibilities to react adequately to the participants’ responses. This might 

be a crucial advantage when investigating research questions such as those elaborated on in the 

present publication where minor changes in experimenter behavior might influence 

participants’ perception of events and subsequent reactions. In addition, it provides an ideal 

context in which hypothetical effect mechanisms can be investigated by experimental 

manipulation. In the publication described, for example, we speculated about how one possible 

alternative explanation of the effects of psychosocial stress on emotion recognition might be 

that the interaction with the committee promoted a generalized social priming effect (Daher et 

al., 2017). In the virtual realm, it would be simple to test this hypothesis by varying the 

frequency and intensity with which the judges display emotional expressions or even altogether 

replace them with non-humanoid character models or objects. 

5.4. Avenues for Future Research 

The present dissertation aimed to investigate the utility and possible fields of 

application for a virtual adaptation of the well-established Trier Social Stress Test. We have 

shown over multiple studies that the TSST-VR robustly induces psychosocial stress on a 

physiological and psychological level and that it holds several key advantages with respect to 

cost-efficiency, standardization, and versatility. Now that the effectiveness of the paradigm has 

been demonstrated, a wide array of applications in research and therapy are conceivable. 

Furthermore, although we attempted to elucidate some potential effect mechanisms, a number 
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of research questions should be investigated in order to further refine the paradigm and to 

understand its underlying processes in their entirety.  

Most importantly, future studies should address the fact that almost all studies 

concerning stress induction in VR have been conducted exclusively on men. As demonstrated 

by a recent meta-analysis on the effects of the TSST-VR on cortisol reactivity (Helminen, 

Morton, Wang, & Felver, 2019), only a small number of studies have investigated the 

paradigms’ efficacy in not only a male, but also a female sample (Fallon, Careaga, Sbarra, & 

OʼConnor, 2016; Jönsson et al., 2015; O. Kelly et al., 2007; Ruiz et al., 2010). Furthermore, 

all of the studies in existence had very small sample sizes. This is especially problematic since 

there are several factors that warrant the assumption that females might differ from males in 

their psychobiological responses to the virtual stressor. Firstly, sex-dependent differences in 

the somatic responses to psychosocial stressors have been demonstrated in numerous empirical 

studies (Kelly, Tyrka, Anderson, Price, & Carpenter, 2008; Kirschbaum, Klauer, Filipp, & 

Hellhammer, 1995; Kudielka & Kirschbaum, 2005; Rohleder, Schommer, Hellhammer, Engel, 

& Kirschbaum, 2001) and meta-analyses (Allen, Kennedy, Cryan, Dinan, & Clarke, 2014; Liu 

et al., 2017). Additionally, there seem to be sex differences in how virtual environments are 

perceived (Munafo, Diedrick, & Stoffregen, 2017) and navigated (Astur, Purton, Zaniewski, 

Cimadevilla, & Markus, 2016). More specifically, Felnhofer, Kothgassner, Beutl, Hlavacs, & 

Kryspin-Exner (2012) report that men experience a significantly higher sense of presence in 

virtual environments. Future studies should examine whether this might at least partially be 

explained by the fact that men spend a significantly larger amount of their spare time on video 

game entertainment software, than women (Borgonovi, 2016; Rehbein, Staudt, Hanslmaier, & 

Kliem, 2016).  

Another aspect that warrants further investigation is how the psychophysiological stress 

response is affected by the experience of presence (Schuemie, van der Straaten, Krijn, & van 
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der Mast, 2001). As reported in section 3.2., the sense of entering a separate reality with entirely 

different action possibilities is a crucial prerequisite for experiencing a virtual environment in 

an immersive and involving way (Hartmann et al., 2015). In a stressful virtual environment, 

the experience of presence seems to be associated with feelings of stress (Meehan, Razzaque, 

Whitton, & Brooks, 2003). Furthermore, clinical research has shown a link between the sense 

of presence and anxiety in virtual reality exposure therapy (Gromer et al., 2019; Riva et al., 

2007). In patients with social anxiety disorder, for example, the interaction with virtual agents 

can induce anxiety as long as presence is experienced (Morina, Brinkman, Hartanto, & 

Emmelkamp, 2014). Similar findings emerged in a non-clinical population when faced with a 

taxing virtual job interview simulation (Kwon, Powell, & Chalmers, 2013). Consequently, 

modulating the sense of presence in a TSST-VR scenario might provide additional insight into 

the role of presence in the onset of a psychobiological stress response after virtual stress 

exposure.  

More specifically, one facet of presence that could be explored is the concept of social 

presence (Nowak & Biocca, 2003). Social presence describes the degree to which one is aware 

of the presence and the relationship with another—be it a real person or a computer-controlled 

entity—while interacting via some technological means of communication. In the studies 

included in this dissertation, the virtual judges might be interpreted as the vehicle through 

which the participant interacts with the experimenter. Although it was never explicitly stated, 

it can be assumed that most participants became aware of the fact that all proceedings in the 

virtual environment were, in fact, controlled by the experimenter. As a consequence, the 

socially evaluative threat of the TSST-VR might, to a certain extent, have originated in the fear 

of negative evaluation by the real person that was present and only to a lesser degree in the 

actions of the virtual judges.  While the first and the third studies presented in this dissertation 

(Domes & Zimmer, 2019; Zimmer et al., 2019) were conducted with the experimenter directing 
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the VR-based procedures from a separate control room, the experimental design in the second 

study (Zimmer et al., in press) required the experimenter to be in the same room as the 

participant at all times. In order to understand the influence of the experimenters’ presence 

during virtual stress induction, future studies should compare both conditions directly. There 

are reasonable grounds to expect a heightened sense of social presence in instances where the 

experimenter is present throughout the virtual stress exposure (Biocca & Harms, 2002). While 

this is in no way meant to deemphasize the psychosocial stress effects of the TSST-VR (that 

are also consistently found when the paradigm is used in a CAVE environment absent of others; 

Annerstedt et al., 2013; Fich et al., 2014; Linninge et al., 2018) it might provide an additional 

pathway to understanding the underlying effect mechanisms of social evaluation by virtual 

entities.  

Another research question that has preoccupied researchers in the field since the early 

days of laboratory stress induction is the absence of a physiological response to the socially 

evaluative threat of the TSST in some participants. Concerning the response of the HPA-axis, 

some thresholds to distinguish cortisol responders from nonresponders have been proposed 

(Kirschbaum, Wüst, & Strasburger, 1992; Wüst et al., 2000) and are frequently used (Clow, 

Thorn, Evans, & Hucklebridge, 2004; Petrowski, Herold, Joraschky, Wittchen, & Kirschbaum, 

2010) and examined in the literature (Miller et al., 2013). In the discourse of which factors 

promote the emergence or absence of a physiological stress response in healthy subjects, 

several influential factors have been investigated, such as gender (Kudielka & Kirschbaum, 

2005), age (Kudielka et al., 1998) personality traits (Kirschbaum et al., 1995), genetic factors 

(Wüst et al., 2004), and dietary habits (Gonzalez-Bono, Rohleder, Hellhammer, Salvador, & 

Kirschbaum, 2002; Kirschbaum et al., 1997). Interestingly, responder rates to the TSST-VR 

generally seem to be somewhat lower than to the regular version of the paradigm (e.g. Shiban 

et al., 2016). It therefore stands to reason that additional factors to the ones mentioned before 
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come into play in virtual adaptations of the TSST. In addition to whether individuals are 

experiencing presence (Meehan, Insko, Whitton, & Brooks Jr, 2002), the technological means 

of implementing the simulation—e.g. via a CAVE system or a head-mounted display (Juan & 

Pérez, 2009)—or graphical fidelity can be presumed to influence the psychobiological stress 

response (Gromer et al., 2019; Kwon et al., 2013). Future studies should investigate how these 

factors affect the physiological reactivity to psychosocial stress in virtual environments.  

In this last section, several possible fields of application for the TSST-VR beyond 

foundational research shall be reviewed. Due to its versatility and cost-efficient employment, 

the paradigm is suitable to a wide range of contexts, be it in therapeutic intervention or training 

of specific interpersonal skills. One field that might particularly benefit from this economical 

procedure for stress induction is clinical practice. Providing therapists with the means to expose 

clients to psychosocial stress in a fully controllable and standardized manner could be 

beneficial in several ways: For one, the TSST-VR could be used for diagnostic purposes to 

obtain data on the functionality of physiological responses (Dorn et al., 2003; Gerra et al., 

2000). Specifically, several studies have shown that patients with social phobia exhibited 

hyper-responsiveness of the HPA axis when faced with psychosocial stress (Condren, O’Neill, 

Ryan, Barrett, & Thakore, 2002; Furlan, DeMartinis, Schweizer, Rickels, & Lucki, 2001). In 

these instances, the TSST-VR could be used several times over the course of a therapeutic 

intervention to measure treatment progress on a physiological level. At the same time, it could 

be an ideal method for exposure therapy since duration and intensity of the stimulus would be 

under the sole control of the therapist (Parsons & Rizzo, 2008; Powers & Emmelkamp, 2008). 

Moreover, it could also be used to evaluate whether clients have successfully mastered 

strategies such as mindfulness-based stress reduction (Britton et al., 2012) or meditation (Pace 

et al., 2009), to manage stressful occurrences in their daily lives and boost self-confidence. 
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Lastly, the paradigm could find application for the training of specific skills. As an 

example, it has been shown that VR-based interventions can support adolescents and adults 

with high-functioning autism in learning social skills in order to enhance social functioning 

(Fernández-Herrero et al., 2018; Kandalaft, Didehbani, Krawczyk, Allen, & Chapman, 2013). 

Furthermore, VR-based job interview training has been shown to be beneficial for patients 

suffering from schizophrenia (Smith et al., 2015a) and for veterans striving for re-integration 

into society after post-traumatic stress disorder (Smith et al., 2015b) In individuals with similar 

deficits, the social interaction incorporated in the TSST-VR might provide an ideal test bed for 

training to deal with socially challenging situations. Even individuals without any deficits in 

social cognition could possibly make use of the virtual TSST to improve their public speaking 

abilities (Chollet, Wörtwein, Morency, Shapiro, & Scherer, 2015) and overall performance in 

a job interview situation (Baur, Damian, Gebhard, Porayska-Pomsta, & Andre, 2013). 

6. Conclusion 

 In summary, the present dissertation provides a systematic investigation of the efficacy 

and specific effect mechanisms of a VR-based adaptation of arguably the most frequently 

employed psychosocial stressor, the TSST. We hereby wish to present the scientific community 

with a cost-effective, flexible and standardized stress induction paradigm that reliably elicits a 

psychological and physiological stress response. While this approach is by no means intended 

to replace the original, face-to-face TSST, it nevertheless has enormous potential to be a 

valuable alternative for specific research endeavors (Domes & Zimmer, 2019). As 

technological advances in the wake of the ‘virtual revolution’ (Blascovich & Bailenson, 2011) 

lead to the development of higher-quality VR equipment and even more immersive virtual 

worlds, the paradigm might eventually parallel the stress effects of the original TSST in terms 

of HPA axis reactivity (Zimmer et al., 2019). In the interim, a great deal of knowledge is to be 

gained from future studies that address the specific mechanisms involved in the origin of the 
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psychobiological stress response in the virtual realm (Zimmer et al., in press). With the 

empirical studies and the theoretical framework presented in this dissertation, we aim to 

contribute to a better understanding of the processes involved in socially evaluative stress in 

virtual environments. Based on the research delineated above, we believe that this technology 

harbors great potential in a variety of ways. We thus hope to encourage researchers and 

practitioners alike to consider adopting the TSST-VR into their methodological repertoire and 

thereby make use of the near limitless range of possibilities in the virtual realm.  
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