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ABSTRACT 

The Sudmed project is an international, multidisciplinary project whose objective is to understand the integrated 
hydro-ecological functioning of a semi-arid basin in central Morocco through combination of process modeling and 
multispectral/multiresolution remote sensing data.  This project has been conceived by CESBIO/IRD in a close 
connection with Moroccan scientists, managers, decision makers and other stake holders. In addition to this 
scientific objective, the sudmed project also aims to provide operational tools to mangers and guidance to decision 
makers which help to make informed decision where the need for the growth/development and the sustainability of 
water are balanced. In this presentation, we will first outline the specific objectives of the program. Second, we will 
provide the initial results, ongoing and future investigations.  

Keywords: Semi-arid, land-surface interactions, sustainability, remote sensing, integrated modeling, long term 
variability. 

1 INTRODUCTION 

Population growth has resulted in intense demands on the quantity and quality of water resources worldwide. The 
sustainability of water resources in the 21st Century will depend on our ability to correctly manage water resources 
systems under a more variable future climate.  Semi-arid regions are in particular jeopardy, which are experiencing 
rates of population development that exceed those of other climatic regions and are highly sensitive to increasing 
anthropogenic pressures, variations in climate, and the disruptions associated with long-term climate change. 

In southern Mediterranean regions, water consumption has increased by 60% in the last decades and continues 
to rise while available water resources are becoming increasingly scarce [3]. This situation has raised public 
awareness of long-term water resources issues. However, due to a combined shortage of expertise and funding, 
little has been attempted toward the development of a basin-wide hydrological understanding of its functioning, 
natural and/or human induced stresses and the consequent hydrological responses to those stresses. The 
development of improved management strategies and viable interventions to meet these challenges should entail 
unprecedented coordination and integration across a broad range of disciplines and actors/players.  

However, understanding of critical hydrological processes at the basin scale and more importantly addressing 
them through an integrated research program is not trivial.  A close integration of the individual components of 
hydrological cycle, i.e., vegetation functioning, surface water ground - water interaction, surface-atmosphere 
interactions is required.  Such integration is made difficult by the discrepancy of time-space scales at which each of 
these processes is pertinent and thus needs to be addressed. Further complications are induced by the specificity of 
the space representation required for each component (Grid versus Area Representative for example). Additionally 
the issue of the degree of complexity required to accurately describe the processes is scale dependent and varies 
according to individual processes.  

Understanding the complex processes involved cannot be fulfilled without making a full use of historical data 
and newly developed technology such as remote sensing, GIS, and other ground instruments such as scintillometer, 
isotopic analysis, numerical modeling and data assimilation. Here also one has to address the issue of the link 
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between ground and remotely sensed data as well as the scale discrepancies between remotely sensed data 
emanating from different platforms. 

The objective of this paper is to present the sudmed project (www.irrimed.org/sudmed). We first present the 
objectives of the project, as well as the general structure and the thrust areas. Second we present the study site, 
followed by an overview of the initial results, ongoing and future investigations. Finally, the issue of transposing 
the results obtained in Morocco to other semi-arid regions of the world will be discussed. 

2 OBJECTIVES AND STRUCTURE OF THE SUDMED PROJECT 

The sudmed project has been conceived by CESBIO/IRD in a close connection with Moroccan scientists, 
managers, decision makers and other stake holders whose general objectives are to understand the integrated 
hydrological functioning of a semi-arid basin in Morocco and to provide guidance and tools to managers, decision 
makers and stake holders for sustainable management of water resources in the basin. The specific objectives of the 
program are:  

a- What are the changes that occurred in the basin during the past 30 years or so, and what drove these changes and 
what are the impact on  water and vegetation resources in a semi-arid basin? 

b- Describe in integrated manner, the dominant processes that control the overall hydrological functioning of the 
basin by making full use of recent technological and scientific developments (Modelling, Remote Sensing, 
Assimilation) 

c- Develop scenarios in terms of the sustainability of water and vegetation resources in response to different 
hypothesis associated with natural and/or human induced environmental changes.  

d- Provide operational tools to managers while assuring compatibility between level of technology and the user’s 
ability. 

To achieve the above objectives, the program has been structured into the following thrust areas:  

• Basin characterisation and Geographic Information System development  

• Basin scale Evapo-Transpiration estimates and the quantification of the origin of water used (dam, rain , 
pumping) 

• Quantifying precipitation and its partitioning between runoff and infiltration in the mountain area as well as 
quantifying snow, snowmelt and its contribution to recharge and to spring runoff and ground water surface 
water interaction (recharge and pumping) 

• Development of a generic vegetation functioning model 

• Integrative modelling and quantitative remote sensing and data assimilation 

• Education, capacity building and knowledge transfer.  

3 SITE DESCRIPTION AND EXPERIMENTAL SETUP 

3.1 Site Description 

This study took place in the Tensift basin which represents the focus study region for the SUDMED program. The 
basin originates in the atlas mountain and flows west to the Atlantic Ocean.  The basin embodies a number of 
characteristics which make it an exceptional outdoor laboratory for addressing a large number of scientific 
challenges in arid and semi-arid hydrology, meteorology, ecology, and social and policy science. In the basin in 
characterized by a significant topographic and vegetation variation, and a highly variable climate.  The annual 
rainfall ranges from around 150 mm in the dry part to 1000 mm in the mountain, with the majority of annual 
precipitation occurring during the winter season. The precipitation pattern depicts strong annual to inter-annual 
variability (figure 1).  



Remote sensing and geoinformation processing in the assessment and monitoring of land degradation and desertification, Trier, Germany, 2005 

page 379 

In this basin about 85% of available water is used in the plain by agriculture. Major irrigated vegetation types 
include olive (40% of national production), oranges and wheat. As shown in figure 2, irrigated surfaces increase 
tremendously during the past two decade which leads to an overexploitation to ground water [1].  

 

Figure1. 30 years average rainfall over the basin. 

 
Figure2. Variation of irrigated cultures from 1986 to 2000 (blue = decrease, green = stable, red = increase). 
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In dry part of the basin, ground water level drops about 1m every year (figure 3). 

 
Figure 3. Variation of water table level between 1986 and 2002 [1]. 

3.2 Experimental setup  

For this study, a comprehensive experimental was designed to achieve the objectives of the study. A basin wide 
meteorological network made up of 9 automatic stations that measure incoming radiation, wind speed and direction, 
air temperature and humidity, rainfall. In the mountain site a dense network of rain gauges was deployed to capture 
the spatial variability of the rainfall. In the plain section, complete flux stations (eddy correlation) were deployed 
over the 3 dominant vegetation types (olives, oranges and wheat). A large aperture scintillometer (LAS) that 
measures sensible heat flux over large surfaces (up to 5 km) was also deployed over the olives site in 2002-2003, 
wheat site in 2003 and oranges site in 2004 [9]. Additionally, surface temperature, soil moisture and soil 
temperature where collected over each sites. During the 2003 season the olives site was equipped with device to 
measure sapflow and thus plant transpiration. At the same time isotopic sampling were used to separate soil and 
vegetation contribution to total evapotranspiration [12].  

Regarding remote sensing data, ground based surface reflectance and temperature were collected throughout the 
growing seasons using a hand held radiometers (cropscan). Historical satellite data were acquired over a period of 
30 years (MSS and LANDSAT). Additionally time series of SPOT and TM, VEGETATION images were ordered 
starting 2002. Finally a sun photometer (CIMEL) was installed in 2003 to collect atmospheric data required for 
atmospheric correction.    

4 PRELIMINARY RESULTS 
In the following section, significant preliminary results associated with each thrust area mentioned above are 
provided.  
Basin characterisation and Geographic Information System development 

A complete basin wide Geographic Information System was developed that includes several information layer: 
topography, soil map, geological map, land use and land cover, groundwater map, etc. 



Remote sensing and geoinformation processing in the assessment and monitoring of land degradation and desertification, Trier, Germany, 2005 

page 381 

Basin scale Evapo-Transpiration estimates  
Several models ranging from the most simple (FAO-56) to the most complex one (i.e. SVATs) were implemented 
to estimate the spatio-temporal variability of evapotranspiration. The results show that the physically based SVAT 
provides the best estimates of surface fluxes over all sites but the model required several input parameters which are 
not routinely available. The FAO-56 model was adapted to use satellite based vegetation index and the results show 
that despite the simplicity of the model and some theoretical limitation of its parameterisations, estimates of ET 
were reasonable. However, the model was not able to separate soil and vegetation contributions to ET [6, 8]. 

Quantifying precipitation and its partitioning between runoff and infiltration in the mountain  
This talk has been talked in the context of Chaponniere’s PhD. thesis [4]. The SWAT model has been implemented 
in mountainous sub-watershed. The result shows that the fact that a hydrological model provides accurate estimates 
of the runoff does not necessary means that the other hydrological components are well described. For example, the 
snow parameterisation in SWAT as well as surface-subsurface one were not realistic while the total runoff was well 
reproduced. Future work is dedicated toward the improvement of the other components of hydrological cycle in 
SWAT.  

Development of a generic vegetation functioning model 
Here also several vegetation growth models have implemented. STICS model has been validated over an irrigation 
district.  The results show that when the model is forced by remotely sensed data, the estimates of biomass, yield 
and water balance are well reproduced. Similarly to other complex models, STICS needs several input parameters 
which are not routinely available at the appropriate space-time scales [11, 10]. To tackle this problem a simpler and 
generic model has been developed (SAFYE: [7]). This model requires only a few parameters and most of them can 
be obtained from remotely sensed data. Despite the simplicity of this model, the simulation results compared well 
the those of STICS 

Integrative modelling and quantitative remote sensing and data assimilation 
Remote sensing data has been used for different purposes. First historical data, has been processed to estimates 
changes in land used and land cover for a period of 25+ years. Actual data were used to produce land cover maps 
and to monitor snow cover in the atlass [4]. Second SPOT data has been used in conjunction with FAO-56 and with 
STICS and SAFYE to map evapotranspiration. Finally Thermal infrared data (TM) has been used in conjunction 
with a SVAT and assimilation scheme to invert the quantity of irrigation water. 

Education, capacity building and knowledge transfer.  
9 PhD students (6 from Morocco and 3 from Europe) as well as 12 Masters  students  have been working un the 
context of the sudmed project. Additionally several training sessions in remote sensing, geographic information 
systems, micrometeorology were organized in Marrakech this the course of the project. These training sessions 
were open for students, young scientists and engineers working for different government agencies partners in the 
project. Finally a Decision Support System for better management of irrigation water is under development. 

5 CONCLUDING REMARKS  

Substantial results have been obtained during this first phase of the sudmed project. A remote sensing data base has 
been constructed. Advances in each thrust area have been accomplished. However it should be mentioned that we 
are far from achieving all the objectives of the project. The second phase of sudmed will build up on the achieving 
of the first phase and it will be directed towards: 

• Integrative modeling 

• Aggregation and desegregation issues 

• The use of low to very low resolution satellite data (VEGETATION, MSG, SMOS).    

• Completing the development of the Decision Support System 
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ABSTRACT 

New opportunities for the assessment of global environmental status and changes are offered from the exploitation 
of satellite remote sensing data coupled with appropriate geoinformation processing. The assessment of 
environmental status is generally based on complex models that require large dataset and whose performance 
depends on expert knowledge and specific tuning.  In this paper we propose a synthetic indicator which is evaluated 
by aggregating the scores of diverse observable factors that reinforce the convergence of anomaly evidence.  The 
factors evaluation and aggregation are framed within Fuzzy Set theory and approximate reasoning methods so as to 
take into account the uncertainty and incompleteness affecting the collection of factors, the estimation of their 
importance and the complexity of their interrelationship.  The methodology is described and its operational 
capabilities are shown in the case of Africa using parameters derived from the analysis of rainfall and NOAA-
AVHRR GAC NDVI time series data. 

Keywords: environmental indicator, approximate reasoning, land cover change, continental scale. 

1 INTRODUCTION 

The assessment of environmental status is a very broad term that can hardly be precisely defined without delimiting 
the context and identifiyng the perspective from which the issue is approached.  For example, environmental 
assessment can be the impact assessment, i.e. the evaluation of the response of the environment to a driving force, 
the assessment of the environment conditions in relation to a specific context, e.g by comparison between natural 
and managed/degraded systems, the assessment of the environment vulnerability to different stressors or the 
evalaution of environment degradation based on the analysis of land-use land-cover change [1, 2, 3].  In such a 
wide context, several initiatives have been promoted and methodologies have been developed with the objective of 
depicting the status of the environment.  The choice of the most suited approach is a trade off between the type of 
information that are to be provided, the users and project’s requirements, and the constraints given by data and 
implementation tool availability. 

In the framework of GeoLand, an Integrated Project of the European Union 6th Framework Program, the 
Observatory for Land cover and Forest change (OLF) has to provide information addressing international concerns 
related to the global environmental protection and global change issues to support EU policies and international 
conventions such as the UN Forum on Forest (UNFF) and the Convention to Combat Desertification (CCD).  The 
OLF’s objective is the development of indicators, based on Earth Observation (EO) data, for environmental status 
assessment at continental scale on two priority areas, Boreal Eurasia and Africa. 

In this context, environment is therefore assumed to refer to the vegetation compartment of the ecosystems, and 
status is assumed to refer to the conditions of vegetation cover and changes. Note that, although commonly used 
with a negative meaning, a change is not necessarily an adverse effect on the vegetation cover [3]. 

Different methodologies for vegetation status assessment have been developed and are currently in use. They 
include physical approaches describing specific ecosystem characteristics, such as Net Primary Production (NPP) 
through Ligth Use Efficiency (LUE) models [4], conceptual models using neural network to analyse specific 
processes, such as deforestation [5], and multivariate regressive models addressing human and natural interactions 
[6]. These approaches have predictive capabilities although their application requires the prior knowledge about the 
phenomena, the independent and predicted variables must be known and measured, and application is mainly at 
local and regional levels where the ecosystems are better understood and models can be tuned to the specific 
conditions. 
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The understanding and quantification of the nature of land-use/cover change at global and continental scale and 
its impacts on the environment can be formalised by complex models that, due to the interdisciplinary character of 
the dynamics involved, require a large set of data which are difficult to collect continuously on the long term 
especially over large areas.  For these reasons it is increasingly hard to develop and implement continental and 
global models.   

Environmental indicators can overcome these limitations by providing a synthetic picture of the phenomena 
under analysis.  An environmental indicator can be defined as a mean devised to reduce a large quantity of data to 
its simplest form, retaining essential meaning of the questions that are being asked for the data, and  supplying 
simplified information about complex system, or not easy measurable criteria [7].  

Moreover, Earth Observation (EO) systems partially solve the issue related to the availability of datasets over 
large areas and long periods of time.  Long-term EO data can be exploited for monitoring the vegetation compound 
thus retrieving useful information on the status of the environment.  Yet the data made available by satellite 
imagery analyses have to be interpreted and integrated in order to synthetically describe the conditions of the 
environment.  An example of this type of analysis is the vegetation conditions indicator which integrates in a 
multivariate regression two contributing factors derived from NOAA-AVHRR NDVI and BT (Brightness 
Temperature) [8]. The indicator’s temporal and spatial trends have been shown to correlate well with ENSO (El 
Nino/Soutern Oscillation) events that strongly affects vegetation conditions. 

This paper proposes a new approach based on approximate reasoning techniques [9, 10] that make it possible to 
integrate a set of contributing factors into a synthetic indicator of anomaly.  The contribution of each factor is 
evaluated through the use of fuzzy score functions and the aggregation is performed by a multi-criteria approach.   
The objective is the periodic monitoring at continental scale for the identification of alarming conditions: that is, to 
enhance those areas where the occurrence of events, given the ambient conditions, may determine situations where 
changes are presently undergoing or are likely to occur in the near future. The anomaly indicator allows the 
integration of different sources of data (e.g. vegetation conditions and phenology, climate and socio-economic) in 
order to provide a synthetic picture of the environmental status.  

We present the general approach for the development of the anomaly indicator and the preliminary results 
obtained over Africa using parameters derived from the temporal analysis of NOAA-AVHRR GAC data and 
rainfall data. 

2 METHODOLOGY 

The basic idea for identifying anomalies at continental scale is to use a multi-criteria integration approach where 
individual factors contribute to the indicator of anomaly through the concept of reinforcement of evidence brought 
by each factor in terms of departure from a reference.  

The multi-criteria integration approach can be summarized in the following expression: 

),...,,,...,( 11 nn IIppFAI =       (1) 

where 

- AI is the anomaly indicator, intended as a proxy of the process under analysis and it is the higher-level product 
derived from multi-criteria integration.  The integration of the contributing factors, i.e. the available 
parameters that interact with the process, is realised  with the concept of reinforcement of evidence.  

- F is the operator that realises the multi-criteria integration of the contribution of each factor, by means of 
Ordered Weighted Averaging aggregation (OWA) operators which make it possible to take into account 
flexible compensations of the judgements [10].  

- pj is a contributing factor, i.e. a variable/parameter, which is relevant for the computation of the synthetic 
indicator.  Its computation is realized in the framework of the fuzzy sets theory [9, 11]: it is a real number in 
the [0,1] range associated to each elementary unit (usually the pixel) of the area under investigation. This 
value is not intended as a quantitative measure of a process under analysis, instead it is an evaluation of its 
contribution in term of anomaly to the multi-criteria integration.   

- Ij  is the importance associated to each contributing factor. 

Figure 1 summarizes the main steps of the proposed methodology which is described in detail in the following 
sections.  The introduction of fuzzy paradigm is suggested by its potential in managing complexity expecially for 
the system with a mathematical model that is difficult to derive.  The general experience is that the more complex 
the problem involved, the greater the superiority of fuzzy methods [12]. 



Remote sensing and geoinformation processing in the assessment and monitoring of land degradation and desertification, Trier, Germany, 2005 

page 385 

 

    INPUT DATA

EO Products
Non EO Products

Conceptual Modelling

- Factor definition
- Factor Selection

Multi-Criteria
 Integration

- Operators & Weights

OUTPUT

Anomaly 
Indicator Map

- Stratification
- Membership Function
- Single Factor Score

Fuzzy Score Evaluation

 

Figure 1. Block-diagram of the main steps in the proposed methodology for the environmental status assessment. 

2.1 Conceptual Modelling 

The conceptual model behind the proposed methodology is that, whereas a single contributing factor is not 
sufficient to assess the status of a phenomenon, a synthetic indicator could be generated from several factors 
combined together to reinforce-weaken this assessment. 

Factors contributing to the environmental assessment may include different type of information concerning both 
physical parameters and socio-economic information of the region.  Physical parameters of the ecosystem related to 
the vegetation phenology, water resources, fire activity, etc. can be derived from satellite observations [13, 14].  
Presently several coarse spatial resolution sensors, such as the MODIS, SPOT-Vegetation, NOAA-AVHRR, are 
available that allow to monitor the status of the environment at continental scale. Among these low resolution EO 
data, NOAA-AVHRR GAC data with 10 km spatial resolution have been used in this work being the more easily 
accessible data and covering more than twenty year period. Each factor contributes to the anomaly indicator in 
terms of the departure of current observation parameter’s value from a reference value, usually its long term 
average.  Thus EO products can be used either directly or after a specific processing, that includes: 

• temporal syntheses from each pixel’s temporal profile (e.g. max and min value over a given period); 

• spatial syntheses over an area, fixed grid or polygon, surrounding each pixel (e.g. difference with respect to 
the land cover class average value); 

• a combination of the previous two (e.g. max of the difference with respect to the land cover class mean value). 

Although the design of the indicators is open to include expert knowledge (heuristics), if available, this step 
implies the introduction of a more complex and region-specific model.  The integration of this component may 
definitely improve the accuracy of the results but it may be hardly modelled at continental scale.  For this reason the 
methodology to assess anomaly at continental scale include only observable component or evidences.  For example, 
it is an evidence that the higher the fAPAR (fraction of Absorbed Photosynthetically Active Radiation) the greater 
the vegetation amount.  Hence, the decrease of the seasonal maximum fAPAR with respect to the Long Term (LT) 
average indicates ecosystem degradation.  Although this statement hides a model, no one would argue about its 
robustness.  The anomaly indicator has been conceived on a way that makes use only of these evidence type 
components: in these terms, the multi-criteria approach can be thought as the co-occurrence of evidences. 

2.2 Evaluation of fuzzy factor score 

The contribution of each factor to the indicator score is described by a fuzzy score function.  The choice of a 
method based on the fuzzy sets theory is driven by its ability to deal with vague and incomplete information as well 
as the possibility of applying a gradual degree for score extraction instead of crisp value.  Indeed in environmental 
assessment it is more likely to deal with a smooth change between two different conditions rather than an abrupt 
change [15].  Moreover, fuzzy functions allow the standardization of each factor contribution to the [0-1] range.  
This step, besides being necessary for the integration of factors derived from various sources, has the advantage to 
make more understandable to the user the relative contribution of different factors in the overall indicator score. 

- Stratification into homogeneous areas. The fuzzy membership functions for each contributing factor are 
defined over homogeneous areas where the factors are assumed to have on average the same behaviour.  Over a 
homogeneous area the factor’s variability is assumed to be solely due to changes in the status of the environment 
and not to be related to the spatial variability of the ecosystem characteristics.  The choice of the most suited 
stratification scheme is an important step since it influences the shape of the factor score function.  A possible 
stratification criterion can be derived from either the WWF eco-regions thematic map [16] or from the intersection 
of more information layers such as the eco-regions and the land cover map, such as GLC2000 [17].  

- Membership function and factor score. The score functions are used to map the value of each contributing 
factor into a fuzzy membership degree, i.e. the factor score.  The factor score functions can be derived by following 
three different approaches: completely data-driven, partially data-driven, user-driven [18].  In the case of the 
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completely data-driven approach, the factor score functions are defined purely on the basis of the statistical analysis 
of a set of values assumed by a specific contributing factor.  For example if the contributing factor is the difference 
between the present value and its long term average, its statistical distribution (frequency histogram) shows how the 
factor behaves on average and which range of values can be assumed as normal.  The interpolation of the histogram 
provides the normality function: values generating scores close to 1 are considered as fully normal, while values 
with scores close to 0 indicate anomaly.  Otherwise a function complementing the interpolation of the histogram 
means the departure from normality of the observed phenomenon: 0 is not anomalous and 1 is max anomaly.  This 
second type of function is better suited to anomaly analysis.  In the other two approaches domain experts have a 
role in defining membership functions. 

2.3 Multi-criteria integration  

The integration of the contributing factors is performed by an operator that aggregates the fuzzy factor scores into a 
synthetic indicator score. Aggregation operations on fuzzy sets are operations that combine several fuzzy sets in a 
desirable manner to produce a single fuzzy set [12]. 

The proposed integration methodology try to avoid the use of complex models to describe the relationships 
between the contributing factors and the indicator. Moreover, the integration has been conceived so as to allow the 
selection of the way in which factor scores are aggregated to obtain a final indicator, as well as the definition of the 
‘importance’ of each contribution.  These are concerns related to multi-criteria decision-making (MCDM), a field in 
which procedures have been established to combine opinions about alternatives associated to different points of 
view.  In particular, fuzzy logic allows decision making with estimated values under incomplete or uncertain 
information, which is particularly suitable to satisfy the requirements of methodology robustness. 

Within this formal framework the Ordered Weigthed Averaging (OWA) operators were introduced thus offering 
a flexible and comprehensive way to define a complete family of integration operators reflecting different attitudes 
in combining a set of contributing factors [10]. An OWA operator of dimension n is a function  F: Rn → R,  that has 
associated a set of weights (w1, . . . ,wn), so that wi ∈ [0, 1] and ∑n

i=1wi = 1, and is defined to aggregate a list of 
values (p1, . . . , pn) according to the following expression, 

∑
=

=
n

j
jjbwF

1

         (2) 

where bj is the j-th largest (or more important) element of the set (p1, . . . , pn). By changing the definition of the 
weighting vector the aggregation operator changes as well, i.e. the purpose of weights is to allow distinguishing the 
different OWA operators.  Particular cases of OWA are the OR and AND connectives, as well as the traditional 
arithmetic mean, so that exact approaches are limiting cases of fuzzy approaches. 

The definition of the weighting vector can be accomplished by either exploiting a learning mechanism or trying 
to assign some semantics or meaning to the weights, such as in the area of quantifier guided applications [10].  In 
fact, the OWA operators have been used to implement the concept of fuzzy majority in the aggregation phase of 
fuzzy criteria by means of a fuzzy linguistic quantifier [19] which indicates the proportion of criteria ‘necessary for 
a good solution’ [20].  Furthermore, the calculation of the weighting vector can also take into account the 
importance Ii attributed to each considered factor, that shouldn’t be confused with the weights wi of an OWA 
operator.  It is also interesting to note that it is often difficult to specify the values of importance by exact numbers 
in [0, 1]; it would be more natural to specify them either in a linguistic form with the use of qualifiers such as 
important, very important, fairly important, etc. or by the aid of a graphic representation such as by moving a 
cursor on a bar or by selecting a grey level on a scale.  It has been shown that it is possible to create mapping 
functions that transform linguistic labels of importance into real values in [0, 1] and vice-versa.  

The adoption of the above described formal framework allows to implement a software environment in which it 
is possible to select different aggregation operators and obtain therefore different results which can be compared 
and validated and to attribute relative importance to the contributing factors.  

3 AN ANOMALY INDICATOR FOR AFRICA 

The approach described above has been applied to derive an anomaly indicator for the African continent.  Since 
the work has been developed in the framework of the Geoland-OLF project, the application example presented in 
the following paragraphs exploits the dataset made available in the context of the project.  The anomaly indicator is 
based on the integration of contributing factors that describe the anomaly of the phenology of the vegetation (start, 
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peak and length of the vegetative season) and the amount of rainfall occurred during the season.  The variables 
describing the phenology were derived from the analysis of the AVHRR-GAC NDVI temporal profiles as follows: 

- Start of apparent growing season (fstart): the inflexion point of the portion of the NDVI temporal profile that 
shows and increasing trend from the minimum value. Mathematically the inflexion point is derived as the 
maximum of the first derivative of the interpolated (piece-wise logistic) NDVI curve [21]. 

- Date of the peak of the growing season (fdate): the maximum NDVI value observed during the season. 

- Duration of the growing season (flength): the time difference between the end and the start of the growing season. 
The end of the growing season is identified as the time, occurring after the season’s peak, when NDVI value 
reaches a threshold established as a fraction of the difference between the minimum and the maximum values. 

Specifically for the example presented here, the phenology variables refer to the last observation preceeding the 
time for which the anomaly indicator is computed. 

The cumulated rainfall is computed from the ten-day rainfall data of the Famine Early Warning System 
Network (FEWS-NET) Meteosat Rainfall Estimation (RFE) dataset. The ten-day rainfall estimates are cumulated 
over the preceding 12 months.  

The anomaly of each contributing factor is derived as the difference between the current and the long-term 
average values. The phenology and rainfall long term averages were derived from the available historical datasets: 
1981-2002 and 1996-2002, respectively. 

The GLC2000 land cover map is used to segment the African continent into homogeneous areas: for each land 
cover class the historical dataset is used to derive the score function.  The score anomaly function is derived by a 
completely data-driven approach, by using the complement of the curve that best interpolates the frequency 
distribution.  Based on the available dataset, the curve found to best interpolate the frequency data was the so-called 
generalized bell function (Eq. 3) applied to each side of the histogram.  The breakout point has been chosen as the 
data value corresponding to the maximum frequency. 
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The value of the parameter β is chosen a priori (e.g.  β=100) whereas δ and p are obtained by least square 
minimization. This function has also been chosen because it is characterised by an asymptotic behaviour that well 
represents the least anomaly that characterises the values surrounding the frequency peak.  An anomaly score equal 
to 0 is assigned to a range of contributing factor values around the peak value, rather than to the unique most 
frequent value. Moreover, this formalisation of the score function allows the selection of asymmetric right and left 
interval around the breakout point to identify the asymptotic range of values (e.g. score=1 if α<factor<β, where 
α≠β).  Finally, the separation into right and left side allows the interpolation of the same type of function although 
with different parameter values thus taking into account a further level of asymmetry. 

Figure 2 shows the histogram (circle markers), the interpolation curve (dotted light grey line) and the anomaly 
score function (black line) for the rainfall contributing factor.  Before interpolation, the frequency values are 
rescaled between 0 and 1 so that the maximum frequency corresponds to 1 (normality) and the least frequent class 
to 0 (least frequent cases far from the normal behaviour).  The interpolation curve represents the normal behaviour 
based on the underlying assumption that the most frequent cases are the normal ones. 

The anomalies of each contributing factor was computed for the last ten-day period of each year from 1996 to 
2002 so that the aggregated indicator would represent a synthetic picture of the current year.  The anomalies of each 
contributing factor were aggregated into the Anomaly Indicator (AI) by applying the arithmetic mean operator: 
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where n = 4, since only four contributing factors (pi) are available and factors are assumed to be equally 
important (Ii=1 for any i). 
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Figure 2. The score function derived for the rainfall contributing factor for the Degraded Evergreen Lowland Forest class 
(source: GLC2000). The x-axes represents the values of the contributing factor (∆ = current value of cumulated rainfall - long 
term average cumulated rainfall).  

4 ANALYSIS OF THE RESULTS 

Figure 3 shows, as an example, the AI derived for the last ten-day period of each year from 1996 to 2002.  The red 
areas highlight the most anomalous regions where changes are likely occurring.  The ocean, the inland water basins 
and deserts have been masked out and therefore appear as the black regions.  

The AI maps highlight a high inter-annual variability although some constant patterns are clearly visible.  The 
Horn of Africa, Southern Africa and the Sahelian region South of Chad are characterized by a highly anomalous 
behaviour through the 1996-2002 period.  
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Figure 3. Anomaly Indicator for Africa.  The indicator is derived as the average value of the fuzzy scores of the contributing 
factors. GL2000 map [17] used for the stratification is also shown. 

The high and persistent anomaly over East Africa shown by our results is in agreement with the occurence of 
several years of below-normal rainfalls that affected this region at the end of the last century. Some region 
experienced prolonged drought beginning in 1998 and beyond 2001 [22].   

The African Sahelian region also is characterised by some persistent patterns of high anomaly that could be due 
to prolonged dry episodes.  Progressive desertification is addressed as the explanation of the drought episodes that 
have been occurring in this region of Africa where the reduction of rainfall is apparently strongly correlated with 
human activity [23].  In this specific case the information brought by the AI could be integrated with information on 
the human activity such as grazing (overgrazing) and land cover conversion (from natural to agricultural land). 
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Our results also show high AI values over central Africa, in the forest domain.  The inspection of the NDVI 
temporal signal highlighted a low seasonality (high S/N) of the vegetation that might have affected the accuracy of 
the phenology parameters’ estimates.  It is probable that for this specific ecosystem a different set of contributing 
factors should be chosen to perform environmental status assessment.   

The type of indicator proposed in this work could be also correlated with ENSO events that strongly afftects the 
conditions of the environment.  For example, during El-Nino years Southern Africa generally receives below- 
normal rainfall whereas La-Nina years brings above-normal rainfall regimes.  Yet during the 1997-98 El-Nino 
event, which was the strongest on record, not all of South Africa received below-normal rainfall.  In fact our results 
show that 1997 and 1998 were not the most anomalous years despite the occurence of El-Nino.  Therefore attention 
should be paid when drawing conclusion about the correlation between the climate-related events and the 
conditions of the vegetation.    

Although comparison with independent datasets is necessary, the continental scale of analysis and the synthetic 
character of the anomaly indicator make this exercise hardly feasible.  In fact most of the analysis of anomalous 
behaviour performed at continental and/or global scales concerns the quantification of the anomaly of a single 
meteorological parameter such as sea surface temperature and rainfall.  It is therefore difficult to compare a 
synthetic (i.e. integrated) indicator with a single parameter.   

However, a first comparison could be attempted with the Vegetation Condition Index (VCI) developed by [8]. 
Figure 4 shows a zoom over the Horn of Africa for which the VCI was available on the NOAA-NESDIS web site 
(http://www.orbit.nesdis.noaa.gov/smcd/emb/vci/index.html) and it compares it with AI derived for 2000 and 2001. 
Since the AI is a synthetic indicator, that depicts a synthetic picture of the events occured during the whole year, we 
assumed that it could be in first approximation comparable to the VCI maps derived by [8] for the vegetation 
growth season of the region under analysis. Both of the panels in figure 4 show that the patterns of stressed 
vegetation conditions (yellow circle at the centre of the figure) are highlighted by a high anomaly of our indicator. 
A more exhaustive comparison is difficult to perform mainly due to time lag between the datasets and the lack of 
ground truth datasets. 

 

 

2000 
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Figure 4. Comparison between VCI maps and Anomaly Indicator maps for the Horn of Africa. 

5 CONCLUSIONS 

We propose an innovative approach to derive an anomaly indicator for environmental status assessment.  The 
methodology is based on the integration of the anomaly of a set of contributing factors; the anomaly is derived from 
fuzzy score functions extracted from the analysis of the historical dataset.  The integration of each factor’s anomaly 
can also be performed by exploiting the advantages offered by fuzzy set theory when dealing with uncertain data. 

The proposed approach is suited for global/continental analyses and it has been applied to derive an anomaly 
indicator over the African continent for the period 1996-2002.  For its nature it becomes hardly feasible a validation 
exercise due to the lack of independent datasets at the appropriate scale.    

Since validation and even a comparison to other datasets is difficult to be performed, the strength of the 
anomaly indicator proposed here mainly derives from the methodological approach.  The anomaly indicator is 
definitely an improvement over previous approaches because it faces the uncertainty involved in environmental 
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status assessment by exploiting the fuzzy set theory.  Moreover, the general scheme of the proposed methodology 
allows the integration of datasets derived from different sources.  A clear example could be the case of 
desertification where the anomaly indicator could easily accommodate socio-economic data, besides taking into 
account the vegetation’s conditions and the rainfall patterns that highlight the occurrence of drought.      
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ABSTRACT 

For well over three decades controversy has surrounded the characteristics of environmental change and 
environmental degradation. One reason for this prolonged debate is that there has been no assessment of uncertainty 
in previous Sahelian rainfall work. We used data from the Global Historical Climatology Network to provide an 
assessment of spatial uncertainty of summer rainfall between 1930 and 1990. Stochastic simulations prioritised the 
reproduction of global features and statistics over local accuracy to provide a complete assessment of uncertainty. 
The series of realisations were post-processed and the uncertainty information summarised using the mean per pixel 
of all realisations and the variance of the conditional distribution of the realisations. The probability of exceeding 
rainfall was calculated for 200 mm and 500 mm. Denormalised area-weighted rainfall anomalies showed the 
characteristic decrease in rainfall between the late 1960s and 1990. The annual estimates of the minima and maxima 
of the simulated rainfall provided a range of possible values for the areal annual rainfall that considerably reduced 
certainty in that pattern. The maps of spatial uncertainty demonstrated that there was considerable heterogeneity 
across the region which could not reasonably be estimated by a single areal annual value. Furthermore, the 
threshold of 200 mm was a very poor approximation of the boundary between the Sahara and the Sahel and that of 
500 mm did not adequately represent the boundary of agricultural production. The estimation of spatial uncertainty 
robustly questioned the methodology used to calculate rainfall anomalies and the assumptions for the use of simple 
isoline thresholds. 

Keywords:  West African Sahel Rainfall; Geostatistics; Sequential Indicator Simulation; Spatial Uncertainty; 
Desiccation; Rain-fed agriculture; Sahara desert. 

1 INTRODUCTION 

The summer of 2005 drew world attention to the plight of inhabitants in the West African Sahel (WAS) region of 
West Africa due to famine, drought and locusts. The FAO and UNICEF reported that in Niger alone some three 
million people were likely to be affected. Drought related tragedies have been reported several times during the 20th 
Century and the characteristics of environmental change and environmental degradation in the Sahel have been the 
focus of scientific interest for well over three decades. Controversy has surrounded the scientific work due to 
natural environmental variability, the paucity of data, misunderstanding of resilience, and institutional facts [1]. 
Many of the accounts of environmental change have been challenged and new positions adopted. Examples include 
possible interactions between climate and land cover changes [2],[3]; the relationships between droughts and 
human activity [4],[5] and increasing desiccation as presented by an expanding Sahara [6],[7],[8],[9]. Such studies 
have led to recognition that the Sahel is environmentally heterogeneous despite significant sources such as [10] and 
IPCC [11] portraying the Sahel as a region. The Sahel is a complex mosaic of environments and human activities 
[12]. Climatologists have also noted the diversity and variability of the Sahelian environment [13] yet the paradigm 
of widespread persistent drought and desiccation is so well established [14] that few question local variations nor 
the quality of the data used. This is in stark contrast to the work of ecologists, geomorphologists, and others who 
have challenged the views of Sahelian environmental change established earlier in the 20th Century [15],[16],[17]. 

There is little support for those whose work questions or offer alternative explanations, as forcibly stated in a 
paper [18] entitled ‘The recent Sahel drought is real’. The paradigm is well established and reinforced by possible 
explanations of the drying trend. However, drought (a short term, severe reduction in precipitation) is commonly 
expected in semi-arid regions such as the Sahel whereas desiccation (a long term reduction in precipitation) is an 
element of climate change which requires an examination of precipitation trends e.g., [19],[13],[20]. Desiccation 
between the late 1960s and 1990 is explained by comparing empirical evidence or model predictions against 
‘observations’ of Sahelian rainfall e.g., [21],[22]. However, the outcomes of testing these hypotheses are based 
upon the assumption that aggregated rainfall observations represent the underlying population despite limitations of 
the observation network and variability in rainfall. Despite consideration of local interpolation errors [23] and 
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spatial and temporal sampling patterns on the estimation of aggregated climatological variables e.g., [24],[25] there 
has been no assessment of uncertainty in previous Sahelian precipitation work. Here we provide an assessment of 
spatial uncertainty between 1930 and 1990. The analyses provide uncertainty about temporal variation of areal 
rainfall in the region but this is not the main focus. Instead, we consider in detail the spatial variation of the rainfall, 
its variation and the probability of exceeding thresholds set at 200 mm as an approximation for the edge of the 
Sahara [8] and at 500 mm as an approximation for the region of rain-fed agriculture [26]. 

2 DATA AND METHODS 
We used the Global Historical Climatology Network (GHCN) v.2 rainfall data [27] and extracted rainfall stations 
for the years between 1930 to 1990 inclusively, within the west African Sahel (WAS) following the definition of 
Nicholson [28; 10-20°N, -20°W to 20°E]. Stations locations recorded using latitude and longitude were converted 
to an equal-area projection using the unit circle. We calculated the total northern hemisphere summer (June, July, 
August and September) annual rainfall. Therefore, all stations with summer monthly data for a year were extracted 
from the database. In addition, rainfall anomalies were calculated using the accepted method [29] and the area-
weighting scheme [30]. A reference period of 1961 to 1990 was set to achieve the maximum number of stations 
with the minimum amount of missing data (29%).  

Unlike local interpolation algorithms (including kriging) stochastic simulation prioritises the reproduction of 
global features (texture) and statistics (histogram, covariance etc.) over local accuracy and provides a complete 
assessment of error or uncertainty [31]. It has been used to good effect in other environmental applications e.g., 
[32],[33]. Sequential indicator simulation was used here to generate 300 maps or realisations of rainfall and honour 
the values of the rainfall stations each year, reproduce the declustered sample histogram and reproduce the 
covariance models for four thresholds (10%, 25%, 75%, 90%) using the mosaic model [34] and the median 
indicator approximation [31]. The spatial structure of the median indicator rainfall data was calculated using 
experimental isotropic semi-variograms [35]. The variograms were fitted with several authorised models using non-
linear weighted least squares and the model that fitted best, in the least-squares sense, was selected. The west 
African Sahel was discretised into a grid with 3500 nodes (100 x 35) which was approximately 0.3° and 0.4° in 
latitude and longitude, respectively. The series of realisations were post-processed and the uncertainty information 
summarised using the mean per pixel of all realisations and the variance of the conditional distribution of the 
realisations. In addition, the probability of exceeding rainfall was calculated for two thresholds. The first was set at 
200 mm [8] as an approximation for the edge of the Sahara in their experiment to detect expansion and contraction 
of the desert. The second was set at 500 mm because it was believed [26] to approximately identify the region of 
rain-fed agriculture. Maps were selected for the years 1935, 1945, 1955, 1965, 1975 and 1985. The minimum and 
maximum values of the realisation means for every year between 1930 and 1990 were also plotted over time to 
provide a conservative estimate of uncertainty. 

3 RESULTS 

The rainfall anomalies for each year of data were area-weighted and then denormalised by adding 493 mm, the 
long-term summer rainfall (Figure 1). The denormalised area-weighted rainfall anomalies (DARA) show the 
characteristic decrease in rainfall between the late 1960s and 1990. The annual estimates of the minima and maxima 
of the simulated rainfall are also shown in figure 1. Notably, the uncertainty decreases over time and contributes to 
the appearance of decreasing rainfall over time. However, this appearance is exaggerated with the inclusion of the 
drought years of 1972-1973 and 1983-1984 within the context of dessication. With the exception of these years the 
uncertainty estimates between the late 1960s and 1990 overlap considerably with those of the wet phase in the 
1950s and early 1960s and those of the dry phase in the 1940s. 

The maps of the per pixel realisations average of summer rainfall for the region are shown every ten years 
between 1935 and 1985 in figure 2 (a-f). The pattern of rainfall for these years is similar. An area of large rainfall 
exists in the southwest. Notably, that area extends no further east than the border of Guinea. Two other areas of 
consistently large rainfall are found in the south-eastern portion of the region (Nigeria, Cameroon and Chad) and 
over central Niger. Notably, there is a belt of relatively small rainfall that extends from the coast across the region 
but which terminates at approximately the border with Chad. The low rainfall belt is more or less pronounced in 
each of the maps and is notably extensive during 1985. 
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Figure 1. Annual variation in summer rainfall for selected stations using the denormalised area-weighted anomalies 
(--) and the minima and maxima of the 300 averages of the simulation realizations. 

The maps of per pixel conditional variance (Figure 2g-l) reveal that those areas of large rainfall previously 
identified are highly variable in the simulation realisation which suggests that there is considerable uncertainty in 
the rainfall estimates. Notably, the area adjacent to the Sahara, particularly in northern Mali and Niger, has 
variances in the estimates that are larger than the majority of the region. The speckled nature of the variance maps 
is caused by the highly spatially variable nature of the variance. 

The maps of the per pixel probability of exceeding the 200 mm and 500 mm threshold of summer rainfall for 
the region are shown every ten years between 1935 and 1985 in figure 3. Darker shades indicate a tendency to 
exceed the threshold whilst lighter shades indicate that the threshold is unlikely to be exceeded. As one might 
expect, the majority of the region has dark shades because of the increased likelihood that each pixel will exceed 
the 200 mm threshold of summer rainfall (Figure 3a-f). However, the pattern does not produce the typical isoline 
close to the northern boundary of the region. Instead, clusters of lighter shades are identified where parts of several 
countries have not exceeded the threshold. Notably, in 1985 a large part of the western portion of the region has 
light shades but the eastern part of the region is expected to exceed the threshold. The speckled nature of the dark 
regions is caused by the rainfall values at the rainfall stations that have been retained in the maps. 

In 1935, 1945 and to a less extent 1955, the areas of the region that exceed the 500 mm threshold of summer 
rainfall are similar. Large values are found in the lower latitudes of the region including southern Senegal, Mali and 
Burkina Faso and the border between Nigeria and Niger. In addition, central and northern parts of Mali, Niger and 
Chad show medium valued clusters that are persistent during these years. In years 1965, 1975 and 1985 the area of 
the region covered by darker shades has visibly decreased and generally only clusters in the most southern latitudes 
exceed the 500 mm threshold. However, there also remain a few clusters in central and northern Niger, northern 
Mali and Chad that exceed the 500 mm threshold. 



Remote sensing and geoinformation processing in the assessment and monitoring of land degradation and desertification, Trier, Germany, 2005 

page 394 

-20 0 20

10

20

10

20

10

20

10

20

10

20

-20 0 20

Longitude (degrees)

10

20

0 250

500

750

1000

1250

1500

1750

2000

2250

2500

Summer rainfall (mm)

La
tit

ud
e 

(d
eg

re
es

)

(a)

(b)

(c)

(d)

(e)

(f)

-20 0 20

10

20
(g)

10

20
(h)

10

20
(i)

10

20
(j)

10

20
(k)

-20 0 20

Longitude (degrees)

10

20

(l)

Summer rainfall variance

0 100000

200000

300000

400000

500000

600000

 
Figure 2. Maps of the per pixel (approximately 0.3° and 0.4° in latitude and longitude, respectively) average of the 
300 realisations (a-f) and the variance for the conditional distributions (g-l) of summer rainfall in the West African 
Sahel for the years of 1935, 1945, 1955, 1965, 1975 and 1985, respectively. The rainfall stations ( ) and the 
political boundaries for countries of the region are also shown. 

4 DISCUSSION 
The denormalised area-weighted rainfall anomalies (DARA) are commonly used to aggregate observations from 
across the west African Sahel. A decrease in the anomalies between the late 1960s and 1990 is widely accepted as 
evidence for a drying trend or desiccation in the region. Unfortunately, the DARA contain no estimate of 
uncertainty. This is because there is little difference in the temporal pattern between local interpolators or as a result 
of sampling effects such as the number of stations selected for the aggregation procedure. However, the simulation 
technique demonstrated that there could be considerable variation in the spatial pattern of rainfall for a given year 
whilst constrained by global characteristics including, amongst other things, the rainfall measurements. 
Consequently, the large variation each year between the minimum and maximum values of the simulations 
considerably reduces the certainty of desiccation in the region. The removal of drought years 1972-1973 and 1983-
1984 from the temporal trend makes it easier to appreciate that uncertainty.  
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Figure 3. Maps of the probability that the summer rainfall at each pixel (approximately 0.3° and 0.4° in latitude and 
longitude, respectively) in the West African Sahel will exceed the threshold at 200 mm (a-f) and at 500 mm (g-l) 
for the years of 1935, 1945, 1955, 1965, 1975 and 1985, respectively. The political boundaries for countries of the 
region are also shown. 

The source of the variability in the estimate of annual rainfall for the region is contained in the maps of spatial 
uncertainty. The mean and the conditional variance per pixel for the 300 realisations provide an estimate of that 
variation. The heterogeneity of the region is evident from the average of the realisations and makes it difficult to 
appreciate how a single value can reliable estimate that variation. Furthermore, the maps of the per pixel average of 
the realisations provide only one representation of the spatial pattern of rainfall across the region. The per pixel 
variance maps show that there is considerable variation in the realisations. The spatial uncertainty is different each 
year but there are consistently occurring patterns. For example, there is consistently large uncertainty in the lowest 
and highest latitudes of the region and a belt of small uncertainty that stretches through the central portion of the 
region. There is considerable uncertainty in the south-west coastal region and in northern Nigeria around the Jos 
Plateau. The results identify a considerable source of variation that exceeds that of local interpolation errors and 
sampling effects. That source appears to highly spatially variable and suggests that the rainfall pattern across the 
region does have broad bands but also contains considerable clustering. 

The per pixel mean maps consistently show larger amounts of annual rainfall along the edge of the Sahara than 
in a central belt across the region. This is somewhat surprising since rainfall is expected to decrease north across the 
region. This is the basis for the use of 200 mm year-1 isoline as an approximation for the boundary between the 
Sahara zone and the Sahel [8]. However, the annual maps for the probability of exceeding that threshold 
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substantiate the pattern detected in the maps of the per pixel mean. The probability maps show distinct clusters of 
areas that are unlikely to exceed this threshold. Only in 1985 is there a tendency for a strong latitudinal gradient to 
exits and even this does not extend across the entire region. There appears to be little evidence that this threshold 
can be used to identify the boundary between the Sahara and the Sahel. However, there is some support for the use 
of 500 mm as a threshold that identifies a distinct boundary, that of rain-fed agriculture [26]. The main exception 
appears to be the consistent occurrence of an area over central and northern Niger that exceeds the threshold. 
Results suggest that the boundary is at its most northern extent in years 1935 and 1945. It appears to be confined to 
the most southerly latitudes during the years 1955, 1965, 1975 and 1985. The speckled nature of the maps is caused 
by the simulations honouring the values of the rainfall observations. The probability maps suggest that the use of 
boundaries based on isolines formed from locally optimal maps are simplistic and hide a considerable amount of 
variation and uncertainty. 

5 CONCLUSION 
The denormalised area-weighted rainfall anomalies for the west African Sahel no longer provide unequivocal 
evidence of the drying trend or desiccation between the late 1960s and 1990. Stochastic simulations provided a 
range of possible values for the areal annual rainfall that considerably reduced certainty in that pattern. The 
estimation of uncertainty renders inconclusive previous comparisons between rainfall anomalies and empirical 
evidence from related variables (e.g., dust) and model-based predictions.  

The maps of spatial uncertainty demonstrate that there is considerable heterogeneity across the region which 
cannot reasonably be estimated by a single areal mean value that is conventionally used. It is likely that the 
expectation of being able to estimate rainfall across the region in this manner has reduced the importance of 
uncertainty. Reconsideration of its importance for the aggregation of climate observations may make an important 
contribution to temporal and spatial patterns in this region and others around the globe. Spatial uncertainty was also 
expressed as the probability of exceeding thresholds at 200 mm and 500 mm. The results showed that the former 
threshold was a very poor approximation of the boundary between the Sahara and the Sahel. Evidently, there is a 
much more complex relationship than was previously recognised between rainfall and vegetation in the detection of 
the edge of the Sahara desert. At 500 mm there appeared to be a much stronger boundary. However, its position in 
years 1955, 1965, 1975 and 1985, well south of the border between Nigeria and Niger, suggests that agricultural 
production during that period was barely viable. On the contrary, these years are quite wet and instead it is likely 
that a simple threshold does not adequately represent the complex spatial heterogeneity of the region nor the 
complexity of rain-fed agriculture.  

Challenging the drying trend and the use of simplistic thresholds in the west African Sahel may appear wholly 
negative with the intention of undermining for example, the ability to better understand the complexity of 
agriculture or climate systems. However, the absence of critical checks and perspectives allow assumptions and 
simplifications to go unchallenged and so widely accepted that they become immutable and very difficult to 
contest. Faced with this situation with respect to west African Sahel rainfall the estimation of spatial uncertainty has 
robustly questioned the methodology used to calculate rainfall anomalies and the assumptions for the use of simple 
thresholds. 
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ABSTRACT 

Arid and semiarid ecosystems are experiencing rapid land cover changes (e.g. woody plant encroachment, invasive 
species) with significant shifts in the physiognomic makeup of the vegetation with consequences to surface 
hydrologic processes, productivity, and land surface moisture conditions. Water is the most limiting resource to 
biological activity in these dryland zones, however, the relationship moisture and biological activity as it relates to 
drought and land degradation is not simple with differential sensitivities existing across land cover types. In this 
study we combined remotely-sensed vegetation indices and canopy moisture indices to improve the prediction of 
land degradation and drought and to provide a mechanism in which spatiotemporal variability in water availability 
and productivity may be analyzed in order in response to climate change and human land cover modifications. We 
used field optical measurements, AVIRIS, Hyperion, and 5 years of MODIS time series data to analyze seasonal 
patterns of LSWI and VI and provide a contextual array of measurements for assessing ‘greenness’ and vegetation 
water content and ascertain variations specific to each. Combined vegetation index and land surface water indices 
(VI- LSWI), describing moisture status achieved per unit ‘greenness’ were found to vary uniquely with phenology 
phase, vegetation type, water availability, drought, and land degradation. The slope of VI- LSWI relationships 
shifted with drought status and stage of degradation. Our results show that combined greenness and water indices 
offer improved sensitivity to ecosystem health assessment and drought detection and analysis. 

Keywords: Vegetation indices, canopy moisture indices, land degradation, drought. 

1 INTRODUCTION 

Canopy moisture plays a critical role in the evaluation of terrestrial environmental conditions with important 
influences on hydrologic, pedologic, biogeochemical, ecologic and atmospheric processes [1]. Knowledge of the 
water status of a vegetation canopy can provide valuable information on soil moisture condition, vegetation stress, 
and drought status. The process of degradation, however, results in simultaneous and complex variations of many 
interrelated soil and vegetation biophysical parameters rendering it difficult to develop simple and robust remote 
sensing mapping and monitoring approaches. Nevertheless, remote sensing offers a feasible method to collect 
spatial information on vegetation canopy optical features. In this paper, we investigate the relationship between 
chlorophyll-based and water-based vegetation indices for drought and land degradation applications.  

1.1 Vegetation Moisture Indices 

Vegetation water indices employing the 1240 nm, 1640 nm, or 2100 nm wavelengths in lieu of the red band used in 
vegetation indices, have recently been used as independent vegetation measures related to canopy moisture 
condition instead of chlorophyll amount. Laboratory studies and canopy radiant transfer model simulations have 
shown that changes in leaf water content have a large effect on reflectances in portions of the near-infrared (NIR) 
and shortwave infrared (SWIR) spectral regions. Important liquid water absorptions are found at 1640 nm and 2100 
nm, with a weaker absorption feature at 1240 nm, which result in negative relationships between reflectances at 
these wavelengths and leaf water content [2, 3]. Several studies have shown increases in leaf reflectance associated 
with plant stress across the SWIR region [4, 5] providing useful information to infer soil moisture status in the plant 
root zone. The SWIR reflectance values alone, however, are not suitable for retrieving vegetation water content as 
variations in leaf internal structure and leaf dry matter content as well as canopy geometry, shadowing, and soil 
surface moisture also influence SWIR reflectance [6, 7]. 

The assessment of vegetation water content or equivalent water thickness (EWT, g-H2O/cm2-leaf area) is 
significantly improved by the combination of NIR and SWIR bands [8]. Land surface water indices (LSWI) 
employing the 1640 nm or 2100 nm wavelengths in lieu of the red band used in VIs, have been used as independent 
vegetation measures related to canopy moisture condition instead of chlorophyll amount [9, 10].  



Remote sensing and geoinformation processing in the assessment and monitoring of land degradation and desertification, Trier, Germany, 2005 

page 399 

 LSWI = [ρ860nm – ρswir] / [ρ860nm + ρswir] (1) 

with 〉swir representing one of the shortwave infrared bands. Many Earth Observing sensors have SWIR bands of 
potential use in surface moisture studies, including Landsat Thematic Mapper bands 5 and 7 (1550- 1750 nm, 2080- 
2350 nm), MODIS bands 6 and 7 (1628- 1652nm, 2105- 2155nm), and SPOT-VEGETATION (1580- 1750nm), 
and offer potential canopy moisture indicators [8, 11, 12]. The Normalized Difference Water Index (NDWI) uses 
two reflectance bands in the high NIR reflectance plateau of vegetation canopy spectra, at 860 nm and 1240 nm 
wavelengths [3],  

 NDWI = [ρ860nm - ρ1240nm] / [ρ860nm + ρ1240nm] (2) 
with the weaker, liquid water absorption feature enhanced by the high NIR scattering in the leaf. This 

formulation was applied to MODIS bands 5 (1230 -1250nm) and 2 (841 - 876nm) and was found to be a strong 
indicator of canopy water content during the growing season in the Sahel [12]. Whereas, the SWIR region responds 
to both vegetation water content and soil surface moisture, the weaker 1240 nm, water absorbing region has been 
shown to respond to canopy moisture status only and be insensitive to surface soil moisture. However, it was found 
that in dry years the vegetation cover was too dry and sparse to provide information on canopy water content 
suggesting that a minimum, threshold vegetation amount must be present for the water indices to work [12].  

1.2 Combined Moisture and Vegetation Indices 

Although vegetation indices (VIs) have also been correlated with vegetation water content, they are physiologically 
related to canopy chlorophyll content and absorbed photosynthetically active radiation [13]. Thus, VIs generally 
would depict decreases in plant growth (or senescence) caused by water stress rather than lower water contents. At 
the Soil Moisture Experiments 2002 (SMEX02) field and satellite campaign, Jackson et al. [14] found the water 
indices to be superior to VIs in mapping vegetation water content (VWC), as the NDVI was found to saturate while 
the water indices continued to show changes in VWC with increasing amounts of green vegetation. Ceccato et al. 
[8] concluded that VIs were unsuitable for retrieving VWC since relationships between chlorophyll and VWC are 
specific to each species. Furthermore,decreases in chlorophyll content do not imply a decrease in VWC, and vice-
versa, a decrease in VWC does not imply a decrease in chlorophyll content. The two VIs adopted as standard 
MODIS products are the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) 
[15],  

 NDVI = [ρNIR - ρRed] / [ρNIR + ρRed] (3)  
 EVI = 2.5 [ρNIR - ρRed] / [1+ρNIR + 6 ρRed – 7.5 ρBlue] (4) 
Maki et al. [16] and others have combined use of NDVI and NDWI to generate vegetation dryness measures 

involving both indices. A combined VI- LSWI approach would provide a contextual array of remotely sensed 
measurements, increasing the measurement domain and reducing the under-determination problem for assessing 
soil moisture and vegetation water content [1, 17]. Our objectives in this study were to combine land surface water 
indices with ‘greenness’-based vegetation indices to utilize their unique biophysical properties in the assessments of 
drought and land degradation in semiarid environments. We expect that the decoupling of moisture and chlorophyll 
parameters may provide early warning indicators for land health and degradation analysis.  

 

2 METHODS 

Vegetation index and canopy water index relationships were investigated in both spatial and temporal domains with 
field data sets, fine resolution AVIRIS (4m) and Hyperion imagery (30m) and MODIS time series data (1km). A 
field measured seasonal data set of irrigated wheat (Seri) crop under normal and stressed water treatments was used 
to analyze VI- water index relationships under relative wet and dry conditions. We also utilized fine resolution 
AVIRIS and Hyperion imagery acquired over the protected Ñacuñán Biosphere Reserve and surrounding degraded 
areas within the Mendoza region of Argentina. The EO-1 Hyperion sensor imaged the Ñacuñán Reserve on January 
24, 2001. All hyperspectral imagery were corrected for atmospheric effects and converted to surface reflectances 
with the aid of an atmosphere correction program, ATREM, constrained with co-registered, surface ASD 
radiometric measurements, used as calibration ground control points. Hyperion is a pushbroom sensor providing 
220, 10 nm bands covering the spectrum from 400 to 2500 nm. Hyperion and AVIRIS imagery have demonstrated 
their utility in characterizing the ecological variance and complexities of landscapes, including species composition, 
ecosystem functioning, biogeochemical cycles, and land use, land cover change, and largescale ecological changes. 
The Ñacuñán Biosphere Reserve is located in a warm semi desert shrubland steppe ecosystem in the province of 
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Mendoza (34°02'S; 67°54'W). This designated UNESCO Biosphere Reserve comprises an area of 12,271 ha and is 
administered by the Instituto Argentino de Investigaciones de las Zonas Aridas (IADIZA). It is at a mean altitude of 
540 m with an average annual temperature of 15.8 C and 200 mm annual precipitation. The site consists of 
floristically diverse vegetation communities, characterized by open forests of mesquite (Prosopis spp.) and 
creosotebush (Larrea divaricata and L. cuneifolia), locally known as algarrobal and jarillal communities, 
respectively [18]. These open forest communities were totally cut down between the years 1907 and 1937 and are 
now protected under a restoration and protection plan. The algarrobal community of mixed mesquite-creosotebush 
is the main cover type inside the reserve followed by the jarillal (creosotebush) community. The dark green leaves 
of the creosotebush render this community very dark in appearance in satellite imagery relative to the algarrobal 
vegetated areas (Fig. 1). There are two additional vegetation formations resulting from previous and current phases 
of land degradation, including a ‘medanal’ community consisting of both mesquite and creosotebush species and 
characterized by sand dune formations and a ‘peladal’ community which is severely degraded, has stunted 
creosotebush, and appears very bright (Fig. 1). These degraded vegetation communities are present inside the 
reserve but are much more prominent outside the reserve, particularly to the north.  

 

Figure 1. Ikonos image (June 2001) depicting the vegetation communities at the Ñacuñán Biosphere Reserve, Argentina. 

3 RESULT 

3.1 Wheat Phenology 

We first examined the phenology profiles of a wheat canopy (Seri) with the EVI, NDWI, and LSWI under normal 
irrigation (wet) and water stressed (dry) treatments (Fig. 2a). There is little variation during the green-up phase 
between treatments and for all indices. As water was not withheld from the dry treatment until mid-way into the 
growing season, no signs of water stress were evident in the greening and peak phases. The dry-down phase was 
noticeably different between wet and dry treatments with a large lag in drying occurring in the wet treatment. Thus, 
both chlorophyll activity and water contents declined rapidly in the dry treatments while in the wet treatment, rapid 
declines in the EVI, NDWI, and LSWI lagged by more than one month (~40 days). The two water indices show 
extended peak values through to DOY 130 before intiating a drying phase while the EVI declined gradually during 
this lag period and was the first index to commence dry-down. Thus, the chlorophyll and water indices depicted a 
net loss in chlorophyll signal followed by a delayed decline in moisture content.  

The combined VI - WI crossplot using NDWI and LSWI as the water indices is shown in Fig. 2b for both wet 
and dry treatments. There was a single, positive and linear relationship between the water index and EVI during the 
green-up period when using NDWI or LSWI. For the dry wheat treatment, green-up and dry-down follow the same 
relationship, but in the wet treatment, the dry-down relationship is different from the green-up relationship. A 
hysterisis effect was observed such that during the dry down phase, the NDWI was consistently higher for any 
specific EVI value (greenness condition) compared with the green-up phase. In the case of VI – LSWI 
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relationships, the hysterisis effect was observed for both dry and wet wheat treatments. In this case the dry down 
phase exhibits a separate relationship for the dry treatment, as well as the wet treatment. In all cases, the dry down 
phase does not follow the green-up relationship. However, the dry down phase of the wet treatment shows the 
highest LSWI values per unit of VI (greenness).  

This effect is most likely due to the cessation of chlorophyll production at peak greenness with no concurrent 
effect on leaf moisture status. During green-up the chlorophyll concentration or amount of chlorophyll per unit 
amount of leaf tissue is high, but there is less leaf biomass (less LAI) for the moisture signal. At dry-down, LAI is 
maximum, biomass is maximum, and although it is becoming less green, it is still transpiring and with moisture. 
The ratio of chlorophyll to leaf biomass is lower, but the ratio of leaf moisture to biomass remains high.  

 

Figure 2. Seasonal profiles of EVI, NDWI, and LSWI for Seri Wheat crop under irrigated (wet) and water stressed (dry) 
treatments (left). LSWI at 1240 nm and 2130 nm relationships with EVI obtained from the seasonal profile data (right). 

The drying phase from the water-stressed treatment may also show higher LSWI values, relative to the 
greenning phase, due to canopy architecture differences. In the green-up period, there is little biomass nor canopy 
structure, while in the dry-down phase, the canopy is fully developed, and structurally complex, casting shadows 
which may cause increased absorption over the SWIR wavelengths, raising the LSWI. This did not occur in the 
NDWI measurements of the stressed wheat canopy in the dry-down phase, indicating that the NDWI measurements 
were not influenced by canopy architecture. However, the NDWI involves only NIR bands, which may not 
decrease in values with canopy architecture, as is the case in the SWIR. 

3.2 Land Degradation 

The AVIRIS data showed more complex LSWI- VI relationships among the various land cover classes at different 
stages of degradation (Fig. 3). Overall, there is an inverse relationship between these two canopy measures with the 
most degraded site (peladal) exhibiting the lowest NDVI values with highest LSWI values. For a particular land 
cover class, however, there is a positive relationship between these two indices encompassing the range of 
variability and vegetation densities. The slopes of these specific LSWI- NDVI relationships appear to decrease with 
severity of land degradation, indicating that for given amounts of canopy moisture, there is less chlorophyll or 
greenness signal with increasing stages of degradation. The change in moisture content per unit increase in VI is 
greater in the healthier landscapes. The peladal sites had unusually high LSWI values, equivalent to that or greater 
than all other land cover conditions. These sites were dry during the AVIRIS overflights and these high values over 
bare and dry surfaces have been reported in other studies where strong negative, 'soil-line' relationships among bare 
soils, as well as surface litter, were seen in the NDWI - NDVI plot [19].  

Although there is a strong and positive relationship between NDVI and NDWI for vegetated points, it is worth 
noting that both indices are needed for maximum discrimination of the land degradation classes as well as detection 
of variations in land degradation (Fig. 3). The LSWI by itself, would not be able to unambiguously distinguish 
among the land degradation conditions, particularly given the high peladal (bare playa) values. 
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Figure 3. AVIRIS LSWI – NDVI relationships (left) and Hyperion derived LSWI – NDVI relationships (right) for various land 
degradation land cover classes at Ñacuñán Biosphere Reserve, Argentina (Monte desert). 

The relationships among Hyperion-derived LSWI and NDWI with EVI were mostly similar to those 
encountered with the NDVI. The Jarillal community, however, was integrated with the Algarrobal vegetation 
communities in the case of the EVI (Fig. 4). Also, in the case of the NDWI, there were parallel lines of NDVI- EVI 
relationships (constant slopes) shifting negatively toward higher NDWI and lower EVI with increasing degradation 
(Fig. 4b).  

 

Figure 4. Hyperion-based EVI-LSWI (left)and EVI-NDWI (right) relationships at the Ñacuñán Biosphere Reserve and 
surrounding degraded areas. 

3.3 MODIS TIME SERIES DATA 

The MODIS time series profiles of the protected and degraded sites at Ñacuñán Biosphere Reserve show an upward 
5-year trend with EVI and LSWI values (Fig. 5). The degraded areas surrounding the Reserve exhibit an increasing 
LSWI but decreasing EVI trend over the 5 years. The EVI standard deviation values of the degraded areas 
increased more sharply than in the protected areas (Fig. 5a). In the case of the LSWI, both degraded and protected 
areas show a similar upward trend with standard deviations that also increase, but with a slightly higher increase in 
the degraded areas. The protected area has a slight upward trend and the standard deviation values increased 
slightly.   
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Figure 5. MODIS time series profiles of protected and degraded sites at Ñacuñán Biosphere Reserve for EVI (left) and LSWI 
(right). Trend lines depict spatially-based average and standard deviation values. 

The combined LSWI-EVI MODIS plot (Fig. 6) show a steeper slope in the degraded areas outside the Ñacuñán 
Biosphere Reserve and a negative shift toward higher LSWI and lower EVI values.  

 

Figure 6. Combined LSWI and EVI plot of MODIS time series data in the protected Ñacuñán Biosphere Reserve and the 
surrounding areas. 

4 CONCLUSIONS & DISCUSSION 

Remotely-sensed land surface water indices combined with greenness-based vegetation indices resulted in useful 
information for the prediction of vegetation health response to climate change and human land cover modifications. 
Spectral retrievals of both chlorophyll and water estimates in vegetation canopies better depicted plant 
physiological status and provide opportunities for improved drought, soil water deficit, and vegetation stress 
analysis. Furthermore, the combined indices resulted in better characterization of land degradation and land cover 
conversions. In all VI- water index cases, there were strong differences between wet and dry treatments of potential 
value in assessing land degradation and drought. The slope of the moisture index– vegetation index relationship 
varied with moisture availability and became steeper with a much lower intercept term with increasing drought. The 
canopy water index- vegetation index slopes varied with phenology phase, species, land degradation, and moisture 
availability. The combined vegetation and water indices were particularly useful in discriminating among stages of 
land degradation. These involved differences in biological moisture availability, chlorophyll activity, plant species 
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and physiognomy, and altered phenology patterns. The patterns and shifts in LSWI- VI relationships were opposite 
in the case of drought-induced vegetation stress and degradation- induced vegetation health. With increasing 
drought, we found a shift in LSWI- VI toward higher VI values and lower LSWI values while in the case of land 
degradation, we found decreasing VI values and increasing LSWI values with land degradation severity. The slope 
variations with land degradation were difficult to analyze given that land degradation may be result in excess water 
availability per unit of green biomass (lower green cover but constant rainfall conditions) or if significant erosion 
has occurred, there may be less biological available water (drought effects) as runoff from rainfall may be more 
pronounced. Thus, with land degradation, there may be excess water or a deficiency in water availability. Much 
remains to be done in the application of combined indices to land degradation studies and the extraction of moisture 
availability and biological production information. However, the combined approach may provide new insights into 
complex hydrologic processes, fluxes, and feedbacks among soil moisture, atmosphere moisture, and ecosystem 
metabolism and development. A combined VI and vegetation water index with thermal or microwave remote 
sensing approaches would also greatly enhance our understanding of land surface moisture dynamics.  
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ABSTRACT 

Several low resolution satellite sensors are now available and can provide near real-time monitoring of vegetation 
cover seasonal changes on a large scale basis. This paper presents a comparison of NDVI derived from SPOT-
VEGETATION and MSG-SEVIRI for the whole continent of Africa. 

Dekadal NDVI from VEGETATION data are available, obtained from maximum NDVI compositing technique. 
VEGETATION data from July 1-10, 2004, have been re-sampled at 0.025° spatial resolution (= resolution of MSG-
SEVIRI data) for whole Africa. In the case of SEVIRI data, a 2-steps procedure is used: first daily compositing is 
implemented through analysis of thermal data (maximum surface temperature compositing), followed by dekadal 
NDVI synthesis. 

Results include the observed correlations and discrepancies of NDVI products of the 2 sensors. Results suggest 
that, due to higher temporal frequency (1 image each 15 mn), MSG-SEVIRI data can be used to obtain improved 
NDVI products through better removal of cloud-contaminated pixel. 

Keywords: Remote sensing, drought, vegetation, NDVI, temporal compositing, Africa. 

1 INTRODUCTION 

Several low resolution satellite sensors are now available and can provide near real-time monitoring of vegetation 
cover seasonal changes on a large scale basis. In addition to NOAA-AVHRR sensor operated and archived since 
more than 20 years, new sensors became recently available for continental or global vegetation monitoring, like 
SPOT-VEGETATION (since 1998), EOS-MODIS (since 2000) or MSG-SEVIRI (since 2004). In this paper, the 
emphasis will be put on MSG-SEVIRI instrument. The high temporal frequency allows a new approach to temporal 
compositing inducing an improved removal of cloud-contaminated pixels. The derived NDVI product will be 
compared to similar product obtained from SPOT-VEGETATION data during the same compositing period (July 1-
10, 2004). 

2 SATELLITE DATA ACQUISITION AND PROCESSING METHODS 

2.1 MSG Data acquisition 

MSG-1, the first of the Meteosat Second Generation geostationary satellites, has been launched on August 28, 
2002. Due to technical problems, it was fully operational only on January 29, 2004 and took the name Meteosat 8. 

MSG transmits raw data to the Eumetsat control and processing centre in Darmstadt (Germany), via the primary 
ground station, for processing. The raw data consists mainly of images generated by the SEVIRI (Spinning 
Enhanced Visible and Infrared Imager) instrument and the Geostationary Earth Radiation Budget Experiment on 
board the satellite. Once processed, the data is sent back to the satellite for broadcasting to users.  

SEVIRI radiometer is the main instrument on board MSG. It provides images of the Earth disc with 3km 
resolution at nadir in 11 bands (visible, near infrared, shortwave infrared and thermal infrared). Main features of 
optical bands are indicated in table 1. 
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Table 1. Spectral characteristics of 3 optical bands of SEVIRI instrument. 

Channel Spectral domain λcen λmin  -  λmax 
VIS 0.6 Green - Red 0.635 0.56 – 0.71 
VIS 0.8 Near Infrared 0.810 0.74 – 0.88 
NIR 1.6 Shortwave IR 1.640 1.50 – 1.78 

 
MSG takes one full resolution image every 15 minutes, thus illustrating the weather in motion. In 

addition, a panchromatic image is taken with 1km resolution, covering partly the Earth disc, as indicated 
at Figure 1. Image dimensions are 3712 x 3712 pixels in channels 1 to 11, and 5568 x 11136 pixels in 
channel 12.  

1.2 Deriving NDVI from MSG data 

Temporal compositing of NDVI data is generally based upon the computation of maximum NDVI from a set of 
multi-temporal data. This technique can not be applied to MSG data taken during a diurnal cycle: due to changes in 
solar zenithal and azimuthal angles, NDVI exhibit variations which are not related with ground cover. An 
alternative technique is to follow the diurnal cycle of brightness temperature: the identification of the maximum 
value during the day is an efficient mean to eliminate pixels contaminated with clouds or cloud-shadows, 
characterized by low temperatures. Then NDVI is computed for each pixel, using red and near infrared radiances 
recorded at the time of day of maximum temperature. This procedure has been implemented by the MSG-ATR 
team (MSG-ATR, 2005). NDVI is multiplied by 1000, and coded as integer value, ranging from -1000 to + 1000. It 
must be noted that the procedure is applied to raw radiance data (no atmospheric corrections). 

 

Figure 1. Example of MSG images at 3km resolution, full disc (left) and 1km resolution (right). 

A sub-image covering the whole continent of Africa has been extracted (38°N to 35°S, 26°W to 60°E); data 
have been re-sampled at 0.025 degree resolution in Plate-Carrée projection (geographic): the size of resulting image 
is 3440 x 2920 pixels. 

1.3 SPOT VEGETATION NDVI data 

Dekadal NDVI data are available freely from SPOT VEGETATION distributor (VITO, 2005). NDVI data can be 
obtained for the whole continent of Africa (38°N to 35°S, 26°W to 60°E) in a geographic projection, with spatial 
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resolution of  0.00892857  degree (˜1 km) : the size of image is 9633 x  8177 pixels. Data are available in hdf 
format; one channel “quality of data” is also available, which indicates pixels affected by clouds or cloud-shadows. 
NDVI data are given in byte format (Digital counts DC between 0 and 255). NDVI values range between -0.1 (DC 
= 0) and 0.92 (DC = 255), and the relationship between NDVI and digital counts is given by : 

 NDVI = 0.004*DC -0.1 (1) 
To compare with MSG data, SPOT VEGETATION NDVI image has been re-sampled at 0.025° resolution, 

using the nearest neighbour algorithm. 

2 RESULTS 

2.1 SPOT-VEGETATION NDVI data 

Re-sampled NDVI image from July 1-10, 2004 is displayed at Figure 2. Although resulting from a 10 days 
synthesis, the image is still affected by cloud contaminated pixels. This is the case in the West Africa tropical 
region, as indicated at Figure 3. 

 

Figure 2. Dekadal NDVI image derived from SPOT-VEGETATION data (July 1-10, 2004). 
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Figure 3. Cloud-contaminated pixels (white pixels) in SPOT-VEGETATION dekadal image. 

1.2 MSG SEVIRI data 

MSG SEVIRI data (temporal synthesis, July 1-10, 2004) are depicted at Figure 4. The following procedure has 
been followed, before displaying the results: first, transformation into byte format, using the same scaling procedure 
as SPOT VEGETATION data: DC = (NDVI + 0.1)/0.004; second, a linear contrast stretch has been applied to the 
data, as the range of MSG SEVIRI NDVI values is narrower than the range of SPOT- VEGETATION data (see 
below). The resulting value is defined by: 

 NDVIstretched = 1.73 *NDVIbyte -2.16 (2) 
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Figure 4. Dekadal NDVI image derived from MSG-SEVIRI data (July 1-10, 2004). 

2.3 Correlations between  MSG SEVIRI and SPOT data 

Histograms of SPOT-VEGETATION NDVI and MSG SEVIRI NDVI are presented at Figure 5. Only the cloud-
free part of the African continent has been considered. One can notice the wider range of values of SPOT 
VEGETATION data, which can be explained by the fact that atmospheric corrections have been applied, prior to 
compute NDVI. 

 

Figure 5. Histograms of  NDVI data : SPOT-VEGETATION (left) and MSG SEVIRI (right). 

Excluding cloud-contaminated pixels, the correlation between SPOT VEGETATION NDVI and MSG SEVIRI 
NDVI appears rather high (cf. Figure 6), with a correlation coefficient r2 = 0.87.  
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Figure 6.. Scattergram of SPOT VEGETATION NDVI (Y axis) vs MSG SEVIRI NDVI (X axis). 

Even after applying a linear stretch to MSG data, there are still noticeable differences between cloud-free SPOT 
VEGETATION and MSG SEVIRI derived NDVIs.  This is illustrated at Figure 7. The main difference is the lower 
values of SPOT VEGETATION NDVI data in the cloud-contaminated areas (red pixels in Figure 7); but, reversely, 
in most areas of the Southern hemisphere, SPOT VEGETATION NDVI appears higher than MSG SEVIRI NDVI 
(blue pixels in Figure 7). Further investigations are needed to explain these differences, and to propose adequate 
atmospheric corrections of MSG SEVIRI data. 

 

 

Figure 7. Image of differences between NDVIs from MSG SEVIRI and SPOT VEGETATION (DC 128 = no difference).  
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3 CONCLUSIONS AND PERSPECTIVES 

Most monitoring studies and early warning procedures rely on present vegetation condition assessment with 
reference to some statistical values derived from historical data (KOGAN, 1998 and 2000; DePAUW, 2000). 
Dekadal NDVI derived from NOAA-AVHRR has been routinely used for drought early warning, in spite of coarse 
spatial resolution of archived data. SPOT VEGETATION provides since 1998 dekadal NDVI data at 1km 
resolution (VITO, 2005), and operational systems like Drought Global Watch (HEWS,2005) make use of both data 
sources, with 10 days or one month compositing periods.  

The availability of MSG data can contribute to improve drought early warning systems, because of the 
following advantages: 

• data are easily accessible to users, in real time through low cost receiving systems (free data for 
research purposes, requiring EUMETSAT agreement); 

• many receiving systems have been installed in meteorological offices of developing countries through 
the E. U.-funded Meteorological Transition in Africa Project (PUMA, 2005), non-meteorological 
applications are now planned with the launch of the AMESD project : African Monitoring of the 
Environment for Sustainable Development (AMESD, 2005); 

• procedures are now developed, based on open software (Linux) to process data and extract daily 
parameters like NDVI and surface temperature (MSG-ATR,2005); 

• as shown in this study, dekadal syntheses of MSG SEVIRI NDVI are of better quality than those of 
SPOT-VEGETATION, because of improved removal of cloud-contaminated pixels; 

• in most areas, it is suggested than MSG SEVIRI can provide NDVI syntheses of good quality for 
periods of 5 days or less; 

• coarse spatial resolution (3 km) remains a limiting factor, but higher resolution is achievable through 
data fusion of multispectral bands with panchromatic band at 1 km resolution. 
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1 INTRODUCTION 

China is one of the countries in the world most seriously affected by sand disaster. In 2004, the total sandy land 
area was 17,397 ha, accounting for 18.12% of the total national land territory. Although sandification condition is 
much better than that in the late 1990’s preliminarily controlling sandy land expansion in whole, sandy land is 
expanding in part and the whole situation of sandification is serious. Therefore, detection of the status and dynamic 
of sandy land in time plays an important role in making sandification control strategy. 

Remote sensing provides the possibility for monitoring and assessment of sandy land over large areas because 
of its capability of collecting data frequently, synoptically, and objectively. In recent years, scientists of many 
countries in the world have studied monitoring and assessment of sandification. It is still an important topic to 
establish a simple, applicable and operational remote monitoring system of sandification. The paper selected 
Dengkou county as study area, extracted sandy land based on field survey and image spectral analyses, determined 
the degree and development of sandy land, and implemented change detection of land cover during the last 10 years 
with PCA to derive land cover change map. 

2 STUDY AREA 

Dengou County lies in the southwest of Bayannaoermeng, Inner Menggolia, at 106º´9-107º10´E and 40º9´-
40º57´N. This area consists of hilly area, desert, plateau and river. It has a semi-temperate continental monsoon 
climate dominated by strong winds, rich sand and little rain. The average annual precipitation is 142.7 mm. The 
average and maximum annual wind velocity is 3 m/s and 24 m/s respectively. The average annual strong wind and 
sand storm days are 20.2 and 20 respectively. The Soil consists of aeolian sandy soil, ortho brown soil, grey desert 
soil, saline soil, irrigated warped soil and meadow soil. It is distinctly distributed according to region, with ortho 
brown soil in hilly area, aeolian sandy soil, grey desert soil and saline soil in desert area, and irrigated warped soil 
and saline soil in river bend area. The vegetation is desert steppe, including Compositae, Leguminosae, Gramineae, 
Chenopodiaceae, Zygophyllaceae, and so on. From east to west, xerophyte and extreme xerophyte plants are 
increasingly dominated.  

3 METHODOLOGY 

3.1 Field Survey 

In August 2003 and July 2004, two field surveys were performed in Dengkou County. 38 sample plots were 
investigated in detail. The investigated contents included topography, land use, soil type, soil texture, vegetation 
coverage, vegetation height, vegetation distribution, vegetation growth, degree of sandification and degree of 
salinization. Precise position was determined using GPS in each sample plots. To establish the relationship between 
vegetation coverage and NDVI, line-transect was main method, point sampling and visual observation as ancillary 
methods [1]. 

3.2 Image Selection and Analyses 

Landsat 7 ETM+ images of 4 May 2001 and 20 August 2002 covering Dengkou County were selected for 
information extraction of sandy land.  

Spectral characteristics of shifting sandy land, lake, river, saline and alkaline land, barren mountain and 
residential land were similar in spring image to those in summer image, but spectral characteristics of farmland, 
shrub land, semi-fixed and fixed sandy land on which vegetation grew were different in spring and summer image.  
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In May 2001, semi-fixed and fixed sandy land overlaid with germinating shrub and grass mainly presented the 
spectral characteristics of sandy land in the image. Some crop came out and didn’t come into blossom. Some soil 
accumulated salt in the surface. According to diversities of crop growth period, farmland presented three types in 
the image, namely vegetation-covered land, salt-accumulated land and barren land, out of which spectral 
characteristics of barren farmland and sandy land were difficult to distinguish. Extracted sandy land was often 
overestimated.  

In August 2002, vegetation on sandy land grew vigorously. In the image sandification degrees were divided 
based on vegetation coverage. On some fixed sandy land vegetation grew too vigorously to cover the land surface. 
Therefore extracted sandy land was often underestimated. But in the whole spectral value of fixed sandy land was 
lower than that of farmland. 

The paper used multi-temporal images to extract sandy land exactly. Spring image was used to extract sandy 
land, and then summer image was used to eliminate farmland. 

Landsat ETM+ images covering Dengkou County in 20 August 2002 and Landsat TM image in 24 August 1989 
were used in change detection of land cover during the last ten years. 

3.3 Image Preprocessing 

Standard atmosphere correction method described in the Landsat 7 Science Data User’s Handbook was used in 
radiometric correction procedure. 

Geometric correction of image 2002 was processed based on 1:50000 topographic maps covering the area. More 
than thirty ground control points (GCP) were used and evenly distributed in the whole image. The nearest neighbor 
algorithm was used to resample and the second-order polynomial model was used to rectify image. The final root-
mean-square error (RMSE) was less than 1 pixel.  

Geometric correction of image 1989 was carried out with image 2002 as reference image. The final RMSE was 
less than 0.5 pixel. 

Regression method was processed in relative correction of image 1989 with image 2002 as reference image. 
Sample sites were selected according to the following criteria, the same elevation, relatively flat areas, and the same 
amount of vegetation [2], [3].  

3.4 Information Extraction and Degree Classification 

Multi-layer remote sensing information extraction method of sandy land using multi-temporal images was 
developed based on spectral characteristic analyses.  

Sandification degrees were determined according to the land classification standard of China national 
desertification survey. It was shifting sandy land with vegetation coverage of less than 10%, semi-fixed sandy land 
with that between 10% and 30%, and fixed sandy land with that of more than 30% [4]. NDVI reflected the 
relationship between spectral response and vegetation coverage. By regression model, the relationship between 
NDVI and vegetation coverage was established [5]. Sandification degrees were divided with the threshold of NDVI 
and the degree map of sandy land was derived. 

3.5 Change Detection 

Image 2002 and image 1989 were stacked to create a twelve-band composite. The composite was used in a PCA to 
produce six components. Analyzing the components, suitable component was selected. By identifying the threshold 
of change/non-change, change information was derived [6]. 

4 RESULTS AND ANALYSES 

4.1 Spectral Analyses 

According to the spectral profile of training sites in spring image (Figure 1), the reflectance of clay barren land, 
sandy land and the gobi was obviously higher than that of other objects in TM band 5 and band 7. TM band 5 and 
band 7 were middle infrared bands, sensitive to variations in moisture content of soil and vegetation, and reflected 
the variations of land surface in arid area. TM band 7 was used to separate clay barren land, sandy land and the gobi 
from other land covers. The reflectance of the gobi and sandy land was similar, but the texture was obviously 
different. The gobi was smooth in texture and distributed in diluvial fan. Sandy land exhibited dune chain mixed 
with vegetation. Based on the topography, the gobi was separated. The reflectance of clay barren land was much 
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higher than that of sandy land in TM band 4. With suitable threshold in TM band 4, clay barren land was separated. 
The remainder of sandy land and some bare farmland was not distinct from each other. In summer image the 
reflectance of agriculture plants was relatively low in TM band 3 and high in TM band 4 (Figure 2). According to 
this, farmland was separated, thus the extraction of sandy land was realized. 

Figure 1. Spectral profile of spring image. 

Figure 2. Spectral profile of summer image. 
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4.2 Sandy Land Extraction 

According to spectral analyses, multi-layer information extraction of sandy land with spring and summer images in 
Dengkou was implemented. Figure 3 was flow figure of sandy land extraction. ρ3,ρ4 andρ7 was reflectance in band 
3, band 4 and band 7 respectively, a, b, and c was empirical value determined by interactive method. 

Figure3. Multi-layer extraction of sandy land. 

4.3 Determination of Sandification Degrees 

In the field of remote sensing application, vegetation index was used to quantitatively and qualitatively assess 
vegetation coverage and energy as an important information source to reflect vegetation information in the land 
surface. The paper used empirical model to derive vegetation coverage. Empirical model of ground-truth data and 
NDVI was established. The model was extended to larger region. According to the relationship between vegetation 
coverage and NDVI, sandification degrees were divided with the threshold of NDVI. The degree map of sandy land 
was derived. 

NDVI was mapped using August 2002 image. 11 sample plots of fixed, semi-fixed and shifting sandy land were 
chosen to establish the relationship between NDVI and ground-truth vegetation coverage (Figure 4). Liner, 
polynomial and power regression analyses were implemented, with correlation coefficient of 0.7677, 0.8096 and  

 

ρ 7>a

ρ 4<b

ρ 4- ρ 3<c

Spring image 

Multi_layer extraction 

Summer image 

Farmland taken out 

Surface coverage 

Relief

Non_mountain and non-gobi Mountain and Gobi

Sandy land, clay and some farmland Salina, residential land, water and farmaland 

Sandy land and some farmland Clay 

Sandy land Farmland Sandy land 



Remote sensing and geoinformation processing in the assessment and monitoring of land degradation and desertification, Trier, Germany, 2005 

page 417 

 

Linear fit 

Polynomial fit 

Power fit 

Figure 4. Fit formula of vegetation coverage and NDVI. 
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Figure 5. Sandy land distribution map in Dengkou. 

0.7747 respectively. The second-order polynomial regression has the best fit effect. When vegetation 
coverage was 10% and 30%, corresponding NDVI was 0.120 and 0.156 respectively, which was used to 
divide sandification degrees. Distribution map of sandy land was derived (Figure 5). 

4.4 Change Detection 

Comparing components, the second component had a good effect on change detection. The threshold was selected 
with statistical measure and interactive procedure [7]. The change image was derived (Figure 6).  

Figure 6. Land cover change map in Dengkou. 
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4.5 Accuracy Assessment 

Accuracy assessment included three aspects, namely sandy land extraction, degree classification and change 
detection. 

Area-based accuracy assessment was carried out with differential GPS. Accuracy (%) = Total pixels classified 
correctly / Total pixels. The result was in Table 1. The accuracy of sandy land extraction was 90.8%. The accuracy 
of non-sandy land extraction was 91.9%. The total accuracy was 90.9%. 

Table 1. Accuracy assessment of sandy land extraction. 

GPS polygon Total pixels classified correctly Total pixels Accuracy (%)
Sandy land 1050 1156 90.8 
Among which, Fixed sandy 250 338 74.0 
Semi-fixed sandy land 606 624 97.1 
Shifting sandy land 194 194 100.0 
Non-sandy land 124 135 91.9 
Sum 1174 1291 90.9 

 
According to accuracy assessment, the errors were mostly due to omission of some fixed sandy land. 

Overlaying the image with GPS polygons and contrasting to field survey data, some fixed sandy land missed by 
extraction was found to lie near the oasis and farmland with good water condition and high vegetation coverage, 
and during the period of sandy desertification reverse. Other missed class was salinized sandy land mistakenly 
judged as saline and alkaline land. Other information sources, such as soil and site information should be used to 
promote the accuracy of sandy land extraction. 

Degree classification of sandification was implemented in the inner sandy land. To be independent of sandy 
land extraction, accuracy assessment of degree classification of sandy land was carried out with GPS points (Table 
2). 

Table 2. Accuracy assessment of sandification degrees. 

Type Producer accuracy User accuracy Average accuracy 
Fixed sandy land 75.0 100.0 87.5
Semi-fixed sandy land 77.8 70.0 73.9 
Shifting sandy land 87.5 77.8 82.7 
Total accuracy 80.0 
Kappa 0.7 

 
Overall accuracy was 80%. Classes of fixed sandy land have the highest user’s accuracy of 100%. Classes of 

semi-fixed sandy land have the lowest user’s accuracy of 70%. In sample sites, no semi-fixed and shifting sandy 
land was misclassified as fixed sandy land. Lots of fixed and shifting sandy land was misclassified as semi-fixed 
sandy land. More fixed and semi-fixed sandy land was misclassified than shifting sandy land. Semi-fixed and 
shifting sandy land was misclassified as each other. 

For sandy land related changes, including sandy land – farmland, sandy land – water area, shifting sandy land – 
semi-fixed and fixed sandy land, the overall accuracy was 82.2% (Table 3). The detection effect of change from 
sandy land to farmland, from sandy land to water area was relatively good, with the accuracy of 80% and 100% 
respectively. The detection effect of change between shifting sandy land, semi-fixed sandy land and fixed sandy 
land was relatively worse, with the accuracy of 50%. The method performed well in change detection of sandy land 
and the other land cover. 
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Table 3. Accuracy assessment of change detection. 

Type Accuracy
Sandy land – Farmland 80.0
Sandy land – Lake 100.0 
Shifting sandy land – Semi-fixed and fixed 50.0 
Overall accuracy(%) 82.2 

 

5 CONCLUSIONS AND DISCUSSION 

(1) Remote sensing image with suitable time could have the maximum spectral distinction between sandy land and 
the other land cover, benefit to sandy land extraction. The paper used integrated multi-season method, overcoming 
the limitation of single season method that overestimated or underestimated sandy land, thus realized the correct 
extraction of sandy land.  
(2) Based on the image analyses, multi-layer method was used to extract sandy land. 
(3) Establishing the relationship between NDVI and vegetation coverage, it was an effective way that sandification 
degrees were divided with the threshold of NDVI. 
(4) To determine sandification degrees, some aspects should be improved in the respect of radiometric correction 
and field survey. a) The radiometric correction model was improved; b) Visual observation should not be used 
when investigating vegetation coverage on the sample plot because of its subjectivity; c) The same method was 
used to measure vegetation coverage in order to avoid from various systematic error. d) Sample plot was located in 
large and vegetation evenly-distributed area with less variation of land surface type; e) Differential GPS was 
positioned in the center of sample plot. 
(5) PCA has a good result on change detection for sandy land and other land cover. But the method could only 
provide change/non-change information, which integrates other classification method could provide specific change 
class information. 
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ABSTRACT 

Western China has been a focus of intensive development for several decades, starting in the late 1950s with the 
expansion of agricultural oases and, more recently, with oil and gas exploration activities. In 1999, the Central 
Government of the People’s Republic of China has initiated an ambitious “Western Development Strategy”. Over a 
ten-year span, this major government program initially concentrated on development planning and policy 
formulation and is now proceeding with investments in transportation, energy, communications, urban 
infrastructure, forestry, mining, minerals and agriculture. The paper examines the potential usefulness of Earth 
observation satellite data in support of natural resource development and oil and gas exploration activities in the 
Tarim basin of western China. Project background, scope and the objectives are illuminated first. Then the role of 
satellite imagery, including Canadian Radarsat-1 data, and its application in oil & gas exploration and 
environmental assessments is examined. This is followed by a demonstration of the technical remote sensing and 
geographic information system (GIS) capabilities, using the Kuche area in the Tarim Basin of Xinjiang, western 
China, as an example. The overview concludes with a discussion of results, an outline of potential benefits and 
recommendations regarding further Earth observation satellite contributions to ongoing exploration and 
environmental analysis work.  

Keywords: Environmental assessment, Tarim Basin, Earth observation satellite data collection and analysis. 

1 INTRODUCTION 

Western China has been a focus of active oil and gas exploration for several decades. The recent discovery of 
considerable gas reserves in the Tarim Basin has accelerated the development of this natural resource. In 1999, the 
Central Government of the People’s Republic of China has initiated an ambitious “Western Development Strategy”.  
Over a ten-year span, this major government program will concentrate initially on development planning and policy 
formulation and proceed with investments in transportation, energy, communications, urban infrastructure, forestry, 
mining, minerals and agriculture.  

Natural resources in western China continue to be mapped and inventoried. The exploitation of oil and gas 
reserves, which account for more than 80 per cent of the national total, awaits the provision of infrastructure and 
other incentives to ensure profitability. A key component identified and approved by the Chinese government is a 
major pipeline network to transport natural gas from the production areas in western China to the consumer markets 
in the East. Environmental assessment, monitoring and management are important components of the development 
strategy.  

The project examines the potential usefulness of Earth observation satellite data in support of specific oil and 
gas exploration activities and for human safety and environmental assessments in general. It is the result of an 
international cooperation that has brought together experts from the Remote Sensing Geology Department of 
PetroChina’s Research Institute of Petroleum Exploration and Development (RIPED) and a consortium of Canadian 
companies under the aegis of Hatfield Consultants Ltd. and Ærde Environmental Research. The Canadian Space 
Agency and its Earth Observation Applications Development Program (EOADP) provided funding support for the 
team members to bring this ‘Western China Oil & Gas Project’ to a successful completion [1]. 
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2 PROJECT BACKGROUND, SCOPE, AND OBJECTIVES 

The central Government of China and enterprises such as PetroChina are interested in attracting investment and 
expertise in order to accelerate the development of resource-rich western regions of the country. This includes 
Chinese businesses as well as international entrepreneurs. In the past, PetroChina’s RIPED has had fruitful 
cooperation with Canada to foster their oil & gas exploration activities. Canada is also being recognized as a leader 
in Earth observation technology and environmental resource management. These sectors are expected to play a 
prominent role as the western regions of China develop at a fast pace over the present decade and beyond. 

Earth observation satellites as well as GIS are innovative and useful tools for addressing these concerns. 
Experience in China and in North America has shown that both optical and radar-based imaging instruments can be 
a reliable source of information. The successful process of image selection, acquisition and analysis not only guides 
geological and geophysical exploration efforts, but it also assists in the surveillance, assessment and monitoring of 
environmental conditions in which the exploration and the development effort is taking place.  

The RIPED Remote Sensing Geology Department has used routinely American LANDSAT image analysis as an 
integral part of their mapping program in various parts of the country. The work under the EOADP project offered an 
opportunity to evaluate the advantages and limitations of imaging radar technology in arid regions. The project 
team selected as a test area in the Tarim Basin, Xinjiang, and conducted the work with a view toward practical 
application of two components: (i) oil and gas exploration activities and (ii) environmental monitoring and 
assessment. 

The rationale for the first component is obvious given RIPED’s mandate. The rationale for the second component 
is a result of changing realities within China and the world at large.  Multi-national oil and gas companies involved 
in exploration and development of reserves must, at a minimum, meet environmental standards of their host 
countries, and ensure that operations interfere as little as possible with local communities and their environments. 
PetroChina has accepted a stewartship role in this regard, as manifested by strong support for the collaborative 
Sino-Canadian EOADP project in Xinjiang. 

3 ENVIRONMENTAL SETTING 

The Tarim Basin in western China is one of the world’s driest and most land-locked areas with unique 
environmental systems (Figure 1, Table 1). The area is of historic significance as it was an important part of the 
transcontinental trade route network, the ancient ‘Silk Road’. Today, the Tarim Basin is considered by many to be a 
frontier region.  This perception pertains to the rugged natural setting of the enormous oil and gas exploration and 
production activities that China is vigorously pursuing within the framework of its national ‘Western Development’ 
plans. 

The challenges of the physical environment are formidable. The western region as a whole receives little 
precipitation, and the Tarim Basin, being shielded by the high mountain ranges of the Tian Shan, Pamir, and 
Kunlun Shan, is particularly arid.  The sand desert of the Taklimakan covers a vast territory of more than a quarter 
million square kilometers, and diluvial gravel gobis, located in the piedmont region around the edges of the basin, 
are equally expansive. 

Kuche, the EOADP project area, is one of the major oases along the edge of the Tarim Basin. Over the course of 
many centuries, the cultivated area of the oases has expanded and contracted, partly because of natural fluctuations 
in environmental conditions, and partly because of historical, political and cultural factors.  During the 1950’s, 
shortly after the formation of the People’s Republic of China, agricultural production in the Tarim Basin, as 
elsewhere in Xinjiang, received a boost as army construction corps reclaimed large tracts of marginal lands and 
constructed new irrigation and drainage canals and water reservoirs.   

Geological exploration efforts over the past decades have led to rich discoveries. PetroChina has found 12 gas 
fields in Tarim Basin, with proven gas reserves of 450 billion cubic meters and possible gas reserves of 400 billion 
cubic meters.  The Kuche Depression, as it has been named by geologists, may become one of the most important 
gas regions in China, with potential gas resources of more than 2.2 trillion cubic meters. The exploration activities 
have culminated in the current development boom that started during the 1990’s with major infrastructure projects, 
including highways, railroad, pipelines and other petro-chemical installations, and a vigorous urban expansion 
program. 
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Figure 1.  Satellite image map of the Tarim Basin showing the Taklamakan Desert (1) in the centre of the basin, surrounded by 
numerous oases, such as Kuche (2), that are fed by meltwater streams from the snow-covered mountain ranges. The image was 
acquired by the SeaWiFS sensor on December 7, 1999. (Source: SeaWiFS Project, NASA/Goddard Space Flight Center, and 
Orbimage.). 

Table 1.  List of main geographical features and environmental issues in the Kuche project area. 

 
Features / Issues 

 
Tien Shan (southern slopes)  

 
Tarim Basin (northern periphery) 
 

 
Topography 

 
Erosional high mountains  (fold block 
system with intermontane rift basins 
(2,000-6,000m) 
Nival alpine terrain (>3,500m) 

 
Denudational mountains & hills (piedmont 
foothills, 1,000-2,000m). Stony, gravel terrain 
(gobi), sandy terrain (sandy desert) 
Clay silt terrain (alluvial plains, marshes) 

Climate  Air current barrier, air subsidence 
(foehn) effects 
Strong local wind regimes 
Arid & semi-arid montane desert,  

Warm-temperate climate with scarce rainfall 
(<100mm/yr) and high evapo-transpiration,  
180-240 frost-free days,  
3,000-5,000 hours of sunshine 

Vegetation 
 

Grasses & meadows 
Periglacial cushion vegetation  
Meso-xerophilous shrubs, small tracts of 
birch & spruce woodland 

Low density, xerophilous shrubs (Tamarisk 
steppe, goosefoot) 
Salt marshes, desert reeds 
Poplars 

Land use  Animal husbandry (grasslands) 
Grazing on mountain slopes 

Oasis agriculture (intensive, with irrigation), 
animal husbandry (extensive) 

Settlements & transportation Small hamlets 
Some historic fortifications at important 
passes 

Regional center (Kuche), towns, villages 
Highway & sand road, roads & trails, rail road, 
airport 

Resource extraction 
 

Small mining operations 
Road construction 

Oil & gas exploration & production  
Small mining operations 
Highway & road construction 
Water reservoir, drainage/dyke construction 

Desertification Potential overgrazing Reduction in stream flow, Reservoir siltation 
Soil salinization of arable land  
Lowering of ground water levels 

Natural hazards Erosion, landslides, flashfloods 
Snow & ice storms 

Floods & flashfloods 
Sand storms, drought 

Regional development 
 

Construction & maintenance of roads, 
mountain passes 

Human safety & environmental protection;  
O&G exploration and production sites, roads, 
settlements, water supply 
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4 EARTH OBSERVATION DATA  

There are extensive on-line archives available at various space agencies and affiliate organizations around the 
world.  The EOADP project relied on high resolution LANDSAT and RADARSAT image archives and MODIS data banks 
in North America, although SPOT and ERS archives in Europe also contained valuable high-quality Earth 
observation data (Table 2, 3). An often overlooked source of information is the growing archive of astronaut 
photography reaching back to the early days of manned space flight in the 1960s. The recent addition of high 
quality photography from the International Space Station has added even greater value to the archive. 

The record of available LANDSAT imagery for the Kuche area goes back more than four decades (Table 3). The 
recent release of American spy satellite data collected during the Cold War period under the CORONA Program 
represents an additional and surprisingly detailed source of imagery that predates the LANDSAT program by a full 
decade.  The experimental Shuttle Imaging Radar A and Shuttle Imaging Radar SIR-C/X-SAR missions were carried 
out for short periods of time in the 1980s and 1990s.  They also offer a unique, if only selective, perspective on the 
varied terrain features of the Tarim Basin. The ASTER instrument is able to record detailed imagery at a 10 m 
resolution.   

On a daily basis, the NASA and affiliate organizations in the United States provide a near-real time MODIS data 
stream over the World Wide Web at resolutions as good as 250m and as coarse as 2 km. At a higher spatial 
resolution, albeit at coarser temporal resolution of about once a week, the Canadian RADARSAT program is also 
capable of providing imagery on a near-real time basis, where data delivery can be arranged within an hour or two 
of the actual radar data acquisition.  The main advantage for using radar is the fact that imagery can be recorded 
independent of cloud cover or day time / night time, especially during environmental emergency situations. 

The satellite data selection strategy for the EOADP project was threefold: (i) to obtain good area coverage for 
landform and terrain analysis; (ii) to obtain good spectral coverage, in terms of both visible and infra-red bands for 
land cover, hydrology and geology analyses and radar for cloud-penetration and special terrain identification; and 
(iii) to obtain good temporal coverage, in terms of both long-term (e.g. decadal) and short term (e.g. seasonal) 
change detection in the landscape, for land cover and for land use. 

Table 2. Summary of the main data and information sources for the EOADP project. 

 
Remote Sensing 

 
Thematic Maps 

 
Literature 

 
WWW 
 

 
Astronaut photography:  
Space Shuttle 
International Space Station 

 
Topographic maps:  
various scales from 
1:50,000 to 1:2M 

 
Scientific journals: RS / 
GIS, 
Environmental 
management, earth sciences 
& geography 
 

 
Queries: 
Satellite image archives, 
thematic maps, literature 

Satellite imagery (archive 
data): Landsat MSS & TM, 
Radarsat-1, X-SAR, 
Corona, Aster, MODIS, 
SeaWiFS 
 

Digital elevation models 
(DEM): 
Various scales from 
1:100,000 to 1:1M 

Monographs: 
Oil exploration in China, 
regional geography, remote 
sensing 

Data access and ordering: 
Landsat, Radarsat, 
Corona, Modis, X-SAR 

Satellite imagery 
(near-real time): 
MODIS, Radarsat-1, 
weather satellites 
 

Thematic maps: Land use 
& land cover maps at 
various scales from 
1:100,000 to 1:1M 
 

Reports: 
Government publications, 
contractor reports 

News items: 
Oil & gas sector, 
regional news 
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Table 3. Selected remote sensing data sets for the Tarim Basin, their sources, and their characteristics in terms of spatial, 
spectral and temporal resolution and coverage. 

Satellite Sensor & Application  
Resolution 

 
Bands 

 
Coverage 

 
Tarim Sample Imagery 
 

 
CORONA 
(1960s US spy satellite) 
http://usgs.gov  (Earth explorer) 
Historic land cover data, 
topographic mapping and terrain 
analysis (1960s) 

 
 
1-8 meter  

 
 
Panchromatic 
black & white 
photography 

 
 
Intermittent; 
10 to 300 km 
wide swath 
 
 

 
LANDSAT MSS and TM  
(1972 - present) 
http://glovis.usgs.gov/ 
Regional geological mapping, 
land use mapping and seasonal 
environmental monitoring 

15-30 meter  5-8 bands in 
the visible & 
IR, pan 

>2-3 weeks;  
large archive  
(3 decades); 
185km wide 
swath 

 
MODIS  
(1999 - present) 
http://rapidfire.sci.gsfc.nasa.gov/ 
Basin-wide environmental 
surveillance and monitoring   
(e.g. snow, vegetation, flood) 

250 meter -
4km  

36 bands in 
the visible & 
IR 

< 1 day,  
2200 km wide 
swath 

 
ASTER 
(2000 - present) 
http://glovis.usgs.gov/ 
Detailed regional land use 
mapping and terrain analysis 

15-90 meter  14 bands in 
the visible & 
IR 

Infrequent 
(experimental), 
60 km wide 
swath 

 
RADARSAT-1 
Synthetic aperture radar (SAR)  
(1995 - present) 
www.ccrs.nrcan.gc.ca 
Basin-wide and regional terrain 
analysis, structural-geological 
mapping, land use monitoring 

10-100 m C-band SAR 
with different 
angles of 
illumination 

Every 5 to 24 
days 
50-500 km wide 
swath  

 
SIR-C/X-SAR and SRTM 
(1994/95, 2000) 
http://southport.jpl.nasa.gov/ 
http://isis.dlr.de/XSAR 
Experimental mapping 

20-30 meter SIR-C:  
C & L band    
X-SAR:  
X-band only 

Experimental 
missions in 
1994/95 and in 
2000; 20-50 km 
wide swath; 
large area DTM 
mosaics 

 

5 FIELD PROGRAM AND TECHNICAL CONSULTATIONS 

The Sino-Canadian study team planned and executed a field program in Xinjiang, western China, during the month 
of September 2002, and conducted several technical consultation meetings in Vancouver, Ottawa and Montreal, 
Canada, during the months of June, 2002, and February, 2003. 
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The primary objective of the program in 
Xinjiang was the collection of field 
observations and the verification of the remote 
sensing image analysis results. Canadian team 
gained a first hand perspective of the social 
and natural environment in the study area and 
had an opportunity to meet with local and 
regional officials.  The visit allowed the 
project team to assess terrain conditions, 
geological features, as well as environmental 
concerns and management practices in order 
to better validate the use of satellite data. 
Despite the remoteness of the study area in 
general and specific test sites in particular, the 
excellent coordination, planning, and field 
logistics provided by RIPED made the trip 
successful.  The project team was also well 
prepared from a technical perspective for the 
fieldwork. The team had all the necessary 
data, maps, and images to conduct their 
fieldwork and contributed valuable 
information to the project. During the field 
program there was considerable discussion 
about the environmental requirements for the 
project.  The need for a multi-disciplinary 
approach towards managing and assessing 
environmental issues was emphasized.  The 
exchange demonstrated the value of increased 
cooperation between remote sensing and GIS 
experts and environmental experts across the 
boundaries of professional disciplines and 
administrations. The technical consultation 
meetings in Canada proved beneficial from 
several perspectives. Visiting delegations 
from RIPED’s Remote Sensing Geology 
Department gained a first-hand appreciation 
for environmental assessment procedures and 
practitioners in Canada and formed linkages 
with the Earth observation sector in various 
parts of the country through visits at industrial 
facilities and institutions such as the Canada 
Centre for Remote Sensing and the Canadian 
Space Agency. The consultation program 
provided an opportunity to exchange ideas 
and gain an appreciation for the data 

requirements and expectations for the environmental assessment component of the study.  

5.1 Example: Geology and Oil & Gas Exploration 

The Tarim Basin formed as the result of relatively recent plate tectonic movements of the Indian subcontinent and 
the Asian landmass. The dominant factor influencing the northern margin of Tarim Basin lies at the ENE right slip 
fault.  This tectonic movement has not ceased, as was demonstrated by the major earthquake in the Aksu region in 
February, 2003. RIPED has conducted extensive research on the surface stratigraphy and internal structure of the 
Kuche Depression and Tabei Uplift using optical LANDSAT and SPOT imagery as well as airborne remote sensing 
data. With the exception of one IRSA research project using SIR-C imagery, little experience is available with regard 
to the potential of radar. Hence, this project concentrated on a comparative analysis of both LANDSAT and 
RADARSAT imagery after integrating, or fusing, the data sets in a digital fashion. Standard techniques such as 
Intensity – Hue – Saturation (IHS) were used to enhance the detection of lithological and structural features within 
various terrains. 

 

Figure 2. Example of satellite image analyses pertaining to geological 
structure in the Kuche region. The regional overview image (top) 
consists of a Landsat TM image; it also indicates the location of the three 
detailed study areas depicted below. The black & white subsets consist 
of Radarsat-1 SAR imagery. These tend to enhance structural detail 
(centre, bottom right), whereas Landsat TM colour imagery provides 
better indication of lithological differences (bottom left). (Source: 
Radarsat imagery courtesy of the Canadian Space Agency and RSI; 
Landsat TM imagery courtesy of the US Government.).
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Radar has some unique imaging capabilities that set it apart from optical sensors. It can detect dielectric features 
and surface roughness and has the ability to undertake Earth observation under all weather conditions.  The 
Canadian RADARSAT is very flexible imaging system. A variety of imaging modes can acquire data at various 
angles of radar illumination (incidence angles), at various levels of spatial detail (10-100 m resolution) and areal 
coverage (50 to 500 km swath widths). These qualities are advantageous for detailed terrain observation in arid 
regions such as the Kuche area in Xinjiang. At a very detailed scale, RADARSAT can detect changes in micro-
topography by detecting changes in surface roughness. Take the Yaken anticline as an example: this subtle 
structural feature near Kuche is covered by Quaternary alluvium.  There is a clear difference in the radar signatures 
between the northern and the southern section of the alluvial fan. This is related to the difference in particle sizes in 
the alluvial fan, revealing the position of the anticline as its westward dip. By comparison, the LANDSAT TM image 
primarily reveals little difference in the spectral reflectance behaviour of the surface materials and the existence of 
the anticline in this area remains obscure (Figure 2).  

At a regional scale, RADARSAT Standard mode imagery also highlighted a group of nearly north-south trending 
linear features. These are closely related to tension and compression structures in the margins of the upper Basin.  
The shear-tension fault system in the Shaya marginal uplift zone is of the middle Mesozoic, Cretaceous – Tertiary 
age and often associated with oil and gas deposits.  Studies have shown that structural network of these faults act as 
vertical passages for oil and gas migration and allows for the formation of traps over deep-seated oil and gas 
deposits. On the radar images five left slipping faults along the northern Kuche anticline are clearly identified in the 
images. These features are not easily identified in the LANDSAT TM imagery. 

However, in terms of its ability to detect the lithology of rock outcrops, RADARSAT is considered inferior 
compared with LANDSAT. This was found to be the case especially in areas of high relief.  The interpretation of 
formations in this study has relied heavily on Landsat TM images while Radarsat images were used primarily as 
reference. The analysis of faults in high relief areas was also primarily based on Landsat TM images (Figure 2). At 
a basin-wide scale, the collection of MODIS imagery provided synoptic views of the diverse topography and the 
drainage network, and their relationship to important structural setting of the entire Tarim Basin. Year-round 
monitoring of environmental conditions can be of considerable benefit to geological analyses. 

5.2 Example: Environmental Monitoring and Assessment 

Environmental Assessment is a process that identifies and documents potential environmental, social and economic 
implications associated with proposed development activities.  Specific development options are evaluated 
according to their potential to cause significant impacts on environment, society, and economy. The process 
ultimately results in the selection of the most appropriate development strategy.  

The EOADP project explored how components such as baseline data collection, environmental monitoring, and 
the management of spatial data sets associated with environmental assessments can be implemented through the use 
of a satellite remote sensing and GIS. The team of experts reviewed general background and descriptions of 
Environmental Impact Assessments and provided an overview of how the EIA regulatory and procedural framework 
evolved in China. The “Management Procedures for Environmental Protection of Capital Construction Projects” 
issued by China’s State Council in 1998 show the trend toward specific provisions regarding cleaner production, 
the inclusion of ecological effects, and the introduction the “regional environmental impact assessment” concepts.  

Currently, resource extraction and exploration activities in Xinjiang are primarily assessed according to project 
specific impacts on the receiving environment, and to a lesser degree by the regional environmental impacts 
associated with multiple developments.  Field observation by the EOADP team revealed that PetroChina’s site 
operations were very well managed, with limited environmental impacts.  Environmental protection, engineering 
and management appeared to be of a high standard at the facilities visited. 

However, the implementation of oil and gas extraction facilities in Xinjiang will incur environmental impacts 
not only from exploration, site development, extraction, product storage and transportation, and site closure and 
rehabilitation, but also from all the activities that are necessary to support these facilities; these include increases in: 
population, primary resource demand, urban sprawl, waste-streams, public health requirements and infrastructure.  
In fact, the environmental implications of secondary activities are considerably greater than the direct impacts 
resulting from the development of oil and gas extraction facilities.  

Earth observation satellite data and GIS are the ideal tools for managing strategic environmental assessments 
given the regional scope of development activities in Xinjiang. The EOADP project provided several examples of 
how satellite imagery can be used to advantage for environmental assessment at the basin-wide level, as well as on 
the regional and, to albeit limited extent, at the local level (Figure 3, 4 and 5). A the regional level, limited time 
series of RADARSAT and LANDSAT imagery provided an excellent account of land use features as well as changes in 
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the natural and made-made environment (Figure 6). A combination of multi-temporal RADARSAT imagery and 
Landsat imagery not only revealed the present status of the oasis agriculture and the hydrological network, but it 
also showed the dynamic nature during different seasons. Moreover, a comparison of recent satellite data with older 
LANDSAT MSS imagery collected during the 1970s and CORONA satellite photos collected during the 1960s 
provided an excellent ‘historic’ perspective on land use development and environmental changes in the Kuche 
region of the Tarim Basin.  

 

Figure 3.  MODIS image of the Tarim river 
flood during the month of August, 2002. The 
main course of the river and flooded areas are 
depicted in black; the oases appear in green, and 
the snow- and glacier-capped mountains in red. 
The image covers an area of 850 km by 350 km; 
the spatial resolution is 500 m. (Source: MODIS 
Science Team, NASA). 

 

Figure 4.  Satellite imagery (A,B, C), astronaut 
photography (D) and ground photograph (E) of 
a dust storm event in the Tarim basin on May 
10, 2003. The concentration of airborne dust 
particles, or aerosols, is recorded daily (A, top 
left), at low resolution in near-real time by 
TOMS, a Total Ozone Mapping Spectrometer. 
The MODIS imagery (B, C) records dust storms 
at a far more detailed resolution of 500 m. 
(Source: Spaceborne images courtesy of NASA, 
Ground photo courtesy of RIPED). 

 

6 CONCLUSIONS  

The Sino-Canadian EOADP team met two broad sets of objectives during the execution of this project. These relate 
to overall project goals and to technical achievements. 

In a programmatic sense, the project helped all parties involved to better achieve their mandate and 
commitments. It provided RIPED technical staff with opportunities to handle and process RADARSAT and other 
Earth observation satellite data and to gain an appreciation of its strengths and weaknesses. It provided Canadian 
team members with insights of opportunities within China, whereas Chinese team members were able to assess 
first-hand a variety of Canadian technologies and get to know Canadian institutions dealing with space technology 
and environmental issues in arid regions. The second broad set of objectives relate to the specific technical goals of 
the project, aimed at investigating the use of satellite remote sensing and GIS for the dual purpose of oil and gas 
exploration and environmental assessment in the Kuche region of Xinjiang. The following conclusions were 
developed related to these two technical components. The project demonstrated to remote sensing and geological 
experts at RIPED that MODIS and RADARSAT provide useful information to complement LANDSAT satellite data for 
the purposes of oil and gas exploration in dry regions. In fact, information on geological structures was derived 
from a variety of satellite data sources, and it was used to support and guide other types of geological studies, for 
example seismic surveys. RADARSAT data support observations of subtle anticlines and other structural features that 
are less prominent on optical imagery. Analysis of multiple sources of radar and optical remote sensing data were 
used to develop and test structural-tectonic models based on a combination of underlying geological and tectonic 
principles and observable terrain features.  Furthermore, multi-date comparisons of satellite data provided a unique 
regional perspective of seasonal fluctuations of environmental processes and land use patterns.  Long-term trends 
on the order of decades can often also be discerned using archival LANDSAT MSS and CORONA imagery in 
conjunction with recent data acquisitions. MODIS satellite data offered regional and basin-wide perspectives and 



Remote sensing and geoinformation processing in the assessment and monitoring of land degradation and desertification, Trier, Germany, 2005 

page 429 

context for local and regional trend analyses concerning urbanization, agriculture, as well as water distribution and 
use. A combination of multi-source satellite data and GIS provides an ideal platform for developing water resource 
monitoring and management strategies. The environmental impacts of individual oil and gas exploration and 
extraction facilities appeared to be minor.  Facilities were engineered to a high standard with small environmental 
“footprints”. Most of the environmental impacts were related to the overall rapid pace of regional development. 
Yet, the two issues are closely linked.  Systematic collection and careful analysis of Earth observation satellite data 
can potentially play an important role to improve environmental management at various scales ranging from the site 
and project specific scale to synoptic and strategic considerations. 

 

Figure 5. MODIS satellite imagery 
collected on July 15, 2003 after a significant 
rainfall event in the Tarim basin. The 
overview (A) and detailed  (B) images show 
in dark image tone the location of wet sand 
surfaces in the Taklamakan desert; area B 
covers an area of ~ 400 km x 200 km. The 
rainfall event (C) was recorded days prior 
by the Tropical Rainfall measurement 
Mission,TRMM; area C depicts the 
westernmost portion of China; areas of high 
intensity precipitation are shown in yellow 
and red.  (Source: MODIS and TRMM 
imagery courtesy of NASA). 

 

 

Figure 6.  Example of merging Radarsat-1 SAR imagery (~15x15 km) of different dates (A, B) with Landsat TM imagery (C) to 
form a colour composite SAR-TM image (D). This type of imagery is useful for land use analyses and change detection. Note 
the very bright signatures of built-up areas (in this case the city of Kuche, see black arrow) provided by the radar data. (Source: 
Radarsat imagery courtesy of the Canadian Space Agency and RSI; Landsat TM imagery courtesy of the US Government). 
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ABSTRACT 

Most of the major rivers in the Sahel region of West-Africa contain extensive floodplains. These floodplains have a 
high ecological and economical value. Local communities make use of the floodplain for agriculture, fishing and 
dry season grazing. The productivity and carrying capacity of the Sahelian floodplains are highly correlated with 
the extent of the flooding. 

Fourier analysis of Moderate Resolution Image Spectrometer (MODIS) time-series data was applied to monitor 
flooding extent of the Waza-Logone floodplain, located in the north of Cameroon. Fourier transform (FT) enabled 
the quantification of the temporal distribution of the MIR band and three different indices: the Normalized 
Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI) and the Enhanced 
Vegetation Index (EVI). The resulting amplitude, phase and amplitude variance images were used as inputs for an 
Artificial Neural Network (ANN) to calculate flooding extent for the different years in the time-series. Different 
combinations of input variables were evaluated by calculating Kappa Index of Agreement (KIA) of the resulting 
classification maps. The combinations MIR/NDVI and MIR/EVI resulted in the highest KIA values. When the 
ANN was trained on pixels from different years, a more robust classifier was obtained, which could consistently 
separate flooded land from dry land for each year.    

A rainfall-runoff model will be used to simulate streamflow of the Logone river based on 10-day African 
Rainfall Estimates (RFE). Once such a model is calibrated for the catchment area, the relationship between 
streamflow distribution and flooding extent will be analyzed. 

Keywords:  Floodplains, Sahel, time-series analysis, MODIS, rainfall – runoff model  

1 INTRODUCTION 

Most of the major rivers in the Sahel region of West-Africa contain extensive floodplains. These floodplains are 
temporally inundated most years, caused by over bank flooding of the rivers. Flooding starts at the end of the wet 
season and lasts three to five months, providing the floodplain with nutrients and sediments. The maximum extent 
of the flooding varies one year to another in response to the amount rainfall in the catchments area. In an average 
year the total inundated area of the major floodplains in the Sahel is about 67,000 km² [1].  

The Sahelian floodplains are of high ecological value. They play an important role in the conservation of 
biological diversity both on a global and a local scale. The floodplains have an import economical value as well. 
Local communities, both resident and nomadic, make use of the floodplain for agriculture, fishing and dry season 
grazing. The vegetation on the floodplains consists mainly of perennial grasses. These grasses have a higher annual 
biomass production and a longer growing cycle than annual grasses and therefore provide high quality fodder for 
wildlife and livestock during the dry season. In areas where floodwater is absent for several years, soil condition 
deteriorates, since soil moisture and nutrients are not replenished anymore, and perennial grasses are replaced by 
less productive annuals. The availability of perennial grasses, the size of the fish stock and the soil moisture 
availability for the growing of crops are all correlated with the extent of the flooding. As a consequence the income 
of the local communities highly depends on the flooding extent as well [1]. 

Due to their extent and inaccessibility, monitoring the Sahelian floodplains is only feasible by means of remote 
sensing. In this study, a Moderate Resolution Image Spectrometer (MODIS) 16-day 250m time-series data is used 
to monitor the yearly flooding extent for the Waza-Logone floodplain, located in the North of Cameroon. Both the 
MIR band and the Normalized Difference Water Index (NDWI) [2] are sensitive to the presence of water, whether 
it is free water or water contained in plants, providing information on the inundation pattern. Analysis of the 
temporal profiles of the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index 
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(EVI) [3] enables differentiation between perennial grasses covering the floodplain and annual grasses covering the 
surrounding dry land, the latter having a shorter growing cycle. 

The Fourier Transform (FT) will be used to quantify the intra-annual changes of the different indices and the 
MIR band. FT decomposes a time-series into a number of periodic signals with different frequencies, characterized 
by a phase and amplitude value. Similar approaches have been used to classify vegetation types, based on 
Advanced Very High Resolution Radiometer (AVHRR) NDVI time-series [4] [5] [6]. In this study, phase and 
amplitude values for those periodic signals explaining most of the time-series variance will be used to differentiate 
between flooded land, dry land and irrigated rice utilizing an artificial neural network (ANN).       

To model the relationship between the amount and distribution of precipitation in the catchments area of the 
Logone River and the predicted flooding extent, 10-day rainfall estimates (RFE) for Africa [7] will be used. First, a 
rainfall-runoff model will be established to simulate streamflow in the Logone catchment area. subsequently, the 
relationship between streamflow and flooding extent will be analyzed.  

2 STUDY AREA 

The Waza-Logone area is located in the Far North province of Cameroon, i.e. in the semi-arid zone of Africa 
(figure 1). It stretches from Nigeria across northern Cameroon to Chad, approximately between 10°50’N and 
12°30’N, and between 14°0’E and 15°20’E. The average rainfall in the area is 650 mm/ year and the rainy season is 
from May to September [8]. Rainfall is highly unpredictable, both in space and time, yet all the rain is concentrated 
in the wet season. Locally, the amount of rainfall may vary greatly, depending on whether or not a storm cell 
generates precipitation. Flooding starts at the end of the rainy season and lasts for a period of three to five months. 
Two mechanisms are involved in the seasonal flooding of the floodplain. The first is rain-induced local runoff and 
the second and most important one is over bank flooding of the Logone River. The volume of floodwater depends 
mainly on the magnitude of the flood peak, and the duration of the floodwater exceeding the bank full capacity of 
the Logone River [9]. 

The floodplain vegetation 
consists of species-poor 
perennial grasslands [10]. 
Oryza longistaminata and 
Echinochloa pyramidalis 
constitute single or two-
species stands on the 
floodplain, but Vetiveria 
nigritana is abundant on the 
levees of the drainage ditches 
and on the higher parts of the 
intact plain. Hardly any 
perennial grasses can be found 
in the non-inundated areas, 
where annual grasses and 
herbs, and locally thickets of 
Acacia seyal and Piliostigma 
reticulatum occur [11].  

More than 100,000 people, 
both resident and nomadic, use 
the floodplain area for fishing, 
dry season grazing and 
agriculture. Exploitation may 
vary by site and by season, 
corresponding to the dynamic 

character of the floods and the cultural background of the floodplain users. During the dry season particularly, the 
area plays an essential role in sustaining the rural economy of the region. Fish and wetland sorghum are exported 
and herds from the wider surroundings in Cameroon, Chad and Nigeria can find fresh pastures and water for their 
survival in the dry season [1]. 

Natural floodplains are among the most biologically productive and diverse ecosystems on earth [12]. However, 
they are also among the most threatened ecosystems. The main causes of floodplain degradation are habitat 

  

 
Figure 1. The study area. 
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alteration, flow and flood control, species invasion and pollution [12]. In 1979, a dam was built across the Waza-
Logone floodplain, creating Lake Maga, and embankments were constructed along the Logone River, as part of an 
irrigated rice cultivation program. In combination with a succession of years of below average rainfall, this resulted 
in a decrease of depth and extent of the flooding. Perennial grasslands were replaced by less productive annual-
grass dominated stands, reducing the carrying capacity for wildlife and cattle [13]. From 1988-2003, the World 
Conservation Union (IUCN), has been working to rehabilitate the degraded Waza Logone floodplain. The general 
objective of this project was to achieve long-term enhancement of the biodiversity of the Waza Logone area and to 
provide a sustainable improvement to the quality of life of its population. One of the actions taken to achieve this 
goal was partial reflooding of the floodplain. This resulted in an increased biodiversity and a partial recovery of the 
natural resources [1]  

3 CALCULATION OF FLOODING EXTENT 

3.1. Data 

The 16-days composite MODIS Vegetation Indices Product (MOD13Q1) with a spatial resolution of 250 meter was 
used to calculate flooding extent. It includes two vegetation indices, NDVI and EVI, in addition to composited 
surface reflectance bands 1-3 and 7 (red, NIR, blue, and MIR). EVI has been developed to optimize the vegetation 
signal with improved sensitivity in high biomass regions and improved vegetation monitoring through a de-
coupling of the canopy background signal and a reduction of atmosphere influences [3]. The two indices are 
calculated as follows: 
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Additionally, the Normalized Difference Water Index (NDWI) [2] was calculated, based on the NIR and the MIR 
band: 
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16-day composite MODIS data, covering the Waza-Logone floodplain, was collected for five years, April 2000 
– March 2001 to April 2004 – March 2005, with each year containing 23 MODIS images.   

3.2. Methodology 

The Fourier Transform (FT) was applied to quantify the intra-annual changes for the different time-series 
(NDVI, EVI, NDWI and the MIR band). FT decomposes a signal into a series of cosine waves (harmonics) and an 
additive term (the mean). Each harmonic is defined by unique amplitude and phase angle values, where the 
amplitude is half the height of the harmonic and the phase angle defines the offset between the origin and the peak 
of the harmonic. The FT is illustrated in figure 2. In figure 2a, the first three harmonics are depicted, resulting from 
the decomposition of the 2000 – 2001 NDVI time-series for a wetland pixel. In figure 2b, the sum of harmonic 1 to 
harmonic 3 and the mean is compared with the original signal.  

For each year, Fourier analysis was performed on a per-pixel basis, using the Fast Fourier Transform (FFT) 
algorithm [14]. For ease of computation and interpretation the Fourier analysis was applied on 24 samples instead 
of 23, by adding an extra image to each time-series. This resulted, for each year and for each variable, in a mean 
image and a set of amplitude and phase images for the 1st to the 12th harmonic term, corresponding with the 
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Subsequently, the percent variance each harmonic accounts for was calculated, by dividing the variance of each 
harmonic term with the total variance of all terms using the amplitude values: 
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Based on the amplitude, amplitude variance and phase images resulting from the Fourier transform, a supervised 
land cover/ land use classification of the Waza-Logone area was performed for each year. Four relevant classes 
were considered: dry land, flooded land, irrigated rice cultivation and open water. An Artificial Neural Network 
(ANN) was applied to perform the supervised classification. The main advantage of an ANN classifier over a 
Maximum Likelihood classifier is that it is distribution-free, that is, no underlying model is assumed for the 
multivariate distribution of the class-specific data in feature space [15]. For a comprehensive discussion of ANNs, 
the reader is referred to [16]. For this study LNNS, an in-house developed neural network simulator, was used, 
which can be downloaded from http://dfwm.ugent.be/forman/projecten/bof2002/html/index.htm. Background 
information about this ANN is described in [17].  

For the year 2003, training and test pixels were selected of the different classes (except for the open water class, 
that was separated by tresholding it in the MIR band) based on field data information, and visual interpretation of 
the original MODIS time-series. Only data from the 0th (the mean) to the 3rd harmonic were used for training the 
ANN, since the other harmonics contained mainly noise. First the ANN was trained for the vegetation indices and 
the MIR band separately. Then, different combinations of variables (MIR/NDVI, MIR/EVI, NDWI/NDVI and 
NDWI/EVI) were used as input to the ANN, each time combining a ‘wetness’ indicator with a ‘greenness’ 
indicator. Performance of each trained ANN was evaluated calculating the Kappa Index of Agreement (KIA) [18] 
based on the test pixels. Finally, the ANN with best performance was retained and used to carry out a classification 
for the other years. 

To calculate the flooding extent, pixels classified as flooded land, belonging to a region smaller than a 
predefined size and located further away than a predefined distance from the Logone River, were eliminated. 
Inundation of these regions was most probably not caused by over bank flooding of the Logone River. These pixels 
could represent rain-fed depressions or simply be misclassified. The minimum area treshold was set to 25 pixels 
(15.6 km²) and the minimum distance threshold was set to 5 km.      
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Figure 2. a) Fourier transform of 2001 – 2002 NDVI time-series for wetland pixel; b) Comparison between sum of harmonic 1 to 3 
and original NDVI signal. 
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3.3 Results and discussion 

The KIA for the 2003 classification maps resulting from the ANNs, 
trained with different combinations of input variables are shown in 
table 1. When only one variable is used as input to the ANN, the 
highest KIA value is obtained with amplitude, amplitude variance and 
phase images of the NDVI time-series (0.950). When a combination of 
variables is used (MIR/NDVI, MIR/EVI, NDWI/NDVI and 
NDWI/EVI) as input data, the highest KIA is obtained with the 
combinations MIR/NDVI and MIR/EVI (0.9853 and 0.9841, 
respectively). The MIR band outperforms NDWI for all combinations 
used.  

The classification resulting from the ANN trained with the 
combination MIR/NDVI is shown in figure 3. When this ANN is used 
to perform a classification for the other years, visual inspection reveals 
numerous obvious classification errors. Mainly in wet years such as 
2001, dry land pixels are misclassified as flooded land. For this reason, 
extra training and testing pixels were collected for the 2000 – 2001 and 
2001 – 2002 time-series based on visual image interpretation. 

Subsequently, the ANN was 
trained using the training pixels of 
the 2000 – 2001, 2001 – 2002 and 
2003 – 2004 time-series. In table 
2, the KIA of the classifications 
resulting from ANN trained on the 
2003 – 2004 time-seriesand the 
ANN trained on the different 
time-series are compared. When 
training pixels from different 
years are combined, the KIA 
increase considerably for the 2000 
and 2001 classification maps and 
only a slight decrease can be 
observed for the KIA of the 2003 
classification map.  

When classifications were 
performed for each time-series, 
pixels were eliminated according 
to the minimum distance and 
minimum area criteria mentioned 
above. Next, the maximum 
flooding extent for each year was 
calculated. As can be concluded 
from table 3, large inter-annual 
differences exist. For example, in 
2001 an area more than double the 
size of 2002 was flooded. Figure 4 
shows the number of years 
flooding occurred during the 
period 2000 – 2004. It can be 
noticed that the largest inter-
annual differences in flooding 
extent occur on the Cameroonian 
side of the Logone (to the west of 
the river). 

 

Table 1. The Kappa Index of Agreement 
(KIA) for the classifications obtained by 
ANNs with different combinations of 
inputs. 

Input KIA 
MIR 0.935 

NDVI 0.950 
NDWI 0.924 

EVI 0.932 
MIR/NDVI 0.985 
MIR/EVI 0.984 

NDWI/NDVI 0.961 
NDWI/EVI 0.969 

 

Figure 3. Classification map for 2003 – 2004 based on 0th to 3 rd harmonic images 
of MIR and NDVI time-series. 

 



Remote sensing and geoinformation processing in the assessment and monitoring of land degradation and desertification, Trier, Germany, 2005 

page 435 

Table 2. Comparison of ANN performance, when trained on data from a single year, and when trained on data from several 
years. 

Year KIA 

 
ANN trained on 2003 data set ANN trained on  2000, 2001 

and 2003 data set 
2000 – 2001  0.860 0.950 
2001 – 2002  0.760 0.920 
2003 – 2004  0.985 0.968 

 

4 HYDROLOGICAL 
MODELLING 

A hydrological model will be established to 
simulate streamflow in the Logone 
catchment area based on 10-day rainfall 
estimates RFE [7]. Streamflow data from 
two gauging station, Bongor and Moundou 
will be used for calibration. When such a 
model is developed, stream flow can be 
related to flooding extent. The main 
problem is the large number of missing 
streamflow data. For this reason the Pitman 
model [19] will be used. The advantage of 
this model is the availability of guidelines 
for parameter estimation provided by the 
WR90 study [20] These parameters can then 
be refined by local calibration. The model is 
an explicit soil moisture accounting model 
representing interception, soil moisture and 
ground water storages, with model functions 
to represent the inflows and outflows from 
these. It has been especially developed for 
semi-arid catchments in the South-African 
subcontinent, but has also been applied 
outside the region [21].    

 

 

 

4.1. Input data 

Based on the GTOPO30 1 km DEM data set [22], eight sub-
basins were delineated within the Logone catchment area. 10-
day rainfall estimates RFE for Africa [7] were used to calculate 
monthly rainfall for each sub-basin. The RFE data is processed 
by NOAA’s Climate Prediction Centre for the United States 
Agency for International Development (USAID) Famine Early 
Warning System (FEWS) to assist in the drought and flood 
monitoring efforts for the African continent. Computation of 
RFE is based on METEOSAT 7 satellite data, Global 
Telecommunication System (GTS) rain gauge reports, model 

 

Figure 4. Number of years in which flooding occurred in the Waza-Logone 
area for the period 2000 – 2004 

Table 3. Extent of the flooding in Waza-Logone 
region for different years 

Year Area (km²) 
2000 – 2001  5982 
2001 – 2002  9204 
2002 – 2003  4081 
2003 – 2004 7918 
2004 – 2005  4810 
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analyses of wind and relative humidity, and orography. This data is available for the period 1996 – 2004. 
Streamflow records for the period 1996 – 2004 were available for two gauging stations in the catchment area. 

For Bongor station, situated approximately 100 kilometers upstream from the Waza-Logone floodplain, only three 
years of streamflow data was available within the period 1996 – 2004. For Moundou station, located 300 kilometers 
upstream from Bongor, seven years of streamflow data was available within this period.  

Information on Potential Evapotranspiration (PET), land cover, soil type and geology was collected for each 
sub-basin using following data sets: 

• Global map of monthly reference evapotranspiration - 10 arc minutes [23] 

•  1-km land cover map of Africa [24] 

• The digitized soil map of the world [25]  

• Map showing geology, oil and gas fields, and geologic provinces of Africa [26] 

4.2. Pitman monthly time-step model 

The monthly time-step model has two main functions that generate runoff. The first is a symmetrical triangular 
distribution, defined by two parameters (ZMIN and ZMAX), representing the catchment absorption rate. If the 
rainfall in any iteration step ∆t is greater than ZMIN*∆t, then some runoff occurs. The greater the difference 
between the two parameters, the wider the range of the cumulative distribution and the lower the runoff rate for any 
rainfall greater than ZMIN. The other function is mainly controlled by a maximum moisture storage parameter (ST). 
If the storage level exceeds this value all further rainfall becomes runoff. The moisture storage is depleted by 
evapotranspiration and drainage using a non-linear soil moisture runoff formulation. This equation is based on a 
non-linear relationship between current soil moisture storage and runoff from soil moisture. Once the runoff is 
generated by either of these functions it much reach the catchment outlet as there are no loss functions except those 
related to artificial abstractions. [27]   

4.3. Expected results 

The rainfall-runoff model is currently being calibrated. Once the first results are available, the relationship between 
simulated streamflow at Bongor station (closest to the floodplain) and rainfall in the floodplain area, on one hand, 
and flooding extent, on the other hand, will be analyzed. Rainfall in the floodplain area influences the soil moisture 
prior to inundation, while streamflow data of the Logone River determines the duration and the intensity of the over 
bank flooding.  

5 CONCLUSIONS 

The flooding extent of the Waza-Logone floodplain, located in the north of Cameroon, was studied using time-
series of MODIS 16-day 250m data. Fourier analysis was applied to quantify the temporal distributions of the MIR 
band and three indices (NDVI, NDWI, and EVI). The resulting amplitude, phase and amplitude variance images for 
harmonics 0 to 3 were used as inputs for an ANN to differentiate between the different land cover/ land use classes. 
When the combinations MIR/NDVI and MIR/EVI were used as input to the ANN, the classification map with the 
highest Kappa Index of Agreement (KIA) was obtained. When the ANN was trained on pixels from different years, 
a more robust classifier was obtained, which could consistently separate flooded land from dry land for each year. 
During the period 2000 – 2004 flooded area varied highly from one year to another, reaching a maximum in 2001 – 
2002 and a minimum in 2002 – 2003. The extent of the flooding strongly influences the availability of natural 
resources in the dry season. The considerable interannual differences in flooding extent should therefore be taken 
into account in view of a sustainable management of these natural resources.  

Flooding extent differs from one year to another in response to rainfall in the floodplain area prior to flooding 
and the streamflow distribution of the Logone river. Streamflow can be simulated using the Pitman model based on 
African Rainfall Estimates (RFE) data. Subsequently, a model could be constructed that can estimate flooding 
extent based on the simulated streamflow data. Such a model would enable prediction of possible impacts of a 
changing climate due to Global Warming, and detection of human-induced anomalies such as hydropower and 
irrigation projects.  
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