
Convex Duality in Consumption-Portfolio Choice

Problems with Epstein-Zin Recursive Preferences

Vom Fachbereich IV der Universität Trier zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte

Dissertation

von

Jonas Andreas Jakobs

Trier, 2025

Betreuer: Prof. Dr. Frank Thomas Seifried

Wissenschaftliche Aussprache: 16. Januar 2025

Berichterstattende: Prof. Dr. Frank Thomas Seifried

Prof. Dr. Holger Kraft



"You acted unwisely," I cried, "as you see
By the outcome." He calmly eyed me:
"When choosing the course of my action," said he,
"I had not the outcome to guide me."

— Ambrose Bierce, A Lacking Factor



Abstract

This thesis deals with consumption-investment allocation problems with Epstein-Zin recursive
utility, building upon the dualization procedure introduced by [Matoussi and Xing, 2018]. While
their work exclusively focuses on truly recursive utility, we extend their procedure to include
time-additive utility using results from general convex analysis. The dual problem is expressed in
terms of a backward stochastic differential equation (BSDE), for which existence and uniqueness
results are established. In this regard, we close a gap left open in previous works, by extending
results restricted to specific subsets of parameters to cover all parameter constellations within
our duality setting.
Using duality theory, we analyze the utility loss of an investor with recursive preferences, that
is, her difference in utility between acting suboptimally in a given market, compared to her best
possible (optimal) consumption-investment behaviour. In particular, we derive universal power
utility bounds, presenting a novel and tractable approximation of the investors’ optimal utility
and her welfare loss associated to specific investment-consumption choices. To address quantita-
tive shortcomings of those power utility bounds, we additionally introduce one-sided variational
bounds that offer a more effective approximation for recursive utilities. The theoretical value
of our power utility bounds is demonstrated through their application in a new existence and
uniqueness result for the BSDE characterizing the dual problem.
Moreover, we propose two approximation approaches for consumption-investment optimization
problems with Epstein-Zin recursive preferences. The first approach directly formalizes the
classical concept of least favorable completion, providing an analytic approximation fully char-
acterized by a system of ordinary differential equations. In the special case of power utility,
this approach can be interpreted as a variation of the well-known Campbell-Shiller approxima-
tion, improving some of its qualitative shortcomings with respect to state dependence of the
resulting approximate strategies. The second approach introduces a PDE-iteration scheme, by
reinterpreting artificial completion as a dynamic game, where the investor and a dual oppo-
nent interact until reaching an equilibrium that corresponds to an approximate solution of the
investors optimization problem. Despite the need for additional approximations within each
iteration, this scheme is shown to be quantitatively and qualitatively accurate. Moreover, it is
capable of approximating high dimensional optimization problems, essentially avoiding the curse
of dimensionality and providing analytical results.
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Chapter 1

Introduction

Portfolio optimization plays a central role in finance. Since the pioneering works of [Markowitz,
1952], [Samuelson, 1969] and [Merton, 1971], a large volume of academic work focussed on the
problem of maximizing expected time-additive utility of [Von Neumann and Morgenstern, 1944]
type. Among those time-additive utilities, power utility functions with constant relative risk
aversion (CRRA) are the most common, and solutions to the associated portfolio optimiza-
tion problems have been found in several settings featuring complete and incomplete markets,
see e.g. [Brandt, 2010] or [Wachter, 2010] for a broad review. Despite its strong presence in
the literature, time-additive utility has its limitations. In particular, it imposes a strict rela-
tion between the investors attitude towards the smoothness of consumption over time and over
states. This restriction in the connection between an investors risk aversion (RA) and her elastic-
ity intertemporal substitution (EIS) becomes particularly visible in the field of equilibium asset
pricing, where it produces various inconsistencies between model predictions and empirical data.
Those inconsistencies lead to a rich literature on so called asset pricing puzzles, see e.g. [Mehra
and Prescott, 1985] for the prominent equity premium puzzle: The excess return of stocks im-
plied by classical asset pricing models is considerably too high for reasonable market parameters.

In order to bypass these limitations of time-additive utility, recursive utility has been developed
in a discrete-time framework by [Kreps and Porteus, 1978], [Epstein and Zin, 1989], [Weil, 1990].
It dissolves the strict connection between risk aversion and elasticity of intertemporal substitu-
tion, allowing for more flexibility in the modelling of an investors preferences. [Bansal and Yaron,
2004] found that long-run risk asset pricing models featuring recursive utility fit more accurately
with financial data then models based on time-additive preferences; thus recursive utility be-
came a highly relevant tool in the asset pricing literature, see for instance [Hansen et al., 2008],
[Guvenen, 2009], [Kaltenbrunner and Lochstoer, 2010], [Borovička et al., 2011], [Gabaix, 2012],
[Wachter, 2013]. Almost all of those publications use the so called Epstein-Zin-Weil parametriza-
tion. Stochastic differential utility, as a continuous time analogue to recursive utility, was in a
deterministic setting proposed by [Epstein, 1987] and in a stochastic setting by [Duffie and Ep-
stein, 1992b]. The authors provide convincing arguments for the connection between recursive
utility and stochastic differential utility, however their definition is axiomatic and a mathemati-
cally rigorous link between the two concepts has only much later been established by [Kraft and
Seifried, 2014]. For the widely used Epstein-Zin specification of stochastic differential utility,
the associated continuous-time optimal consumption and investment problems have in particular
been studied in [Schroder and Skiadas, 1999], [Schroder and Skiadas, 2003], [Chacko and Viceira,
2005], [Kraft et al., 2013], [Seiferling and Seifried, 2016], [Xing, 2017], [Matoussi and Xing, 2018].

In general, there are two main approaches to obtain a solution of a consumption-investment
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CHAPTER 1. INTRODUCTION

optimization problem. The first approach uses dynamic programming techniques, to reduce the
problem to finding a solution of a certain partial differential equation (PDE), the Hamilton-
Jacobi-Bellman (HJB) equation. The solution to this HJB equation characterizes not only the
investors optimal utility, but also the associated investment and consumption strategy, see for
example [Liu and Muhle-Karbe, 2013] for a general overview in the time-additive case or [Chacko
and Viceira, 2005], [Kraft et al., 2013], [Seiferling and Seifried, 2016] in case of recursive utility.
The second approach is often called the martingale approach and was first introduced by [Cox
and Huang, 1989], [Karatzas et al., 1987] and [Pliska, 1986] in a time-additive framework and
later also employed in problems featuring recursive preferences by [Schroder and Skiadas, 1999]
and [Schroder and Skiadas, 2003]. Informally speaking, it is based on a separation of the dy-
namic optimization problem to a static problem and a representation problem: First, using the
Lagrangian method, one determines the optimal payoff profile, then one computes the realizing
strategies using martingale representation results. Thus, the optimal strategies generally have
an abstract representation that can only in special cases be computed explicitly. However, the
big advantage of the martingale approach over the dynamic programming approach is, that it
can much easier be extended to various types of incomplete markets, such as trading constraints
or undiversifiability of risk. While incompleteness of the considered market usually leads to an
unsolvable HJB equation, it appears natural within the martingale method to embed the con-
strained optimization problem into a family of unconstrained ones, and then finding a member
of this family whose optimal strategy obeys the constraints. In the case of time-additive utility,
this dual approach was first developed in [He and Pearson, 1991], [Karatzas et al., 1991] and
[Cvitanić and Karatzas, 1992].
According to [Karatzas et al., 1991], the particular member of the family of unconstrained
problems, that obeys the constraints of the incomplete market, can be interpreted as the least
favorable completion of the market. The optimization problem within this least favorably com-
pleted market is then equivalent to the initially constrained optimization problem. Finding this
least favorable completion, corresponds to solving the associated dual optimization problem.
This idea of a dual approach had significant impact on the theory of consumption-investment
optimization theory with time-additive utility. Besides far reaching theoretical implications, the
concept of least favorable completion is particularly fruitful when it comes to the approximation
of solutions, as the associated complete market problems are often much easier to solve. More-
over, the dual optimization problem yields an upper bound on the optimal utility. In particular,
the dual approach automatically implies an upper bound on the utility loss associated to any
particular consumption-investment strategy, that can be utilized to validate the accuracy of any
given (numerical) approximation of the solution, without the need of a benchmark approach.
This idea has prominently been employed by [Haugh et al., 2006], [Brown et al., 2010], [Brown
and Smith, 2011], [Bick et al., 2013], [Kamma et al., 2020] and [Kamma and Pelsser, 2022].

Inspired by the dual approach for time-additive utility, [Matoussi and Xing, 2018], propose a
dual formulation for optimization problems with Epstein-Zin preferences if the RRA (γ) and
EIS (ψ) satisfy the restriction

γψ ą 1, ψ ą 1 or γψ ă 1, ψ ă 1. (:)

Their dual problem is characterized by the solution of a BSDE, which they call the stochastic
differential dual. The economic interpretation of time-additive duality theory carries over to the
recursive case, in particular the solution of the dual problem can be interpreted as the least
favorable completion of the underlying market. [Matoussi and Xing, 2018] provide existence
and uniqueness results for the stochastic differential dual, and find conditions under which the
primal and dual solution actually coincide in certain Brownian models. In general, the paper
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of [Matoussi and Xing, 2018] provides great insights on optimization problems with Epstein-Zin
utility in incomplete markets and paves the way for new methods to approach their solution. For
example [Becherer et al., 2023] use the dual approach to solve a recursive optimization problem
for an investor, who receives a stochastic stream of income and is faced with liquidity constraints.

Other aspects of duality theory, such as (numerical) approximations of the solution via least
favorable completion, or the implied bound on the welfare loss linked to such approximations,
have not been applied within the context of recursive Epstein-Zin utility thus far. Hence, the
main goal of this thesis is to generalize these concepts in that regard. In pursuit of that objec-
tive, we enhance the existing theory in the multiple directions:

First, note that while time-additive power utility is a true special case of recursive Epstein-Zin
utility, (:) explicitly excludes the time-additive utility case where γψ “ 1. Hence, so far the
duality methods for time-additive and recursive utility coexist. We connect both by extending
the procedure proposed in [Matoussi and Xing, 2018] to include the power utility scenario as
a special case. In particular, the duality theory for power utility of [He and Pearson, 1991],
[Karatzas et al., 1991] and [Cvitanić and Karatzas, 1992] is a special case of our enhanced
recursive dualization method, which is valid for

γψ ě 1, ψ ą 1 or γψ ď 1, ψ ă 1. (‹)

Having established the dual optimization problem, we close a gap left open in [Becherer et al.,
2023], by proving existence, uniqueness, convexity and monotonicity of the stochastic differential
dual for all parameter constellations (‹) in a general semimartingale setting.
Next, we turn to bounding an investors welfare loss. Note that, as in the case of power utility,
the stochastic differential dual yields an upper bound on an investors welfare loss associated to
any admissible strategy. However, evaluating these bounds, corresponds to solving non-standard
forward-backward stochastic differential equations (FBSDEs), which is in general not feasible. In
order to bypass this issue, we enclose the stochastic differential dual by transformed dual power
utility functions. Combining them with their primal analogoues previously derived by [Seifer-
ling and Seifried, 2016], we introduce our universal power utility bounds on an investors utility
loss. To the best of our knowledge, those provide the first tractable method in the literature,
that allows to validate the accuracy of approximations to Epstein-Zin consumption-investment
allocation problems, without the need of a benchmark solution. Moreover, we demonstrate the
theoretical value of the power utility bounds, by utilizing them in the proof of a new existence
and uniqueness result for the stochastic differential dual, that requires less restrictive integra-
bility assumptions as our general existence result mentioned before. Thus, our power bounds
are valuable both in theory and applications. However, note that their quality in measuring an
investors utility loss may deteriorate when the investors preference parameters are unfavorable.
We make a first step in overcoming those quantitative shortcomings by additionally introducing
variational bounds, that are better suited to recursive utilities when RA and EIS differ signifi-
cantly from the power utility case γψ “ 1.
Finally, by combining the classical dynamic programming approach with our duality results,
we develop two novel algorithms that approximate the solution to investment-consumption op-
timization problems with Epstein-Zin preferences in incomplete markets. Our first approach
focuses on the special case of power utility, where our general algorithmic idea has already been
established e.g. in [Kamma and Pelsser, 2022]. However, while previous works mainly focus
on the martingale method, we utilize the analytic Campbell-Shiller (CS) approximation known
from [Chacko and Viceira, 2005] to approximate the dual problem. Using this approximation to
complete the market, we are able to explicitly solve the HJB equation associated to the complete
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CHAPTER 1. INTRODUCTION

market problem. Thereby we obtain an analytic approximation of the optimal solution that is
explicitly characterized by a system of ordinary differential equations. As far as we know, such
an analytic approximation that takes a detour through the truly recursive utility case via the
CS approximation, is not present in the literature so far.
Our second algorithm is an iterative scheme, where a primal and a dual optimizer play against
each other until they find an equilibrium, that corresponds to the solution of the investors op-
timization problem. More precisely, the investor is allowed to trade in a complete market and
therein finds her optimal strategy, possibly violating the constraints imposed by the incomplete
market. On the other hand, the opposing dual optimizer will not allow for such violations and
forces her strategy to follow the restrictions by changing her market conditions. This leads the
investor to adjust her overall strategy and the game goes on until both are content, i.e. under
the conditions set by the dual optimizer the investor maximizes her utility while respecting the
constraints imposed by market incompleteness. This reinterpretation of least favorable com-
pletion and its manifestation as an algorithm to approximate optimal solutions, appears to be
absent from the current literature. Note, that we solve the investors HJB equation in every
iteration and in that we rely on additional approximations. Consequently the algorithm cannot
converge to the true solution. However, both our algorithms are shown to be accurate and stable
under parameter variations. They are applicable and easy to implement even in high dimensions
and in particular the iterative scheme appears to essentially avoid the curse of dimensionality,
despite being based on repeatedly solving high dimensional PDEs.

The remainder of this thesis is organized as follows. Within Chapter 2 we extend the duality
approach by [Matoussi and Xing, 2018] to explicitly include the case of power utility. Moreover,
our general existence and uniqueness result for the stochastic differential dual is established.
Chapter 3 contains our main result, the derivation of the universal power utility bounds on an
investor’s welfare loss. We additionally establish our variational bounds and state our refined
existence and uniqueness result for the stochastic differential dual. In Chapter 4 we introduce
our general market model and analyze its solution using dynamic programming techniques.
Chapter 5 presents our first two-step approximation approach via least favorable completion and
investigates its accuracy in several numerical simulations. Our second, iterative approximation
approach is introduced in Chapter 6. Multiple numerical applications in different dimensions
analyze its accuracy and convergence behavior. Chapter 7 concludes this thesis.
In addition, some preliminaries on BSDEs and convex analysis are provided in Appendix A
and Appendix B, respectively, and technical calculations are outsourced to Appendix C and
Appendix D to improve readability of the main text.
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Chapter 2

Duality for Recursive Systems

This first chapter is dedicated to the derivation of the dual problem associated to an Epstein-
Zin investment-consumption allocation problem and its analysis. We start by introducing the
general setting and the detailed optimization problem under consideration in Section 2.1. The
associated dual problem is then rigorously derived in Section 2.2; it is based on the three-step
approach introduced by [Matoussi and Xing, 2018]. It turns out that the dual problem (as the
primal one) is characterized in terms of a nonstandard backward stochastic differential equation
(BSDE), and Section 2.3 is concerned with proving existence and uniqueness of a solution to
this equation, as well as several of its properties.

2.1 The Primal Epstein-Zin Optimization Problem

Let
`

Ω, tFtutPr0,T s,F,P
˘

be a filtered probability space and let the filtration tFutPr0,T s satisfy the
usual conditions of completeness and right-continuity. Throughout this whole thesis we follow
the common practice of identifying almost surely equal random variables and indistinguishable
stochastic processes, respectively. Moreover, our assumptions on the underlying filtration allow
us to work with suitable (in particular right-continuous) versions of stochastic processes and we
do so without further mention.

We denote the class of all nonnegative and progressively measurable processes on r0, T sˆΩ by C.
A stochastic process tctutPr0,T s P C is called a consumption stream, where for t ă T , ct represents
the consumption stream at time t and cT models the lump sum consumption at time T .
The subjective preferences of a representative agent can in general be described by a utility index
functional ν : C Ñ R. We say that a consumption stream c is weakly preferred to c̄, if and only
if νpcq ě νpc̄q. In the context of stochastic differential utility as in [Duffie and Epstein, 1992a],
we define the utility index functional as

ν : Ca Ñ R, νpcq fi V0rcs,

where Ca Ď C is the set of admissible consumption streams defined below. The utility process
V “ V rcs associated with a consumption stream c P Ca satisfies a backward stochastic differential
equation (BSDE1) of the form

Vtrcs “ Et
„
ż T

t
fpcs, Vsrcsqds` ΦpcT q



, t P r0, T s. (2.1.1)

1A short introduction to the notion of BSDEs and a collection of results used within this thesis is provided in
Appendix A.
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CHAPTER 2. DUALITY FOR RECURSIVE SYSTEMS

We consider the Epstein-Zin parametrization of recursive utility as in [Epstein and Zin, 1989]
and [Weil, 1990], with relative risk aversion (RRA) 0 ă γ ‰ 1 and elasticity of intertemporal
substitution (EIS) 0 ă ψ ‰ 1. Define θ fi

1´γ

1´ 1
ψ

and V fi tv P R : p1 ´ γqv ą 0u, i.e.

V “ p0,8q, if γ ă 1 and V “ p´8, 0q, if γ ą 1. Then the continuous-time Epstein-Zin
aggregator f : p0,8q ˆ VÑ R reads

fpc, vq fi δ
c

1´ 1
ψ

1´ 1
ψ

pp1´ γqvq1´
1
θ ´ δθv, (2.1.2)

and the terminal utility function is given as Φpcq “ ε 1
1´γ c

1´γ , where the coefficients δ ą 0 and
ε ą 0 capture the agent’s rate of time preference and weight on terminal consumption, respec-
tively; in particular we exclude the case of zero terminal bequest ε “ 0.
Denote by S the space of pF,Pq-semimartingales, then the relevant class of Epstein-Zin utility
processes is given by V fi tV P S : p1´ γqV ą 0u. We call a consumption stream c admissible,
if V rcs uniquely exists, satisfies p1 ´ γqV rcs ą 0 and is of class (D). The class of admissible
consumption streams is denoted as Ca and the class of corresponding recursive utilities as Va.

If not further specified, we assume that any c P Ca at least satisfies the minimal integrability
condition

E
„
ż T

0
c

1´ 1
ψ

t dt` c1´γ
T



ă 8. (2.1.3)

The following example shows how the classical case of power utility is incorporated by this
general recursive framework.

Example 2.1
When γψ “ 1, then fpc, vq “ δϕpcq´ δv and (2.1.1) reduces to the classical time-additive utility
specification with constant relative risk aversion γ:

Vtrcs “ Et
„
ż T

t
δ 1

1´γ c
1´γ
s ´ δVsrcsds` ΦpcT q



(2.1.4)

“ Et
„
ż T

t
δe´δps´tqϕpcsqds` e

´δpT´tqΦpcT q



,

where ϕ : p0,8q Ñ R, ϕpcq “ c1´γ

1´γ . The second equality is due to the classical existence result
for linear BSDE provided in Theorem A.6, applicable as c satisfies (2.1.3). ˝

In general the Epstein-Zin aggregator f is in particular not Lipschitz continuous in the utility
variable v, hence standard BSDE results as in Appendix A cannot be applied and existence,
respectively uniqueness of a solution to (2.1.1) is a highly non-trivial question. In the special
case of a Brownian framework, existence and uniqueness results have previously been estab-
lished by [Schroder and Skiadas, 1999] and [Xing, 2017] as cited from [Matoussi and Xing,
2018][Proposition 2.1]:

Proposition 2.2
Let pFW

t qtPr0,T s be the augmented filtration generated by some Brownian motion W . Then the
following two existence results hold:

(i) [Schroder and Skiadas, 1999][Theorem 1]2 When either γ ą 1, 0 ă ψ ă 1, or 0 ă γ ă

1, ψ ą 1, then for any c P C such that E
”

şT
0 c

`
tdt` c

`
T

ı

ă 8 for all ` P R, there exists a

2The parameter 1` α therein is θ in our notation
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2.2. THE DUAL EPSTEIN-ZIN OPTIMIZATION PROBLEM

unique semimartingale V “ V rcs satisfying (2.1.1) such that E
”

ess suptPr0,T s |Vt|
`
ı

ă 8

for every ` ą 0.

(ii) [Xing, 2017][Proposition 2.2 & Proposition 2.4] When γ, ψ ą 1, then for any c P C such

that E
„

şT
0 c

1´ 1
ψ

t dt` c1´γ
T



ă 8, there exists a unique semimartingale V “ V rcs satisfying

(2.1.1) such that V is of class (D).

In both cases p1´ γqV ą 0, i.e. V P V and V0rcs is concave in c.

By Proposition 2.2 we also obtain Ca ‰ H.

[Seiferling and Seifried, 2016] were the first to prove existence and uniqueness of Epstein-Zin
utility in a general semimartingale framework. Their result is further investigated in Section 2.3,
see Proposition 2.17.

We construct the consumption-investment optimization problem with Epstein-Zin utility as
follows. Consider a financial market S where S “ pS0, . . . , Smq is a pm`1q-dimensional positive
semimartingale. S0 represents the price of the risk-less asset, whereas Si, i “ 1, . . .m are the
price processes of the m risky assets. Given an initial endowment x ą 0, a representative agent
may invest in the given market by choosing a portfolio represented by a predictable S-integrable
process π “ pπ0, . . . , πmq. Here πit is the fraction of her current wealth invested in the risky
asset Si at time t and π0

t “ 1´
řm
i“1 π

i
t is the fraction invested in the riskless asset. Given her

initial wealth x, an investment strategy π and a constumption stream c, the wealth process of
our investor follows the dynamics

dX
pπ,cq
t “ X

pπ,cq
t´ πJt

dSt
St´

´ ctdt, X
pπ,cq
0 “ x.

Such an investment-consumption strategy pπ, cq is called admissible if c P Ca, Xpπ,cqt ą 0 for all
t P r0, T s and cT “ X

pπ,cq
T . We denote the class of those strategies by A.

Then the agent’s optimization problem is to

find pπ˚, c˚q P A such that νpc˚q “ sup
pπ,cqPA

νpcq, (2.1.5)

so she aims to maximize her utility at time t “ 0 over all admissible investment-consumption
strategies. We refer to (2.1.5) as the primal optimization problem.

2.2 The Dual Epstein-Zin Optimization Problem

Having established the primal optimization problem under consideration in (2.1.5), we now go
through all necessary details to finally obtain the associated dual optimization problem at the
end of Section 2.2.1. Plugging everything together in Section 2.2.2 we obtain the duality inequal-
ity for a consumption-investment optimization problem with recursive Epstein-Zin preferences.

Most technical computations have been outsourced to Appendix B.2 in order to make this main
text as readable as possible.
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CHAPTER 2. DUALITY FOR RECURSIVE SYSTEMS

2.2.1 Dualization - A Three-Step Procedure

Recall the BSDE characterizing the primal optimization problem

Vtrcs “ Et
„
ż T

t
fpcs, Vsrcsqds` ΦpcT q



, t P r0, T s.

First note that, as the second argument of the Epstein-Zin aggregator f from (2.1.1) depends on
the whole future path of the consumption stream c, straight forward dualization as in [Karatzas
et al., 1991] is not possible. A workaround is provided by [Matoussi and Xing, 2018] and we
follow their ideas, slightly generalizing their approach in several directions. The procedure is
essentially built on three separate steps as illustrated in Figure 2.1.
In a first step we reformulate the investor’s recursive Epstein-Zin preferences to a variational
formulation as introduced by [Geoffard, 1996]; the result is given in Lemma 2.4. Intuitively
speaking, variational utility expresses recursive utility associated to a fixed consumption stream
as a specific discounted time-additive utility of the same consumption plan, maximized over
the rate of time preference. The primal problem is now formulated in a time-additive way
which allows us to apply the classical approach of [Karatzas et al., 1991] using state price de-
flators. This is the actual dualization step and leads to a dual variational utility, which is again
of time-additive structure. The final step, in particular Lemma 2.10, reverts the first one by
reformulating the dual variational utility to what [Matoussi and Xing, 2018] call a stochastic
differential dual, i.e. a dual utility process in recursive form.

Primal Problem
fpc, vq, Φpcq

Varational
Form (Primal)
F pc, uq, Φpcq

Variational
Form (Dual)

F ˚pλ, uq, Φ˚pλq

Dual Problem
f˚pλ, νq, Φ˚pλq

Step 1:

transformation in v

Step 2: transformation in c

Step 3:

transformation in u

Figure 2.1: Illustration of the Dualization Procedure

We slightly generalize this three-step scheme by not only considering the aggregator f as in
(2.1.2), but a suitable extension in the second argument v to the whole real line. The difference
will show in the following way: As [Matoussi and Xing, 2018] restrict themselves to the domain
V of f , which is designed specifically for recursive utility of Epstein-Zin type, they indirectly
exclude the parameter constellation γψ “ 1, i.e. power utility, from their analysis. Duality
results for power utility are well known, however, as pointed out in Example 2.1, they are a true
special case of recursive utility. With our extension, we are able to include the case γψ “ 1 to
our analysis and find that straight forward dualization for power utility is also just a special
case of our extended dualization approach for recursive utility. Moreover, this yields a natural
connection between the duality procedure for recursive utilities and the associated power utility
bounds derived in Chapter 3.
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2.2. THE DUAL EPSTEIN-ZIN OPTIMIZATION PROBLEM

The procedure heavily relies on convex (concave) conjugation of the aggregator f , one argu-
ment after the other. Hence, before we jump into the first step, we briefly give the definition of
convex (concave) conjugates in our specific setting, just to convey the idea to the reader; for a
more general treatment see Appendix B.1 based on [Rockafellar, 1997], where the whole topic is
treated in close detail.

Definition 2.3
Let h : R Ñ p´8,8s, x ÞÑ hpxq be a lower-semicontinuous3 convex function such that there
exists some x P R with hpxq ă 8. Then the function

h˚ : RÑ p´8,8s, x˚ ÞÑ sup
xPR

txx˚ ´ hpxqu “ ´ inf
xPR
thpxq ´ xx˚u

is called the convex conjugate of h and is another lower-semicontinuous convex function. Anal-
ogously, let g : RÑ r´8,8q, x ÞÑ gpxq be an upper-semicontinuous concave function, such that
there exists some x P R with gpxq ą ´8. Then the function

g˚ : RÑ r´8,8q, x˚ ÞÑ inf
xPR
txx˚ ´ gpxqu

is called the concave conjugate of g and is another upper-semicontinuous concave function.

Figuratively speaking, the convex (concave) conjugate describes the intersection of the y-axis of
the pointwise supremum (infimum) of affine functions majorized (minorized) by h. Moreover,
the convex conjugate of h˚ equals h, i.e. ph˚q˚ “ h and the analogous relation also holds for the
concave conjugate. Thus the conjugacy operation implies some kind of duality relation on con-
vex functions.4 The convex and concave conjugate are sometimes also called Legendre-Fenchel
transformation of h. We usually go by this name for simplicity and only specify the type of
conjugation if necessary.

In the following we transfer the duality relation between convex (concave) functions and their
conjugates just described to the notion of duality for recursive systems as in (2.1.1), thus we only
allow parameter constellations where the aggregator f in (2.1.2) is either convex or concave. By
Lemma B.7, we know

f is convex in v ô γψ ě 1, ψ ą 1 (1)
f is concave in v ô γψ ď 1, ψ ă 1. (2)

Similar to [Matoussi and Xing, 2018], we now provide the detailed analysis only for the convex
case γψ ě 1, ψ ą 1.5 The case of concave aggregators as in p2q follows analogously with the
appropriate adjustments, see Remark 2.13 below.

Note: We emphasize that during this whole thesis we assume that either

γψ ě 1, ψ ą 1 or γψ ď 1, ψ ă 1

as in p1q and p2q above holds. Naturally there might be additional restrictions, but this is the minimum require-
ment that stands behind every result, even if it might not be explicitly mentioned.

3Recall that a function h : R Ñ r´8,8s is said to be lower-semicontinuous at some point x, if hpxq ď
limiÑ8 hpxiq for every sequence pxiqiPN such that limiÑ8 xi “ x and limiÑ8 hpxiq exists in r´8,8s. This may
be expressed as hpxq “ lim infyÑx hpyq. A function h is called lower-semicontinuous, if it is lower-semicontinuous
at any x P R. The definition of upper-semicontinuity is analogous replacing lim inf by lim sup.

4This is not true in general, but only for convex functions h that don’t take the value ´8 as we claimed in
Definition 2.3. For the general case see Appendix B.1 or [Rockafellar, 1997].

5As mentioned earlier, [Matoussi and Xing, 2018] actually only consider the constellations γψ ą 1, ψ ą 1.
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CHAPTER 2. DUALITY FOR RECURSIVE SYSTEMS

Step 1: Transformation from Recursive to Variational Form

Primal Problem
fpc, vq, Φpcq

Varational
Form (Primal)
F pc, uq, Φpcq

Variational
Form (Dual)

F ˚pλ, uq, Φ˚pλq

Dual Problem
f˚pλ, νq, Φ˚pλq

Step 1:

concave conjugate in v

Step 2: convex conjugate in c

Step 3:

convex conjugate in u

Figure 2.2: Dualization: Step 1

In a first step, we transform the utility process Vtrcs to its variational representation, i.e. for
a fixed consumption plan c we express the associated recursive utility Vtrcs as the maximum
of an associated discounted time-additive utility process over future discount values. The time-
additive utility within this variational representation is given exactly by the Legendre-Fenchel
transformation of the recursive aggregator f in the utility variable v. This first step is nei-
ther directly connected to any model specifications, nor to an investment optimization problem;
it is merely a reformulation of the investor’s utility specification based on the duality feature
of convex conjugates as mentioned above. The idea of a variational representation for recur-
sive utilities was first introduced by [Geoffard, 1996] in a deterministic setting. Later, [Karoui
et al., 1997] and [Dumas et al., 1998] extended the idea to a stochastic framework assuming
Lipschitz-continuity of f in its second argument and certain integrability of the value function.
Finally [Matoussi and Xing, 2018] generalized the approach to Epstein-Zin utility only relying
on convexity (concavity) of the aggregator and the class (D) property of Vtrcs, but excluding
the power utility case γψ “ 1. To incorporate this special case, we define a suitable extension
of the Epstein-Zin aggregator f as follows.

Consider the Epstein-Zin aggregator f from (2.1.2). Then the smallest lower-semicontinuous
convex extension f̃ of f is given by

f̃pc, vq : p0,8q ˆ RÑ p´8,8s, pc, vq ÞÑ

#

fpc, vq, p1´ γqv ą 0

fpc, 0`q ` fvpc, 0`q ¨ v, p1´ γqv ď 0
, (2.2.1)

where fpc, 0`q fi limp1´γqvÓ0 fpc, vq and analoguously for fv.

For the parameter constellations γψ ě 1, ψ ą 1, the function f̃ has three different forms:

f̃pc, vq “

#

fpc, vq, p1´ γqv ą 0

´δθv, p1´ γqv ď 0
if γ ą 1, ψ ą 1,

f̃pc, vq “

#

fpc, vq, p1´ γqv ą 0

8, p1´ γqv ď 0
if γ ă 1, γψ ą 1,

10



2.2. THE DUAL EPSTEIN-ZIN OPTIMIZATION PROBLEM

and
f̃pc, vq “ δ 1

1´γ c
1´γ ´ δv if γψ “ 1.

An illustration of the extended graphs is given in Figure 2.3. By definition f̃pc, ¨q is a lower-
semicontinuous function in v in all cases, convex as fpc, ¨q is convex by Lemma B.7.

Figure 2.3: f̃pc, vq for c ” 1; f in blue, the extension to p1´ γqv ď 0 in red dots

Now consider the concave conjugate of ´f̃ in its second argument given by

F : p0,8q ˆ RÑ r´8,8q, pc, uq ÞÑ inf
vPR

!

f̃pc, vq ` uv
)

. (2.2.2)

Then F pc, uq is concave in c and in u, see Lemma B.9, and by Theorem B.3 the functions f̃ and
F are dual in the sense that f̃ is minus the concave conjugate of F in u, i.e.

f̃pc, vq “ sup
uPR

tF pc, uq ´ uvu . (2.2.3)

Note: The concave conjugate of ´f̃ is exactly minus the convex conjugate of f̃ in ´v, which might seem like a
more natural way to conjugate a convex function. However, the transformation as chosen above is notationally
more convenient and in particular the dualization procedure within Step 2 below stays naturally consistent with
straight forward dualization of time-additive utility as e.g. in [Karatzas et al., 1991].

We denote by P the class of all progressively measurable processes on r0, T s ˆΩ. Then for any
u P P, c P Ca and t P r0, T s, define the stochastic variational utility by

Utrc, us fi Et
„
ż T

t
κut,sF pcs, usqds` κ

u
t,TΦT pcT q



, (2.2.4)

where κut,s fi expp´
şs
t urdrq, s ě t. Note that the right hand side of (2.2.4) always exists (in R̄),

see (2.2.5) and (2.2.10) below.

In Lemma 2.4 we show that the supremum of Utrc, us over all progressively measurable processes
u actually equals the recursive utility process Vtrcs. This is how the duality between f̃ and F
from (2.2.3) transfers to the stochastic processes U and V . The result is an extension of Lemma
2.3 in [Matoussi and Xing, 2018]. The core steps of the proof still follow their approach, although
most arguments are either simplified or carried out in more detail.

Lemma 2.4
For any u P P and c P Ca, let V rcs be the utility process associated with c and U rc, us as given

11



CHAPTER 2. DUALITY FOR RECURSIVE SYSTEMS

in (2.2.4). Then for any t P r0, T s the recursive utility Vtrcs can be expressed by the essential
supremum6 of the variational utilities Utrc, us over u, i.e.

Vtrcs “ ess sup
uPP

Utrc, us.

Moreover, the supremum is attained at

uc fi ´fvpc, V rcsq “ δc
1´ 1

ψ p1´ θqpp1´ γqV rcsq´
1
θ ` δθ.

Proof. First consider the case γψ “ 1, ψ ą 1. Then f̃ is given by f̃pc, vq “ δϕpcq ´ δv, where
ϕpcq “ 1

1´γ c
1´γ as in Example 2.1, thus the Legendre-Fenchel transform desintegrates to

F pc, uq “

#

δϕpcq u “ δ

´8 else
,

see Lemma B.9. In particular

sup
uPP

Utrc, us “ sup
uPP

Et
„
ż T

t
κut,sF pcs, usqds` κ

u
t,TΦpcT q



“ Et
„
ż T

t
δe´δps´tqϕpcsqds` e´δpT´tqΦpcT q



,

so this case follows by (2.1.4) in Example 2.1 and Theorem A.6, respectively.
For the remaining parameter constellations F is given by

F pc, uq “

$

’

’

’

&

’

’

’

%

δθ c
1´γ

1´γ

ˆ

u´δθ
1´θ

˙1´θ

, u ą δθ

0, u “ δθ

´8, u ă δθ

,

see again Lemma B.9. Note that it suffices to focus on u P P such that U0rc, us ą ´8, so u ă δθ
is automatically excluded. Thus by introducing the space U fi tu P P : u ě δθu, we can without
loss restrict ourselves to u P U Ď P. The reminder of the proof consists of three major steps:

1. Class (D) property of κu0,¨U rc, us: Note that

tγψ ą 1, ψ ą 1u “ tγ ą 1, ψ ą 1u Y t0 ă γ ă 1, γψ ą 1u

and we split this part of the proof into those two cases.
Case 1: γ ą 1, ψ ą 1. As γ ą 1 we have Φ ă 0 and F ď 0, so for u P U we obtain

E
„ˇ

ˇ

ˇ

ˇ

ż T

0
κu0,sF pcs, usqds` κ

u
0,TΦpcT q

ˇ

ˇ

ˇ

ˇ



ď E
„
ż T

0
κu0,s|F pcs, usq|ds` κ

u
0,T |ΦpcT q|



(2.2.5)

“ E
„
ż T

0
κu0,sp´F pcs, usqqds´ κ

u
0,TΦpcT q



“ ´U0rc, us ă 8.

6A measurable random variable Y is called essential supremum of a random family pXi
qiPI , if Y ě Xi almost

surely for any i P I and Y ď Z almost surely for any measurable random variable Z that satisfy Z ě Xi for any
i P I almost surely. We write Y fi ess supiPI X

i. Analogously, the essential infimum of a random family pXi
qiPI

is defined as ess infiPI X
i

fi ´ ess supiPI ´X
i.
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2.2. THE DUAL EPSTEIN-ZIN OPTIMIZATION PROBLEM

It follows that the stochastic process Et
”

şT
0 κ

u
0,sF pcs, usqds` κ

u
0,TΦpcT q

ı

is a uniformly
integrable martingale and hence of class (D). Moreover κu is bounded for any u P U . Thus
the class (D) property of V rcs for c P Ca implies the integrability of κu0,TΦpcT q by choosing
τ “ T , and hence the class (D) property of the process Etrκu0,TΦpcT qs.
Since F ď 0 we have

Et
„
ż T

0
κu0,sF pcs, usqds` κ

u
0,TΦpcT q



ď Et
„
ż T

t
κu0,sF pcs, usqds` κ

u
0,TΦpcT q



(2.2.6)

“ κu0,tUtrc, us

ď Et
„

κu0,TΦpcT q



and the class (D) property of both the upper and lower bound implies the class (D) prop-
erty of κu0,¨U rc, us.

Case 2: 0 ă γ ă 1, γψ ą 1. In this case, F ě 0, Φ ą 0, so we have to show U0rc, us ă 8
first. Let c P Ca, u P U and recall that

Vtrcs “ Et
„
ż T

t
fpcs, Vsrcsqds` ΦpcT q



, t P r0, T s,

thus by the class (D) property of V rcs, the process

M fi V rcs `

ż ¨

0
fpcs, Vsrcsqds (2.2.7)

defines a uniformly integrable martingale. An application of Itô’s formula shows

d
`

κu0,tVtrcs
˘

“ κu0,tdMt ´
`

κu0,tfpct, Vtrcsq ´ utκ
u
0,tVtrcs

˘

dt

“ κu0,tdMt ´ dAut ´ κ
u
0,tF pct, utqdt,

where
dAut fi κu0,t pfpct, Vtrcsq ´ pF pct, utq ´ utVtrcsqqdt. (2.2.8)

Now by the definition of f and F respectively, we have fpc, vq “ supuąδθ tF pc, uq ´ uvu
and as κu ą 0, Au is increasing in this case. If u “ δθ, (2.2.8) simplifies to

dAut fi
δ

1´ φ
κu0,tc

1´φ
t dt. (2.2.9)

and as again κu ą 0 and moreover φ ă 1, Au is increasing. Thus κu0,¨V rcs`
ş¨

0 κ
u
0,sF pcs, usqds

is a local supermartingale. We take a localization sequence pτnqnPN, then by the super-
martingale property of the stopped process we obtain

V0rcs ě E
„

κu0,τn^TVτn^T rcs `

ż τn^T

0
κu0,sF pcs, usqds



.

Since V rcs is of class (D) and F ě 0, by taking the limit on the right hand side, the mono-

tone convergence theorem implies E
„

şT
0 κ

u
0,sF pcs, usqds



ă 8. As above Erκu0,TΦpcT qs ă

8, so we obtain
U0rc, us ă 8. (2.2.10)
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CHAPTER 2. DUALITY FOR RECURSIVE SYSTEMS

Now similar as in (2.2.6), F ě 0 implies

Et
“

κu0,TΦpcT q
‰

ď κu0,tEt
„

κut,TΦpcT q `

ż T

t
κut,sF pcs, usqds



“ κu0,tUtrc, us

ď Et
„

κu0,TΦpcT q `

ż T

0
κu0,sF pcs, usqds



,

therefore, κu0,¨U rc, us is of class (D).

Concluding, if γψ ą 1, ψ ą 1, then κu0,¨U rc, us is of class (D) and the first step of the proof
is complete.

2. Vtrcs ě Utrc, us @t P r0, T s a.s.: As U0rc, us is finite, the tower property of conditional
expectation implies that the process

Mu fi κu0,¨U rc, us `

ż ¨

0
κu0,sF pcs, usqds (2.2.11)

is a martingale. Then a basic calculation using (2.2.7), (2.2.11) and Itô’s formula yields

d
`

κu0,t pVtrcs ´ Utrc, usq
˘

“ dLut ´ dAut (2.2.12)

where Aut as in (2.2.8) is increasing and dLut fi κu0,tdMt´dMu
t is a local marginale. Hence

κu0,¨pV rcs ´ U rc, usq is a local supermartingale. On the other hand, we have seen that
κu0,¨U rc, us is of class (D) and moreover, κu0,¨V rcs is of class (D) thanks to the boundedness
of κu and class (D) property of V rcs. Thus the local supermartingale κu0,¨pV rcs ´ U rc, usq
is an honest supermartingale and

κu0,t pVtrcs ´ Utrc, usq ě Et
“

κu0,T pVT rcs ´ UT rc, usq
‰

“ Etrκu0,T pΦpcT q ´ ΦpcT qqs “ 0,

so as κu0,t ą 0 we have Vtrcs ě Utrc, us almost surely for all t P r0, T s and any u P U . By
right-continuity of V rcs and U rc, us it follows that Vtrcs ě Utrc, us for all t P r0, T s almost
surely.

3. Vtrcs ď ess supuPU Utrc, us: To finalize the proof it suffices to find some uc P U such that
V rcs ď U rc, us. We choose said uc by the first order condition of fpc, vq “ supuąδθtF pc, uq´
uvu, more precisely

uc fi ´fvpc, V rcsq “ δc
1´ 1

ψ p1´ θqpp1´ γqV rcsq´
1
θ ` δθ.

As θ ă 1 it follows that uc P U and we have fpc, V rcsq “ F pc, ucq ´ ucV rcs, so clearly
Au

c
” 0.7 Then by (2.2.12)

d
`

κu
c

0,t pVtrcs ´ Utrc, u
csq

˘

“ dLu
c

t

is a local martingale, bounded from above as κuc ą 0 and Vtrcs ě Utrc, us for any u P U .
Hence the local martingale is in fact a submartingale and

κu
c

0,t pVtrcs ´ Utrc, u
csq ď Et

“

κu
c

0,T pVT rcs ´ UT rc, u
csq

‰

“ Etrκu
c

0,T pΦpcT q ´ ΦpcT qqs “ 0

which implies Vtrcs ď Utrc, u
cs almost surely. Again, due to right-continuity of the pro-

cesses, we obtain Vtrcs ď Utrc, u
cs @t P r0, T s almost surely.

7By (2.2.9) the case u “ δθ yields Au
c

ą 0, so the supremum cannot be attained there.
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2.2. THE DUAL EPSTEIN-ZIN OPTIMIZATION PROBLEM

Combining the above we obtain Vtrcs “ ess supuPU Utrc, us “ ess supuPP Utrc, us.

The crucial consequence of Lemma 2.4 is that our problem can be written as

V0 “ sup
pπ,cqPA

V0rcs “ sup
pπ,cqPA

sup
uPP

U0rc, us “ sup
uPP

sup
pπ,cqPA

E
„
ż T

0
κu0,sF pcs, usqds` κ

u
0,TΦpcT q



,

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

fipP 1q

where the inner problem pP 1q is a time-additive investment optimization problem. Thus, in
the second step, we can dualize pP 1q by the methods well known from the time-additive utility
framework.

Step 2: Duality for the Variational System

Primal Problem
fpc, vq, Φpcq

Varational
Form (Primal)
F pc, uq, Φpcq

Variational
Form (Dual)

F ˚pλ, uq, Φ˚pλq

Dual Problem
f˚pλ, νq, Φ˚pλq

Step 1: X

concave conjugate in v

Step 2: convex conjugate in c

Step 3:

convex conjugate in u

Figure 2.4: Dualization: Step 2

We now establish duality for pP 1q. While the first step was merely a reformulation of the in-
vestor’s recursive utility functional, in this true dualization step the market model and the
investor’s wealth comes into play:
For a fixed u P P the problem pP 1q, i.e. suppπ,cqPA U0rc, us, can be interpreted as an optimization
problem with bequest utility Φ and a time-additive intertemporal utility function F pc, uq, pa-
rameterized by fictitious discount rates u. Thus we can dualize pP 1q by the standard procedure
for optimization problems with time-additive utility as e.g. in [Karatzas et al., 1991]. To this
end, consider the Legendre-Fenchel transformations of F and Φ in c given by

F ˚ : p0,8q ˆ RÑ r´8,8q, pλ, uq ÞÑ sup
cą0

tF pc, uq ´ λcu , (2.2.13)

Φ˚ : p0,8q Ñ R, λ ÞÑ sup
cą0

tΦpcq ´ λcu .

Then F ˚ and Φ˚ are convex in λ and F ˚ is concave in u, c.f. Lemma B.10 and Lemma B.11,
respectively.

We denote the set of state price deflators with initial value λ ą 0 as

Dλ fi

"

Λ P P : Λ ą 0,Λ0 “ λ,ΛXpπ,cq `

ż ¨

0
Λscsds is a supermartingale for all pπ, cq P A

*

(2.2.14)
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CHAPTER 2. DUALITY FOR RECURSIVE SYSTEMS

and the set of all state price deflators

D fi
ď

λą0

Dλ.

For notational convenience we introduce state price deflators with arbitrary positive initial val-
ues as above. Note that every Λ P D has a trivial decomposition Λ “ λD where D P D1 by
choosing λ “ Λ0. We call processes D P D1 pricing deflators to distinguish the particularly
important case where λ “ 1.

From now on, we assume that at least one such state price deflator exists, i.e.

D ‰ H. (2.2.15)

Note that (2.2.15) excludes arbitrage opportunities, c.f. [Karatzas and Kardaras, 2007].

Remark 2.5
The condition in (2.2.14) is motivated by a particularly important special case with a nice
interpretation, the so called budget constraint: Consider a pricing deflator D P D1, then
DXpπ,cq `

ş¨

0Dscsds is a supermartingale and hence

E
„

DTX
pπ,cq
T `

ż T

0
Dscsds



ď x (2.2.16)

is satisfied for all pπ, cq P A. Thus the expected discounted terminal wealth plus the expected
discounted total consumption from any admissible trading strategy pπ, cq cannot exceed the initial
capital x. The same is true for every intermediate time-step, as (2.2.14) implies

Et
„
ż T

t
Dscsds`DTX

pπ,cq
T



“ Et
„
ż T

0
Dscsds`DTX

pπ,cq
T



´

ż t

0
Dscsds ď DtX

pπ,cq
t . (2.2.17)

4

Recalling that an admissible consumption plan c satisfies cT “ X
pπ,cq
T , the duality relation is

established as follows: Consider Λ P D and fix some u P P. Then8

E
„
ż T

0
κu0,sF pcs, usqds` κ

u
0,TΦpcT q



(2.2.18)

“ E
„
ż T

0
κu0,spF pcs, usq ´ pκ

u
0,sq

´1Λscsqds` κ
u
0,T pΦpcT q ´ pκ

u
0,T q

´1ΛT cT q



` E
„

ΛT cT `

ż T

0
Λscsds



ď E
„
ż T

0
κu0,spF pcs, usq ´ pκ

u
0,sq

´1Λscsqds` κ
u
0,T pΦpcT q ´ pκ

u
0,T q

´1ΛT cT q



` λx

ď E
„
ż T

0
κu0,sF

˚ppκu0,sq
´1Λs, usqds` κ

u
0,TΦ˚ppκu0,T q

´1ΛT q



` λx,

where the first inequality comes from the supermartingale condition in (2.2.14) and the second
from the definitions of F ˚ and Φ˚ in (2.2.13). A quick calculation, see Lemma B.16, shows that
F ˚ and Φ˚ satisfy the scaling property

κut,sF
˚
`

pκut,sq
´1Λs, us

˘

“ κ
u
γ

t,sF
˚pΛs, usq and κut,TΦ˚

`

pκut,T q
´1ΛT

˘

“ κ
u
γ

t,TΦ˚pΛT q.

8The calculation is as above if u ą δθ, becomes easier if u “ δθ (then F ” F˚ ” 0) and is trivial if u ă δθ
(then F ” F˚ ” ´8), compare Lemma B.10 and Lemma B.9, respectively.
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Applying this property to the last line of (2.2.18), we introduce the stochastic variational dual

U˚t rΛ, us fi Et
„
ż T

t
κ
u
γ

t,sF
˚pΛs, usqds` κ

u
γ

t,TΦ˚pΛT q



. (2.2.19)

for all u P P, Λ P D and t P r0, T s. Note that analogously to the stochastic variational utility
from (2.2.4), the stochastic variational dual always exists (in R̄).

By taking suppπ,cqPA on the left-hand side and infΛPD on the right-hand side in (2.2.18) and
applying the scaling property from above, we obtain for any u P P the duality relation

sup
pπ,cqPA

E
„
ż T

0
κu0,sF pcs, usqds` κ0,TΦpcT q



ď inf
ΛPD

E
„
ż T

0
κ
u
γ

0,sF
˚pΛs, usqds` κ

u
γ

0,TΦ˚pΛT q



` λx
loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

fipD1q

.

or in a more compact form

sup
pπ,cqPA

U rc, us ď inf
ΛPD

tU˚rΛ, us ` λxu . (2.2.20)

Summing up our progress so far, we have transformed our initial optimization problem to a
mini-max problem of the form

V0rcs “ sup
uPP

sup
pπ,cqPA

E
„
ż T

0
κu0,sF pcs, usqds` κ

u
0,TΦpcT q



ď sup
uPP

inf
ΛPD

E
„
ż T

0
κ
u
γ

0,sF
˚pΛs, usqds` κ

u
γ

0,TΦ˚pΛT q



` λx

ď inf
ΛPD

sup
uPP

E
„
ż T

0
κ
u
γ

0,sF
˚pΛs, usqds` κ

u
γ

0,TΦ˚pΛT q



` λx,

or in compact form

V0rcs ď inf
ΛPD

"

sup
uPP

U˚0 rΛ, us ` λx

*

.

We have thus derived a dual problem, but currently in a variational formulation.

Step 3: Retransformation from Variational to Recursive Form

Primal Problem
fpc, vq, Φpcq

Varational
Form (Primal)
F pc, uq, Φpcq

Variational
Form (Dual)

F ˚pλ, uq, Φ˚pλq

Dual Problem
f˚pλ, νq, Φ˚pλq

Step 1: X

concave conjugate in v

Step 2: X convex conjugate in c

Step 3:

convex conjugate in u

Figure 2.5: Dualization: Step 3
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This last step of the dualization procedure reverses step 1, by introducing the so called stochastic
differential dual. This process allows for a recursive formulation of the variational dual problem
infΛPD tsupuPP U

˚
0 rΛ, us ` λxu. Motivated by Lemma 2.4, we provide a candidate representa-

tion V ˚rΛs for supuPU U
˚
0 rΛ, us and prove the equality of both processes in Lemma 2.10, which

is the dual analogue to Lemma 2.4.

We start reversing the Legendre-Fenchel transformation performed in step 1, by considering
minus the concave conjugate of F ˚ in u, i.e.

f̃˚ : p0,8q ˆ RÑ p´8,8s, pλ, νq ÞÑ sup
uPR

tF ˚pλ, uq ´ uνu . (2.2.21)

Then f̃˚ reads as

f̃˚pλ, νq “

#

f˚pλ, γνq, p1´ γqν ą 0

f˚pλ, 0`q ` f˚ν pλ, 0`q ¨ ν, p1´ γqν ď 0
, (2.2.22)

where f˚ is defined by

f˚ : p0,8q ˆ VÑ R, pλ, νq ÞÑ δψ
λ1´ψ

ψ ´ 1

ˆ

p1´ γq

γ
ν

˙1´ γψ
θ

´
δθ

γ
ν, (2.2.23)

see Lemma B.14.

Note: The similarity of the extended primal and dual aggregators f̃ from (2.2.1) and f̃˚ is apparent, but the
additional factor γ in the second argument of f˚ in (2.2.22) may seem peculiar on first sight. This is mainly for
notational convenience, compare Remark 2.7.

By Theorem B.3 it follows that f̃˚ is a lower-semicontinuous, convex function in ν and that the
functions F ˚ and f̃˚ are dual in the sense that F ˚ is the concave conjugate of ´f̃˚, i.e.

F ˚ : p0,8q ˆ RÑ r´8,8q, pλ, uq ÞÑ inf
νPR

!

f̃˚pλ, νq ` uν
)

. (2.2.24)

We are now ready to define the stochastic differential dual as follows.

Definition 2.6
An Epstein-Zin stochastic differential dual associated to a deflator Λ P D is a semimartingale
V ˚rΛs fi pV ˚t rΛsqtPr0,T s satisfying

V ˚t rΛs “ Et
„
ż T

t
f˚ pΛs, V

˚
s rΛsq ds` Φ˚pΛT q



, t P r0, T s, (2.2.25)

where f˚ as given in (2.2.23).

Remark 2.7
Note that f̃˚ is exactly minus the concave conjugate of f̃ in c, i.e.

f̃˚pλ, νq “ sup
cą0

!

f̃pc, νq ´ λc
)

.

This transformation has little to do with dualization though, as one doesn’t address the process
V rcs and its recursive dependence on consumption, however it shows that the two variational
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2.2. THE DUAL EPSTEIN-ZIN OPTIMIZATION PROBLEM

transformations in step 1 and 3, respectively, cancel each other out. Hence moving to variational
utility is really just a tool that allows us to apply the well known dualization in time-additive
frameworks. The additional factor 1

γ in the definition of the dual aggregator f˚ is thus a byproduct
of this true dualization step. 4

We denote by Da
λ the class of state price densities Λ with Λ0 “ λ, whose associated stochastic

differential dual V ˚rΛs uniquely exists, satisfies p1´ γqV ˚rΛs ą 0 and V ˚rΛs is of class (D). For
notational convenience, we moreover set Da “

Ť

λą0 Da
λ as above.

Similar as in (2.1.3), we assume that Λ P Da satisfies the minimal integrability condition

E
„
ż T

0
Λ1´ψ
t dt` Λ

γ´1
γ

T



ă 8.

We prove an existence and uniqueness result in a general semimartingale setting as in [Seiferling
and Seifried, 2016] in Section 2.3. For the Brownian setting, the existence and uniqueness results
from [Schroder and Skiadas, 1999] and [Xing, 2017] from Proposition 2.2 can be transferred to
the stochastic differential dual as shown in [Matoussi and Xing, 2018].

Proposition 2.8 ([Matoussi and Xing, 2018], Proposition 2.5)
Let pFW

t qtPr0,T s be the augmented filtration generated by some Brownian motion W . Then the
following holds for the stochastic differential dual:

(i) When either γ ą 1, 0 ă ψ ă 1 or 0 ă γ ă 1, ψ ą 1, then for any Λ P D such that
E
”

şT
0 Λ`tdt` Λ`T

ı

ă 8 for all ` P R, there exists a unique semimartingale V ˚ “ V ˚rΛs

satisfying (2.2.25) such that Eress suptPr0,T s |V
˚
t |
`s ă 8 for every ` ą 0.

(ii) When γ, ψ ą 1, then for any Λ P D such that

E
„

şT
0 Λ1´ψ

t dt` Λ
γ´1
γ

T



ă 8, there exists a unique semimartingale V ˚ “ V ˚rΛs satisfying

(2.2.25), such that V ˚ is of class (D).

In both cases p1´ γqV ˚ ą 0, such that V ˚ P V.

In particular Da ‰ H.

Further existence and uniqueness results for solutions of (2.2.25) in a general semimartingale
setting are provided in Section 2.3 and Section 3.3.

Example 2.9
As for the primal problem, if γψ “ 1, (2.2.25) reduces to a time-additive optimization problem

V ˚t rΛs “ Et
„
ż T

t
δ

1
γ e
´ δ
γ
ps´tq

ϕ˚pΛsqds` e
´ δ
γ
pT´tq

Φ˚pΛT q



, (2.2.26)

where ϕ˚ : p0,8q Ñ R, ϕ˚pλq “ γ
1´γλ

γ´1
γ and Φ˚pλq “ ε

1
γ γ

1´γλ
γ´1
γ are the Legendre-Fenchel

transformations of ϕ and Φ in c, respectively, see Theorem A.6. Note that this is exactly the
dual utility process resulting from straightforward dualization of V rcs in the power utility case as
given in Example 2.1. ˝
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The following lemma is the actual third step of the dualization procedure, i.e. it formalizes the
retransformation of the dual variational utility U˚rΛ, us to recursive form, more precisely to the
stochastic differential dual V ˚rΛs. It is a slight extension of Lemma 2.6 in [Matoussi and Xing,
2018] in the same way as Lemma 2.4 extends Lemma 2.3 therein. We only show the proof of
the parameter constellation γψ “ 1 in detail, as it emphasizes the consistency of our extended
dualization procedure with straightforward dualization of the problem in the power utility case.
Generally the proof is analogous to the one of Lemma 2.4.

Lemma 2.10
For any u P P and Λ P Da, let V ˚rΛs be the stochastic differential dual associated with Λ and
U˚rΛ, us given as in (2.2.19). Then for any t P r0, T s,

V ˚t rΛs “ ess sup
uPP

U˚t rΛ, us .

Moreover, the supremum is attained at

uΛ fi ´f̃˚ν pλ, νq “ ´δ
ψ 1´γψ
γpψ´1qλ

1´ψ
´

1´γ
γ ν

¯´
γpψ´1q

1´γ
` δθ.

Proof. Let γψ “ 1. Then the Legendre-Fenchel transform F ˚ desintegrates to

F ˚pλ, uq “

#

δ
1
γ γ

1´γλ
γ´1
γ u “ δ

´8 else
,

see Lemma B.10. In particular

sup
uPP

U˚t rΛ, us “ sup
uPP

Et
„
ż T

t
κ
u
γ

t,sF
˚pΛs, usqds` κ

u
γ

t,TΦ˚pΛT q



“ Et
„
ż T

t
δ

1
γ e
´ δ
γ
ps´tq γ

1´γΛ
γ´1
γ

s ds` e
´ δ
γ
pT´tq

Φ˚pΛT q



,

so the proof follows by (2.2.26) in Example 2.9.
As the functions f̃˚ and F ˚ have exactly the same properties as f̃ and F in the relevant second
argument in terms of sign, convexity and so on, the remaining parameter constellations are
proven exactly as in Lemma 2.4.

Note: Instead of repeating the exact same arguments from Lemma 2.4 here, we prove the analoguous statement
of Lemma 2.10 for the parameter constellations γψ ď 1, ψ ă 1 in the appendix to emphasize the adjustments
one needs to make in order to transfer all results from the convex to the concave case. We thereby also provide
ourselves with the rigorous reference, as the concave analogue of Lemma 2.10 is used within Section 3.2.

For notational convenience we define the dual utility index functional as

ν˚ : Da Ñ V, ν˚pΛq fi V ˚0 rΛs ` λx.

Then the agent’s dual problem is to

find Λ˚ P Da such that ν˚pΛ˚q “ inf
ΛPDa

tV ˚0 rΛs ` λxu . (2.2.27)
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2.2.2 Duality Inequality and a Simplified Version

Combining all the steps in the previous section, we obtain the final duality inequality.

Theorem 2.11
Let γψ ě 1, ψ ą 1, then9

sup
pπ,cqPA

V0rcs ď inf
ΛPDa

tV ˚0 rΛs ` λxu . (2.2.28)

Proof.

sup
pπ,cqPA

V0rcs “ sup
pπ,cqPA

sup
uPP

U0rc, us (Lemma 2.4)

“ sup
uPP

sup
pπ,cqPA

U0rc, us

ď sup
uPP

inf
ΛPDa

tU˚0 rΛ, us ` λxu (2.2.20)

ď inf
ΛPDa

"

sup
uPP

U˚0 rΛ, us ` λx

*

“ inf
ΛPDa

tV ˚0 rΛs ` λxu . (Lemma 2.10)

Remark 2.12
With a slight abuse of notation we define

νpc˚q fi sup
pπ,cqPA

V0rcs and ν˚pΛ˚q fi inf
ΛPDa

tV ˚0 rΛs ` λxu

although the optimal strategies might not exist in general. Note that if the primal and dual
optimizer exist, this definition coincides with the primal and dual utility index, respectively, as
defined above. 4

Remark 2.13
As already mentioned our extended procedure also carries over to the concave case with parameter
constellations γψ ď 1, ψ ă 1: First, f̃ can be defined as above, but the image set changes from
p´8,8s to r´8,8q, however the conjugates from the convex and concave case coincide on
their real domains, see Appendix B.2. As f̃ is now an upper-semicontinuous concave function,
the suprema and infima in (2.2.2), (2.2.3), (2.2.21) and (2.2.24) become infima and suprema,
respectively. The adjustment in the image set of f̃ naturally carries over to all conjugates. Also
the essential suprema in Lemma 2.4 and Lemma 2.10 now become essential infima. In order
to eludicate those adjustments formally, we have treated the concave case of Lemma 2.10 in the
appendix, see Lemma B.17. The duality procedure in the case of concave aggregators can then

9The result is also valid if γψ ď 1, ψ ă 1, but with a slightly different proof, see Remark 2.13
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in a compact form be written as

sup
pπ,cqPA

V0rcs “ sup
pπ,cqPA

inf
uPP

U0rc, us (Remark B.18)

ď inf
uPP

sup
pπ,cqPA

U0rc, us

ď inf
uPP

inf
ΛPDa

tU˚0 rΛ, us ` λxu (2.2.20)

“ inf
ΛPDa

"

inf
uPP

U˚0 rΛ, us ` λx

*

“ inf
ΛPDa

tV ˚0 rΛs ` λxu . (Lemma B.17)

In particular Theorem 2.11 stays true if γψ ď 1, ψ ă 1. 4

We now want to extend Theorem 2.11 to all t P r0, T s to obtain a dynamic duality relation of
the value processes. To this end, consider for every strategy pπ, cq P A and deflator Λ P Da,
respectively, the sets

Apπ, c, tq fi tpπ̃, c̃q P A : pπ̃, c̃q “ pπ, cq on r0, tsu,

DapΛ, tq fi tΛ̃ P Da : Λ̃ “ Λ on r0, tsu,

and define the primal and dual value processes as

Vtrπ, cs fi ess sup
pπ̃,c̃qPApπ,c,tq

Vtrc̃s and V˚t rΛs fi ess inf
Λ̃PDapΛ,tq

V ˚t rΛ̃s.

Corollary 2.14
If γψ ě 1, ψ ą 1 or γψ ď 1, ψ ă 1, then

Vtrπ, cs ď V˚t rΛs ` ΛtX
pπ,cq
t , t P r0, T s. (2.2.29)

Proof. Using (2.2.17) and the scaling property of F ˚ and Φ˚ from Lemma B.16 equation (2.2.18)
generalizes to

Et
„
ż T

t
κut,sF pc̃s, usqds` κ

u
t,TΦpc̃T q



ď Et
„
ż T

t
κ
u
γ

t,sF
˚pΛ̃s, usqds` κ

u
γ

t,TΦ˚pΛ̃T q



` ΛtX
pπ,cq
t .

Now, taking ess suppπ̃,c̃qPApπ,c,tq and ess infΛ̃PDapΛ,tq in the above inequality we obtain

ess sup
pπ̃,c̃qPApπ,c,tq

Et
„
ż T

t
κut,sF pc̃s, usqds` κt,TΦpc̃T q



ď ess inf
Λ̃PDapΛ,tq

Et
„
ż T

t
κ
u
γ

t,sF
˚pΛ̃s, usqds` κ

u
γ

t,TΦ˚pΛ̃T q



` ΛtX
pπ,cq
t .

As Lemma 2.4 and Lemma 2.10 are already stated in a dynamic manner, the result follows as
in the proof of Theorem 2.11 and Remark 2.13, respectively.

It often turns out to be convenient to reduce ourselves to pricing deflators D P Da
1 . The

transformation of stochastic differential duals we introduce in Proposition 2.16 below, allows to
transfer all results for such pricing deflators to general deflators Λ “ λD P Da. The following
scaling property of stochastic differential duals is the key to the proof.
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Lemma 2.15
The mapping Da Ñ Va, Λ ÞÑ V ˚rΛs is homothetic, i.e. for every k ą 0 it holds that

V ˚rkΛs “ k
γ´1
γ V ˚rΛs.

Proof. A small calculation reveals that f˚
´

kλ, k
γ´1
γ ν

¯

“ k
γ´1
γ f˚pλ, νq, and certainly Φ˚pkλq “

k
γ´1
γ Φ˚pλq. Then the result follows immediately by uniqueness of the BSDE solution.

Analogously to the sets Apπ, c, tq and DapΛ, tq above, define for any D P Da
1 the set

Da
1pD, tq fi tD̃ P Da

1 : D̃ “ D on r0, tsu.

Then the following duality inequality in terms of pricing deflators holds.

Proposition 2.16
Let Λ “ λD P Da and V˚rΛs be the associated dual value process. Then for any t P r0, T s we
have

V˚t rΛs ` ΛtX
pπ,cq
t “ 1

1´γ

´

DtX
pπ,cq
t

¯1´γ ´
1´γ
γ V˚t rDs

¯γ
.

In particular (2.2.28) can be expressed in terms of D˚ P Da
1 as

νpc˚q ď 1
1´γx

1´γ
´

1´γ
γ ν˚pD˚q

¯γ
.

Proof. Write Λ “ λD for Λ P Da
λ, where λ ą 0 and D P Da

1 is a pricing deflator. Then the
homotheticity of the stochastic differential dual Lemma 2.15 implies

V ˚t rΛs “ V ˚t rλDs “ λ
γ´1
γ V ˚t rDs.

Inserting this equation to the duality relation (2.2.29) yields

V˚t rΛs ` ΛtX
pπ,cq
t “ ess inf

Λ̃PDapΛ,tq

!

V ˚t rΛ̃s ` ΛtX
pπ,cq
t

)

“ ess inf
D̃PDa1 pD,tq

inf
λą0

!

V ˚t rλD̃s ` λDtX
pπ,cq
t

)

“ ess inf
D̃PDa1 pD,tq

inf
λą0

!

λ
γ´1
γ V ˚t rD̃s ` λDtX

pπ,cq
t

)

The inner problem infλą0

!

λ
γ´1
γ V ˚t rD̃s ` λDtX

pπ,cq
t

)

is convex in λ and the first order condition
yields

λ˚ “
´

DtX
pπ,cq
t

¯´γ
ˆ

1´γ
γ V ˚t rD̃s

˙γ

,

which is strictly positive as p1 ´ γqV ˚t rD̃s ą 0. Inserting λ˚ to the inner problem yields the
infimum

inf
λą0

!

λ
γ´1
γ V ˚t rD̃s ` λDtX

pπ,cq
t

)

“ 1
1´γ

´

DtX
pπ,cq
t

¯1´γ
ˆ

1´γ
γ V ˚t rD̃s

˙γ

fi dpDtX
pπ,cq
t , V ˚t rD̃sq,
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where dpx, νq “ 1
1´γx

1´γ
´

1´γ
γ ν

¯γ
. Then dνpx, νq “ x1´γ

´

1´γ
γ ν

¯γ´1
ą 0, so d is strictly

increasing in ν and

V˚t rΛs ` ΛtX
pπ,cq
t “ ess inf

D̃PDapD,tq
inf
λą0

!

λ
γ´1
γ V ˚t rD̃s ` λDtX

pπ,cq
t

)

“ ess inf
D̃PDa1 pD,tq

"

1
1´γ

´

DtX
pπ,cq
t

¯1´γ
ˆ

1´γ
γ V ˚t rD̃s

˙γ*

“ 1
1´γ

´

DtX
pπ,cq
t

¯1´γ
ˆ

1´γ
γ ess inf

D̃PDa1 pD,tq

!

V ˚t rD̃s
)

˙γ

“ 1
1´γ

´

DtX
pπ,cq
t

¯1´γ ´
1´γ
γ V˚t rDs

¯γ
.

Now Proposition 2.16 allows us to transfer all further investigations from pricing deflators D to
general deflators Λ by applying the transformation

dpx, ¨q “ 1
1´γx

1´γ
´

1´γ
γ ¨

¯γ

to the associated stochastic differential dual V ˚rDs. In particular Proposition 2.16 allows to
determine the dual value by solely optimizing over D P Da

1 as the optimization over λ ą 0 is
implicitly already incorporated in the above representation.

2.3 The Stochastic Differential Dual: Existence, Uniqueness, Con-
vexity and Utility Gradients

The goal of this section is to answer several questions about existence, uniqueness, monotonicity
and convexity of the stochastic differential dual in a general semimartingale setting, see Theo-
rem 2.20 below. We already mentioned that with classical results the existence of a solution to
the BSDE characterizing the Epstein-Zin utility process cannot be guaranteed, as the aggregator
f is not Lipschitz in v; the same is true for the BSDE characterizing the stochastic differential
dual so we have to take some extra efforts.
We also treat a dual utility gradient inequality. Utility gradients and their far reaching implica-
tions are discussed in Remark 2.18.
As we have seen in Proposition 2.8, [Matoussi and Xing, 2018] already provide some general
existence and uniqueness results for the associated backward stochastic differential equation in
a Brownian setting. In the recent paper [Becherer et al., 2023], the authors show existence and
uniqueness of stochastic differential duals in a general semimartingale setting, prove monotonic-
ity and convexity properties and derive a dual utility gradient inequality. However, as they
consider a certain modification of our classical Epstein-Zin aggregator, their result only covers
the cases γ ă 1, γψ ě 1 and γ ą 1, γψ ď 1, see equation (2.3.4). Our contribution is to include
the case γ, ψ ă 1 and in particular the empirically relevant case γ, ψ ą 1. As in [Becherer
et al., 2023] we do this by transferring the respective results for stochastic differential utility to
stochastic differential duals via a BSDE transformation. Hence we start briefly restating the
corresponding results on the primal side provided by [Seiferling and Seifried, 2016].

Denote the set of consumption streams under consideration by

C8 fi

"

c P C : E
„
ż T

0
c`tdt` c

`
T



ă 8 for all ` P R
*
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and the set of corresponding utility processes by

V8 fi

#

V P V : E

«

sup
tPr0,T s

|Vt|
`

ff

ă 8 for all ` P R

+

. (2.3.1)

We define a partial order on C8 via

c ĺ c̄ if and only if ct ď c̄t for dt-a.e. t P r0, T q and cT ď c̄T .

The following proposition summarizes the main results presented in [Seiferling and Seifried,
2016] which we transfer to the dual value function below.

Proposition 2.17 ([Seiferling and Seifried, 2016], Theorem 3.1, 3.3 & 3.4)
When γψ ě 1, ψ ą 1 or γψ ď 1, ψ ă 1, then

(i) for any c P C8 there exists a unique semimartingale V rcs P V8 that satisfies

Vtrcs “ Et
„
ż T

t
fpcs, Vsrcsqds` ΦpcT q



@t P r0, T s.

In particular C8 Ď Ca.

(ii) the mapping C8 Ñ V8, c ÞÑ V rcs is concave and increasing in the sense that if c ĺ c̄, then
Vtrcs ď Vtrc̄s for all t P r0, T s.

(iii) for all c, c̄ P C8 and every t P r0, T s we have

Vtrcs ď Vtrc̄s `
@

mtpc̄q, c´ c̄
D

t
(2.3.2)

where xm, yyt fi Et
”

şT
t msysds`mT yT

ı

and the time-t utility gradient mtpc̄q is given by

mt
spc̄q fi exp

ˆ
ż s

t
fv pc̄τ , Vτ rc̄sqdτ

˙

∇s with ∇s fi

#

fc pc̄s, Vsrc̄sq , 0 ď s ă T,

Φ1pc̄T q, s “ T.

As we aim to prove the dual analogue to Proposition 2.17, we define

D8 fi

"

Λ P D : E
„
ż T

0
Λ`tdt` Λ`T



ă 8 for all ` P R
*

(2.3.3)

and to emphasize the special importance of pricing deflators also D81 fi tD P D8 : Dp0q “ 1u.
As above we define a partial order on D8 as

Λ ĺ Λ̄ if and only if Λt ď Λ̄t for dt-a.e. t P r0, T sq and ΛT ď Λ̄T .

Remark 2.18
Since the pioneering work of [Duffie and Skiadas, 1994], utility gradients as in Proposition 2.17(iii)
have proven to be an essential tool in optimal portfolio allocation and equilibrium asset pricing.
The profound observation made by [Duffie and Skiadas, 1994] is that the first-order optimality
condition can be expressed as a martingale property of prices, once normalized by the correspond-
ing utility gradient, see also [Harrison and Kreps, 1979]. This has far reaching implications in
the theory of portfolio optimization and asset pricing. On the one hand, portfolio optimization
problems can now be directly addressed using the implied first-order conditions, see for example
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[Schroder and Skiadas, 1999], [Schroder and Skiadas, 2003], [Bank and Riedel, 2001b], [Kallsen
and Muhle-Karbe, 2010] and [Skiadas, 2013]. A general overview on this approach is given in
[Skiadas, 2008]. On the other hand, the same line of reasoning can be applied to the repre-
sentative agent’s portfolio in a general equilibrium setting, which leads to the representation of
the state-price deflator in the underlying economy as a utility gradient. Numerous authors have
exploited this fact, see for example [Duffie and Epstein, 1992b], [Duffie et al., 1994], [Bank and
Riedel, 2001a] or [Campbell, 2003] and the references therein.
Ultimately, utility gradients inhabit a natural connection to duality: Recall the budget constraint
(2.2.16) from Remark 2.5

E
„

DTX
pπ,cq
T `

ż T

0
Dscsds



ď x.

By the above, using the utility gradient as the deflator, the budget constraint evolves from a
supermartingale property to the mentioned martingale property, but this means the inequality
within the second step of our duality procedure becomes an equality, leaving no space for a duality
gap. Thus utility gradients naturally arise as the minimizer of the dual problem, c.f. [Cox and
Huang, 1989] [Karatzas et al., 1991], [Kramkov and Schachermayer, 1999], [El Karoui et al.,
2001], [Matoussi and Xing, 2018]. 4

In [Becherer et al., 2023][Theorem 3.8] the authors transfer all results from Proposition 2.17
to a stochastic differential dual generated by a certain modification of the dual Epstein-Zin
aggregator, namely

p0,8q ˆ VÑ R, pλ, νq ÞÑ δψ 1
ψ´1λ

1´ψ
´

1´γ
γ ν

¯1´ γψ
θ
´
ζδθ

γ
ν, (2.3.4)

where

ζ “

#

1, if θ ą 0

´1, if θ ă 0
.

They do so because they need always positive derivatives of the aggregator for their main results;
however, this means that their existence result only includes the cases 0 ă γ ă 1, γψ ě 1 and
γ ą 1, γψ ď 1 of our standard Epstein-Zin aggregator, but does not take into account the cases
γ, ψ ą 1 and γ, ψ ă 1. Moreover, they consider a different set of admissible dual controls than
we do.
Upon close inspection one notices that their arguments, specifically a certain BSDE transfor-
mation, can be adjusted to apply to our standard stochastic differential dual, then including all
those parameter constellations. We do so in Theorem 2.20, which may be seen as a ramification
of [Becherer et al., 2023][Theorem 3.8].

We prepare for the proof with the following basic lemma.

Lemma 2.19
Let V ˚ P V8 satisfy

V ˚t “ Et
„
ż T

t
f˚pΛs, V

˚
s qds` Φ˚pΛT q



, t P r0, T s

for some Λ P D8. Then the process M˚ given by

M˚
t fi Et

„
ż T

0
f˚ pΛs, V

˚
s qds` Φ˚pΛT q



, t P r0, T s
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is a Lp-martingale for all p ě 1 and

dV ˚t “ ´f
˚ pΛt, V

˚
t qdt` dM˚

t . (2.3.5)

Proof. Integrability of M˚
t , t P r0, T s, follows immediately by Hölder’s inequality and the inte-

grability assumptions in (2.3.1) and (2.3.3); the martingale property is immediate.
Moreover V ˚t “M˚

t ´
şt
0 f
˚ pΛs, V

˚
s qds for any t P r0, T s, which clearly implies (2.3.5).

Theorem 2.20
When γψ ě 1, ψ ą 1 or γψ ď 1, ψ ă 1, then

(i) for any Λ P D8 there exists a unique semimartingale V ˚rΛs P V8 that satisfies

V ˚t rΛs “ Et
„
ż T

t
f˚pΛs, V

˚
s rΛsqds` Φ˚pΛT q



, t P r0, T s. (2.3.6)

In particular D8 Ď Da.

(ii) the mapping D8 Ñ V8, Λ ÞÑ V ˚rΛs is convex and decreasing in the sense that if Λ ĺ Λ̄,
then V ˚t rΛs ě V ˚t rΛ̄s for all t P r0, T s.

(iii) for all Λ, Λ̄ P D8 and every t P r0, T s we have

V ˚t rΛs ě V ˚t rΛ̄s ´
@

pmtq˚pΛ̄q,Λ´ Λ̄
D

t
(2.3.7)

where xm˚, yyt fi Et
”

şT
t m˚sysds`m˚T yT

ı

and the time-t dual utility gradient pmtq˚pΛ̄q is
given by

pmt
sq
˚pΛ̄q “ exp

ˆ
ż s

t
f˚ν

`

Λ̄τ , V
˚
τ rΛ̄s

˘

dτ

˙

∇˚s ,

where

∇˚s fi

#

f˚λ pΛ̄s, V
˚
s rΛ̄sq, 0 ď s ă T

pΦ˚q1 pΛ̄T q, s “ T

Proof. For the first part, let Yt fi ´V ˚t . Then by an application of Itô’s formula we obtain

dYt “
ˆ

δψ 1
ψ´1Λ1´ψ

t

´

1´γ
γ V ˚t

¯1´ γψ
θ
´ δθ

γ V
˚
t

˙

dt´ dM˚
t (2.3.8)

“ ´

ˆ

δψ 1
1´ψΛ1´ψ

t

´´

1´ 1
γ

¯

Yt
¯1´ γψ

θ
´ δθ

γ Yt
˙

dt´ dM˚
t

and YT “ ´Φ˚pΛT q “ ε
1
γ γ
γ´1Λ

γ´1
γ

T . Now setting q˚ fi 1 ´ γψ
θ , δ̂ fi δψ, ε̂ fi δ̂ψ

ψ
1´ψ ε

1
γ´1 ,

Λ̂t fi
1
δ̂
ψ

ψ
ψ´1 Λt, (2.3.8) transforms to

dYt “ ´
ˆ

δ̂ 1
1´ψ Λ̂1´ψ

t

´´

1´ 1
γ

¯

Yt
¯q˚

´ δ̂
1´q˚Yt

˙

dt` dM˚
t , (2.3.9)

YT “ 1
1´ 1

γ

´

ε̂Λ̂T

¯1´ 1
γ
,

where M˚ fi ´M˚ is an Lp-martingale for all p ě 1. Moreover, Λ P D8 implies Λ̂ P D8 Ď C8,
thus for the parameters as in Section 2.2

1
γψ ď 1 and 1

ψ ă 1 ô γψ ě 1 and ψ ą 1
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and
1
γψ ě 1 and 1

ψ ą 1 ô γψ ď 1 and ψ ă 1.

the BSDE (2.3.9) is exactly the BSDE as considered in [Seiferling and Seifried, 2016] as cited
in Proposition 2.17 with 1

ψ , γ, c and V replaced by ψ, 1
γ , Λ̂ and Y, respectively10. Thus by

Proposition 2.17(i), it follows that (2.3.9) admits a unique solution

Y P

#

V P S :
´

1´ 1
γ

¯

V ą 0, E

«

sup
tPr0,T s

|Vt|
`

ff

ă 8 for all ` P R

+

“ ´V8.

In particular, for any Λ P D8 there exists a unique V ˚rΛs “ ´Y P V8.
For the second part, Proposition 2.17(ii) yields that the map Λ̂ ÞÑ YrΛ̂s is concave and increasing,
thus Λt ÞÑ V ˚t rΛs “ ´YrΛs is convex and decreasing for any t P r0, T s.
Regarding (iii), we first define the aggregator and terminal utility of Y as

hpλ, yq fi δ̂ 1
1´ψλ

1´ψ
´´

1´ 1
γ

¯

y
¯q˚

´ δ̂
1´q˚ y and Hpλq “ 1

1´ 1
γ

pε̂λq
1´ 1

γ .

Then by Proposition 2.17(iii), we obtain for any Λ, Λ̄ P D8 and any t P r0, T s

YtrΛs ď YtrΛ̄s `
A

mt
´

1
δ̂
pψq

ψ
ψ´1 Λ̄

¯

, 1
δ̂
pψq

ψ
ψ´1

`

Λ´ Λ̄
˘

E

t
, (2.3.10)

where xm, yyt “ Et
”

şT
t msysds`mT yT

ı

and

mt
s

´

1
δ̂
pψq

ψ
ψ´1 Λ̄

¯

“ exp

ˆ
ż s

t
hy

´

1
δ̂
pψq

ψ
ψ´1 Λ̄r,YrrΛ̄s

¯

dr

˙

∇s

and

∇s fi

$

&

%

hλ

´

1
δ̂
pψq

ψ
ψ´1 Λ̄s,YsrΛ̄s

¯

, 0 ď s ă T

H 1
´

1
δ̂
pψq

ψ
ψ´1 Λ̄T

¯

, s “ T.

We plug the parameters from above into (2.3.10) and obtain:

hy

´

1
δ̂
pψq

ψ
ψ´1 Λ̄r,YrrΛ̄s

¯

“ δ̂ 1´γψ
γpψ´1q

´

1
δ̂
pψq

ψ
ψ´1 Λ̄r

¯1´ψ ´´

1´ 1
γ

¯

YrrΛ̄s
¯´

γψ
θ
´ δ̂ θ

γψ

“ δψ 1´γψ
γpψ´1q

`

Λ̄r
˘1´ψ

´

1´γ
γ V ˚r rΛ̄s

¯´
γψ
θ
´ δθ

γ

“ f˚ν
`

Λ̄r, V
˚
r rΛ̄s

˘

.

Furthermore, for 0 ď s ă T , we obtain

∇s
1
δ̂
pψq

ψ
ψ´1 pΛs ´ Λ̄sq “ hλ

´

1
δ̂
pψq

ψ
ψ´1 Λ̄s,YsrΛ̄s

¯

1
δ̂
pψq

ψ
ψ´1 pΛs ´ Λ̄sq

“ f˚λ
`

Λ̄s, V
˚
s rΛ̄s

˘

pΛ´ Λ̄sq

“ ∇˚s pΛs ´ Λ̄sq

and

∇T
1
δ̂
pψq

ψ
ψ´1 pΛ´ Λ̄sq “ H 1

´

1
δ̂
pψq

ψ
ψ´1 Λ̄T

¯

1
δ̂
pψq

ψ
ψ´1 pΛT ´ Λ̄T q

“ pΦ˚q1 pΛ̄T qpΛT ´ Λ̄T q

“ ∇˚T pΛT ´ Λ̄T q.

10note that our q˚ is exactly their q when one replaces γ and 1
ψ

by 1
γ
and ψ, respectively.
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Thus plugging in, (2.3.10) becomes

´ V ˚t rΛs ď ´V
˚
t rΛ̄s `

@

pmtq˚pΛ̄q,Λ´ Λ̄
D

t

and the result follows.

Remark 2.21
Dual utility gradients and the associated inequality in (2.3.7) have not revealed as far reaching
theoretical implications as the primal ones so far. Although m˚pΛ˚q is intuitively connected to
optimal consumption, in asset pricing consumption is a priori known and the deflator is the
actual object of interest.
However, they could potentially be used to derive verification results for the dual value function,
similar as in [Kraft et al., 2017][Theorem 5.1], where the authors use the primal gradient in-
equality as in (2.3.2) to verify their optimal strategy. Verification in turn is closely connected
to duality as pointed out by [Matoussi and Xing, 2018]. This connection is shortly discussed in
Section 4.4.1. 4

The assumptions on integrability imposed by Theorem 2.20 are quite strong and we make some
efforts to soften them up in Section 3.3. For now we finish our analysis of the stochastic differ-
ential dual as the solution to the BSDE (2.3.6).
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Chapter 3

Bounding the Optimality Gap

In the previous chapter we introduced the primal and dual optimization problem and established
the fundamental theory of the associated value processes. However, a solution to both is in
general far out of sight and has only been found under very restrictive parameter conditions, see
Section 5.1 for more details.
In our later chapters we develop two numerical methods to find at least approximate solutions
to the problem based on dynamic programming. However, as exact solutions are in general
not available, there is no way to evaluate the accuracy of our approximations. Thus, before
investigating any approximation methods, in this chapter we extend the idea of using duality
theory to derive an upper bound on the welfare loss as introduced in [Haugh et al., 2006]. In
other words we tackle the question

If an investor with recursive preferences behaves suboptimally in a given market, how much
worse is she off compared with optimal behavior?

To understand our approach, denote by c˚ the optimal strategy associated to our consumption-
investment optimization problem and by c an arbitrary admissible strategy. Then the intuitive
answer to the motivating question of this chapter is given by the (primal) welfare loss νpc˚q´νpcq.
There are two major issues with this answer. First, the optimal strategy c˚ is in general not
known, so there is no way to determine the associated utility νpc˚q. Second, even for simple
(e.g. constant) consumption streams c, the associated recursive utility νpcq is in general hard to
compute, as one would have to solve the non-standard BSDE

V0rcs “ E
„
ż T

0
fpcs, Vsrcsqds` ΦpcT q



.

We tackle the two issues by gradually allowing for larger errors in the answer. The absence of
the optimal consumption stream seems to be the biggest issue, but a solution is already at hand
in terms of the duality inequality derived in Chapter 2. Denote by Λ˚ the (unknown) optimal
deflator to the associated dual problem and by Λ an arbitrary admissible deflator. Then by
Theorem 2.11 (recall also Remark 2.12) we know

νpcq ď νpc˚q ď ν˚pΛ˚q ď ν˚pΛq, (3.0.1)

so ν˚pΛq ´ νpcq is an upper bound on the welfare loss. We call this upper bounds associated
to the strategies pπ, cq and Λ the optimality gap. In particular one does not need the optimal
primal or dual strategies to express this bound. It follows a precise definition of the concept, an
illustration is given in Figure 3.1.
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Definition 3.1 (Optimality Gap)
In a given market model M 1, let pπ˚, c˚q P A be an investor’s optimal investment-consumption
strategy and let Λ˚ P Da be the optimal dual strategy. Then we define the market specific duality
gap as DpM q fi ν˚pΛ˚q ´ νpc˚q P r0,8q.
For arbitrary strategies pπ, cq P A and Λ P Da we define the investors primal and dual welfare
loss L pπ, cq and L ˚pΛq as

L : AÑ r0,8q, pπ, cq ÞÑ νpc˚q ´ νpcq and L ˚ : Da Ñ r0,8q,Λ ÞÑ ν˚pΛq ´ ν˚pΛ˚q.

Finally, we define the optimality gap associated to the strategies pπ, cq P A and Λ P Da as

O : AˆDa Ñ r0,8q, pπ, c,Λq ÞÑ L pπ, cq `L ˚pΛq `DpM q “ ν˚pΛq ´ νpcq.

ν˚pΛ˚q

νpc˚q

νpcq

ν˚pΛq
Λ

pπ, cq

Opπ, c,ΛqDpM q

L pπ, cq

L ˚pΛq

Dual Admissible Strategies

Primal Admissible Strategies

Optimality Gap including Duality Gap

νpcq

ν˚pΛq

νpc˚q “ ν˚pΛ˚q

Λ

pπ, cq

Opπ, c,Λq

L pπ, cq

L ˚pΛq

Dual Admissible Strategies

Primal Admissible Strategies

Optimality Gap without Duality Gap

Figure 3.3: (Primal/Dual) Welfare Loss, Duality Gap and Optimality Gap

The optimality gap has in different appearances been used as an upper bound on the welfare loss
for a while. Historically, various approximation techniques have been developed to numerically
approach the solution of an intractable optimization problem in incomplete markets, e.g. the
log-linear analytical approximation of [Chacko and Viceira, 2005], finite difference PDE-methods
as in [Brennan and Xia, 2002] and more. However, it was usually difficult to evaluate the accu-
racy of the obtained approximations. [Haugh et al., 2006] were the first to come up with the idea
of evaluating approximative strategies based on duality theory. Their idea was picked up and
generalized to various forms of market frictions by different authors, e.g. [Brown et al., 2010],
[Brown and Smith, 2011], [Bick et al., 2013], [Kamma et al., 2020] or [Kamma and Pelsser, 2022].
However, all existing results consider time-additive utility and as mentioned above, in our case
of recursive utility the optimality gap itself is in general hard to evaluate, which presents us with
additional issues. Our approach to bypass those, is to find upper bounds on Opπ, c,Λq that can
easily be simulated. These upper bounds on the optimality gap are then also bounds on the
duality gap and in particular on the welfare loss.

1We use M as an abstract notation for anything that might have an impact on the duality gap, in particular
the specific model dynamics and the investor’s risk preferences. Note that all quantities directly or indirectly
depend on M , but the dependence is omitted for notational simplicity.
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3.1 Universal Power Utility Bounds

The first kind of bounds we establish are in terms of specifically scaled power utility functionals;
hence we call them power bounds. It turns out that in the derivation of those bounds it is more
convenient to consider the reciprocal of elasticity of intertemporal substitution φ fi 1

ψ instead of
the EIS ψ itself. In this notation the primal and dual Epstein-Zin aggregators read as

fpc, vq “ δ 1
1´φc

1´φpp1´ γqvq1´
1
θ ´ δθv,

f˚pλ, νq “ δ
1
φ φ

1´φλ
φ´1
φ

´

1´γ
γ ν

¯1´ γ
θφ
´ δθ

γ ν,

where θ “ 1´γ
1´φ . From now on we may switch between the notation in terms of ψ and φ,

respectively, whenever it is convenient.

Primal Power Bounds

Upper and lower bounds for the stochastic differential utility have already been provided by
[Seiferling and Seifried, 2016]: For any c P C8 and 0 ă % ‰ 1 define

P%pcq fi ϕγ ˝ ϕ
´1
% pL

%rcsq, (3.1.1)

where ϕ%pcq “ 1
1´%c

1´%, Φ%pcq “ ε
1´%
1´γ 1

1´%c
1´%, ε ą 0 and L%rcs “ L% is given by2

L%t “ eδtEt
„
ż T

t
δe´δsϕ%pcsqds` e

´δTΦ%pcT q



. (3.1.2)

Those transformed power utility processes are admissible in the sense of the following lemma.

Lemma 3.2 ([Seiferling and Seifried, 2016], Lemma 4.5)
For all c P C8 and 1 ‰ % ą 0 it holds that P%pcq P V8.

In their work, [Seiferling and Seifried, 2016] show that those power utility processes can be used
as upper and lower bounds on the recursive utility associated with a fixed consumption stream
c P C8.

Proposition 3.3 ([Seiferling and Seifried, 2016], Theorem 4.6)
If V rcs P V8 is a recursive utility process associated with c P C8 we have

Pγ_φpcq ď V rcs ď Pγ^φpcq.

Proposition 3.3 is already half the answer to our problem, as it provides a lower bound on νpcq
that can easily be evaluated numerically; the upper bound however is not useful for our purpose.
The issue is that for a non-optimal consumption stream the upper power bound provided in
Proposition 3.3 might still be smaller than the primal utility associated to the optimal strategy,

Pγ_φpcq ď V rcs ď Pγ^φpcq ď V rc˚s. (3.1.3)

This is certainly the case for any suboptimal strategy in the power utility case, where the first
three quantities in (3.1.3) actually coincide, c.f. (3.1.1) and (2.1.4). However, it already allows
us to expand our chain of inequalities from (3.0.1) on the left hand side:

Pγ_φpcq ď νpcq ď νpc˚q ď ν˚pΛ˚q ď ν˚pΛq. (3.1.4)
2Note that in contrast to [Seiferling and Seifried, 2016] we have to rescale the weight of terminal bequest ε

within Φ%, as we use a different parametrisation.
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Within the next section we derive similar power bounds for the stochastic differential dual
associated to an arbitrary but fixed deflator process Λ P D8. Then the upper bound on ν˚pΛq
can be used to expand (3.1.4) on the right hand side by an easily computable quantity.
In total we thereby obtain our desired bound on the optimality gap.

Dual Power Bounds

Analogously to [Seiferling and Seifried, 2016], for any 1 ‰ %, γ ą 0, define the mappings

ϕ˚% : p0,8q Ñ R, λ ÞÑ %
1´%λ

%´1
% and

Φ˚% : p0,8q ÞÑ R, λ ÞÑ ε
%´1

%pγ´1q %
1´%λ

%´1
% ,

that is the dual time-additive utility functions with risk aversion %. Furthermore, define for any
Λ P D8 the stochastic process

P˚%pΛq fi ϕ˚γ ˝ pϕ
˚
%q
´1pL%rΛsq, (3.1.5)

where L% “ L%rΛs satisfies

L%t “ e
δ
%
tEt

„
ż T

t
δ

1
% e
´ δ
%
s
ϕ˚%pΛsqds` e

´ δ
%
T

Φ˚%pΛT q



. (3.1.6)

Thus P̄˚%pΛq is just the dual power utility function for a given deflator Λ P D8 with utility
parameter %, transformed to a γ-scale. Note that the rescaling of the weight of terminal be-
quest is not only a technical necessity, but also important for its interpretation as it depends on
the risk preference γ, see (3.1.11) below. The rescaling could have been avoided by a different
parametrization of our terminal bequest function.

Showing that those power utility functionals actually characterize an upper, respectively lower
bound on the stochastic differential dual heavily relies on a so called comparison theorem. One
that is general enough for our semimartingale setting is provided by [Seiferling and Seifried,
2016]. We briefly recall the prerequisites in the following definition and state the theorem there-
after without proof. For a more detailed elaboration on the topic, including a proof of the
comparison result Theorem 3.5, see Appendix A.2.

Definition 3.4 (BSDE - Sub-/Supersolutions)
Let g : Ωˆ r0, T s ˆ RÑ R be G b B-measurable, where G is the progressive σ-field and B is the
Borel σ-field. Let ξ P L1pPq and suppose X is a semimartingale with suptPr0,T s Er|Xt|s ă 8 and
moreover Er

şT
0 |gpt,Xtq|dts ă 8. Then we call X a subsolution of the BSDE with aggregator g

and terminal value ξ, if

dXt “ ´gpt,Xtqdt` dMt ´ dAt, XT ď ξ

where M is a martingale and A is a decreasing and right-continuous process such that A0 “ 0.
We say

X is a subsolution of BSDEpg, ξq

for short. Analogously X is supersolution of BSDEpg, ξq, if XT ě ξ and A is increasing. X is
a solution of BSDEpg, ξq as in Definition A.1, if it is a sub- and supersolution.
We say that the aggregator g satisfies pMq, if there is a constant k ą 0 such that for dt a.e.
t P r0, T s

gpω, t, xq ´ gpω, t, yq ď kpx´ yq for all x, y P R with x ě y. (M)
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The property (M) is sometimes called monotonicity condition.

Note: The primal and dual aggregators f and f˚ both satisfy (M) as their derivatives with respect to v,
respectively ν, are bounded from above, see Lemma B.7 and Lemma B.13.

Theorem 3.5 ([Seiferling and Seifried, 2016], Theorem 4.3)
Suppose X is a subsolution of BSDEpg, ξq with ErsuptPr0,T s |Xt|s ă 8 and Y is a supersolution
of BSDEph, ηq with ErsuptPr0,T s |Yt|s ă 8 where ξ ď η.

(a) If gpt, Ytq ď hpt, Ytq for dt a.e. t P r0, T s and g satisfies pMq, then X ď Y .

(b) If gpt,Xtq ď hpt,Xtq for dt a.e. t P r0, T s and h satisfies pMq, then X ď Y .

We now have everything at hand that we need to show that the rescaled power utility process
as in (3.1.5) provides upper and lower bounds on the dual value process.
First observe that for Λ P D8 standard representation results on linear BSDEs with BSDEp-
standard parameters, see e.g. Theorem A.6, yield that L% has a representation as

dL%t “ ´
”

δ
1
%ϕ˚%pΛtq ´

δ
%L

%
t

ı

dt` dM%
t , L%T “ Φ˚%pΛT q, (3.1.7)

where M% is a Lp-martingale for all p ě 1, 0 ă % ‰ 1. Recall also that V ˚ “ V ˚rΛs solves

dV ˚t “ ´f
˚ pΛt, V

˚
t qdt` dM˚

t , V ˚T “ Φ˚pΛT q

where M˚
t “ Et

„

şT
0 f

˚ pΛs, V
˚
s rΛsqds` Φ˚pΛT q



is a Lp-martingale for all p ě 1.

Then first part of our bounds follows immediately from Theorem 3.5.

Lemma 3.6
Let V ˚rΛs P V8 be the stochastic differential dual associated to a pricing deflator Λ P D8.
If γ ě φ, then V ˚rΛs ě P̄˚γpΛq, and if γ ď φ then V ˚rΛs ď P̄˚γpΛq.

Proof. Define ϑpλq fi δ
1´γ
γ γ

1´γλ
γ´1
γ . Then a technical calculation shows

f˚ pλ, ϑpλqq “ ´δ
1
γ λ

γ´1
γ and f˚ν pλ, ϑpλqq “ ´

δ
γ .

When γ ě φ then f˚ pλ, νq is convex by Lemma B.13, so we obtain the convexity inequality

f˚ pλ, νq ě f˚ pλ, ϑpλqq ` f˚ν pλ, ϑpλqq rν ´ ϑpλqs

“ δ
1
γϕ˚γpλq ´

δ
γ ν.

The result follows from Theorem 3.5 since V ˚T “ Φ˚pΛT q “ LγT . On the other hand, if γ ď φ
then f˚ pλ, νq is concave by Lemma B.13 and the result follows by the same calculations.

The two remaining inequalities of our bounds requires more work. While the final step is once
again a straightforward application of the comparison result Theorem 3.5, we need some more
information on the dynamics of the involved processes first. We outsource the calculations to
the following technical lemma, which is a dual analogue to Lemma 4.8 in [Seiferling and Seifried,
2016].
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Lemma 3.7
Let V ˚ P V8 be a stochastic differential dual associated to some Λ P D8 and define L “

ϕ˚φ ˝ pϕ
˚
γq
´1pV ˚q. Then L satisfies

dLt “ ´
”

δ
1
φϕ˚φpΛtq ´

δ
φLt

ı

dt`
´

1´γ
γ V ˚t´

¯

γ
θφ
´1

dM˚
t ´ dAt, (3.1.8)

where
´

1´γ
γ V ˚t´

¯

γ
θφ
´1

dM˚
t is a Lp-martingale for all p ě 1 and 3

dAt “
1
2
φ´γ
γ

1
p1´φqLtdrL

c
ts `

γ
1´γ

´

1´φ
φ Lt´

¯´
θφ
γ

∆
´

1´φ
φ Lt

¯

θφ
γ
´∆Lt. (3.1.9)

is decreasing if γ ě φ and increasing if γ ď φ.

Proof. For V ˚ P V8 and Λ P D8, let L fi ϕ˚φ ˝ pϕ
˚
γq
´1pV ˚q. Denote g : V Ñ R, gpνq fi

ϕ˚φ ˝ pϕ
˚
γq
´1pνq “ φ

1´φ

´

1´γ
γ ν

¯

γ
θφ . Then g1pνq “

´

1´γ
γ ν

¯

γ
θφ
´1

and g2pνq “ γ´φ
γφ

´

1´γ
γ ν

¯

γ
θφ
´2

. So

L “ φ
1´φ

´

1´γ
γ V ˚

¯

γ
θφ and thus we have

L P

#

V P S : p1´ φqV ą 0 and E

«

sup
tPr0,T s

|Vt|
`

ff

ă 8 for all ` P R

+

.

Moreover, as V ˚ P V8 and M˚ “ Et
„

şT
0 f

˚ pΛs, V
˚
s rΛsq ds ` Φ˚pΛT q



is a Lp-martingale for

all p ě 1, so is
´

1´γ
γ V ˚t´

¯

γ
θφ
´1

dM˚
t . An application of Ito’s formula, see [Jacod and Shiryaev,

2013][Theorem 4.57], yields

dLt “ dgpV ˚t q “ g1pV ˚t´qdV
˚
t `

1
2g
2pV ˚t´qdrpV

˚
t q

cs ´ dJt.

where
dJt “ g1pV ˚t´q∆V

˚
t ´∆gpV ˚t q (3.1.10)

A direct calculation shows that

g1pV ˚t qdV
˚
t “ ´

”

δ
1
φϕ˚pΛtq ´

δ
φgpV

˚
t q

ı

dt`
´

1´γ
γ V ˚t´

¯

γ
θφ
´1

dM˚
t ,

so to obtain (3.1.8) it remains to show that 1
2g
2pV ˚t´qdrpV

˚
t q

cs ´ dJt “ ´dAt as in (3.1.9).
Inserting V ˚ “ g´1pLq to (3.1.10) we first compute

dJt “ g1pV ˚t´q∆V
˚
t ´∆gpV ˚t q “

γ
1´γ

´

1´φ
φ Lt´

¯´
θφ
γ

∆
´

1´φ
φ Lt

¯

θφ
γ
´∆Lt.

Moreover we have dLc
t “ g1pV ˚t´qdpM

˚
t q

c, thus drpM˚
t q

cs “ 1
g1pV ˚t´q

2 drLc
ts and we obtain

g2pLt´qdpM˚
t q

c “
g2pVt´q

g1pV ˚t´q
2
drLc

ts “
γ´φ
γ

1
p1´φqLt´drLc

ts,

3For a semimartingale X we denote by Xc the unique continuous local martingale that satisfies rXc
s “ rXsc,

[Jacod and Shiryaev, 2013][Proposition 4.27] and [Theorem 4.52].
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yielding (3.1.8). We complete the proof by verifying that At is actually increasing, if γ ď φ and
decreasing otherwise. Note that

g2pνq “ γ´φ
γφ

´

1´γ
γ ν

¯

γ
θφ
´2

#

ě 0, if γ ě φ

ď 0, if γ ď φ
.

Consider the case γ ě φ, then g is convex and in particular

gpV ˚q ě gpV ˚t´q ` g
1pV ˚t´qpV

˚
t ´ V

˚
t´q,

so J only has only non-positive jumps. Moreover γ ě φ implies 1
2
φ´γ
γ

1
p1´φqLt ď 0, so A is

decreasing. The case γ ď φ follows analogously by the concavity of g and 1
2
φ´γ
γ

1
p1´φqLt ě 0.

Lemma 3.8
Let V ˚rΛs P V8 be the stochastic differential dual associated to a pricing deflator Λ P D8.
If γ ě φ, then V ˚rΛs ď P̄˚φpΛq, and if γ ď φ then V ˚rΛs ě P̄˚φpΛq.

Proof. For Λ P D8, let V ˚ P V8 be its associated stochastic differential dual. As in Lemma 3.7,

let g : V Ñ R, gpνq fi ϕ˚φ ˝ pϕ
˚
γq
´1pνq and L fi gpV ˚q. As g1pνq “

´

1´γ
γ ν

¯

γ
θφ
´1
ą 0, g is

increasing. Thus the claim is equivalent to showing gpV ˚q “ L ď Lφ “ gpP̄˚φpΛqq if γ ě φ and
gpP̄˚φpΛqq “ Lφ ď L “ gpV ˚q if γ ď φ. Consider the case γ ě φ, the case γ ď φ follows by the
same arguments. First, note that

LφT “ Φ˚φpΛT q “ gpΦ˚pΛT qq “ gpV ˚T q “ LT , (3.1.11)

where Φ˚ is the usual dual terminal utility as in Example 2.9. Thus, if γ ě φ, L is a subsolution to
the linear BSDE (3.1.7) by Lemma 3.7 and the result follows immediately from Theorem 3.5.

Putting both results from above together yields the following dual power bounds.

Proposition 3.9
Let V ˚rΛs P V8 be the stochastic differential dual associated to a pricing deflator Λ P D8. Then
we have the upper and lower bounds

P̄˚γ_φpΛq ď V ˚rΛs ď P̄˚γ^φpΛq.

Using Proposition 2.16, the reduction to pricing deflators D P D81 is straight forward.

Corollary 3.10
Let V ˚rΛs P V8 be a utility process associated to Λ P D8. Then we have

P˚γ_φpDq ď V ˚rΛs ` ΛXpπ,cq ď P˚γ^φpDq

where P˚%pDq fi d
`

Xpπ,cqD, P̄˚%pDq
˘

and dpx, νq fi 1
1´γx

1´γ

ˆ

1´γ
γ ν

˙γ

as in Proposition 2.16.

Proof. By Proposition 3.9 we have for D P D81
P̄˚γ_φpDq ď V ˚rDs ď P̄˚γ^φpDq. (3.1.12)

By applying the increasing function dpXpπ,cqD, ¨q on every element of (3.1.12) the result follows
as

V ˚rΛs ` ΛXpπ,cq “ dpXpπ,cqD,V ˚rDsq,

by Proposition 2.16.
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We are now ready to formulate our desired bounds on the optimality gap and more importantly,
the primal welfare loss.

Theorem 3.11
Let pπ˚, c˚q P A with c˚ P C8 be the optimal strategy associated to the primal problem (2.1.5)
and Λ˚ “ λ˚D˚ P D8 be the optimal deflator associated to the dual problem (2.2.27). Then for
any strategy pπ, cq P A with c P C8 and any pricing deflator Λ “ λD P D8 we have

Pγ_φpcq ď V rc˚s ď P˚γ^φpDq.

and in particular
L pπ, cq ď Opπ, c,Λq ď P˚γ^φpDq ´ Pγ_φpcq

Proof. Using Proposition 3.3 in the first, the duality relation (2.2.29) in the third and Corol-
lary 3.10 in the last step, we obtain the first inequality in the theorem:

Pγ_φpcq ď V rcs ď V rc˚s ď V ˚rΛ˚s ` Λ˚Xpπ
˚,c˚q ď V ˚rΛs ` ΛXpπ,cq ď P˚γ^φpDq.

The second one follows immediately as Opπ, c, λDq “ ν˚pΛq ´νpcq “ pV ˚0 rΛs ` λxq ´ V0rcs.

The power bounds from Theorem 3.11 are, to the best of our knowledge, the first ones in the
literature that apply to recursive Epstein-Zin utility and do not rely on solving the BSDEs for V
and V ˚, respectively. On the contrary they are easy to simulate and valid for every parameter
constellation for which we established the duality relation (2.2.28). In particular, they are a
suitable tool in the evaluation of numerical schemes that provide approximations to the optimal
primal and associated dual strategies, if no other benchmark is available: The upper and lower
power bound associated to the strategies provided by the algorithms’ output are evaluated and
yield an upper bound on the optimality gap, so if this bound is tight, the welfare loss associated
to the approximate strategies must be small and the approximation must be good. However,
we must mention that even for good strategies, the power utility bounds cannot be expected to
provide a good bound on the optimality gap when the RRA γ and EIS ψ differ too much from
the power utility case.

As a first approach to counteract those potential quantitative shortcomings, we consider a dif-
ferent kind of (one sided) bounds arising from our duality theory in Section 2.2.1. As part of our
numerical analysis in Chapter 6 we see that they are indeed an asset when it comes to parameter
constellations where the power bounds fail.

Besides providing a first general tool to measure the performance of suboptimal strategies when
there is no benchmark available, dual power bounds can be a powerful tool in the theoretical
treatment of stochastic differential duals. In our case we use them in Section 3.3 to soften the
integrability conditions that are needed to ensure existence and uniqueness of the stochastic
differential dual from Theorem 2.20.

3.2 Variational Utility Bounds

Our power bounds work especially well in the case of power utility; in fact, in that case they
really just evaluate the considered strategy and hence are exact. However, it is intuitively clear,
that their precision declines when the difference between γ and φ becomes large. Thus this
short section explains how our duality procedure from Section 2.2.1 already provided us with
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alternative bounds.

The following corollary captures the fact that by Lemma 2.4, Lemma 2.10 and Remark 2.13,
the variational representation provides a lower, respectively upper bound on the value function,
depending on whether the problem is convex or concave. Even if those bounds are one-sided,
they are a first step in overcoming potential quantitative shortcomings of our power bounds.

Corollary 3.12
For any investment strategy pπ, cq P A and pricing deflator D P Da such that V rπ, cs, V ˚rDs P
Va, the following hold:

(L) If γ, ψ ě 1, ψ ą 1, then for any u P P

Utrc, us ď Vtrcs,

where Utrc, us “ Et
”

şT
t κ

u
t,sF pcs, usqds` κ

u
t,TΦT pcT q

ı

, in particular

L pπ, cq ď Opπ, c,Λq ď P˚γ^φpDq ´ Utrc, us

(U) If γ, ψ ď 1, ψ ă 1, then for any u P P

V ˚t rDs ď U˚t rD,us

where U˚t rD,us “ Et
„

şT
t κ

u
γ

t,sF
˚pDs, usqds` κ

u
γ

t,TΦ˚pDT q



, in particular for

U˚t rD,us fi
1

1´γ

´

DtX
pπ,cq
t

¯1´γ ´
1´γ
γ U˚t rD,us

¯γ
,

we obtain
L pπ, cq ď Opπ, c,Λq ď U˚rD,us ´ Pγ_φpcq

Proof. The inequality in (L) follows immediately from Lemma 2.4, the inequality in (U) follows
from Lemma B.17. The bounds on the optimality gap are then clear by (3.1.4) and Proposi-
tion 2.16

Within the proofs of Lemma 2.4 and and the concave version of Lemma 2.10 (i.e. Lemma B.17),
respectively, we have seen that,

uc fi arg sup
uPU

Utrc, us “ ´fvpc, V rcsq and uD fi arg sup
uPU

U˚t rD,us “ ´f
˚
ν pD,V

˚rDsq

Now, if we can find at least an approximate solution for the primal and dual problem and the
associated strategies respectively, we also have an approximation for uc and uD. As the vari-
ational representation of recursive utility is exact for exact uc and uD, one would expect that
good approximations of the optimal strategy, the processes Utrc, us and U˚t rD,us provide good
lower and upper bounds, respectively. In particular those bounds are specifically designed for
recursive utility and of time-additive structure, hence easily computable e.g. by Monte Carlo
simulation.

Finding such approximations of the primal and dual value process and the associated primal
and dual strategies is the goal of our numerical methods examined in Chapter 5 and Chapter 6,
where all the above bounds on the optimality gap are put to use.
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3.3 Application: A Refined Existence Result

The assumptions on integrability within Theorem 2.20 (i) are quite restrictive and within this
section we apply our power bounds to soften them up.

Throughout this section we assume that

γ, ψ ą 1 such that θ ă 0 and q˚ fi 1´ γψ
θ ą 1

and moreover, that for all γ, ψ “ 1
φ ą 1 we have

E
„
ż T

0
Λ
γ´1
γ

t ` Λ
φ´1
φ

t dt` Λ
γ´1
γ

T ` Λ
φ´1
φ

T



ă 8, (3.3.1)

such that our dual power bounds from Proposition 3.9 exist.

We introduce the set of β-integrable semimartingales as Sβ fi

!

V P S : E
”

suptPr0,T s |Vt|
β
ı

ă 8

)

and the sets of relevant deflators and stochastic differential duals as

Dα,β fi

"

Λ P Da : Λ satisfies (3.3.1) and E
„
ż T

0
Λα
t dt` Λ

γ´1
γ

β

T



ă 8

*

and (3.3.2)

Vβ fi

!

V P Sβ : p1´ γqV ą 0
)

,

where α
1´ψ ą 1 and β

q˚ ą 1 such that

1´ ψ

α
`
q˚

β
ď 1.

Then the existence and uniqueness result we prove within this section reads as follows.

Theorem 3.13
Let γ, ψ ą 1 and α,β as in (3.3.2). Then for any Λ P Dα,β there exists a unique V ˚ “ V ˚rΛs P
Vβ satisfying

V ˚t rΛs “ Et
„
ż T

t
f˚pΛs, V

˚
s rΛsqds` Φ˚pΛT q



, t P r0, T s. (3.3.3)

The idea of the proof is similar to the approach taken by [Seiferling and Seifried, 2016][Theorem
3.1] and [Seiferling, 2016][Theorem 3.33], i.e. we transfer our results for Λ P D8 to the Dα,β case
by using a monotone convergence result. Consequently, the steps we take in this approach are
similar to the ones taken in [Seiferling and Seifried, 2016] and [Seiferling, 2016], but by making
use of our dual power bounds and the duality theory from the first chapter we simplify many of
the arguments therein.

The uniqueness part of Theorem 3.13 is an immediate consequence from the comparison result
Theorem 3.5.

Corollary 3.14
Let V ˚, V̄ ˚ P Vβ be the dual value processes associated to the deflators Λ P Dα,β and Λ̄ P Dα,β,
respectively, and assume Λ ĺ Λ̄. Then V̄ ˚ ď V ˚ and in particular for any Λ P Dα,β there exists
at most one associated utility process V P Dβ.
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Proof. We know from Lemma B.13 that f˚pλ, νq is decreasing in λ for all ν P V, so Theorem 3.5
applied to X “ V̄ ˚ and Y “ V ˚ yields the result.

Lemma 3.15
Let V ˚ P Vβ satisfy

V ˚t “ Et
„
ż T

t
f˚pΛs, V

˚
s qds` Φ˚pΛT q



, t P r0, T s

for some Λ P Dα,β. Then Mt “ Et
”

şT
0 f

˚ pΛs, V
˚
s qds` Φ˚pΛT q

ı

, t P r0, T s, is a uniformly
integrable martingale and V ˚ satisfies

dV ˚t “ ´f
˚ pΛt, V

˚
t q dt` dM˚

t , V ˚T “ Φ˚pΛT q. (3.3.4)

Proof. Define r´1 fi
1´ψ
α `

q˚

β ď 1. Then an application of Hölder’s inequality yields

ˆ
ż T

0
|f˚pΛs, V

˚
s q|

rds

˙

1
r

ď δψ

ψ´1

ˆ
ż T

0
Λα
s ds

˙

1´ψ
α

ˆ
ż T

0

´

1´γ
γ V ˚s

¯β
ds

˙

q˚

β

` T
1
r
|δθ|
γ sup

tPr0,T s
|V ˚t |.

In particular the integrability assumption (3.3.2) implies
şT
0 |f

˚pΛs, V
˚
s q|ds ` |Φ

˚pΛT q| P L
1pPq

and M is a uniformly integrable martingale; thus V ˚ is a solution of (3.3.4).

We now want to establish a monotone convergence result on Vβ. We say that a sequence
pΛnqnPN Ď Dα,β is increasing if Λn ĺ Λn`1, n P N and we write Λn Ñ Λ in Dα,β if

Λnt Ñ Λt for a.e. t P r0, T s and ΛnT Ñ ΛT with Λ P Dα,β.

In particular Λ P Dα,β by definition. If a sequence pΛnqnPN is increasing with Λn Ñ Λ in Dα,β,
we write Λn Ò Λ in Dα,β. The decreasing case is defined analogously.

Lemma 3.16
Let pΛnqnPN Ă Dα,β and pV ˚,nqnPN Ă

 

V P Sβ : p1´ γqV ě 0
(

such that

V ˚,nt “ Et
„
ż T

t
f˚pΛns , V

˚,n
s qds` ΦpΛnT q



, t P r0, T s, n P N.

If Λn Ò Λ or Λn Ó Λ in Dα,β, then there exists a unique V ˚ P
 

V P Sβ : p1´ γqV ě 0
(

with

V ˚t rΛs “ Et
„
ż T

t
f˚pΛs, V

˚
s rΛsqds` Φ˚pΛT q



@t P r0, T s

and V ˚,nt Ñ V ˚t for all t P r0, T s.

Note: Note that as γ, ψ ą 1 and in particular q˚ ą 1, the dual aggregator f˚pλ, ¨q is well defined in zero.
Including zero to the set of possible limits simplifies the proof by automatically providing an upper bound on
V ˚,n for all n P N. We show a posteriori in Proposition 3.18 that p1´γqV ˚rΛs ą 0, so in particular V ˚rΛs P Vβ.

Proof. We know from Corollary 3.14 that for every Λ P Dα,β, there is at most one V ˚rΛs “ V ˚ P
Vβ that satisfies (3.3.3).
Also by Corollary 3.14 we have V ˚,1 ď V ˚,n (resp. V ˚,n ď V ˚,1) for any n P N, if Λn is decreasing
(resp. increasing). As γ ą 1 we always have V ˚,n ď 0 for any n P N. It remains to find a lower
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bound if Λn is increasing. This bound is immediately given by the variational representation of
V ˚,n: By Lemma 2.10 we have

V ˚t rΛ
ns “ ess sup

uPP
Et
„
ż T

t
κ
u
γ

t,sF
˚pΛns , usqds` κ

u
γ

t,TΦ˚pΛnT q



ě Et
„

e
´ δθ
γ
pT´tq

Φ˚pΛnT q



fi Unt .

(3.3.5)
The inequality in (3.3.5) is clear by choosing u ” δθ, which implies F ˚ ” 0, see Lemma B.10.
As Φ˚ is decreasing by Lemma B.11, we have Ut fi Et

”

e
´ δθ
γ
pT´tq

Φ˚pΛT q
ı

ď Unt . Finally U P Vβ

by Doob’s Lp-inequality and the integrability assumption (3.3.2).
Summarizing the above we always have U ď V ˚,n ď 0 for all n P N. Hence we can define the
stochastic process V ˚ as the monotone pointwise limit V ˚t fi limnÑ8 V

˚,n
t for all t P r0, T s.

Note that for any n P N and almost every s P r0, T s we have

|f˚pΛnt , V
˚,n
t q| ď δψ

ψ´1

´

ˇ

ˇΛ1
t

ˇ

ˇ

1´ψ
` |Λt|

1´ψ
¯´

1´γ
γ Ut

¯1´ γψ
θ
` 2δθ

γ Ut fi Bt.

Then the same Hölder argument as in the proof of Lemma 3.15 shows that Bt P L1pP b dtq.

Finally we have |Φ˚pΛnq| ď γ
|1´γ|ε

1
γ

ˆ

pΛ1
T q

γ´1
γ ` Λ

γ´1
γ

T

˙

P L1pPq by (3.3.2), so dominated con-

vergence yields that for all t P r0, T s

V ˚t “ lim
nÑ8

Et
„
ż T

t
f˚pΛns , V

˚,n
s qds` Φ˚pΛnT q



“ Et
„
ż T

t
fpΛs, V

˚
s qds` Φ˚pΛT q



.

Proof of Theorem 3.13. Let Λ P Dα,β. By monotonicity of the stochastic differential dual there is
at most one process V ˚ “ V ˚rΛs P Vβ that satisfies (3.3.4). To apply the monotone convergence
theorem, we first consider Λ̄ P Dα,β such that l0 ĺ Λ̄ for some l0 ą 0 and define for each
n P N the truncated pricing deflator Λ̄nt fi Λ̄t ^ n, t P r0, T s. In particular Λ̄n P D8, hence
by Theorem 2.20 there exists a unique stochastic differential dual V̄ ˚,n “ V̄ ˚,nrΛ̄ns. Certainly
Λ̄n Ò Λ̄ in Dα,β, thus Lemma 3.16 yields a unique V̄ ˚ P

 

V P Sβ : p1´ γqV ě 0
(

that satisfies

V̄ ˚t “ Et
„
ż T

t
f˚pΛ̄s, V̄

˚
s qds` Φ˚pΛ̄T q



, t P r0, T s.

Now set Λn fi Λ ` 1
n . Then as 0 ĺ Λ, 1

n ĺ Λn and the previous argument yields an associated
stochastic differential dual V ˚,nt P

 

V P Sβ : p1´ γqV ě 0
(

for any n P N. Again, since Λn Ó Λ,
by Lemma 3.16 we know V ˚,nt Ñ V ˚t , t P r0, T s, where V ˚ P

 

V P Sβ : p1´ γqV ě 0
(

satisfies

V ˚t “ Et
„
ż T

t
f˚pΛs, V

˚
s qds` Φ˚pΛT q



, t P r0, T s.

The following corollary states a dominated convergence result, that is used in Proposition 3.18
to show that the stochastic differential dual V ˚ P

 

V P Sβ : p1´ γqV ě 0
(

constructed above
actually satisfies p1´ γqV ˚ ą 0, i.e. V ˚ P Vβ.

Corollary 3.17
Suppose pΛnqnPN Ă Dα,β and there exist Λ˚,Λ

˚ P Dα,β such that Λ˚ ĺ Λn ĺ Λ˚ for all n P N. If
Λn Ñ Λ in Dα,β, then V ˚t rΛns Ñ V ˚t rΛs for all t P r0, T s.
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Proof. Let pΛnqnPN Ă Dα,β and define in fi infkěn Λk and sn “ supkěn Λk. Then, as Λ˚ ĺ Λn ĺ

Λ˚ and Λ˚,Λ
˚ P Dα,β we have pinqnPN, psnqnPN Ă Dα,β. By definition in Ò Λ and sn Ó Λ in Dα,β,

so for any t P r0, T s
V ˚t rins, V

˚
t rsns Ñ V ˚t rΛs

by Lemma 3.16. On the other hand in ĺ Λn ĺ sn and V ˚rΛs is decreasing in Λ, so in particular
V ˚rins ě V ˚rΛs ě V ˚rsns, n P N, which implies the assertion.

Proposition 3.18
Let Λ P Dα,β, then the associated stochastic differential dual V ˚rΛs P tV P Sβ : p1 ´ γqV ě 0u
satisfies

P̄˚γpΛq ď V ˚rΛs ď P̄˚φpΛq, (3.3.6)

where P̄˚%pΛq is given by (3.1.5).

In particular we have p1´ γqV ˚rΛs ą 0 for Λ P Dα,β, i.e. V ˚rΛs P Vβ.

Proof. Consider the truncated deflator Λn fi
`

1
n _ Λ

˘

^ n for n P N. Note that Λn Ñ Λ in Dα,β

and that Λ ^ 1 ĺ Λn ĺ Λ _ 1 for each n P N. Then dominated convergence (Corollary 3.17)
implies

V ˚t rΛ
ns Ñ V ˚t rΛs, t P r0, T s.

Now consider L%rΛns defined as in (3.1.6) by

L%t rΛns “ e
δ
%
tEt

„
ż T

t
δ

1
% e
´ δ
%
s
ϕ˚%pΛ

n
s qds` e

´ δ
%
T

Φ˚%pΛ
n
T q



.

Then dominated convergence yields

Lγt rΛns Ñ Lγt rΛs and Lφt rΛns Ñ Lφt rΛs for all t P r0, T s.

As Λn P D8, Proposition 3.9 implies

LγrΛns “ P̄˚γpΛ
nq ď V ˚rΛns ď P̄˚φpΛ

nq “ ϕ˚γ ˝ pϕ
˚
φq
´1pLφrΛnsq,

thus sending nÑ8 yields the claim.

Finally, note that by Doob’s Lp-inequality we have

E

«

sup
tPr0,T s

´

1´γ
γ pP̄

˚
φpΛqqt

¯

γ
θφ

ff

ă 8,

thus (3.3.6) yields E
„

suptPr0,T s

´

1´γ
γ V ˚t rΛs

¯

γ
θφ



ă 8. As θ ă 0 this shows p1´γqV ˚rΛs ą 0.
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Chapter 4

The Consumption-Investment Problem
and its Dual Formulation

Within this chapter we describe and analyze the type of models that we consider for the rest of
this thesis. To this end we first derive in detail a general multidimensional market model on a
probability space with an underlying Brownian filtration. Our general market model captures
several specific models that are widely used in portfolio optimization, in particular the Kim-
Omberg model as in [Kim and Omberg, 1996] or [Wachter, 2002] and the Heston model as in
[Heston, 1993]. As we later use those two special cases to test our algorithmic approaches to the
Epstein-Zin optimization problem, they are explained in more detail.
Having introduced the general setting, we formulate and discuss an investor’s primal investment-
consumption optimization problem under Epstein-Zin utility and emphasize several aspects of
the associated partial differential equations (PDEs). The same is done for the dual problem as
derived in Section 2.2. Finally, we investigate the connection between the primal and dual prob-
lem in detail, with an emphasis on the connection of their dynamic programming equations. The
insights gained from this analysis are the basis of the approximation approaches we introduce
in Chapter 5 and Chapter 6.

Most technical calculations are omitted in the main text and can be found in Appendix C.

4.1 The General Market Model

Let
`

Ω, tFtutPr0,T s,F,P
˘

be a filtered probability space, where the filtration is generated by an
pm` nq-dimensional Brownian motion W . We consider the consumption-optimization problem
of an agent who consumes at a rate c. She can invest in a locally risk free money-market account
S0 or inm risky assets Srisky “ pS1, . . . , Smq

J, whose price dynamics depend on an n-dimensional
state process Y “ pY1, . . . , Ynq

J. The first m components of the Brownian motion W , WS fi

pW1, . . . ,Wmq
J model the idiosyncratic shocks of the stocks and the correlation between the

stocks and state variables, whereas the last n components W Y fi pWm`1, . . . ,Wm`nq
J can

be thought of as the shocks driving the state variables and the correlations among the state
variables. The dynamics of the risk free asset is always given as

dS0 “ rS0dt
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and the dynamics of the assets and state variables in terms of our pm`nq-dimensional Brownian
motion W are given as

dSrisky “ diagrSriskys
`

µSpY qdt` ΣSpY qdW
˘

, (4.1.1)

dY “ µY pY qdt` ΣY pY qdW,

where µS and µY are a m-dimensional, respectively n-dimensional vector function of Y and1

ΣSpY q “
`

Σ̂SpY q , 0mˆn
˘

and ΣY pY q “
`

Σ̂SY pY q , Σ̂Y pY q
˘

(4.1.2)

are pm ˆ pn `mqq-dimensional, respectively pn ˆ pn `mqq-dimensional matrix functions of Y ,
such that Σ̂SpY q and Σ̂Y pY q are invertible.
In the following we note that the above model structure is without loss of generality and on the
way introduce a different notation that is more convenient in some occasions, e.g. within our
numerical examples in Chapter 5 and Chapter 6. Indeed, consider a model

dSrisky “ diagrSriskys

´

µSpY qdt` σSpY qdW̃S
¯

,

dY “ µY pY qdt` σY pY qdW̃ Y ,

where the pm` nq-dimensional correlated Brownian motion

W̃ “

´

W̃S , W̃ Y
¯

“

´

W̃S
1 , . . . , W̃

S
m, W̃

Y
1 , . . . , W̃

Y
n

¯J

has positive definite correlation matrix ρ, i.e.

dW̃
´

dW̃
¯J

“ ρdt “

˜

ρS
`

ρSY
˘J

ρSY ρY

¸

dt,

and σS , σY are invertible matrix functions of appropriate dimension.

Then ρ has a unique Cholesky decomposition ρ “ LLJ, where L P Rpm`nqˆpm`nq is an invertible
lower triangular matrix with representation with representation

L “

ˆ

LS 0mˆn
LSY LY

˙

.

Then W fi L´1W̃ is a standard pm` nq-dimensional Brownian motion and defining

σpY q fi

ˆ

σSpY q 0mˆn
0nˆm σY pY q

˙

and

σpY qL “

ˆ

σSpY qLS 0mˆn
σY pY qLSY σY pY qLY

˙

fi

ˆ

Σ̂SpY q 0mˆn
Σ̂SY pY q Σ̂Y pY q

˙

“

ˆ

ΣSpY q
ΣY pY q

˙

, (4.1.3)

we obtain

σSpY qdW̃S “ σSpY q pLdW qS fi ΣSpY qdW,

σY pY qdW̃ Y “ σY pY q pLdW qY fi ΣY pY qdW,

1We denote by 0mˆn the pmˆ nq-dimensional matrix containing only zeros.
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4.1. THE GENERAL MARKET MODEL

where pLdW qS and pLdW qY denotes the first m and the last n coordinates of the pm ` nq
dimensional process LdW , respectively. In particular, basic algebra implies that ΣSpY q and
ΣY pY q are of the form as in (4.1.2).

Note that we avoid to write the Y dependence explicitly if there is no room for confusion.
Moreover, note that while our general results use the model as defined in (4.1.2), within special
cases and in particular our examples we sometimes use the more specific notation as in (4.1.3)
if beneficial.

With the appropriate specifications of the above parameters, our general market model captures
in particular the multi-factor Ornstein-Uhlenbeck Model and the multi-factor stochastic volatil-
ity model. In the following we provide those specifications.

Note: We use n as the dimension of a model, for example when we talk about a one-dimensional model this
corresponds to n “ 1 and arbitrary m P N, as the number of assets is of no concern when it comes to our solution
approaches below.

Example 4.1 (Multi-Factor Kim-Omberg Model)
Define Rp` fi p0,8qp for any p P N. In the general model above, denoting by 1m the m-
dimensional vector containing only ones, we choose

µSpyq “ r1m ` λ̄` λJy σSpyq “ diag
“

σ̄S
‰

µY pyq “ ´diagrκsy σY pyq “ diag
“

σ̄Y
‰

where r P R is the risk free rate, λ̄ P Rm, λ P Rnˆm, σ̄S P Rm` , κ P Rn` and σ̄Y P Rn`.
Then the general model describes a Gaussian model with correlated Brownian motions given by
the dynamics 2

dSrisky
t “ diagrSrisky

t s

´

pr1m ` λ̄` λJYtqdt` σ
SdW̃S

t

¯

,

dYt “ ´diagrκsYtdt` σ
Y dW̃ Y

t .

We rewrite the system such that we have independent Brownian motions as above. To this end
let ΣS and ΣY be given as in (4.1.2), then the market dynamics are given by

dSrisky
t “ diagrSrisky

t s
``

r1m ` λ̄` λJYt
˘

dt` ΣSdWt

˘

,

dYt “ ´diagrκsYtdt` ΣY dWt,

where ΣS P Rmˆpm`nq and ΣY P Rnˆpm`nq. This is a straightforward extension of the classical
model of mean-reverting returns as e.g. in [Wachter, 2002]. ˝

Example 4.2 (Multi-Factor Heston Model)
In the general model above choose m “ n, ρS “ ρY “ In, where In denotes the pn ˆ nq-
dimensional identity matrix, in particular processes W̃S and W̃ Y , respectively, are standard
Brownian motions. However, let the Brownian motions W̃S and W̃ Y be mutually correlated
with correlation matrix ρSY “ diagrρ1, . . . , ρns. Note that the market is incomplete if |ρi| ă 1
for at least one i “ 1, . . . , n. Denote the set of orthogonal matrices in Rnˆn by Rnˆno and let

2The structure of Y is without loss of generality, for general mean-reversion structure consider K “

UJdiagrκsU , where U is orthogonal and write Ỹ fi UY .
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K P Rnˆno , i.e. for K P Rnˆno we have KKJ “ In. Now choose

σSpyq “ Kdiagrσ̄Ss y
1
2 µSpyq “ r1m `Ky

1
2 pKy

1
2 qJλ̄

µY pyq “ µ̄´ diagrκsy σY pyq “ diag
“

σ̄Y
‰

y
1
2

where r P R denotes the risk free rate, λ̄ P Rn, µ̄, κ, σ̄S , σ̄Y P Rn` and for a vector y P Rn` we
define y

1
2 fi diagr

?
y1, . . . ,

?
yns.

Then the general model describes a multi-factor stochastic volatility model given by the dynamics

dSrisky
t “ diagrSrisky

t s

ˆ

`

r1m `KdiagrYtsK
Jλ

˘

dt`Kdiagrσ̄SsY
1
2
t dW̃S

t

˙

,

dYt “ pµ̄´ diagrκsYtq dt` diagrσ̄Y sY
1
2
t dW̃ Y

t .

Note that the risky assets are uncorrelated if K “ In, so even though the Brownian motions
W̃S are independent, a correlation between the assets is introduced by the matrix K. To ensure
positivity and stationarity of the state processes Y , we require the Feller condition

κi ą 0 and 2µ̄i

pσ̄Yi q
2 ě 1 (4.1.4)

to be met for all i “ 1, . . . , n. When considering this Heston specification of our general model
we always assume that the condition (4.1.4) is satisfied without further mention.

The model includes existing multi-factor stochastic volatility models as e.g. in [Escobar and Oli-
vares, 2013] or [Escobar et al., 2017].
Again, we rewrite the system such that we have independent Brownian motions, then the dynam-
ics read

dSrisky
t “ diagrSrisky

t s
``

r1m `KdiagrYtsK
Jλ̄

˘

dt` ΣSdWt

˘

,

dYt “ pµ̄´ diagrκsYtqdt` ΣY dWt,

where ΣS and ΣY are pnˆ 2nq-dimensional matrix functions as in (4.1.2).

Note: The diagonal form of the covariance matrices and the fact that KKJ “ In is of particular importance here.
This structure in particular implies that LSY “ ρSY and LY “ diagr

a

1´ ρ2
1, . . . ,

a

1´ ρ2
ns are also diagonal

matrices, which ensures that the HJB equation associated to the model separates (if modified appropriately). ˝

4.2 The Primal Optimization Problem

Consider a financial market S where the asset pricies S “ pS0, . . . , Smq and the associated state
variables Y “ pY1, . . . , Ynq are as given in (4.1.1). Endowed with an initial capital x ą 0,
our agent may invest in the given market by choosing a portfolio represented by a predictable
S-integrable process π “ pπ0, . . . , πmq. Here πit is the fraction of her current wealth invested
in the risky asset Si at time t and π0

t “ 1 ´
řm
i“1 π

i
t is the fraction invested in the riskless

asset. Moreover, let c P Ca be the investor’s consumption stream. Recall that the set of
admissible trading strategies was previously defined as A. In the following we avoid to write the
Y dependence explicitly when there is no room for confusion.
The investor’s wealth process following a certain strategy pπ, cq P A is denoted by Xpπ,cq and is
given as

dX
pπ,cq
t “ X

pπ,cq
t

``

r ` πJt χ
˘

dt` πJt ΣSdWt

˘

´ ctdt, X
pπ,cq
0 “ x,
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where χ “ µS ´ r1m is the excess return of the risky assets. The investor now chooses her
investment and consumption strategies to maximize her continuous time recursive utility, that
is she aims to determine pπ˚, c˚q P A such that

νpc˚q “ sup
pπ,cqPA

V0rcs “ sup
pπ,cqPA

E
„
ż T

0
fpcs, Vsrcsqds` ΦpcT q



(4.2.1)

where, the Epstein-Zin aggregator f is given as

fpc, vq “ δ 1
1´φc

1´φpp1´ γqvq1´
1
θ ´ δθv and Φpcq “ ε 1

1´γ c
1´γ .

For more details and interpretations of the parameters, see Chapter 2.

In Appendix C.1 we show that the associated dynamic programming equation for the agent’s
indirect utility Vtrcs “ Gpt,Xt, Ytq reads

0 “ sup
pπ,cqPA

"

Gt `
`

x
`

r ` πJχ
˘

´ c
˘

Gx `
`

µY
˘J
Gy `

1
2x

2πJΣS
`

ΣS
˘J
πGxx (4.2.2)

` xGxyΣ
Y
`

ΣS
˘J
π ` 1

2trace
”

`

ΣY
˘J
GyyΣ

Y
ı

` fpc,Gq

*

whereGpT, x, yq “ ε 1
1´γx

1´γ with a constant weight of bequest ε ą 0. Following [Zariphopoulou,
2001] we conjecture

Gpt, x, yq “ 1
1´γx

1´γgpt, yqk, (4.2.3)

where gpt, yq ą 0 for all pt, yq P r0, T s ˆ Rn and k P R is a constant yet to be determined; then
the solution to (4.2.2) is summarized in the following proposition.

Proposition 4.3
Assume that the agent’s indirect utility has a representation as in (4.2.3), then the optimal
strategy reads

π˚ “ 1
γ

´

ΣS
`

ΣS
˘J

¯´1
χ` k

γ

´

`

ΣS
˘J

¯`
`

ΣY
˘J gy

g
and

´ c

x

¯˚

“ δψg´
kψ
θ ,

where g satisfies the nonlinear partial differential equation

0 “ gt `
1´γ
k

ˆ

r ` 1
2
1
γχ
J
´

ΣS
`

ΣS
˘J

¯´1

χ´ δθ
1´γ

˙

g `

ˆ

`

µY
˘J
`

1´γ
γ χJ

´

`

ΣS
˘J

¯`
`

ΣY
˘J

˙

gy

` 1
2 trace

”

`

ΣY
˘J
gyyΣY

ı

` 1
2

1

g
pgyq

JΣY
ˆ

pk ´ 1qIm`n ´ k
γ´1
γ

`

ΣS
˘J

´

`

ΣS
˘J

¯`
˙

`

ΣY
˘J
gy

` δψθ
kψ g

1´ kψθ , (4.2.4)

with terminal condition gpT, yq “ ε
1
k .

Proof. Appendix C.1

Note: For a matrix AJ P Rpm`nqˆm we denote by
`

AJ
˘`
P Rmˆpm`nq the Moore-Penrose inverse which is

defined by
`

AJ
˘`

fi
`

AAJ
˘´1

A, in particular

ˆ

´

ΣS
¯J

˙`

“

˜

ˆ

´

σSLS
¯J

˙´1

, 0mˆn

¸

. (4.2.5)
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In (4.2.4), two terms give rise to nonlinearities, but we have only one degree of freedom in
terms of the constant k. Certainly the nonlinearity g1´ kψ

θ could be eliminated by choosing k
appropriately, but in any case the nonlinearity

1
2

1

g
pgyq

JΣY

ˆ

pk ´ 1qIm`n ´ k
γ´1
γ

`

ΣS
˘J

´

`

ΣS
˘J

¯`
˙

`

ΣY
˘J
gy fi

1
2

1

g
pgyq

JΣYN
`

ΣY
˘J
gy

(4.2.6)
remains: By inserting the matrices ΣY and ΣS from (4.1.2) above, we calculate

ΣYN
`

ΣY
˘J
“

k´γ
γ Σ̂SY

´

Σ̂SY
¯J

` pk ´ 1qΣ̂Y
´

Σ̂Y
¯J

,

which is a system of n equations, so for n ą 1 there is in general no way to choose a scalar k
such that (4.2.6) disappears.

However, if the market were complete, then in particular
´

`

ΣS
˘J

¯`

“

´

`

ΣS
˘J

¯´1
and

ΣYN
`

ΣY
˘J
“

k´γ
γ ΣY

`

ΣY
˘J
,

and setting k “ γ eliminates the non-linearity (4.2.6). Thus, we want to complete the market
using duality theory, more precisely by the notion of least favorable completion. The idea is
classical and due to [Karatzas et al., 1991]; in the following we explain their concept.

In addition to the m risky assets within our market model from Section 4.1, we introduce n
artificial assets Sa “ pSa1 , . . . SanqJ with dynamics

dSa “ diagrSas
`

µSa pY qdt` ΣS
a pY qdW

˘

,

where µa and ΣS
a are n-dimensional and pn ˆ pm ` nqq-dimensional matrix functions of the

n-dimensional state process Y , respectively. Then the risky assets in the artificially completed

market Sc “

ˆ

Srisky

Sa

˙

follow the dynamics

dSc “ diagrScs
`

µSc pY qdt` ΣS
c pY qdW

˘

,

where µSc “
ˆ

µS

µSa

˙

and ΣS
c “

ˆ

ΣS

ΣS
a

˙

.

In order to make this artificial completion of the market meaningful, we have to choose the
parameters µSa and ΣS

a in specific ways. We certainly have to pick the matrix ΣS
a such that

the market is actually complete, i.e. the augmented correlation matrix ΣS
c is invertible. As we

assumed that σSLS has full rank, this is accomplished by setting ΣS
a fi

`

0nˆm, ρ
S
a

˘

, where ρSa is
a pn ˆ nq-dimensional matrix with orthonormal rows. As the specific form of ρSa plays no role
in the solution of the optimization problem, we choose ρSa “ Inˆn for simplicity.
The significant choice within the completion is the drift vector µSa . If we would arbitrarily
choose some µSa P Rn, the investor following her optimal strategy in the augmented market
would certainly trade some of the artificial assets, so her strategy would not be admissible in
our incomplete market setting where those assets don’t actually exist. This means we have to
specify µSa in such a way that the investor following her optimal strategy in the completed mar-
ket chooses not to trade any artificial asset. In that case the optimal strategy in the artificially
completed market is still admissible and coincides with the optimal strategy in the original mar-
ket.
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This is exactly the idea of least favorable completion as introduced by [Karatzas et al., 1991]. As
they point out, this least favorable completion is achieved by choosing µSa such that the artificial
assets’ excess return is exactly the optimal strategy of the associated dual problem.

In particular, if we can solve the dual problem, we can artificially complete our model from
Section 4.1 and formulate an equivalent optimization problem in a complete market. The as-
sociated complete market problem is in general more tractable, for example we can remove the
nonlinearity (4.2.6). Thus our next step is to analyze the dual optimization problem associated
to (4.2.1).

4.3 The Dual Optimization Problem

By our results from Chapter 2 the investor’s dual optimization problem reads

ν˚pΛ˚q “ inf
ΛPDa

tV ˚0 rΛs ` λxu “ inf
ΛPDa

"

E
„
ż T

0
f˚ pΛs, V

˚
s rΛsqds` Φ˚pΛT q



` λx

*

, (4.3.1)

where

f˚pλ, νq “ δψ 1
ψ´1λ

1´ψ
´

1´γ
γ ν

¯1´ γψ
θ
´ δθ

γ ν and Φ˚pλq “ ε
1
γ γ

1´γλ
γ´1
γ .

As we have seen in Proposition 2.16, it suffices to solve the problem for pricing deflators, i.e. find
D˚ P Da

1 such that ν˚pD˚q fi infDPDa1 V
˚

0 rDs. Then by Proposition 2.16 the optimal solution to
(4.3.1) is given by

ν˚ pΛ˚q “ 1
1´γx

1´γ
´

1´γ
γ ν˚pD˚q

¯γ
.

We assume that our pricing deflators have the form

dDt “ ´Dt

`

rdt` ηJt dW
˘

and D0 “ 1, (4.3.2)

where η “
ˆ

ηS

ηY

˙

is a pm` nq-dimensional vector function of Y containing the market prices

of risk, hence ηS “
´

Σ̂S
¯´1

χ can easily be derived from the supermartingale condition in
Equation (2.2.14) and is already determined by the market. Note that since a process D as
in (4.3.2) is a stochastic exponential, it is positive and a straightforward application of Itô’s
formula shows that the stochastic process

DXpπ,cq `

ż ¨

0
Dscsds

is a supermartingale for all pπ, cq P A and η P Pm`n, so D is indeed a pricing deflator.

In Appendix C.2 we show that the dynamic programming equation for the indirect dual utility
V ˚t rDs “ Hpt,Dt, Ytq reads

0 “ inf
ηPPm`n

ηS“pσSLSq
´1
χ

"

Ht ´ rdHd `
`

µY
˘J
Hy `

1
2d

2ηJηHdd

´ dHdyΣ
Y η ` 1

2trace
”

`

ΣY
˘J
HyyΣ

Y
ı

` f˚pd,Hq

*

, (4.3.3)
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with terminal condition HpT, d, yq “ ε
1
γ γ

1´γd
γ´1
γ .

Note: Note that in the complete market case the dual problem is redundant as then η “ ηS is fully set by the
market, so there is nothing to optimize.

Similar as for the primal problem, we conjecture that the agent’s indirect utility has a represen-
tation

Hpt, d, yq “ γ
1´γd

γ´1
γ hpt, yql, (4.3.4)

where hpt, yq ą 0 for all pt, yq P r0, T s ˆ Rn and l P R is a constant yet to be determined. Then
the solution to (4.3.3) is summarized by the following proposition.

Proposition 4.4
Assume that the agent’s indirect utility has a representation as in (4.3.4), then the optimal
market prices of risk determining the pricing deflator read

η˚ “

ˆ

ηS
`

ηY
˘˚

˙

“

¨

˝

´

Σ̂S
¯´1

χ

´lγ
´

Σ̂Y
¯J hy

h

˛

‚ (4.3.5)

where h satisfies the nonlinear partial differential equation

0 “ ht `
1´γ
γl

´

r ` 1
2

1
γ

`

ηS
˘J
ηS ´ δθ

1´γ

¯

h`

ˆ

`

µY
˘J
`

1´γ
γ

´

Σ̂SY ηS
¯J

˙

hy

` 1
2trace

”

`

ΣY
˘J
hyyΣ

Y
ı

` 1
2

1

h
phyq

J

ˆ

pl ´ 1qΣY
`

ΣY
˘J
´ lp1´ γqΣ̂Y

´

Σ̂Y
¯J

˙

hy

` δψθ
lγψh

1´l γψ
θ (4.3.6)

with terminal condition hpT, yq “ ε
1
γl .

Proof. Appendix C.2

Again, two terms in (4.3.6) give rise to nonlinearities and while h1´l γψ
θ would vanish with an

appropriate choice of l, the nonlinearity

1
2

1

h
phyq

J

ˆ

pl ´ 1qΣY
`

ΣY
˘J
´ lp1´ γqΣ̂Y

´

Σ̂Y
¯J

˙

hy,

which is a system of n equations, cannot be eliminated by the choice of the scalar l.

Apparently the dual problem does not help us directly, as the dual dynamic programming
equation is as hard to solve as the primal one. However, taking a closer look at the partial
differential equations associated to the primal and dual problem, one notices a deeper connection
also between the PDEs (4.2.4) and (4.3.6). This connection and its implications are further
highlighted in the next section.

4.4 Primal and Dual Problem Connected

We first investigate the direct relation between the primal and dual solutions derived above. The
chapter is completed with the analysis of the concept of artificial completion and in particular
least favorable completion as described in Section 4.2 on PDE level. Both connections between
the primal and dual problem provide valuable insights that we further exploit in our iterative
solution approach.
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4.4.1 Primal & Dual Solution and Duality

By straightforward manipulations of the partial differential equation associated to the dual
problem, the direct connection between the primal and dual solutions becomes apparent: Recall
the dual partial differential equation from (4.3.6) derived as

0 “ ht `
1´γ
γl

´

r ` 1
2

1
γ

`

ηS
˘J
ηS ´ δθ

1´γ

¯

h`

ˆ

`

µY
˘J
`

1´γ
γ

´

Σ̂SY ηS
¯J

˙

hy

` 1
2trace

”

`

ΣY
˘J
hyyΣ

Y
ı

` 1
2

1

h
phyq

J

ˆ

pl ´ 1qΣY
`

ΣY
˘J
´ lp1´ γqΣ̂Y

´

Σ̂Y
¯J

˙

hy

` δψθ
lγψh

1´l γψ
θ

with hpT, yq “ ε
1
γl .

Plugging in the predetermined market prices of risk ηS “
´

Σ̂S
¯´1

χ, we notice that

`

ηS
˘J
ηS “ χJ

´

ΣS
`

ΣS
˘J

¯´1
χ and

´

Σ̂SY ηS
¯J

“ χJ
´

`

ΣS
˘J

¯`
`

ΣY
˘J
.

Moreover a small calculation, using in particular (4.2.5), reveals

pl ´ 1qΣY
`

ΣY
˘J
´ lp1´ γqΣ̂Y

´

Σ̂Y
¯J

“ ΣY
ˆ

plγ ´ 1qIm`n ` lp1´ γq
`

ΣS
˘J

´

`

ΣS
˘J

¯`
˙

`

ΣY
˘J
,

thus (4.3.6) becomes

0 “ ht `
1´γ
γl

ˆ

r ` 1
2
1
γχ
J
´

ΣS
`

ΣS
˘J

¯´1

χ´ δθ
1´γ

˙

h`

ˆ

`

µY
˘J
`

1´γ
γ χJ

´

`

ΣS
˘J

¯`
`

ΣY
˘J

˙

hy

` 1
2 trace

”

`

ΣY
˘J
hyyΣY

ı

` 1
2

1

h
phyq

JΣY
ˆ

plγ ´ 1qIm`n ` lp1´ γq
`

ΣS
˘J

´

`

ΣS
˘J

¯`
˙

`

ΣY
˘J
hy

` δψθ
lγψh

1´l γψθ

with hpT, yq “ ε
1
γl .

Now the primal and dual partial differential equations only differ in the parameters k and l,
respectively. Choosing k “ lγ reveals that the PDEs - and hence also their solutions g and
h - actually coincide. This fact has interesting implications. First, assume we can verify that
the strategies from Proposition 4.3 and Proposition 4.4 are indeed optimal, and let D˚ be the
pricing deflator from (4.3.2) associated to

`

ηY
˘˚. Then Proposition 2.16 implies

Vtrπ˚, c˚s “ 1
1´γ

´

X
pπ˚,c˚q
t

¯1´γ
gpt, Ytq

k

“ 1
1´γ

´

X
pπ˚,c˚q
t

¯1´γ
hpt, Ytq

k (g ” h)

“ 1
1´γ

´

D˚tX
pπ˚,c˚q

¯1´γ ´

pD˚t q
γ´1
γ hpt, Ytq

l
¯γ

(k “ γl)

“ 1
1´γ

´

D˚tX
pπ˚,c˚q

¯1´γ ´
1´γ
γ V˚t rD˚s

¯γ

“ V˚t rΛ˚s ` Λ˚tX
pπ˚,c˚q
t . (Proposition 2.16)

In particular, there is no duality gap.
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Moreover, since g ” h, the optimal strategies for the primal and dual problem share a simple
one to one relation. By Proposition 4.3 and Proposition 4.4 we have

π˚ “ 1
γ

´

ΣS
`

ΣS
˘J

¯´1
χ´ 1

γK
`

ηY
˘˚
,

where

K fi

ˆ

´

Σ̂S
¯J

˙´1
´

Σ̂SY
¯J

ˆ

´

Σ̂Y
¯J

˙´1

is fully determined by the market and can be interpreted as a Y -dependent pmˆnq-dimensional
covariation matrix. The other way around find the relation

`

ηY
˘˚
“ K`

ˆ

´

ΣS
`

ΣS
˘T

¯´1
χ´ γπ˚

˙

.

In particular, every investment strategy π˚ implies certain market prices of risk
`

ηY
˘˚, which

can be used to evaluate our upper and lower bounds from the previous chapter.

From now on and for the rest of this thesis we choose l “ k
γ such that the primal and dual

solution are characterized by the one function g ” h and we choose g to denote said solution.

4.4.2 Least Favorable Completion

As the reduced partial differential equations associated to the primal and dual solutions coincide,
the concept of least favorable completion explained in the previous section can be understood
directly on PDE level and without abstract arguments as provided e.g. in [Karatzas et al., 1991].

We first state the problem in an artificially completed market where the artificial assets exhibit
an arbitrary market price of risk ηY . Recall the definition of the considered market with risk
free asset S0, m assets Srisky and n state variables Y given by the dynamics

dSrisky “ diagrSriskys
`

µSpY qdt` ΣSpY qdW
˘

,

dY “ µY pY qdt` ΣY pY qdW.

Moreover, we introduce the n artificial assets Sa with dynamics

dSa “ diagrSas
`

µSa pY qdt` ΣS
a pY qdW

˘

,

as explained in Section 4.2. Then the risky assets of the artificially completed market Sc “

pSrisky, Saq follows the dynamics

dSc “ diagrScs
`

µSc pY qdt` ΣS
c pY qdW

˘

, (4.4.1)

where we set µSc “
ˆ

µS

r1n ` η
Y

˙

and ΣS
c “

ˆ

Σ̂S 0mˆn
0nˆm Inˆn

˙

.

We denote an investment strategy in this artificially completed market as π̃ “ pπ̃0, . . . , π̃m`nq
where π̃it is the fraction of the investor’s current wealth invested in the risky asset Sc

i at time
t and π̃0

t “ 1 ´
řm`n
i“1 π̃it is the fraction invested in the riskless asset. Moreover, let c P Ca be

the investors consumption stream. We denote the set of admissible trading strategies in the
extended market by Ã. Then the investors wealth process following a certain strategy pπ̃, cq P A
is denoted by X̃pπ̃,cq and is given as

dX̃
pπ̃,cq
t “ X̃

pπ̃,cq
t

``

r ` π̃Jt χc

˘

dt` π̃Jt ΣS
c dWt

˘

´ ctdt, X̃
pπ̃,cq
0 “ x,
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where χc fi

ˆ

χ
χa

˙

“

ˆ

µS ´ r1m
µa ´ r1n

˙

“

ˆ

Σ̂SηS

ηY

˙

is the excess return of the risky assets. The

primal optimization problem certainly depends on the market prices of risk ηY used in the
augmentation of the market and the optimization problem is to find pπ̃˚, c˚q P Ã such that

ν̃
`

c˚; ηY
˘

fi sup
pπ̃,cqPÃ

Ṽ0

“

c; ηY
‰

“ sup
pπ̃,cqPÃ

E
„
ż T

0
f
´

cs, Ṽs
“

c; ηY
‰

¯

ds` ΦpcT q



.

Analogously to the primal problem in the incomplete market, the associated dynamic program-
ming equation for the agent’s indirect utility Ṽt

“

c; ηY
‰

“ G̃pt, X̃t, Ytq in the extended market
reads

0 “ sup
pπ̃,cqPÃ

"

G̃t `
`

x
`

r ` π̃Jχc

˘

´ c
˘

G̃x `
`

µY
˘J
G̃y `

1
2x

2π̃JΣS
c

`

ΣS
c

˘J
π̃G̃xx

` xG̃xyΣ
Y
`

ΣS
c

˘J
π̃ ` 1

2trace
”

`

ΣY
˘J
G̃yyΣ

Y
ı

` fpc, G̃q

*

(4.4.2)

where G̃pT, x, yq “ ε 1
1´γx

1´γ with a constant weight of bequest ε ą 0. As before we conjecture

G̃pt, x, yq “ 1
1´γx

1´γ g̃pt, yqk, (4.4.3)

with g̃pt, yq ą 0 for all pt, yq P r0, T s ˆRn and k P R; then the solution to (4.4.2) is summarized
in the following corollary; the proof is analogous to the one of Proposition 4.3 with the only
difference being that ΣS

c is now invertible.

Corollary 4.5
Assume that the agent’s indirect utility in the artificially completed market (4.4.1) has a repre-
sentation as in (4.4.3), then the optimal strategy reads

π̃˚ “ 1
γ

´

ΣS
c

`

ΣS
c

˘J
¯´1

χc `
k
γ

´

`

ΣS
c

˘J
¯´1

`

ΣY
˘J g̃y

g̃
and

´ c

x

¯˚

“ δψ g̃´
kψ
θ (4.4.4)

where g̃ satisfies the nonlinear partial differential equation

0 “ g̃t `
1´γ
k

ˆ

r ` 1
2
1
γχ
J
c

´

ΣSc
`

ΣSc
˘J

¯´1

χc ´
δθ
1´γ

˙

g̃ `

ˆ

`

µY
˘J
`

1´γ
γ χJc

´

`

ΣSc
˘J

¯´1
`

ΣY
˘J

˙

g̃y

` 1
2 trace

”

`

ΣY
˘J
g̃yyΣY

ı

` 1
2
k´γ
γ

1

g̃
pg̃yq

JΣY
`

ΣY
˘J
g̃y `

δψθ
kψ g̃

1´ kψθ , (4.4.5)

with terminal condition g̃pT, yq “ ε
1
k .

Note that (4.4.4) in particular yields another direct relation between the fraction invested in the
artificial assets and the market prices of risk ηY . Let π̃˚

ηY
fi

`

π̃˚m`1, . . . , π̃
˚
m`n

˘J, then

π̃˚ηY “
1
γ η

Y ` k
γ

´

Σ̂Y
¯J g̃y

g̃
(4.4.6)

and
ηY “ γπ̃˚ηY ´ k

´

Σ̂Y
¯J g̃y

g̃
.

Moreover, when considering the completed market as above it is worth mentioning that A Ď Ã
implies

νpc˚q “ sup
pπ,cqPA

V0rcs ď sup
pπ̃,cqPÃ

Ṽ0

“

c; ηY
‰

“ ν̃
`

c˚; ηY
˘

.

53



CHAPTER 4. THE CONSUMPTION-INVESTMENT PROBLEM AND ITS DUAL
FORMULATION

Now assume that ηY from (4.4.1) is not arbitrary, but chosen such that the additional utility
from artificial completion is minimized, i.e. we want to find

ν̃pc˚q fi inf
ηY PPn

ν̃
`

c˚; ηY
˘

.

We again use dynamic programming and the associated equation reads

0 “ inf
ηY PPn

"

G̃t `
´

x
´

r ` pπ̃˚qJ χc

¯

´ c
¯

G̃x `
`

µY
˘J
G̃y `

1
2x

2 pπ̃˚qJΣS
c

`

ΣS
c

˘J
π̃˚G̃xx

` xG̃xyΣ
Y
`

ΣS
c

˘J
π̃˚ ` 1

2trace
”

`

ΣY
˘J
G̃yyΣ

Y
ı

` fpc, G̃q

*

where G̃ is as in (4.4.3) and g̃ solves (4.4.5). Then the first order condition for ηY yields

`

ηY
˘˚
“ ´k

´

Σ̂Y
¯T g̃y

g̃
. (4.4.7)

Plugging
`

ηY
˘˚ to (4.4.5) and simplifying shows that g̃ must actually solve (4.2.4). But this

means that we have g̃ ” g, hence G̃ ” G and in particular νpc˚q “ ν̃
´

c˚;
`

ηY
˘˚
¯

where
`

ηY
˘˚

is the solution of the dual problem as given in (4.3.5). Moreover the optimal strategy from
Corollary 4.5 is admissible in our incomplete market in the sense that π̃˚

pηY q˚
“ 0nˆ1 by (4.4.6),

i.e.

π̃˚ “

ˆ

π˚

0nˆ1

˙

.

This is exactly what the abstract concept of least favorable completion is from a PDE point of
view and it is the last step we need to fully understand the intuition behind our approximate
solution schemes introduced in the upcoming chapters.

Note: As mentioned earlier, we denote the solution to the primal, respectively dual dynamic programming
equation by g. For the complete market case we continue to use the notation g̃, as it is important to distinguish
between those two scenarios in the following chapters.
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Chapter 5

Approximation via Suboptimal
Completion

First we considered the primal and dual problem separately. When talking about the primal
problem we investigated an agent’s investment-consumption decision under given market con-
ditions. Similarly, when talking about the dual problem, we investigated optimal market condi-
tions, without taking into account an investor’s actions. Based on the classical idea of artificial
market completion, introduced by [Karatzas et al., 1991] and [Cvitanić and Karatzas, 1992], we
connected both points of view on a PDE level in Chapter 4. This connection opens the door
to numerical approaches to find (approximate) solutions to the primal investment-consumption
optimization problem with Epstein-Zin utility in incomplete markets, one of which we present
in this chapter.

Approximations based on duality theory have often been used in the literature on time-additive
utility in various incomplete market settings. One reason is that, while optimization problems in
incomplete markets are usually unsolvable, their complete market analogues are generally easier
to handle. Furthermore, as we have seen in Chapter 3, duality approaches directly or indirectly
provide a tool to evaluate the accuracy of an approximation via the optimality gap. [Haugh
et al., 2006] were the first to make use of the optimality gap, by taking existing approximations
of the primal problem and evaluating the optimality gap using a dual approximation derived
from the primal one. Other examples are [Brown et al., 2010] and [Brown and Smith, 2011],
where the authors heuristically determine suboptimal policies whose associated utility can easily
be evaluated to obtain a lower bound on the optimal utility. They then consider a frictionless
variant of their model to obtain an upper bound and using certain penalties on the relaxed
market frictions they gradually improve their strategies to tighten up the resulting gap until it
is ’small enough’. Closest to our approximation approach explained below are[Bick, 2012], [Bick
et al., 2013],[Kamma et al., 2020] and [Kamma and Pelsser, 2022]. The basic idea of the SAMS
algorithm introduced in [Bick et al., 2013] is to artificially complete the underlying market and
then consider only subsets of feasible strategies for which the complete market primal problem
can be solved explicitly, so that the explicit solution is parameterized by the artificial completion.
This parameterized optimal solution is then minimized over the subset of feasible dual strategies
and projected to the set of admissible primal ones. Just recently, [Kamma and Pelsser, 2022]
extended their approach. They consider the dual problem first, optimizing it over a convex sub-
set of feasible dual strategies, using the approximate dual solution to artificially complete the
market and then project the resulting primal strategies and solution to the set of admissible ones.

All those duality methods only work with time-additive utility. For the recursive case, there are
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some approximation approaches in the literature, e.g. the analytic approximation of [Chacko and
Viceira, 2005](see Section 5.1) and a variety of algorithms to simulate the associated forward-
backward SDEs, e.g. the regression methods of [Bouchard and Touzi, 2004] or [Gobet et al.,
2005], the Wiener chaos expenansion method of [Briand and Labart, 2014] and the neural net-
work approach by [Lin, 2022]. With the exception of [Lin, 2022], all the above algorithms suffer
heavily from the curse of dimensionality. An iterative dynamic programming based method
is introduced in [Seiferling, 2016] (see Section 5.1), however, this method is only applicable in
one-dimensional models. Our goal is to develop numerical approximation algorithms based on
the dynamic programming approach, that are applicable in high dimensions, do not suffer too
heavily from the curse of dimensionality and allow for a direct evaluation of our power, respec-
tively variational bounds derived in Chapter 3.

5.1 Existing Solutions and Approximations

The basic idea of our first approach is very similar to the one of [Kamma and Pelsser, 2022],
however, instead of using the martingale method, we focus on the dynamic programming method.
Thus, in order to approximate the primal optimization problem

νpc˚q “ sup
pπ,cqPA

V0rcs “ sup
pπ,cqPA

E
„
ż T

0
fpcs, Vsrcsqds` ΦpcT q



. (5.1.1)

we always tackle the partial differential equation characterizing its solution, i.e.

0 “ gt `
1´γ
k

ˆ

r ` 1
2
1
γχ
J
´

ΣS
`

ΣS
˘J

¯´1

χ´ δθ
1´γ

˙

g `

ˆ

`

µY
˘J
`

1´γ
γ χJ

´

`

ΣS
˘J

¯`
`

ΣY
˘J

˙

gy

` 1
2 trace

”

`

ΣY
˘J
gyyΣY

ı

` 1
2

1

g
pgyq

JΣY
ˆ

pk ´ 1qIm`n ´ k
γ´1
γ

`

ΣS
˘J

´

`

ΣS
˘J

¯`
˙

`

ΣY
˘J
gy

` δψθ
kψ g

1´ kψθ , (5.1.2)

subject to the terminal condition gpT, yq “ ε
1
k fi ε̂.

In general the problem of finding a solution to (5.1.2) remains unsolved. However, there are
scenarios where solutions can be found (numerically) and before we start our own investigation,
we present some already existing results. Most cases appear in our further discussion either as
benchmarks for our own solution techniques or even as part of those and it is worth to take a
closer look before proceeding.

Exact solution by [Kraft et al., 2013]

Consider our general market model in one dimension, i.e. m “ n “ 1. Choosing the parameter
k “ γ

γ`p1´γqpρSY q2
, the nonlinearity featuring gy p. . .q

gy
g vanishes. The interesting observation

made in [Kraft et al., 2013] is, that by restricting to parameters γ and ψ satisfying

ψ “ 2´ γ ` p1´γq2

γ

`

ρSY
˘2 (H)

one can also eliminate the nonlinearity g1´ kψ
θ , which leaves the linear inhomogeneous equation

0 “ gt `
1´γ
k

´

r ` 1
2

1
γ

χ2

pσSq2
´ δθ

1´γ

¯

g `
´

`

µY
˘

`
1´γ
γ

χσY ρSY

σS

¯

gy `
1
2

`

σY
˘2
gyy ` δ

ψ,
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subject to the terminal condition gpT, ¨q “ ε̂. Hence the solution is given by

gpt, yq “ δψHpt, yq ` ε̂hpt, y;T q, where Hpt, yq fi

ż T

t
hpt, y; sqds

and h satisfies the associated homogeneous equation

0 “ ht
1´γ
k

´

r ` 1
2

1
γ

χ2

pσSq2
´ δθ

1´γ

¯

h`
´

`

µY
˘

`
1´γ
γ

χσY ρSY

σS

¯

hy `
1
2

`

σY
˘2
hyy,

on r0, ss ˆ R with terminal condition hps, y; sq “ 1.

A remarkable feature of this method is the explicit representation of the solution and conse-
quently the optimal investment-consumption strategy in feedback form. So far, this is the only
case where an analytic solution to the PDE (5.1.2) has been found, when considering Epstein-
Zin utility in incomplete markets with ψ ‰ 1. A drawback of this approach is certainly the
restriction to one-dimensional affine models and in particular the parameter constellation (H).

Fixed-Point Iteration by [Kraft et al., 2017]

Consider our general market model in one dimension, i.e. m “ n “ 1. Again, by choosing the
parameter k “ γ

γ`p1´γqpρSY q2
, the nonlinearity including gy p. . .q

gy
g vanishes. Setting q fi 1´ kψ

θ

yields the semilinear partial differential equation

0 “ gt `
1´γ
k

´

r ` 1
2

1
γ

χ2

pσ̄Sq2
´ δθ

1´γ

¯

g `
´

`

µY
˘

`
1´γ
γ

χσY ρSY

σS

¯

gy `
1
2

`

σY
˘2
gyy `

δψ

1´qg
q (5.1.3)

subject to the terminal condition gpT, ¨q “ ε̂. [Kraft et al., 2017] establish the existence and
uniqueness of a solution.

Proposition 5.1 ([Kraft et al., 2017], Theorem 4.6)
Assume that the coefficients r, χ, σS and α are bounded and Lipschitz continuous and that
σY is bounded and has a bounded Lipschitz continuous derivative. Moreover, assume that
infyPR σ

Spyq ą 0 and infyPR σ
Y pyq ą 0. Then for all γ, ψ, δ ą 0 with γ, ψ ‰ 1 there exists

a unique solution g P C1,2pr0, T s ˆ Rq to (5.1.3) and positive constants 0 ă g ă ḡ such that

g ď g ď ḡ and }gy}8 ă 8.

Moreover, they show the following convergence result.

Corollary 5.2 ([Kraft et al., 2017], Corollary 7.4)
Let g P C1,2

b pr0, T s ˆ Rq be the unique solution to (5.1.3). Moreover, let g0 “ ε̂ and let gn be
recursively defined as the unique bounded solution to the Cauchy problem

0 “ pgnqt `
1´γ
k

´

r ` 1
2

1
γ

χ2

pσSq2
´ δθ

1´γ

¯

gn `
´

`

µY
˘

`
1´γ
γ

χσY ρSY

σS

¯

pgnqy (5.1.4)

` 1
2

`

σY
˘2
pgnqyy `

δψ

1´q p0_ gn´1q
q ,

subject to the terminal condition gnpT, ¨q “ ε̂. Then

}gn ´ g}8 ď C
´ c

n

¯n
for all n ą

c

e

and some constants C, c ą 0.
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In particular, the following PDE-fixed point iteration converges to the true solution of (5.1.3):

Algorithm: (Fixed-Point Iteration)

1. Set g0 fi ε̂ and n fi 1

2. Compute gn as the solution to the linear partial differential equation (5.1.4)1

3. If gn is not sufficiently close to gn´1, increase n by 1 and return to 2

The big advantage of the fixed-point method by [Kraft et al., 2017], compared to the exact
solution of [Kraft et al., 2013], is that it does not enforce any restrictions on the paramters γ
and ψ. Moreover, when solving (5.1.4), one does not rely on an affine market model, making
the algorithm even more flexible. However, the method is only applicable in one-dimensional
models and the accuracy of the numerical approximation is unknown.

Campbell-Shiller Approximation à la [Chacko and Viceira, 2005]

The idea behind this specific approach is to apply a linear approximation to the optimal
consumption-wealth ratio, such that the PDE (5.1.2) corresponds to a investment-consumption
problem with unit EIS.

Interludium
Investment-consumption choice problems with unit EIS are a limit case of the non-unit EIS
parametrization as ψ Ñ 1. This is similar to logarithmic utility being the limit case of power
utility when risk aversion tends to 1. If ψ “ 1, the specification of the Epstein-Zin aggregator f
corresponds to

f1pc, vq fi δp1´ γqv
´

lnpcq ´ 1
1´γ lnpp1´ γqvq

¯

.

The associated dynamic programming equation for the agent’s indirect utility V 1
t rcs “ G1pt,Xt, Ytq,

given as

0 “ sup
pπ,cqPΓpxq

"

G1
t `

`

x
`

r ` πJχ
˘

´ c
˘

G1
x `

`

µY
˘J
G1
y `

1
2x

2πJΣS
`

ΣS
˘J
πG1

xx

` xG1
xyΣ

Y
`

ΣS
˘J
π ` 1

2trace
”

`

ΣY
˘J
G1
yyΣ

Y
ı

` f1pc,G1q

*

,

subject to the terminal condition G1pT, x, yq “ ε 1
1´γx

1´γ, can be solved explicitly for affine model
dynamics. Using the ansatz

G1pt, x, yq “ 1
1´γx

1´γg1pt, yq

[Chacko and Viceira, 2005] were the first to find that the optimal strategy is of the form

π˚ “ 1
γ

´

ΣS
`

ΣS
˘J

¯´1
χ` 1

γ

´

`

ΣS
˘J

¯`
`

ΣY
˘J g

1
y

g1
and

´ c

x

¯˚

“ δ,

1In [Kraft et al., 2013] the authors use a semi-implicit Crank-Nicolson scheme to approximate the solution
numerically.
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where g1pt, yq “ ε exp
`

Aptq ´ yJBptq ´ yJCptqy
˘

and A, B and C are specified by a model
dependent system of ODEs. Then g1 solves

0 “ g1
t ` p1´ γq

ˆ

r ` 1
2

1
γχ
J
´

ΣS
`

ΣS
˘J

¯´1
χ` δ plnpδq ´ 1q

˙

g1 (5.1.5)

`

ˆ

`

µY
˘J
`

1´γ
γ χJ

´

`

ΣS
˘J

¯`
`

ΣY
˘J

˙

g1
y `

1
2trace

”

`

ΣY
˘J
g1
yyΣ

Y
ı

` 1
2pg

1
yq
JΣY

ˆ

Im`n ´
γ´1
γ

`

ΣS
˘J

´

`

ΣS
˘J

¯`
˙

`

ΣY
˘J g

1
y

g1
´ δp1´ γqg1 lnpg1q,

with terminal condition g1pT, yq “ ε.

Note that the PDE (5.1.5) is still nonlinear, but due to the exponential ansatz the equation still
separates if the considered market model is affine.

We already excluded the case of unit EIS in our duality analysis by demanding ψ ‰ 1 and
it is well understood, so we will not consider it further. Besides, unit EIS is empirically less
relevant and used in particular because of its tractability. We state the solution as above solely
for completeness and for a better understanding of the Campbell-Shiller approximation. ‹

In [Chacko and Viceira, 2005], the authors use the Campbell-Shiller approximation to transfer
their result from the case of unit EIS to general parameter constellations. The idea is to ap-
proximate the nonlinearity g´

kψ
θ from (5.1.2) by a linear PDE corresponding to the investment-

consumption choice problem under recursive utility with unit EIS. More precisely, introduce the
log-linear approximation

´ c

x

¯˚

pt, yq “ exp
´

ln
´´ c

x

¯˚

pt, yq
¯¯

« lptq
´

1´ lnplptqq ` ln
´´ c

x

¯˚

pt, yq
¯¯

(5.1.6)

“ lptq
´

1´ lnplptqq ` ln
´

δψ
¯

´
kψ
θ lnpgpt, yqq

¯

of the optimal consumption rate, where lnplptqq “ E
“

ln
`

c
x

˘˚
pt, Y8q

‰

and Y8 is a random variable
that has the stationary distribution of the state process Y . Put differently, the Campbell-Shiller
approximation uses a first-order approximation of the consumption-wealth ration around its
long-term stationary value. [Chacko and Viceira, 2005] find the solution to be of a similar form
as in the case with unit EIS:

When ψ ‰ 1 there exists an approximate analytical solution to the indirect utility associated to
the primal consumption-investment choice problem (5.1.1) as

V rcs “ Gpt, x, yq « 1
1´γx

1´γgCSpt, yq.

The approximate investment and consumption strategies read

πCS “ 1
γ

´

ΣS
`

ΣS
˘J

¯´1
χ` k

γ

´

`

ΣS
˘J

¯`
`

ΣY
˘J g

CS
y

gCS
and

´ c

x

¯CS
“ δψ

`

gCS
˘´

kψ
θ ,

where the function gCSpt, yq “ ε̂ exp
`

Aptq ´ yJBptq ´ yJCptqy
˘

for model specific A, B and C
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solves

0 “ gCS
t `

1´γ
k

ˆ

r ` 1
2
1
γχ
J
´

ΣS
`

ΣS
˘J

¯´1

χ´ δθ
1´γ

˙

gCS ` 1
2 trace

”

`

ΣY
˘J
gCS
yy ΣY

ı

(5.1.7)

`

ˆ

`

µY
˘J
`

1´γ
γ χJ

´

`

ΣS
˘J

¯`
`

ΣY
˘J

˙

gCS
y ` θ

kψ lptq
´

1´ lnplptqq ` ln
`

δψ
˘

´
kψ
θ ln

`

gCS
˘

¯

gCS

` 1
2 pg

CS
y q

JΣY
ˆ

pk ´ 1qIm`n ´ k
γ´1
γ

`

ΣS
˘J

´

`

ΣS
˘J

¯`
˙

`

ΣY
˘J gCS

y

gCS
,

subject to the terminal condition gCSpT, yq “ ε̂.

Remark 5.3
As pointed out by [Kraft et al., 2013], the factor l should be regarded as endogenous, so in
applications we determine lptq recursively: Starting from an initial function l0ptq, we find the
solution gCS to (5.1.7) and then update the function l1ptq via

lnpl1ptqq “ E
„

ln
´ c

x

¯CS
pt, Y8q



“ lnpδψq ´ γψ
θ E

“

ln
`

gCSpt, Y8q
˘‰

and iterate until a fixed-point is reached. 4

The advantage of the Campbell-Shiller approximation is that the PDE (5.1.7) separates if one
chooses gCSpt, yq “ ε exp

`

Aptq ´ yJBptq ´ yJCptqy
˘

where the functions A, B and C completely
characterize the solution. In particular, the approximation is applicable in any dimension n P N
and for any parameter k P Rzt0u as long as the model under consideration is affine.

One main drawback of this method is that one cannot understand what this approximation
really does to the underlying problem and how it behaves if parameters deviate from the case
with unit EIS. In particular, it is not clear how the solutions relate to each other, i.e. if the
approximation yields a smaller or bigger value than the true one.

Moreover, in [Kraft et al., 2013], the authors compare their exact solution to the one resulting
from the approximation (5.1.6) in a Heston model similar to the one considered by [Chacko
and Viceira, 2005].2 They find the quantitative differences between the exact solution and the
approximation to be small when volatility is low, but if volatility increases they become more
pronounced. Quantitative measures aside, they in particular reveal several qualitative short-
comings with respect to the solution associated to the Campbell-Shiller approximation in their
Heston setting. More precisely, while the consumption-wealth ration

`

c
x

˘˚ associated to the
exact solution increases linearly in y and the optimal investment strategy π˚ is state dependent,
the consumption strategy

`

c
x

˘CS associated to the Campbell-Shiller approximation increases ex-
ponentially in y and the investment strategy πCS is constant. While this comparison was made
in a model with an infinite time horizon, the qualitative shortcomings persist in our setting with
finite time. This is the second main drawback of the naive application of the Campbell-Shiller
approximation.

Special Case: Power-Utility

In the special case of power utility, i.e. γψ “ 1 which implies θ “ 1, the partial differntial equa-
tion (5.1.2) simplifies accordingly. However, even in this time-additive special case of Epstein-Zin

2They consider the one-dimensional special case of our model from Example 4.2 in an infinite-time setting
while [Chacko and Viceira, 2005] use an inverse Heston model.
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utility the dynamic programming equation remains nonlinear and unsolvable if markets are in-
complete. On the other hand, if the market is complete, i.e. ΣS is invertible, choosing k “ γ,
(5.1.2) simplifies to

0 “ gt `
1´γ
γ

ˆ

r ` 1
2

1
γχ
J
´

ΣS
`

ΣS
˘J

¯´1
χ´ δ

1´γ

˙

g `

ˆ

`

µY
˘J
`

1´γ
γ χJ

´

`

ΣS
˘J

¯´1
`

ΣY
˘J

˙

gy

` 1
2trace

”

`

ΣY
˘J
gyyΣ

Y
ı

` δ
1
γ , (5.1.8)

subject to the terminal condition gpT, yq “ ε
1
γ . The associated optimal strategies read

π˚ “ 1
γ

´

ΣS
`

ΣS
˘J

¯´1
χ`

´

`

ΣS
˘T

¯´1
`

ΣY
˘J gy

g
and

´ c

x

¯˚

“ δ
1
γ g´1.

As shown e.g. in [Liu, 2007], a solution is obtained by a separation approach similar to the one
by [Kraft et al., 2013]. This is, a solution to (5.1.9) is given by

gpt, yq “ δ
1
γ

ż T

t
hpt, y; sqds` ε̂hpt, y;T q

and h satisfies the associated homogeneous equation

0 “ ht `
1´γ
γ

ˆ

r ` 1
2

1
γχ
J
´

ΣS
`

ΣS
˘J

¯´1
χ´ δ

1´γ

˙

h`

ˆ

`

µY
˘J
`

1´γ
γ χJ

´

`

ΣS
˘J

¯`
`

ΣY
˘J

˙

hy

` 1
2trace

”

`

ΣY
˘J
hyyΣ

Y
ı

, (5.1.9)

on r0, ssˆR, subject to the terminal condition hpT, yq “ 1. This is in contrast to truly recursive
Epstein-Zin utility, where even in the complete market scenario the HJB equation associated to
our problem in general has no known solution.

5.2 The ALFC-Algorithm

Consider the primal Epstein-Zin utility optimization problem

νpc˚q “ sup
pπ,cqPA

V0rcs.

In Section 4.4 we realized that the solution is characterized by three equivalent partial differential
equations, which we briefly recall here for easier reference.

1. The equation associated to the primal, respectively dual, optimization problem from
Proposition 4.3:

0 “ gt `
1´γ
k

ˆ

r ` 1
2
1
γχ
J
´

ΣS
`

ΣS
˘J

¯´1

χ´ δθ
1´γ

˙

g `

ˆ

`

µY
˘J
`

1´γ
γ χJ

´

`

ΣS
˘J

¯`
`

ΣY
˘J

˙

gy

` 1
2 trace

”

`

ΣY
˘J
gyyΣY

ı

` 1
2

1

g
pgyq

JΣY
ˆ

pk ´ 1qIm`n ´ k
γ´1
γ

`

ΣS
˘J

´

`

ΣS
˘J

¯`
˙

`

ΣY
˘J
gy

` δψθ
kψ g

1´ kψθ

“ gt `
1´γ
k

´

r ` 1
2
1
γ

`

ηS
˘J
ηS ´ δθ

1´γ

¯

g `

ˆ

`

µY
˘J
`

1´γ
γ

´

Σ̂SY ηS
¯J

˙

gy

` 1
2 trace

”

`

ΣY
˘J
gyyΣY

ı

` 1
2

1

g
pgyq

J

ˆ

´

k
γ ´ 1

¯

ΣY
`

ΣY
˘J
´ k 1´γ

γ Σ̂Y
´

Σ̂Y
¯J

˙

gy

` δψθ
lγψ g

1´kψθ , (5.2.1)

subject to the terminal condition gpT, yq “ ε
1
k .
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2. The equation associated to the least favorable completion as derived in Section 4.4.2:

0 “ g̃t `
1´γ
k

ˆ

r ` 1
2

1
γχ
J
c

´

ΣS
c

`

ΣS
c

˘J
¯´1

χc ´
δθ

1´γ

˙

g̃

`

ˆ

`

µY
˘J
`

1´γ
γ χJc

´

`

ΣS
c

˘J
¯´1

`

ΣY
˘J

˙

g̃y `
1
2trace

”

`

ΣY
˘J
g̃yyΣ

Y
ı

` 1
2
k´γ
γ

1

g̃
pg̃yq

JΣY
`

ΣY
˘J
g̃y `

δψθ
kψ g̃

1´ kψ
θ , (5.2.2)

subject to the terminal condition g̃pT, yq “ ε
1
k where the market is completed with the

optimal market prices of risk

`

ηY
˘˚
“ ´k

´

Σ̂Y
¯J g̃y

g̃
.

Note that in the above we actually have g ” g̃, but in the following it is important to no-
tationally distinguish between the primal, respectively dual differential equation and the one
associated to the artificially completed market. The idea behind the ALFC approach is to find
an approximate solution g« to (5.2.1), complete the market with the associated approximation
of the least favorable market prices of risk and then solve the more tractable complete market
problem with

`

ηY
˘˚ in (5.2.2) replaced by said approximation. If our approximation of the dual

solution is good, then the solution g̃ to the equation associated with the optimization problem
in a market completed with a good approximation of the least favorable market prices of risk
should be a good approximation to the true solution g.

We put this idea to algorithmic form:

Algorithm: (ALFC)

1. Find an approximation g« to (5.2.1) and set3

`

ηY
˘«
“ ´k

´

Σ̂Y
¯J g«y

g«

2. Replace
`

ηY
˘˚ in (5.2.2) by

`

ηY
˘« and find a solution g̃ to the resulting partial differential

equation. Then
g̃ « g

Similar to the approximations based on duality theory mentioned in the introduction, the ALFC
algorithm makes use of the fact that the complete market problem is generally easier to solve
than the one in incomplete markets. Note that as we complete the market only with an approx-
imation of the dual solution, that is in particular suboptimally, the resulting strategies are in
general not admissible in the actual market. The investment strategy π̃ can easily be projected
on the set of feasible actions by setting n entries associated to the artificial assets to zero, c.f.
[Bick et al., 2013] or [Kamma and Pelsser, 2022]. If the consumption-wealth ratio is bounded,
there is no issue for consumption. When considering unbounded policies, one has to verify the
admissibility of the consumption stream separately.

3We use ’«’ as a placeholder for the specific approximation used by the applicant.
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Note: During our numerical analysis we have to restrict ourselves to bounded domains by the nature of the
matter. It is clear that the model parameters in our specific models are then bounded on those domains and e.g.
by Proposition 5.1 we know that the solution is bounded above and below on those domains as well. Hence, we do
not discuss admissiblity of consumption within our numerical analysis and generally proceed without introducing
suitable truncated versions of our models as is done for example in [Kraft et al., 2017].

Suboptimal completion has nice implications as well. In particular, it implies that the result of
this algorithm is automatically an upper bound on the true value, see Section 4.4.2. Moreover
the algorithm is very flexible. One could theoretically use any approximation

`

ηY
˘« for the

market prices of risk as long as one is able to solve the resulting complete market problem.

The following exemplary approach is based on the Campbell-Shiller approximation of the dual
dynamic programming equation.

5.2.1 Campbell-Shiller ALFC (CS-ALFC)

To obtain an approximation of the market prices of risk, we make use of the Campbell-Shiller
approximation of Section 5.1:

Algorithm: (CS-ALFC)

1. As in Section 5.1 an approximation gCS to (5.2.1) and set

`

ηY
˘CS

“ ´k
´

Σ̂Y
¯J gCS

y

gCS

2. Replace
`

ηY
˘˚ in (5.2.2) by

`

ηY
˘CS and find a solution g̃ to the resulting partial differential

equation. Then
g̃ « g

Applying the Campbell-Shiller approximation to the dual PDE instead of the primal one has
several advantages. First, as the Campbell-Shiller approximation yields affine market prices
of risk, the complete market PDE still has a chance to separate. Moreover, even though the
approximation of MPRs is affine, the solution is of a more general structure, see (5.2.4) and
(6.1.8). Finally, even if the approximation might be quantitatively good, the approximation is
kind of a black box and applying it to the primal PDE completely changes the problem in an
unforeseeable way. An application to the dual PDE, however, makes use of the good approxi-
mation but only for the market prices of risk used in the artificial completion. In particular, the
actual investment problem on the primal side remains untouched.

For our numerical analysis of this algorithm, we restrict ourselves to the special case of power
utility, i.e. γψ “ 1. This is mainly because we focus on the dynamic programming equation,
which in the power case has a closed form solution for the complete market problem as stated
in Section 5.1. As there is no known solution for the PDE associated to the incomplete mar-
ket problem with power utility, this case is still interesting enough and suffices our purpose
to demonstrate the performance of the CS-ALFC algorithm. Also note that we have to make
the detour to the truly recursive case of unit EIS to obtain our approximation of ηY via the
Campbell-Shiller approximation. To the best of our knowledge this has not been done in the
literature so far.

63



CHAPTER 5. APPROXIMATION VIA SUBOPTIMAL COMPLETION

5.2.2 Numerical Results (Power Utility)

For notational convenience, we write the PDE associated to the artificially completed market in
terms of arbitrary market prices of risk ηY and as

0 “ g̃t ` r̃
`

ηY
˘

g̃ ` α̃
`

ηY
˘

g̃y `
1
2trace

”

`

ΣY
˘J
g̃yyΣ

Y
ı

` δ
1
γ ,

subject to the terminal condition g̃pT, yq “ ε
1
γ , where r̃ : Rn Ñ R and α̃ : Rnˆ1 Ñ R1ˆn are

given as

r̃pvq fi 1´γ
γ

ˆ

r ` 1
2

1
γ

ˆ

χJ
´

ΣS
`

ΣS
˘J

¯´1
χ` vJv

˙

´ δ
1´γ

˙

and
α̃pvq fi

`

µY
˘J
`

1´γ
γ

ˆ

χJ
´

`

ΣS
˘J

¯`
`

ΣY
˘J
` vJ

´

Σ̂Y
¯J

˙

.

As already mentioned, the qualitative drawbacks of the Campbell-Shiller approximation as dis-
cussed in Section 5.1 become an asset when it is used in the first step of the CS-ALFC approach.
When completing the market with the resulting approximate MPRs, equation (5.2.2) separates
and the solution g̃ is of the same structure as the one in Section 5.1 provided by [Liu, 2007].

Comparison with Exact Solutions

We first compare the numerical results from the CS-ALFC algorithm with the exact numerical
solution provided by the fixed-point iteration algorithm of Section 5.1 in a one-dimensional Kim-
Omberg model as in Example 4.1, then in a one-dimensional Heston model as in Example 4.2.

Kim-Omberg Model: We first state the general approximate solution and strategies provided
by the algorithm. To this end, consider the model introduced in Example 4.1, i.e. for a Rm`n-
dimensional standard Brownian motion W , let the risky assets and states follow the dynamics

dSrisky
t “ diagrSrisky

t s
``

r1m ` λ̄` λJYt
˘

dt` ΣSdWt

˘

,

dYt “ ´diagrκsYtdt` ΣY dWt,

where r P R, λ̄ P Rm, λ P Rmˆn, κ P Rn` and ΣS P Rmˆpm`nq, ΣY P Rnˆpm`nq are as defined in
(4.1.3).
Applying the Campbell-Shiller approximation to (5.2.1) yields market prices of risk given by

`

ηY
˘CS

pt, yq fi k
´

Σ̂Y
¯J

pBptq ` 2Cptqyq ,

where B and C solve the system of ordinary differential equations (D.2.4) in Appendix D.2.1.

Introducing artificial assets with market prices of risk given by
`

ηY
˘CS, the resulting complete

market problem is explicitly solvable according to [Liu, 2007] and the solution is obtained by a
separation approach as

g̃pt, yq “ δψHpt, yq ` ε̂hpt, y;T q, where Hpt, yq fi

ż T

t
hpt, y; sqds, (5.2.3)
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with hpt, y; sq “ exp
`

Apt, sq `Bpt, sqy ` yJCpt, sqy
˘

, where Ãpt, sq, B̃pt, sq and C̃pt, sq solve
(D.2.6) in Appendix D.2.1. The associated approximate strategies read4

πpt, yq “ 1
γ

ˆ

Σ̂S
´

Σ̂S
¯J

˙´1
`

λ̄` λJy
˘

`

ˆ

´

Σ̂S
¯J

˙´1
´

Σ̂SY
¯ g̃ypt, yq

g̃pt, yq
(5.2.4)

´ c

x

¯

pt, yq “
δ

1
γ

g̃pt, yq
ηY pt, yq “ ´γ

´

Σ̂Y
¯ g̃ypt, yq

g̃pt, yq
.

In particular, we obtain an analytic representation of the approximating strategies and note that
even if we approximated the market prices of risk linearly in the first step, all three strategies as-
sociated to the approximation are ultimately not forced to remain linear by the two step scheme
and take the more general form as in [Liu, 2007]. As mentioned, this is a major distinction
between the CS-ALFC approach and a naive application of the Campbell-Shiller approximation
to the primal PDE.

We set m “ n “ 1 and analyze the performance of the CS-ALFC scheme by comparing its ap-
proximation with the exact result provided by the fixed-point algorithm discussed in Section 5.1.

In a meta study on the calibration of risk aversion in the literature, [Elminejad et al., 2022] find
that the calibrated γ in models that separate RRA and EIS is accumulated between 1 and 10.
We follow [Liu and Muhle-Karbe, 2013] and choose the agent’s preference parameters according
to Table 5.1 and the following (monthly) model parameters (c.f. [Campbell and Viceira, 1999],
[Barberis, 2000], [Wachter, 2002]).

γ ψ δ ε

5 1
5 0.52% 1

Table 5.1: Preference Parameters

T r λ̄ σ̄S κ σ̄Y ρSY

20 0.14% 0.34% 4.36% 2.26% 0.08% -93.5%

Table 5.2: Model Parameters (monthly)

Moreover, we set λ “ 1. Figure 5.1 depicts the solution in a $-scale, to maintain comparability.
More precisely, in the upper left plot we see the function g̃$pt, 0q “ g̃pt, 0q

k
1´γ , such that

G̃pt, x, 0q “
1

1´ γ
x1´γ g̃pt, 0qk “

1

1´ γ

´

xg̃$pt, 0q
¯1´γ

, (5.2.5)

associated to the CS-ALFC scheme (red) and the exact solutions from the fixed-point algorithm
of Section 5.1 that is used as benchmark (blue). The upper middle and right plot show the

associated derivatives g̃$
ypt, 0q and sensitivities g̃

$
ypt,0q

g̃$pt,0q
compared to the exact solution, respectively.

The lower three plots show the associated strategies π̃pt, 0q, ˜` c
x

˘

pt, 0q and η̃Y pt, 0q as given in
(5.2.4) in red (dashed) and the exact solution from the fixed-point algorithm Section 5.1 in blue.
Figure 5.2 shows exactly the same, only the solutions are now plotted as functions in y at the
fixed time t “ 0. The dashed vertical lines indicate the 99% quantile associated to the stationary
distribution of the state process Y .

4Note that setting π immediately like this corresponds to cutting off the last n coordinates of π̃ to make the
investment strategy admissible in the original market.
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Figure 5.1: Kim-Omberg: Algorithmic solution of the FKC-algorithm from [Kraft et al., 2017]
in blue and the CS-ALFC approximation in red (dashed). The preference and model parameters
are given in Table 5.1 and Table 5.2. All functions are plotted as t ÞÑ ¨pt, ȳq

Figure 5.2: Kim-Omberg: Known algorithmic solution of the FKC-algorithm from [Kraft et al.,
2017] in blue and the CS-ALFC approximation in red (dashed). All functions are plotted as
y ÞÑ ¨p0, yq. The dashed vertical lines indicate the 99% quantile of the stationary distribution
associated to the state process.
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Heston Model: We first derive the general approximate solution and strategies. Consider the
model introduced in Example 4.2, i.e. let m “ n and for a R2n-dimensional standard Brownian
motion W let the risky assets and states follow the dynamics

dSrisky
t “ diagrSrisky

t s
``

r1m `KdiagrYtsK
Jλ̄

˘

dt` ΣSpYtqdWt

˘

,

dYt “ pµ̄´ diagrκsYtqdt` ΣY pYtqdWt,

where r P R, λ̄ P Rn, µ̄, κ P Rn`, K P Rnˆno and ΣS , ΣY are pnˆ2nq-dimensional matrix functions
as in (4.1.3).
Applying the Campbell-Shiller approximation to (5.2.1) yields the market prices of risk given
by

`

ηY
˘CS

pt, yq fi k
´

Σ̂Y pyq
¯J

Bptq,

where B solves the system of ordinary differential equations (D.2.7) in Appendix D.2.2. Recall
that Σ̂Y pyq behaves as ?y.
Introducing artificial assets with market prices of risk given by

`

ηY
˘CS, the resulting complete

market problem is explicitly solvable according to [Liu, 2007] and the solution is obtained by a
separation approach as

g̃pt, yq “ δψH̃pt, yq ` ε̂h̃pt, y;T q, where H̃pt, yq fi

ż T

t
h̃pt, y; sqds

with h̃pt, y; sq “ exp
´

Ãpt, sq ´ yJB̃pt, sq
¯

, where Ãpt, sq and B̃pt, sq solve (D.2.9) in Appendix D.2.2.
Moreover, the approximate strategies read5

πpt, yq “ 1
γKdiag

”

`

σ̄S
˘2
ı´1

KJλ̄`Kdiag
“

σ̄Y
‰

diag
“

σ̄S
‰´1

ρSY
g̃ypt, yq

g̃pt, yq
, (5.2.6)

´ c

x

¯

pt, yq “
δ

1
γ

g̃pt, yq
, ηY pt, yq “ ´γy

1
2 diagrσ̄Y sLY

g̃ypt, yq

g̃pt, yq
,

where
`

σ̄S
˘2

fi

´

`

σ̄S1
˘2
, . . . ,

`

σ̄Sn
˘2
¯

. In particular, note that even if we approximate the market
prices of risk by a scaled square root of y in the first step, all three strategies associated to the
approximation are ultimately not forced to remain of that structure by the two step scheme and
are of a more general structure as in [Liu, 2007].

We set m “ n “ 1 and for our comparison with the exact solution provided by the fixed-point
algorithm from Section 5.1, choose the agent’s preference parameters similar to Table 5.1. More-
over, we use the following (yearly) model parameters based on [Liu and Muhle-Karbe, 2013], c.f.
[Pan, 2002].

γ ψ δ ε

5 1
5 0.062 1

Table 5.3: Preference Parameters

T r λ̄ K σ̄S κ µ̄ σ̄Y ρSY

10 0.033 4.4 1 1 5.3 0.13 0.38 -0.57

Table 5.4: Model Parameters (yearly)

Figure 5.3 shows the solution g̃ as a $-multiplier (i.e. g̃$, see (5.2.5)), the associated differentials,
sensitivities and strategies provided by the CS-ALFC algorithm as functions in t (red, dashed);
the exact solution from the fixed-point algorithm is plotted in blue.

5Note that setting π immediately like this corresponds to cutting off the last n coordinates of π̃ to make the
investment strategy admissible in the original market.
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Figure 5.3: Heston: Known algorithmic solution of the FKC-algorithm from [Kraft et al., 2017]
in blue and the CS-ALFC approximation in red (dashed). All functions are plotted as t ÞÑ ¨pt, ȳq

Figure 5.4: Heston: Known algorithmic solution of the FKC-algorithm from [Kraft et al., 2017] in
blue and the CS-ALFC approximation in red (dashed). All functions are plotted as y ÞÑ ¨p0, yq.
The dashed vertical lines indicate the 99% quantile of the stationary distribution associated to
the state process Y .
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Figure 5.4 shows exactly the same as Figure 5.3, only as functions in y at the fixed time t “ 0.
The dotted vertical lines indicate the 99% quantile of the stationary distribution associated to
the state process Y .

Large Scale Model

In order to test the CS-ALFC algorithm in higher dimensions, we construct a market that is
arbitrarily scalable.

We assume that there is an underlying economy index process S‹ and state of the economy
process Y ‹, driven by one dimensional Brownian motion W ‹ and Ŵ ‹, respectively, where W ‹

and Ŵ ‹ are independent. Both of them are not part of the tradable market we consider, they
are merely the driving forces of the overall market randomness. The tradable market is given
by one risk-free asset with rate r and n identically distributed risky assets with dynamics

dSrisky
i “ Srisky

i

ˆ

`

r ` λ̄` λY i
˘

dt` σS
´

a

ρ‹dW ‹ `
a

1´ ρ‹dW̄i

¯

looooooooooooooooomooooooooooooooooon

fidW̃S
i

˙

, i “ 1, . . . , n,

where W̄i, i “ 1, . . . , n, are mutually independent Brownian Motions, also independent of W ‹

and Ŵ ‹. In particular, every asset Srisky
i has a correlation of

?
ρ‹ with the underlying index and

the return of every asset depends on a single state process Y i. The processes Y i are identically
distributed and each has correlation ξ with the associated share Si and correlation

a

p1´ ξ2qζ
with the state of economy process, more precisely

dY i “ ´κY idt` σY
´

ξdW̃ i `
a

1´ ξ2
´

a

ζdŴ ‹ `
a

1´ ζdŴ i
¯¯

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

fidW̃Y
i

, i “ 1, . . . , n,

where Ŵi, i “ 1, . . . , n, are again Brownian Motions, mutually independent and independent of
W ‹, Ŵ ‹ and all W i, i “ 1, . . . , n. In short, we assume the overall correlation structure

ρSi,j “

#

1, i “ j

ρ‹, i ‰ j
, ρSYi,j “

#

ξ, i “ j

ξρ‹, i ‰ j
and ρYi,j “

#

1, i “ j

ξ2ρ‹ ` p1´ ξ2qζ, i ‰ j
.

Thus, we are in a special case of the multivariate Kim-Omberg setting as in Example 4.1 and
the approximated solution and strategy are given as in (5.2.3) and (5.2.4).
As we have no benchmark to compare the algorithm with in higher dimensions, now is when
our bounds for the optimality gap derived in Section 3.1 come into play. In this power utility
scenario we naturally stick to the power utility bounds provided in Theorem 3.11 to bound the
optimality gap. Before starting the numerical analysis of the CS-ALFC algorithm with respect
to its accuracy in high dimensions, we briefly discuss a better way to measure the welfare loss
than using the power bounds itself.

Remark 5.4
Using Theorem 3.11 one can directly bound the utility loss associated to using the suboptimal
strategies c and D, respectively. However, it is also possible to transfer them to an upper bound
on the wealth equivalent loss(WEL) as is often done in the literature, see e.g. [Bick et al., 2013].
To this end, use the classical separation Ansatz for the power utility associated to the lower bound
from (3.1.2), i.e. Lγ^φt rcs “ 1

1´γ^φx
1´γ^φgLpt, yq. Then, for ḡL fi gLp0, ȳq, we have

Pγ_φpcq “
1

1´γx
1´γ ḡ

1´γ
1´γ^φ

L and P˚γ^φpDq “
1

1´γx
1´γ

´

1´γ
γ P˚γ_φpDq

¯γ

looooooooomooooooooon

fiḡU

.
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Then the wealth equivalent loss associated to the utility loss for the lower bound compared with
the upper one corresponds to a constant L P r0, 1s, such that

Pγ_φpcq “
1

1´γ pxp1´ Lqq
1´γ ḡU ,

which is determined by

L “ 1´ ḡ
1

1´γ^φ

L ḡ
1

γ´1

U .

Now L describes the fraction of wealth that is equivalent to the utility loss of the lower bound
with respect to the upper one, and hence is an upper bound on the true wealth equivalent loss,
which can be interpreted as the fraction of initial capital x an investor trading with the optimal
strategy can forego and still obtain the same utility as an investor trading suboptimally. Hence,
the smaller L, the better the associated strategies. In order to obtain a fair idea of the stability
of the approximation for different time horizons T , we follow [Kamma and Pelsser, 2022] by
introducing an annualized wealth equivalent loss. We define the annualized WEL as

LT fi 1´ p1´ Lq
1
T .

4

Remark 5.5
Also note that, by the representation of the value function Vtrcs “ Gpt, x, yq “ 1

1´γx
1´γgpt, yqk

and consumption
`

c
x

˘˚
“ δψgpt, yq´

kψ
θ , we can express the optimal value by the optimal con-

sumption ratio:

Gpt, x, yq “
1

1´ γ
x1´γδθ

´´ c

x

¯˚¯´
θ
ψ
.

Applying the upper and lower bounds similar as above allows us to transform the power bounds
on utility to bounds on the optimal consumption, i.e.

δ´ψ ḡ
´

ψp1´γq
θp1´γ^φq

L ď

´ c

x

¯˚

ď δ´ψ ḡ
´
ψ
θ

U if ψ ă 1,

δ´ψ ḡ
´
ψ
θ

U ď

´ c

x

¯˚

ď δ´ψ ḡ
´

ψp1´γq
θp1´γ^φq

L if ψ ą 1.

4

In our numerical simulations we use the parameters from Table 5.2 for every asset and state
process, respectively. Moreover, we set ρ‹ “ 41.6%, i.e. we choose

T r λ̄ σS κ σY ρ‹ ξ

20 0.14% 0.34% 4.36% 2.26% 0.08% 41.6% -93.5%

Table 5.5: Large Scale Model Parameters (monthly)

Furthermore, we set λ “ 1 and ζ “ 0. Table 5.6 shows the result of our bounds applied to the
strategies provided by the CS-ALFC scheme in dimension n “ m “ 50 and different preference
parameters γ P t3, 5, 7u.
The first line of Table 5.6 contains the lower power bound, the second presents the upper power
bound from Theorem 3.11 evaluated by Monte Carlo simulation. The resulting (annualized)
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wealth equivalent loss is given in the last line. The entries presented are the average of 10 simu-
lation with 5000 samples each. The brackets below provide the associated standard deviations.

In particular, Table 5.6 shows that even in dimension n “ 50, the CS-ALFC algorithm provides
strong upper and lower bounds on the welfare loss of less than 1% annualized WEL for each γ.

n “ 50
γ “ 3 γ “ 5 γ “ 7

Pγpcq -6.47e-03 -9.50e-05 -2.00e-06
(1.46e-04) (4.28e-06) (1.99e-07)

P˚γpDq -3.99e-03 -3.57e-05 -5.17e-07
(2.04e-04) (5.34e-06) (2.10e-07)

Ṽ0rcs -4.84e-03 -5.74e-05 -1.04e-06
- - -

L20 7.21e-03 6.25e-03 5.36e-03
(5.66e-04) (5.49e-04) (7.25e-04)

Table 5.6: Large Scale Kim-Omberg: Accuracy of CS-ALFC algorithm in dimension n “ 50 and
investment horizon T “ 20 years for different risk preferences γ. The bounds are the average of
10 Monte Carlo simulations of the respective expectations in Theorem 3.11 with 5.000 sample
paths each. The associated standard deviations are given in brackets.

5.2.3 Conclusion and Extension to the Recursive Case

The comparison of the outputs provided by the CS-ALFC algorithm and the known algorithmic
solution in Figure 5.1-Figure 5.4 verify that the approximation is accurate in one dimension.
In high dimensions, when there is no benchmark available, its accuracy is backed up by our
bounds on the optimality gap presented in Table 5.6. Note that the CS-ALFC algorithm does
suffer from the curse of dimensionality, i.e. running times increase exponentially in dimension,
as the search for the fixed-point of the Campbell-Shiller approximation in Remark 5.3 becomes
more and more difficult in higher dimensions. Nevertheless, as the overall approach is simple
and computationally feasible, the exponential increase in running time only becomes noticeable
in very high dimensions. The computation of the approximate solutions to our large scale model
in dimension n “ 50 with time horizon T “ 20 years takes about 12 seconds.6

A remarkable property of the CS-ALFC algorithm is that, even if we used the affine Campbell-
Shiller approximation to artificially complete the given market, the resulting strategies do in
general not stay affine. This is a major qualitative distinction compared with the classical ap-
proach of applying the Campbell-Shiller approximation to the primal HJB equation. Thus, at
least in our power utility setting, the analytic representation in (5.2.3) and (5.2.4) can be in-
terpreted as a two step Campbell-Shiller approximation, improving its qualitative shortcomings
identified by [Kraft et al., 2013], c.f. Section 5.1.

Conceptionally, the CS-ALFC algorithm is close to the approach of [Kamma and Pelsser, 2022],
as both are based on the following general idea:

6Machine: Intel(R) CoreTM i7´ 8650U Processor, 1.9GHz, 16GB RAM.
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Algorithm: (ALFC - General Idea)

1. find an approximation to
ν˚pΛ˚q “ inf

ΛPDa
tV ˚0 rΛs ` λxu (5.2.7)

2. complete the market using the MPR
`

ηY
˘« induced by the approximation of (5.2.7) to

solve
ν̃
´

c˚;
`

ηY
˘«

¯

fi sup
pπ̃,cqPÃ

Ṽ0

”

c;
`

ηY
˘«

ı

.

While we focus on dynamic programming techniques, [Kamma and Pelsser, 2022] employ the
martingale method, which allows them to also treat more general (non-affine) models and more
general types of utility functions. Our CS-ALFC algorithm on the other hand is conceptionally
easier because it does not rely on Monte-Carlo evaluation or additional convex optimization
techniques. Instead, we make use of the Campbell-Shiller approximation that is already at
hand. Moreover, while [Kamma and Pelsser, 2022] are able to treat e.g. state dependent utility
functions, their method heavily relies on the time-additive structure, i.e. in our setting they
only treat the case γψ “ 1. While we only tested the CS-ALFC scheme for time-additive power
utility here, the algorithm can easily be extended to the recursive case. However, not without
using additional approximations for the sensitivity g̃y

g̃ in the partial differential equation (5.2.2),
thereby loosing the upper bound property of the approximation. An exemplary approximation of
those sensitivities is used in our second algorithm introduced in the next chapter, see Section 6.1
and in particular Remark 6.1.
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Chapter 6

Approximation by Iterative
Suboptimal Completion

After we have seen how the introduction of duality can lead to numerical approximations of
optimal strategies in the last chapter, we consider the concept of least favorable completion
from a slightly different angle. To begin, assume that the market is complete and that the agent
trades all m`n shares to maximize her utility. Denote the market prices of risk of the n shares
that do not actually exist in the incomplete market by ηY , then the investor’s optimal utility is
given as

ν̃pc˚; ηY q fi sup
pπ̃,cqPÃ

Ṽ0

“

c; ηY
‰

.

Now we introduce a price setting opponent, who controls the market prices risk of the additional
n assets and will not allow the investor to trade in the artificial stocks. He determines the
associated market prices of risk based on her investment choice, i.e. he sets ηY such that her
investment in the n additional assets (πηY ) becomes zero,

πηY
!
“ 0.

This adjustment now changed the market conditions for the investor and she adapts her asset
allocations appropriately, forcing the price setter to again change market conditions and so on.
This is the general idea of our Primal-Dual-Iteration(PDI) algorithm:

Algorithm: (PDI - General Idea)

1. initialize the market prices of risk with j “ 1 and
`

ηY
˘pj´1q.

2. solve (approximate) the
`

ηY
˘pj´1q-completed market problem introduced in Section 4.4.2 as

ν̃
´

c˚;
`

ηY
˘pj´1q

¯

fi sup
pπ̃,cqPÃ

Ṽ0

”

c;
`

ηY
˘pj´1q

ı

and denote the associated investment strategy by π̃ “
`

π̃ηS , π̃ηY
˘

.

3. set
`

ηY
˘pjq such that

π̃ηY
!
“ 0.

4. • if d
´

`

ηY
˘pjq

,
`

ηY
˘pj´1q

¯

is large: set j Ñ j ` 1 and return to 2.
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• else:
ν̃
´

c˚;
`

ηY
˘pjq

¯

is the approximate primal solution

Speaking in terms of HJB equations, recall from Section 4.4.2 that in the ηY -completed market
we have

ν̃pc˚q “ G̃pt, x, yq “ 1
1´γx

1´γ g̃pt, yqk,

where g̃ satisfies the nonlinear partial differential equation

0 “ g̃t `
1´γ
k

ˆ

r ` 1
2
1
γχ
J
c

´

ΣSc
`

ΣSc
˘J

¯´1

χc ´
δθ
1´γ

˙

g̃ `

ˆ

`

µY
˘J
`

1´γ
γ χJc

´

`

ΣSc
˘J

¯´1
`

ΣY
˘J

˙

g̃y

` 1
2 trace

”

`

ΣY
˘J
g̃yyΣY

ı

` 1
2
k´γ
γ

1

g̃
pg̃yq

JΣY
`

ΣY
˘J
g̃y `

δψθ
kψ g̃

1´ kψθ , (6.0.1)

with terminal condition g̃pT, yq “ ε
1
k . Moreover, the investor’s optimal strategy reads

π̃˚ “ 1
γ

´

ΣS
c

`

ΣS
c

˘J
¯´1

χc `
k
γ

´

`

ΣS
c

˘J
¯´1

`

ΣY
˘J g̃y

g̃
and

´ c

x

¯˚

“ δψ g̃´
kψ
θ

as well as
π̃˚ηY “

1
γ η

Y ` k
γ

´

Σ̂Y
¯J g̃y

g̃
.

Thus, as in (4.4.7), the appropriate adjustment of the MPR is determined as

`

ηY
˘˚
“ ´k

´

Σ̂Y
¯T g̃y

g̃
.

Note that up to now π̃˚ is admissible after each adjustment of the MPR. Thus, if the algorithm
converges, i.e.

`

ηY
˘pjq

“
`

ηY
˘pj´1q, the output is admissible in the original marked as opposed

to the output of the ALFC-scheme of Section 5.2.

6.1 Sensitivity-Approximation PDI (SA-PDI)

Consider the PDE associated to the completed market and set k “ θ
ψ , such that the nonlinearity

g1´ kψ
θ vanishes. Unfortunately, due to the nonlineariy g̃y

g̃ , we cannot solve the partial differential
equation (6.0.1) and thus cannot translate the idea of the PDI algorithm to the notion of PDEs
without applying additional approximations. Our approach to approximate (6.0.1) is as follows.

We represent the sensitivities g̃y
g̃ with the optimal market prices of risk, i.e.

pg̃yq
J

g̃
“ ´ 1

k

`

ηY
˘T

´

Σ̂Y
¯´1

, (6.1.1)

then similar as before, we can equivalently formulate the complete market equation (5.2.2) as

0 “ g̃t ` r̃
´

`

ηY
˘˚
¯

g̃ ` α̃
´

`

ηY
˘˚
¯

g̃y `
1
2trace

”

`

ΣY
˘J
g̃yyΣ

Y
ı

` δψ, (6.1.2)

where r̃ : Rn Ñ R and α̃ : Rnˆ1 Ñ R1ˆn are given as

r̃pvq fi 1´γ
k

ˆ

r ` 1
2

1
γ

ˆ

χJ
´

ΣS
`

ΣS
˘J

¯´1
χ` vJv

˙

´ δθ
1´γ

˙
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and

α̃pvq fi

ˆ

`

µY
˘J
`

1´γ
γ

ˆ

χJ
´

`

ΣS
˘J

¯`
`

ΣY
˘J
` vJ

´

Σ̂Y
¯J

˙

´ 1
2
k´γ
kγ v

J
´

Σ̂Y
¯´1

ΣY
`

ΣY
˘J

˙

.

We guess some initial ηY« , solve (6.1.2) and update ηY« according to the solution by ηYnew “

´k
´

Σ̂Y
¯J g̃y

g̃ . The issue with the dynamic programming method now is that, even if the model

is affine, the resulting sensitivities g̃y
g̃ and hence market prices of risk are in general not. Thus,

we approximate the market prices of risk ηY« « ηYnew, such that ηY« is affine and (6.1.2) separates
when plugging it into the approximation, accepting the additional approximation error. Then
ηY« is used as initialization of the next iteration and we proceed until convergence, i.e. until the
approximations of sensitivities coincide.

Algorithm: (SA-PDI)

1. initialize the market conditions with j “ 1,
`

ηY«
˘pj´1q

“ 0nˆ1

2. solve the approximated complete market problem by finding a solution g̃ to

0 “ g̃t ´ r̃
´

`

ηY«
˘pj´1q

¯

g̃ ` α̃
´

`

ηY«
˘pj´1q

¯

g̃y `
1

2
trace

”

`

ΣY
˘J
g̃yyΣ

Y
ı

` δψ, (6.1.3)

subject to the terminal condition g̃pT, yq “ ε
1
k and set pηY qpjq “ ´kpΣ̂Y qT

g̃y
g̃

3. suitably1 approximate the resulting sensitivities g̃y
g̃ by some function S : r0, T s ˆRn Ñ Rn

and set
`

ηY«
˘pjq

“ ´kpΣ̂Y qTS.

4. • if d
´

`

ηY«
˘pj´1q

,
`

ηY«
˘pjq

¯

is large, increase j by 1 and return to 2.

• else: the approximated solution is characterized by g̃

Note that due to the completion with the approximations of sensitivities, the resulting invest-
ment strategies are no longer admissible and have to be projected on the set of admissible ones
by cutting off the last n entries that are associated to the artificial assets. Moreover, besides
the usual numerical inaccuracies, there are two sources of errors. The first one comes from the
affine approximation of the market prices of risk, so we complete the market suboptimally. The
second one is that resulting from the representation (6.1.1), we also approximate the sensitivities
that do not actually correspond to the artificial completion. This certainly has an impact on
the solution and, similar as the Campbell-Shiller approximation, it is not really clear what this
does to the optimal value. At least, there is a probabilistic interpretation of this approximation
which we briefly state in a heuristic manner:

In order to not take into account the affine approximation of ηY , consider the partial differential
equation corresponding to the exact completion (5.2.2) as above. A short manipulation shows
that (5.2.2) is equivalent to

0 “ g̃t ` r̄g̃ ` pg̃yq
J

ˆ

µY ´ ΣY θ

ˆ

g̃y
g̃

˙˙

` 1
2trace

”

`

ΣY
˘J
g̃yyΣ

Y
ı

` δψ,

1What kind of approximation is suitable depends on the model under consideration, see our numerical examples
below.
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CHAPTER 6. APPROXIMATION BY ITERATIVE SUBOPTIMAL COMPLETION

g̃pT, yq “ ε̂, where r̄ fi 1´γ
k

ˆ

r ` 1
2

1
γχ
J
´

ΣS
`

ΣS
˘J

¯´1
χ´ δθ

1´γ

˙

and

θ

ˆ

g̃y
g̃

˙

fi
γ´1
γ

`

ΣS
˘`
χ´ 1

2

´

pk ´ 1qIm`n ´ k
γ´1
γ

`

ΣS
˘`

ΣS
¯

`

ΣY
˘J g̃y

g̃
.

Then θ as a process of t and Y can be interpreted as a Girsanov kernel inducing a change of
measure under which

dW θ
t “ dWt ` θ

ˆ

g̃y
g̃

˙

dt

is a pm` nq-dimensional Brownian motion, thus g̃pt, yq has an implicit Feynman-Kac represen-
tation

g̃pt, yq “ δψEθt
„
ż T

t
e´

şs
t r̄pY

θ
u qduds



` ε̂Eθt
”

e´
şT
t r̄pY

θ
u qdu

ı

,

where Eθ is taken under the new measure of risk induced by θ and Y θ has the dynamics

dY θ “

ˆ

µY ´ ΣY θ

ˆ

g̃y
g̃

˙˙

dt` ΣY dW θ.

Hence, the affine approximation of the sensitivities that are not associated to the completion
of the market with ηY« , can be interpreted as an affine approximation of an actually nonlinear
change of measure.

Remark 6.1
The approximation (6.1.1) could also be used to extend the CS-ALFC algorithm to the recursive
case:

1. set k “ θ
ψ and determine the Campbell-Shiller approximation gCS associated to the dual

partial differential equation (5.2.1)

2. set
`

ηY
˘CS

“ ´k
´

Σ̂Y
¯ gCS

y

gCS

3. solve (6.1.2) with
`

ηY
˘CS instead of

`

ηY
˘˚, then g̃ « g

Note however, that in the truly recursive case we have no closed form solution, even for the
artificially completed market problem. 4

6.1.1 Numerical Results

We test the SA-PDI algorithm with our multivariate Kim-Omberg and Heston model. All nec-
essary computations can be found in Appendix D.3.

Comparison with Exact Solutions

First, we compare the numerical results provided by the PDI algorithm with the exact numerical
solution provided by the fixed-point iteration algorithm of Section 5.1 in a one-dimensional Kim-
Omberg model as in Example 4.1, then in a one-dimensional Heston model as in Example 4.2.
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Kim-Omberg Model: Recall the model introduced in Example 4.1, where for a Rm`n-
dimensional standard Brownian motion W , the risky assets and states follow the dynamics

dSrisky
t “ diagrSrisky

t s
``

r1m ` λ̄` λJYt
˘

dt` ΣSdWt

˘

,

dYt “ ´diagrκsYtdt` ΣY dWt,

where r P R, λ̄ P Rm, λ P Rnˆm, κ P Rn` and ΣS P Rmˆpm`nq, ΣY P Rnˆpm`nq as defined in
(4.1.3). Then the algorithm in the j-th step behaves as follows.

Let the market prices of risk
`

ηY
˘pj´1q from the pj ´ 1q-th iteration of the form

`

ηY
˘pj´1q

fi ηY1 ptq ` η
Y
2 ptqy

be given. Plugging these into (6.1.3), a solution is given by the function

g̃pt, yq “ δψ
ż T

t
hpt, y; sqds` ε̂hpt, y;T q, (6.1.4)

where
hpt, y; sq “ exp

´

Ãpt, sq ´ yJB̃pt, sq ´ yJC̃pt, sqy
¯

and Ãp¨, sq, B̃p¨, sq, C̃p¨, sq solve (D.3.2) in Appendix D.3.1. In particular, the update for the
market prices of risk are given as

`

ηY
˘pjq

“ ´k
´

Σ̂Y
¯J g̃y

g̃
.

We determine the approximation of sensitivities by the first-order Taylor approximation around
ȳ “ E rY8s as

Spt, yq “
g̃ypt, ȳq

g̃pt, ȳq
`
B

By

ˆ

g̃ypt, ȳq

g̃pt, ȳq

˙

py ´ ȳq.

Then the linearized market prices of risk have a representation

`

ηY«
˘pj´1q

pt, yq “ ´k
´

Σ̂Y
¯J

Spt, yq fi S1ptq `S2ptqy

for appropriate S1 and S2. Evaluate

d
´

`

ηY«
˘pj´1q

,
`

ηY«
˘pjq

¯

fi ||ηY1 ´S1||2 ` ω̄||η
Y
2 ´S2||F (6.1.5)

for some weight ω̄2. Now we are either finished if (6.1.5) is ’small’, or we set j Ñ j ` 1 and
repeat. In case we are finished, the approximate strategies read as3

πpt, yq “ 1
γ

ˆ

Σ̂S
´

Σ̂S
¯J

˙´1
`

λ̄` λJy
˘

` k
γ

ˆ

´

Σ̂S
¯J

˙´1
´

Σ̂SY
¯ g̃ypt, yq

g̃pt, yq
,

´ c

x

¯

pt, yq “
δψ

g̃pt, yq
and ηY pt, yq “ ´k

´

Σ̂Y
¯ g̃ypt, yq

g̃pt, yq
. (6.1.6)

2We introduce the weight ω̄ to compensate for potential mismatches between the two Euler and Frobenius
norm. In our numerical analysis we generally do fine with ω̄ “ 1.

3Note that setting π immediately like this corresponds to cutting off the last n coordinates of π̃ to make the
investment strategy admissible in the original market.
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In particular, even though we approximated the sensitivities by the linear first order Taylor
approximation, the strategies obtained from the SA-PDI algorithm are of the more general
structure similar as in [Kraft et al., 2013].

As benchmark for the performance of the SA-PDI approximation, we utilize the fixed-point
algorithm discussed in Section 5.1. In terms of preference parameters, we follow [Liu and Muhle-
Karbe, 2013] by choosing γ “ 5 and [Bansal and Yaron, 2004] by choosing ψ “ 1.5. In particular,
in our numerical analysis we focus on parameters γ, ψ ą 1, which are sometimes labeled as the
empirically relevant case in the literature, c.f.[Xing, 2017]. As in the CS-ALFC algorithm, we
choose our (monthly) model parameters based on [Liu and Muhle-Karbe, 2013] and [Wachter,
2002], c.f. [Barberis, 2000].

γ ψ δ ε

5 1.5 0.52% 1

Table 6.1: Preference Parameters

T r λ̄ σ̄S κ σ̄Y ρSY

20 0.14% 0.34% 4.36% 2.26% 0.08% -93.5%

Table 6.2: Model Parameters (monthly)

Note that we choose our preference parameters far away from the power case, to stress the
performance of our power bounds.
Finally, we set λ “ 1. Figure 6.1 show the solution g as a $-multiplier (see (5.2.5)), the associated
differentials, sensitivities and approximated strategies provided by the SA-PDI algorithm in red
(dashed); the exact solution from the fixed-point algorithm is plotted in blue. All graphs show
the associated mappings in t at the mean reversion level of the state process ȳ.

Figure 6.1: Exact solution from fixed point algorithm in blue and the SA-PDI approximation in
red (dashed). Parameters are as in Table 6.1 and Table 6.2, where T “ 20 years. All results are
plotted as t ÞÑ ¨pt, 0q.

Figure 6.2 again shows the solution g$ and the associated strategies of the SA-PDI algorithm in
red (dashed) and the exact solution of [Kraft et al., 2017] in blue, this time as functions in y at
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t “ 0.

Figure 6.2: Exact solution from fixed point algorithm in blue and the SA-PDI approximation in
red (dashed). Parameters are as in Table 6.1 and Table 6.2. All results are plotted as y ÞÑ ¨p0, yq.
The dashed vertical lines indicate the 99% quantile of the state process with our given model
parameters.

We compare the results in dimension m “ n “ 1 for several risk preference parameters, while
the model parameters remain fixed as in Table 6.2. When iterating over γ P p0, 10s we follow
[Bansal and Yaron, 2004] and fix ψ “ 1.5; when iterating over ψ P p0, 5s we fix γ “ 5 according
to [Liu and Muhle-Karbe, 2013].4 Note that the PDE iteration of [Kraft et al., 2017] diverges if
ψ gets close to 1, while the SA-PDI algorithm runs stable.

Finally, we investigate the convergence of the algorithm. Figure 6.4 shows the function g$p0, yq
of every iteration step as a function of y within the 99% quantile of the given state process on
the left side. The plot on the right side shows the error degression in terms of (6.1.5) on a
logarithmic scale.

4The gaps within the graphs are the parameter constellations γ, ψ that are out of our duality setting.
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Figure 6.3: Exact solution from fixed point algorithm in blue and the SA-PDI approximation
in red (dashed). Parameters are as in Table 6.1 and Table 6.2. All results are plotted at
pt, yq “ p0, ȳq as functions in γ and ψ respectively.

Figure 6.4: Convergence behavior of our SA-PDI scheme in the Kim-Omberg model. The
function iterates on the left plot are given as y ÞÑ ¨p0, yq on the 99% quantile of the state
process. The error on the right hand side are on a logarithmic scale. Model parameters are as
given in Table 6.2.
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Heston Model: Consider the multivariate Heston model introduced in Example 4.2, i.e. let
m “ n and for a R2n-dimensional standard Brownian W let the assets and states follow the
dynamics

dSt “ diagrSts
``

r `KdiagrYtsK
Jλ̄

˘

dt` ΣSpYtqdWt

˘

,

dYt “ pµ̄´ diagrκsYtq dt` ΣY pYtqdWt,

where r, λ̄, µ̄, κ P Rn, K P Rnˆno and ΣS , ΣY are pn ˆ 2nq-dimensional matrix functions as in
(4.1.3). Then the SA-PDI algorithm in the j-th step behaves as follows.

Let the market prices of risk
`

ηY
˘pj´1q of the form

`

ηY
˘pj´1q

pt, yq “ ´k
´

Σ̂Y pyq
¯

ηY1 ptq,

where g̃ is the solution of the previous iteration. Recall that Σ̂Y pyq behaves as ?y. Plugging
these into (6.1.3), a solution is given by the function

g̃pt, yq “ δψ
ż T

t
hpt, y; sqds` ε̂hpt, y;T q,

where
hpt, y; sq “ exp

´

Ãpt, sq ´ yJB̃pt, sq
¯

,

and Ãp¨, sq, B̃p¨, sq solve (D.3.3) in Appendix D.3.2. In particular, the update for the market
prices of risk are given as

`

ηY
˘pjq

“ ´k
´

Σ̂Y
¯J g̃y

g̃
.

We approximate the sensitivity g̃y
g̃ by its the value at ȳ “ E rY8s as

Sptq “
g̃ypt, ȳq

g̃pt, ȳq
.

Then the approximated market prices of risk are of the form
`

ηY«
˘pj´1q

pt, yq “ ´kdiagrσ̄Y sLY y
1
2Sptq.

Finally, evaluate
d
´

`

ηY«
˘pj´1q

,
`

ηY«
˘pjq

¯

fi ||ηY ´S||2 (6.1.7)

and we are either finished if (6.1.7) is ’small’ or we set j Ñ j ` 1 and repeat. In case we are
finished, the associated approximate strategies read as5

π̃pt, yq “ 1
γKdiag

”

`

σ̄S
˘2
ı´1

KJλ̄` k
γKdiag

“

σ̄Y
‰

diag
“

σ̄S
‰´1

ρSY
g̃ypt, yq

g̃pt, yq
, (6.1.8)

´ c

x

¯

pt, yq “
δψ

g̃pt, yq
, ηY pt, yq “ ´ky

1
2 diagrσ̄Y sLY

g̃ypt, yq

g̃pt, yq
,

where
`

σ̄S
˘2

fi

´

`

σ̄S1
˘2
, . . . ,

`

σ̄Sn
˘2
¯

. In particular, even though we approximated the sensitiv-
ities with a constant function in y, the strategies from the SA-PDI algorithm are of the more

5Note that setting π immediately like this corresponds to cutting off the last n coordinates of π̃ to make the
investment strategy admissible in the original market.

81
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general form of [Kraft et al., 2013].

For our comparison, we choose m “ n “ 1 and stick to the preference parameters from Table 6.1
and for the (yearly) model parameters we follow [Liu and Muhle-Karbe, 2013], c.f. [Pan, 2002].

γ ψ δ ε

5 1.5 0.062 1

Table 6.3: Preference Parameters

T r λ̄ K σ̄S κ µ̄ σ̄Y ρSY

10 0.033 4.4 1 1 5.3 0.13 0.38 -0.57

Table 6.4: Model Parameters (yearly)

Figure 6.5 and Figure 6.6 show the solution g as a $-multiplier (see (5.2.5)) and the associated
differentials, sensitivities and approximated strategies provided by SA-PDI in red (dashed); the
exact solution from the fixed-point algorithm is plotted in blue. Figure 6.5 shows all mappings
as functions t ÞÑ ¨pt, 0q, while Figure 6.6 shows them as functions y ÞÑ ¨p0, yq.

Figure 6.5: Exact solution from fixed point algorithm in blue and the SA-PDI approximation in
red (dashed). Parameters are as in Table 6.3 and Table 6.4, where T “ 10 years. All results are
plotted as t ÞÑ ¨pt, ȳq.

We now compare the results for several risk preference parameters, while the model parameters
remain fixed as in Table 6.4. When iterating over γ P p0, 10s we follow [Bansal and Yaron, 2004]
and fix ψ “ 1.5; when iterating over ψ P p0, 5s we fix γ “ 5 according to [Liu and Muhle-Karbe,
2013].6

6The gaps in the graphs correspond to parameter constellations where γ, ψ are out of our duality setting.
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Figure 6.6: Exact solution from fixed point algorithm in blue and the SA-PDI approximation in
red (dashed). Parameters are as in Table 6.3 and Table 6.4. All results are plotted as y ÞÑ ¨p0, yq.
The dashed vertical lines indicate the 99% quantile of the state process with our given model
parameters.

Figure 6.7: Exact solution from fixed point algorithm in blue and the SA-PDI approximation in
red (dashed). Model parameters are as in Table 6.4. All results are plotted at pt, yq “ p0, ȳq as
functions in γ and ψ respectively.
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Concerning the convergence of the SA-PDI algorithm, Figure 6.8 shows the function g$p0, yq of
every iteration step as a function of y within the 99% quantile of the given state process on
the left side. The plot on the right side shows the error degression in terms of (6.1.7) on a
logarithmic scale.

Figure 6.8: Convergence behavior of our SA-PDI scheme in the Heston model. The function
iterates on the left plot are given as y ÞÑ ¨p0, yq on the 99% quantile of the state process. The
error on the right hand side are on a logarithmic scale. Parameters are as in Table 6.4.

Large Scale Model

In order to test the SA-PDI algorithm in higher dimensions, we consider our large scale market
from Section 5.2.2, i.e. we assume the correlation structure

ρSi,j “

#

1, i “ j

ρ‹, i ‰ j
, ρSYi,j “

#

ξ, i “ j

ξρ‹, i ‰ j
and ρYi,j “

#

1, i “ j

ξ2ρ‹ ` p1´ ξ2qζ, i ‰ j
.

As mentioned above this is a special case of the multivariate Kim-Omberg setting as in Exam-
ple 4.1, thus, the behavior of the algorithm in the j-th step is given as above and the approxi-
mated solution and strategy are given as in (6.1.4) and (6.1.6).

Again, we have no benchmark to compare the algorithm with in higher dimensions, so we have to
utilize our bounds from Chapter 3. However, as we are now in a truly recursive setting, the accu-
racy of our power bounds from Theorem 3.11 deteriorates if γ, ψ deviates too much from the case
γψ “ 1. While on our focus area γ, ψ ą 1 we have no alternative for the upper bound, we utilize
our lower variational version from Corollary 3.12 as a lower bound to evaluate the optimality gap.

Similar as in Remark 5.4, we take the annualized welfare loss as a measure of accuracy derived
from the actual optimality gap. The derivation here is analogous to the derivation within Re-
mark 5.4, with Pγ_φpcq from Theorem 3.11 replaced by Upc, uq from Corollary 3.12.

In our numerical simulations, we set λ “ 1, ρ‹ “ 41.6% and ζ “ 0, and otherwise stick to the
parameters from Table 6.2 for every asset and state process:
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T r λ̄ λ σS κ σY ρ‹ ξ ζ

20 0.14% 0.34% 100% 4.36% 2.26% 0.08% 41.6% -93.5% 0

Table 6.5: Large Scale Model Parameters (monthly)

Table 6.6 shows the result of our bounds applied to the strategies provided by the SA-PDI scheme
in dimension n “ m “ 50 and for different preference parameters pγ, ψq P tp5, 1.5q, p3, 1.3q, p1.1, 1.1qu.
The first line of Table 6.6 contains the lower variational bound, the second presents the upper
power bound from Theorem 3.11 evaluated by Monte Carlo simulation. The resulting (annu-
alized) wealth equivalent loss is given in the last line. The entries presented are the average
of 10 simulation with 5000 samples each. The brackets below provide the associated standard
deviations.

n “ 50
(γ “ 5, ψ “ 1.5) (γ “ 3, ψ “ 1.3) (γ “ 1.1, ψ “ 1.1)

Upc, ũq -1.79e-06 -9.80e-04 -6.746
(8.95e-07) (5.41e-05) (0.010)

P˚γpDq -2.83e-12 -1.14e-05 -6.463
(2.82e-13) (5.69e-07) (0.013)

Ṽ0rcs -1.32e-06 -8.86e-04 -6.713
- - -

L20 56.3% 28.3% 2.3%
(9.19e-03) (3.05e-03) (8.01e-04)

Table 6.6: Large Scale Kim-Omberg: Accuracy of SA-PDI algorithm in dimension n “ 50 and
investment horizon T “ 20 years for different RRA γ and EIS ψ. The bounds are the average
of 10 Monte Carlo simulations of the respective expectations in Theorem 3.11 with 5000 sample
paths each. The associated standard deviations are given in brackets.

It turns out that evaluating the truly recursive scenario by using our power bounds is unsatis-
factory, see in particular the second row of Table 6.6 compared to the first and third. Table 6.6
verifies the intuition, that our power bounds become worse, if we deviate much from the power
utility case and become better (but not great) when we are closer to γψ “ 1.

Searching for a better way to verify the performance of the SA-PDI algorithm, its high accuracy
in dimension n “ 1, c.f. Figure 6.1-Figure 6.8, as well as the upper bound property of the
value function from the suboptimal completion in every step, tempts to use Ṽ0rcs itself as an
upper bound. However, one cannot be sure whether this upper bound property provided by the
duality theory of [Cvitanić and Karatzas, 1992] was destroyed by the additional approximation of
sensitivities or not. Nevertheless, as the first column of Table 6.6 provides almost no information
about the performance of the algorithm, we do take Ṽ0rcs as an approximate upper bound as
this is the best hint we can get, even if results might be too good (see in particular the first
column of Table 6.7, where νpc˚q slightly exceeds Ṽ0rcs). We denote the resulting approximated
annualized WEL by L«T , the derivation is analogous to Remark 5.4 with Pγ^φpDq replaced by
Ṽ0rcs.7

7Note that the results differ slightly from the ones in Table 6.6, as they are computed by a separate Monte
Carlo simulation.
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(γ “ 5, ψ “ 1.5) (γ “ 3, ψ “ 1.3) (γ “ 1.1, ψ “ 1.1)
n “ 1 n “ 50 n “ 1 n “ 50 n “ 1 n “ 50

Upc, ũq -7.687e-06 -1.602e-06 -3.134e-03 -1.057e-03 -7.670 -6.746
(1.813e-07) (2.264e-07) (3.102e-05) (7.834e-05) (9.283e-03) (7.951e-03)

Ṽ0rcs -7.553e-06 -1.3251e-06 -3.117e-03 -8.865e-04 -7.666 -6.7132
- - - - - -

νpc˚q -7.551e-06 - -3.117e-03 - -7.666 -
- - - - - -

L«20 1.08e-03 0.0112 4.19e-04 0.0129 2.98e-04 2.74e-03
(1.04e-03) (8.135e-03) (4.21-04) (5.22e-03) (6.65e-04) (6.44e-04)

Table 6.7: Large Scale Kim-Omberg: Accuracy of SA-PDI algorithm in dimension n “ 50 and
investment horizon T “ 20 years for different RRA γ and EIS ψ. The lower variational bound is
the average of 10 Monte Carlo simulations of the respective expectation in Corollary 3.12 with
5000 sample paths each. The associated standard deviations are given in brackets.

6.1.2 Conclusion and Notes on Convergence

The comparison of the outputs provided by the SA-PDI algorithm and the known algorithmic
solution in Figure 6.1-Figure 6.3 and Figure 6.5-Figure 6.7, respectively, verify that the one-
dimensional approximation is accurate in both, the Kim-Omberg and Heston model. Moreover,
it is stable under variations of the preference parameters γ and ψ, even more stable than the
PDE-iteration algorithm, that diverges if ψ gets close to 1. Even in higher dimensions the algo-
rithm is fast8 and stable under changing preference parameters. The verification of accuracy in
high dimension, however, turns out to be difficult, as our power bounds become arbitrarily bad
if the preference parameters deviate too much from the power utility case, recall Table 6.6. The
arguably more accurate approximate bounds calculated with the direct use of the algorithms
output indicates high accuracy with annualized WEL of about 1% (c.f. Table 6.7), however,
those bounds have to be treated with caution, as the linear/constant approximation of sensi-
tivities potentially destroys the upper bound property inherited by suboptimal completion. In
particular, the solution provided by the SA-PDI algorithm might be smaller than the true solu-
tion and thus yield too small welfare losses, as can be seen in the first column of Table 6.7.

The SA-PDI algorithm converges fast and reliable, c.f. Figure 6.9, however it never converges to
the true solution but only to the approximation of the problem with linear/constant sensitivities.
It can be shown that a variation of the PDI scheme, where instead of the approximation of
sensitivities, we use the Campbell-Shiller approximation in every step, converges to the direct
Campbell-Shiller approximation of the primal problem.
The main drawback of the SA-PDI algorithm is its limitation to affine market models and its
convergence not to the true solution but only to an approximation. The approach by [Kraft
et al., 2017] is more flexible in that point of view, as by solving the associated PDE numerically
with a Crank-Nicolson scheme, they don’t need it to separate. However, their scheme is only
applicable in one dimension, while the SA-PDI algorithm can handle high dimensions without
suffering too much from the curse of dimensionality. Also the SA-PDI algorithm provides an
analytical representation of the approximation, instead of a solely numerical solution. The only

8The running time is almost independent of the dimension. Evaluations in dimension n “ 50 take about
12 seconds. Machine: Intel(R) CoreTM i7´ 8650U Processor, 1.9GHz, 16GB RAM. Note that the computation
time of the bounds on the other hand does depend on the dimension and may take several minutes.
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6.1. SENSITIVITY-APPROXIMATION PDI (SA-PDI)

Figure 6.9: Running times of the large scale Kim-Omberg model in different dimensions in
seconds.

analytical approximation to high dimensional incomplete market problems is the Campbell-
Shiller approximation of [Chacko and Viceira, 2005], but as pointed out by [Kraft et al., 2013],
the CS approximation implies several qualitative issues on the optimal strategy, such as expo-
nential state dependence of consumption and no state dependence in the investment strategy.
The approximate solution of our SA-PDI scheme does not inherit those shortcomings, as the
solution structure coincides with the one found by [Kraft et al., 2013].
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Chapter 7

Conclusion

Overall, this thesis extends the theory on investment-consumption optimization problems of an
investor with recursive Epstein-Zin preferences by further developing the convex duality theory
introduced by [Matoussi and Xing, 2018], bridging gaps in existing research, providing effective
approximation methods for a agent’s optimal strategies and introducing novel duality bounds
on the optimality gap associated to said approximations.
More precisely, while [Matoussi and Xing, 2018] exclude power utility from their duality pro-
cedure, our extended approach derived in Section 2.2 captures power utility as a special case.
As duality results for this time-additive utility specification are well known (c.f. [Pliska, 1986],
[Karatzas et al., 1987], [Karatzas et al., 1991], [He and Pearson, 1991]), this extension is rather
of aesthetic nature and mainly shows consistency of the two approaches within our enlarged
framework. The resulting dual problem is of similar structure as the primal one, i.e. it is given
as the solution to a non-standard BSDE. [Becherer et al., 2023] were the first to establish ex-
istence, uniqueness, as well as monotonicity and convexity results for solutions of this specific
BSDE. However, as they consider a variation of the classical Epstein-Zin parametrization, their
analysis excludes relevant parameter constellations for the RA γ and EIS ψ. We close that gap
in Section 2.3.
Moreover, we investigate duality bounds in terms of the optimality gap (see Definition 3.1),
which have successfully been used since their introduction by [Haugh et al., 2006] in various
time-additive utility settings, see e.g. [Bick et al., 2013] or [Kamma and Pelsser, 2022]. The
primary benefit of those bounds is that they provide a measure for the accuracy of an approx-
imate solution, without knowing what the exact solution is, so they can be utilized to validate
numerical approximations without the need of a benchmark approach. In a time-additive set-
ting those bounds are easy to determine by Monte Carlo simulation; in our recursive setting
however, the computation of this optimality gap would correspond to solving a coupled forward-
backward stochastic differential equation. Thus, in particular in high dimensions, the optimality
gap itself is not a suitable tool to measure the accuracy of an approximation. We bypass this
issue by introducing bounds on the optimality gap itself, in terms of transformed power utility
functions in Section 3.1. To the best of our knowledge, those are the first universal bounds for
the true solution of an investment-consumption optimization problem with Epstein-Zin utility,
whose evaluation is feasible. However, it is later verified that those scaled power utility bounds
deteriorate when the Epstein-Zin parameters vary too much from the time-additive case and
are only valuable in the evaluation of numerical solutions if γψ is not too far from 1. Thus,
we additionally establish better suited, one-sided bounds in terms of the variational utilities,
that were already introduced within the derivation of the duality inequality in Chapter 2. In
particular, we obtain a well-suited lower bound in the case of a convex Epstein-Zin aggregator
and a well-suited upper bound in case of a concave Epstein-Zin aggregator. In order to further
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emphasize the value of our bounds, we finish this chapter with a theoretical application, i.e.
we derive an existence and uniqueness result for the stochastic differential dual that allows for
weaker integrability conditions than the one in Section 2.3.
Chapter 4 sets ground for our numerical approximation schemes presented in the final chapters.
We introduce a general multivariate market model and embed the multivariate Kim-Omberg
and Heston models later used for numerical testing. Moreover, we utilize the dynamic program-
ming technique to characterize the optimal solutions to the primal and dual problem by their
respective partial differential equations. Taking a closer look, we notice that both solutions are
actually characterized by only one PDE; the same equation also characterizes the solution of the
problem associated to the least favorable completion of the market.
In Chapter 5 we introduce our first approximation of the Epstein-Zin consumption investment
allocation problem in terms of the CS-ALFC two-step scheme, based on said connection between
the least favorable completion of the market and the primal, respectively dual problem on a PDE
level. The first step employs the Campbell-Shiller transformation of the general problem to the
one with unit EIS, which yields an approximation of the least favorable market prices of risk,
c.f. Section 5.1. In the next step, the market is completed with said approximation and the
artificially completed market problem is explicitly solved, such that the solution yields an ap-
proximation of the true solution (after projecting the resulting strategies to the admissible set).
This analytic approximation is fully characterized by a system of ordinary differential equations.
The accuracy of the CS-ALFC solution is validated in dimension one by direct comparison with
the numerical solution of [Kraft et al., 2017] and in dimension 50 by our duality power bounds
from Chapter 3, which yield an annualized wealth equivalent loss (c.f. Remark 5.4) of less than
1%. The CS-ALFC approximation can be interpreted as a variant of the classical Campbell-
Shiller approximation in the incomplete market power utility scenario, improving its qualitative
shortcomings identified by [Kraft et al., 2013]. To the best of our knowledge, an analytic approx-
imation of the power utility problem, which makes use of the truly recursive CS approximation,
has not been documented in the existing literature.
Chapter 6 presents our second approximation approach. The idea of the Primal-Dual-Iteration
scheme is a reinterpretation of least favorable completion as a dynamic game played by the
investor against an opposing price setter, that appears not to be present in the literature so
far. Each iteration corresponds to the investor choosing her optimal investment strategy under
given complete market conditions, while the price setter forces her strategy to remain within the
constraints set by market incompleteness. This corresponds to solving the associated complete
market HJB equation in every step. While we still need to approximate the sensitivities with
respect to the underlying state in every iteration, the SA-PDI scheme is shown to be accurate
when compared to the known algorithmic solution of [Kraft et al., 2017] in one dimensional
models. Even with our one-sided variational bound, verifying the accuracy in high dimensions
proves to be difficult in this truly recursive setting, as the respective other power bound may fail.
Thus, lacking a suitable measure of error, we utilize the output of the SA-PDI algorithm itself
as an approximate bound, even though the upper bound property inherited from suboptimal
completion was generally destroyed by the approximation of sensitivities. While yielding small
approximate error bounds in the area of 1% annualized WEL, those results need additional
verification.
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Appendix A

Preliminaries on Backward Stochastic
Differential Equations

Within this section we give an overview on the preliminaries we need from the theory of backward
stochastic differential equations (BSDEs) of the form

Xt “ Et
„
ż T

t
gps,Xsqds` ξ



, t P r0, T s,

where g and ξ are specified in Definition A.2 below. The material within this section is strongly
influenced and in parts borrowed from [Duffie and Epstein, 1992a], [Karoui et al., 1997],[An-
tonelli, 1993], [Antonelli, 1996], [Seiferling, 2016] and [Seiferling and Seifried, 2016]. In particular
Appendix A.2 is due to [Seiferling and Seifried, 2016].

Let pΩ, tFtutPr0,T s,F,Pq be a filtered probability space, where the filtration tFtutPr0,T s satisfies
the usual conditions of right-continuity and completeness. Denote by G be the σ-algebra of
progressively measurable sets in

`

Ω, tFtutPr0,T s,F,P
˘

and by B the Borel-σ-field.

A.1 Existence and Uniqueness of Solutions

We first define what we mean by a solution of a BSDE.

Definition A.1 (Solution of a BSDE)
Let g : Ωˆ r0, T s ˆ RÑ R be G b B-measurable and ξ P L1pPq. Suppose X is a semimartingale
with suptPr0,T s Er|Xt|s ă 8 and moreover Er

şT
0 |gpt,Xtq|dts ă 8. Then we call X a solution of

the BSDE with aggregator g and terminal value ξ, if X satisfies

Xt “ Et
„
ż T

t
gps,Xsqds` ξ



, t P r0, T s, (A.1.1)

Then we say X solves BSDEpg, ξq for short.

Of course the question whether a BSDE admits a (unique) solution strongly depends on the
aggregator g and the terminal value ξ. We now define the basic requirements for the existence
and uniqueness of a solution.

Definition A.2 (BSDEp-standard parameter)
For p ě 1, let ξ P LppPq and g : Ωˆ r0, T s ˆ RÑ R be G b B measurable. If
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A.1. EXISTENCE AND UNIQUENESS OF SOLUTIONS

(S1) g is uniformly Lipschitz, i.e. there exists L ą 0 such that

|gpt, xq ´ gpt, yq| ď L|x´ y| @x, y P R, t P r0, T s and

(S2) g is p-integrable in zero, i.e. gpt, 0q P LppPb dtq.

then pg, ξq is called a BSDEp-standard parameter.

Theorem A.3
Let pg, ξq be a BSDEp-standard parameter. Then there is one and only one cádlág semimartingale
X satisfying suptPr0,T s }Xt}LppPq ă 8 that solves BSDEpg, ξq.

Moreover, if p ą 1, then X satisfies E
”

suptPr0,T s |Xt|
p
ı

ă 8.

Proof. For p ě 1, a rather technical proof in a more general setting is provided by [Antonelli,
1993][Theorem 2.4]. An easier proof, but only for the case p ą 1, can be found in [Duffie and
Epstein, 1992a][Proposition A1].

Lemma A.4
Let p ě 1, pg, ξq be a BSDEp-standard parameter and X be a semimartingale with suptPr0,T s }Xt}LppPq ă

8. Then X is a solution of BSDEpg, ξq, if and only if there exists a uniformly integrable mar-
tingale M such that

dXt “ ´gpt,Xtqdt` dMt, XT “ ξ. (A.1.2)

If p ą 1, then M is a Lp-martingale and E
”

suptPr0,T s |Xt|
p
ı

ă 8.

Proof. The Lipschitz condition in Definition A.2 implies that

}gpt,Xtq}LppPbdtq ď LT
1
p sup
tPr0,T s

}Xt}LppPq ` }gpt, 0q}LppPbdtq ă 8.

As also ξ P LppPq, we can define the uniformly integrable martingale M via

Mt fi Et
„
ż T

0
gps,Xsqds` ξ



, t P r0, T s.

Note that M is a Lp-martingale if p ą 1.
As X is a solution to BSDEpg, ξq, we obtain for all t P r0, T s

Xt “ Et
„
ż T

t
gps,Xsqds` ξ



“ ´

ż t

0
gps,Xsqds`Mt

which certainly implies (A.1.2).
On the other hand, suppose that (A.1.2) holds and M is at least uniformly integrable, so by
integrating from t to T we obtain (A.1.1).
Finally we have

|Xt| ď Et
„
ż T

0
|gps,Xsq|ds` |ξ|



fi Nt,

where Nt is a Lp-martingale if p ą 1 by the same argument as above, hence Doob’s Lp-inequality
shows

E

«

sup
tPr0,T s

|Xt|
p

ff

ď E

«

sup
tPr0,T s

|Nt|
p

ff

ď

ˆ

p

p´ 1

˙p

Er|ξ|ps ă 8.
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APPENDIX A. PRELIMINARIES ON BACKWARD STOCHASTIC DIFFERENTIAL
EQUATIONS

Proposition A.5
Let pgn, ξnq, n P N and pg, ξq be a BSDEp-standard parameter. Suppose that there is a constant
L ą 0 such that

|gnpt, xq ´ gnpt, yq| ď L|x´ y| for all x, y P R, t P r0, T s

and all n P N. Finally denote by Xn, n P N and X the solutions to BSDEpgn, ξnq, n P N and
BSDEpg, ξq, respectively. If

gnpt,Xtq Ñ gpt,Xtq in LppPb dtq and ξn Ñ ξ in LppPq, as nÑ8,

then suptPr0,T s }Xt ´X
n
t }LppPq Ñ 0 and if p ą 1 also E

”

suptPr0,T s |Xt ´X
n
t |
p
ı

Ñ 0.

Proof. By applying Jensen’s inequality twice, for any 0 ď s ď T

}Xs ´X
n
s }LppPq ď

›

›

›

›

ż T

s
gpu,Xuq ´ g

npu,Xuqdu` pξ ´ ξ
nq

›

›

›

›

LppPq

ď E
„
ż T

s
|gpu,Xuq ´ g

npu,Xuq|
pdu



1
p

` }ξ ´ ξn}LppPq

ď }gpt,Xtq ´ g
npt,Xtq}LppPbdtq ` }ξ ´ ξ

n}LppPq.

Thus
sup
tPr0,T s

}Xt ´X
n
t }LppPq ď }gpt,Xtq ´ g

npt,Xtq}LppPbdtq ` }ξ ´ ξ
n}LppPq

and suptPr0,T s }Xs ´ Xn
s }LppPq Ñ 0. If p ą 1, similar as in Lemma A.4, Doob’s Lp inequality

yields E
”

suptPr0,T s |Xt ´X
n
t |
p
ı

Ñ 0.

Theorem A.6
Let ξ P LppPq and β, ϕ be R-valued and G-measurable processes such that β is bounded and
}ϕt}LppPbdtq ă 8 for p ě 1. Then the solution of the linear BSDE

dXt “ ´pϕt ` βtXtqdt` dMt, XT “ ξ (A.1.3)

is given by the closed formula

Xt “ E
„
ż T

t
e
şs
t βuduϕsds` e

şT
t βuduξ



. (A.1.4)

Proof. As β is bounded, the linear function gpt, xq “ ϕt` βtx is uniformly Lipschitz, so pg, ξq is
a BSDEp-standard parameter and by Theorem A.3 the BSDE (A.1.3) has a unique solution X.
First let p ą 1, then Itô’s formula, yields

de
şt
0 βuduXt “ ´e

şt
0 βuduϕtdt` e

şt
0 βududMt.

As β is bounded and M is an Lp-martingale by Lemma A.4, so is e
şt
0 βududMt, so integrating by

parts yields

e
şt
0 βuduXt “ Et

„
ż T

t
e
şs
0 βuduϕsds` e

şT
0 βuduξ



, t P r0, T s

which yields (A.1.4).
For the case p “ 1, introduce the truncated parameters ϕn fi p´n_ϕq^n and ξn fi p´n_ξq^n.
Then for any n P N, the semimartingales

Xn
t “ Et

„
ż T

t
e
şs
t βuduϕnsds` e

şT
t βuduξn


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A.2. COMPARISON THEOREM

are the unique solutions of dXn
t “ ´pϕ

n
t ` βtX

n
t qdt ` dMn

t , Xn
T “ ξn. Then Proposition A.5

implies that suptPr0,T s }Xt ´X
n
t }LppPq Ñ 0, where X denotes the unique solution of eq. (A.1.3).

But on the other hand, by dominated convergence we obtain

Xn
t “ Et

„
ż T

t
e
şs
t βuduϕnsds` e

şT
t βuduξn



Ñ Et
„
ż T

t
e
şs
t βuduϕsds` e

şT
t βuduξ



in L1,

so Xt “ Et
”

şT
t e

şs
t βuduϕsds` e

şT
t βuduξ

ı

.

A.2 Comparison Theorem

Lemma A.4 justifies to define Sub-and Supersolutions to BSDEs in the following way:

Definition A.7 (BSDE - Sub-/Supersolutions)
Let g : Ωˆr0, T sˆRÑ R be GbB-measurable. Let ξ P L1pPq and suppose X is a semimartingale
with suptPr0,T s Er|Xt|s ă 8 and moreover Er

şT
0 |gpt,Xtq|dts ă 8. Then we call X a subsolution

of the BSDE with aggregator g and terminal value ξ, if

dXt “ ´gpt,Xtqdt` dMt ´ dAt, XT ď ξ (A.2.1)

where M is a martingale and A is a decreasing and right-continuous process such that A0 “ 0.
We say

X is a subsolution of BSDEpg, ξq

for short. Analogously X is supersolution of BSDEpg, ξq, if XT ě ξ and A is increasing.

Of course, X is a solution of BSDEpg, ξq as in Definition A.1, if it is a sub- and supersolution.
We say that the aggregator g satisfies pMq, if there is a constant k ą 0 such that for a.e. ω P Ω
and dt a.e. t P r0, T s

gpω, t, xq ´ gpω, t, yq ď kpx´ yq for all x, y P R with x ě y. (M)

The property (M) is sometimes called monotonicity condition. Note that the dual aggregator
f˚ satisfies (M) as f˚ν is bounded from above, see Lemma B.13.

Having introduced the notion of Sub-and Supersolutions of BSDEs, we are now able to state
the crucial comparison theorem. Most comparison theorems for BSDEs require BSDEp-standard
parameters; however, as neither the Epstein-Zin aggregator nor the dual aggregator are uniformly
Lipschitz, those wouldn’t be applicable in our setting. In [Seiferling and Seifried, 2016], the
authors provide a comparison theorem for BSDEs where the aggregators only have to satisfy the
monotonicity contion pMq above, which is the case for both, the primal and dual aggregator.
For the theorem itself and the following prerequisites (in particular the stochastic Gronwall
inequality Proposition A.10), we follow [Seiferling and Seifried, 2016], including the proofs.

Lemma A.8
If X is a subsolution of BSDEpg, ξq satisfying ErsuptPr0,T s |Xt|s ă 8 and τ is a r0, T s-valued
stopping time, we have

ItτątuXt ď Et
„

Itτątu
ż τ

t
gps,Xsqds` ItτątuXτ



, t P r0, T s. (A.2.2)

If X is a supersolution, then (A.2.2) holds with 2 ě2.
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Proof. Let X be a subsolution of BSDEpg, ξq and let τ be a r0, T s-valued stopping time. Define
σ fi τ ^ t, integrate (A.2.1) from σ to τ and use that fact that A from (A.2.1) is decreasing to
obtain

Xσ ` pMτ ´Mσq ď

ż τ

σ
gps,Xsqds`Xτ .

Taking Ft-conditional expectations and multplying with Itτątu yields (A.2.2). If X is a superso-
lution, then A is increasing and we obtain (A.2.2) with 2 ě2.

Lemma A.9
Let X be a right-continuous adapted process, such that ErsuptPr0,T s |Xt|s ă 8. If there is a
constant k ą 0 such that

Xt ď kEt
„
ż T

t
Xsds



for every t P r0, T s

then Xt ď 0 for all t P r0, T s.

Proof. See [Antonelli, 1996][Theorem 1.8].

Proposition A.10
Let α be progressively measurable, let X be right-continuous and adapted with ErsuptPr0,T s |Xt|s ă

8, and suppose that α is bounded from above on tX ą 0u. If XT ď 0 and for every r0, T s-valued
stopping time τ we have

ItτątuXt ď Et
„

Itτątu
ż τ

t
αsXsds` ItτątuXτ



for all t P r0, T s, (A.2.3)

then Xt ď 0 for all t P r0, T s.

Proof. Assume by contradiction that there exists some u P r0, T q such that the event F fi tXu ą

0u satisfies PpF q ą 0. We define a ru, T s-valued stopping time τ via

τ “ IF inf tt ě u : Xt ď 0u ` uIF c

and observe that Xs ą 0 on tτ ą s ą uu, and Xτ ď 0 by right-continuity. By (A.2.3) we have
for all t P r0, T s

ItτątuXt ď Et
„

Itτątu
ż τ

t
αsXsds` ItτątuXτ



ď Et
„

Itτątu
ż τ

t
α`s Xsds



ď kEt
„
ż τ

t
ItτąsuXsds



,

where k is an upper bound for α on tX ą 0u “ tpω, sq P Ωˆ T : Xspωq ą 0u. Then Lemma A.9
implies that ItτątuXt ď 0 for all t P ru, T s, and it follows that

0 ă IFXu “ ItτąuuXu ď 0.

This is a contradiction to PpF q ą 0.

Theorem A.11 ([Seiferling and Seifried, 2016], Theorem 4.3)
Suppose X is a subsolution of BSDEpg, ξq with ErsuptPr0,T s |Xt|s ă 8 and Y is a supersolution
of BSDEph, ηq with ErsuptPr0,T s |Yt|s ă 8 where ξ ď η.

(a) If gpt, Ytq ď hpt, Ytq for dt a.e. t P r0, T s and g satisfies pMq, then X ď Y
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(b) If gpt,Xtq ď hpt,Xtq for dt a.e. t P r0, T s and h satisfies pMq, then X ď Y

Proof. Set ∆ fi X ´ Y and note that ∆T “ ξ ´ η and ErsuptPr0,T s |∆t|s ă 8. If τ is a stopping
time, Lemma A.8 implies

Itτątu∆t ď Et
„

Itτątu
ż τ

t
pgps,Xsq ´ hps, Ysqqds` Itτątu∆τ



for all t P r0, T s.

To prove paq, define a progressively measurable process α via

αs fi ItXs‰Ysu
gps,Xsq ´ hps, Ysq

∆s
for s P r0, T s

and note that α is bounded above on t∆ ą 0u “ tpω, sq P Ωˆr0, T s : ∆spωq ą 0u by pMq. Since
gps, Ysq ď hps, Ysq for ds-a.e. s P r0, T s, it follows that

Itτątu∆t ď Et
„

Itτątu
ż τ

t
αs∆sds` Itτątu∆τ



for t P r0, T s

and Proposition A.10 yields the desired conclusion. The proof of pbq is analogous.
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Appendix B

Legendre-Fenchel Dualization

B.1 A Very Short Introduction to Conjugates of Convex Func-
tions

In the following we provide a quick overview on the basic theory of convex functions and their
conjugates based on Section 12 in [Rockafellar, 1997]. Note that after the appropriate adjust-
ments all the results given in this section carry over to concave functions.
We follow the abstract approach of [Rockafellar, 1997] in hope to give the reader a more pictorial
intuition of the concept, but restrict ourselves to the one-dimensional setting as this is all we
need within this thesis. We begin with some vocabulary around the topic.
Let h : S Ñ R̄ be a function, where S is a subset of R and R̄ denotes the extended real line.
Then the set

epih “ tpx, µq : x P S, µ P R, µ ě hpxqu

is called the epigraph of h. A function h is said to be convex on S if epih is a convex subset of
R2. A function h is said to be concave on S if its negative is convex. An affine function on S is
a finite, convex and concave function.
We define the effective domain of a convex function h on S as the projection of the epigraph of
h on R, i.e.

domh “ tx P S : Dµ, px, µq P epihu “ tx P S : hpxq ă 8u.

A convex function h is said to be proper if its epigraph is non-empty and contains no vertical
lines, i.e. if hpxq ă 8 for at least one x and hpxq ą ´8 for every x. The relative interior of a
convex set C in R, which we denote by riC is defined as the interior which results when C is
regarded as a subset of its affine hull aff C, i.e.

riC “ tx P aff C : Dε ą 0, px` εBq X paff Cq Ď Cu,

whereB is the Euclidean unit ball. Note that in this one-dimensional setting, the only convex sets
are either intervals or singletons. Thus, in our simplified setting, the relative interior corresponds
to either the interior of the respective interval or the singleton itself.
An extended-real-valued function h is said to be lower semi-continuous at a point x if

hpxq ď lim
iÑ8

hpxiq

for every sequence pxiqiPN such that limiÑ8 xi “ x and limiÑ8 hpxiq exists in R̄. A function
is called lower semi-continuous if the function is lower semi-continuous at every point of its
domain. The importance of semi-continuity comes from its connection to closedness of the
epigraph, which is pointed out by the following theorem.
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Theorem B.1 ([Rockafellar, 1997], Theorem 7.1)
Let h be an arbitrary function from R to r´8,8s. Then the following are equivalent

(i) h is lower semi-continuous

(ii) The epigraph of h is a closed set in R2

Proof. Lower semi-continuity of h at x can be expressed as the condition that µ ě hpxq whenever
µ “ limiÑ8 µi and x “ limiÑ8 xi for sequences tµiuiPN and txiuiPN such that µi ě hpxiq for
every i. But this is the same as closedness of the epigraph of h.

Given any function h on R, there exists a greatest lower semi-continuous function majorized by
h namely the function whose epigraph is the closure of the epigraph of h in R2. In general this
function is called the lower semi-continuous hull of h.
The closure of a convex function h is defined to be the lower semi-continuous hull of h if
hpxq ą ´8 for all x P R and is denoted by clh. Then clh is another convex function and a
convex function is said to be closed if clh “ h. For a proper convex function, closedness is thus
the same as lower semi-continuity.
The following theorem provides the basis for the conjugation of convex functions.

Theorem B.2 ([Rockafellar, 1997], Theorem 12.1)
A closed convex function h is the pointwise supremum of the collection of all affine functions H
such that H ď h.

Now one can describe the setH˚ consisting of all pairs px˚, µ˚q in R2 such that the affine function
Hpxq “ xx˚ ´ µ˚ is majorized by h. We have Hpxq ď hpxq for every x if and only if

µ˚ ě sup
xPR
txx˚ ´ hpxqu.

Thus H˚ is actually the epigraph of the function h˚ defined by

h˚px˚q “ sup
xPR
txx˚ ´ hpxqu “ ´ inf

xPR
thpxq ´ xx˚u.

This h˚ is called the conjugate of h. It is the pointwise supremum of affine functions gpx˚q “
xx˚ ´ µ such that px, µq belongs to the set epih. Hence h˚ is another convex function, in fact
a closed convex function. Since h is the pointwise supremum of the affine functions Hpxq “
xx˚ ´ µ˚ such that px˚, µ˚q P epih˚, we have

hpxq “ sup
x˚PR

txx˚ ´ h˚px˚qu “ ´ inf
x˚PR

th˚px˚q ´ xx˚u .

But this means that the conjugate h˚˚ of h˚ is h.

We summarize those facts in the following theorem and highlight two major insights in small
corollaries thereafter.

Theorem B.3 ([Rockafellar, 1997], Theorem 12.2)
Let h be a convex function. The conjugate function h˚ is then a closed convex function, proper
if and only if h is proper. Moreover pclhq˚ “ h˚ and h˚˚ “ clh.

In particular Theorem B.3 justifies to speak of duality of (proper and closed) convex functions.
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Corollary B.4 ([Rockafellar, 1997], Corollary 12.2.1)
The conjugacy operation hÑ h˚ induces a symmetric one-to-one correspondence in the class of
all proper and closed convex functions.

Remark B.5
Note that all functions of which we consider conjugates within this thesis are closed, proper and
convex. What introduces the duality for our recursive systems in Chapter 2 is thus the duality
of the proper, closed and convex aggregators in the associated BSDEs.

In fact, one can even restrict oneself to the real interior of the effective domain to conjugate a
convex function h, which we will do in some cases within Appendix B.2 below.

Corollary B.6 ([Rockafellar, 1997], Corollary 12.2.2)
For any convex function h on Rn one actually has

h˚px˚q “ sup
xPri domh

txx˚ ´ hpxqu.

B.2 Applications during Dualization

Convex/Concave Conjugates and Their Properties

This subsection collects all the technical computations regarding the conjugation steps in the
dualitzation procedure from Chapter 2, that have been avoided in the main text for the sake of
readability.

Lemma B.7 ([Seiferling and Seifried, 2016], Lemma A.1)
For all c P p0,8q and v P V “ tv P R : p1´ γqv ą 0u the Epstein-Zin aggregator

fpc, vq “ δ c
1´ 1

ψ

1´ 1
ψ

pp1´ γqvq1´
1
θ ´ δθv

satisfies

fcpc, vq “ δc
´ 1
ψ rp1´ γqvs1´

1
θ fccpc, vq “ ´

1
ψ δc

´ 1
ψ
´1
rp1´ γqvs1´

1
θ

fvpc, vq “ δ 1´γψ
ψ´1 c

1´ 1
ψ rp1´ γqvs´

1
θ ´ δθ fvvpc, vq “ δ γψ´1

ψ c
1´ 1

ψ rp1´ γqvs´
1
θ
´1

fcvpc, vq “ δ 1´γψ
ψ c´φrp1´ γqvs´

1
θ

and in particular

fc ą 0, fcc ă 0, signpfcvq “ signp1´ γψq, signpfvvq “ signpγψ ´ 1q.

Thus f is always increasing and concave with respect to c; f is convex with respect to v if γψ ě 1
and concave with respect to v if γψ ď 1: f is (jointly) concave if and only if γψ ď 1 and neither
convex nor concave otherwise; fv is bounded above if either γψ ě 1, ψ ą 1 or γψ ď 1, ψ ă 1 and
bounded below otherwise.

Corollary B.8
Let f be the Epstein-Zin aggregator as in Lemma B.7. Then for all c P p0,8q and v P R the
extended Epstein-Zin aggregator

f̃pc, vq “

#

fpc, vq, p1´ γqv ą 0

fpc, 0`q ` fvpc, 0`q ¨ v, p1´ γqv ď 0
,
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where fpc, 0`q fi limp1´γqvÓ0 fpc, vq, is always increasing and concave with respect to c; f̃ is
convex with respect to v if γψ ě 1 and concave with respect to v if γψ ď 1. In any case f̃pc, ¨q
is proper and closed.

Proof. In the easiest case γψ “ 1 we have

f̃pc, vq “ δ c
1´γ

1´γ ´ δv.

If γ ą 1, ψ ą 1 or γ ă 1, ψ ă 1, then θ ă 0 and in particular 1´ 1
θ ą 1, which yields

f̃pc, vq “

#

fpc, vq, p1´ γqv ą 0

´δθv, p1´ γqv ď 0
.

If on the other hand γ ă 1, γψ ą 1 or γ ą 1, γψ ă 1, then θ P p0, 1q and in particular 1´ 1
θ ă 0,

thus

f̃pc, vq “

#

fpc, vq, p1´ γqv ą 0

p1´ γq ¨ 8, p1´ γqv ď 0
.

Thus all the claims follow immediately from Lemma B.7.

As we only consider conjugates in the case γψ ě 1, ψ ą 1 in the main text, we also restrict
ourselves to this case in the following lemmas. As always the case γψ ď 1, ψ ă 1 would be
analogous under the necessary adjustments, see Remark B.12 below.

Lemma B.9
Let γψ ě 1, ψ ą 1 and F pc, uq “ infvPR

!

f̃pc, vq ` uv
)

be the concave conjugate of ´f̃ , where f̃
is the extended Epstein-Zin aggregator as in Corollary B.8. If γψ “ 1, then F is given by

F pc, uq “

#

δ c
1´γ

1´γ , u “ δ

´8, else
.

If γψ ą 1, ψ ą 1, then

F pc, uq “

$

’

’

’

&

’

’

’

%

δθ c
1´γ

1´γ

ˆ

u´δθ
1´θ

˙1´θ

, u ą δθ

0, u “ δθ

´8, u ă δθ

. (B.2.1)

In both cases F pc, uq is concave in c and F pc, uq is concave in u. Moreover F pc, ¨q is proper and
closed for all c P p0,8q, in particular f̃pc, vq “ supuPR tF pc, uq ´ uvu.

Proof. Let γψ “ 1. Then f̃pc, vq “ δ c
1´γ

1´γ ´ δv and infvPR

!

δ c
1´γ

1´γ ` pu´ δqv
)

can be made
arbitrarily small by taking v arbitrarily small(large) if u ą δ (u ă δ), so the infimum there is
´8. Only the case u “ δ remains where the infimum is trivially given as δ c

1´γ

1´γ .
Let γ ą 1, ψ ą 1. Then, as θ ă 0 and in particular 1´ 1

θ ą 1 the extended aggregator is given
as

f̃pc, vq “

$

&

%

δ c
1´ 1

ψ

1´ 1
ψ

pp1´ γqvq1´
1
θ ´ δθv, v ă 0

´δθv, v ě 0
,
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Hence we investigate

inf
vPR

$

&

%

δ c
1´ 1

ψ

1´ 1
ψ

pp1´ γqvq1´
1
θ`pu´ δθqv, if v ă 0

pu´ δθqv, if v ě 0

,

.

-

.

Some elementary calculus shows that, if u ą δθ, then

inf
vą0

"

δ c
1´ 1

ψ

1´ 1
ψ

pp1´ γqvq1´
1
θ ` pu´ δθqv

*

“ δθ
c1´γ

1´ γ

ˆ

u´ δθ

1´ θ

˙1´θ

ă 0,

whereas infvě0tpu ´ δθqvu “ 0, implying the first case of (B.2.1). If u “ δθ, in the case v ě 0

the infimum is trivially zero and the same goes for the case v ă 0 as c
1´ 1

ψ

1´ 1
ψ

ą 0 and 1 ´ 1
θ ą 1.

This implies the second case from (B.2.1). If u ă δθ then pu ´ δθqv can be made arbitrarily
small by making v arbitrarily big, so the infimum is ´8. Combining the above we obtain

F pc, uq “

$

’

’

’

&

’

’

’

%

δθ c
1´γ

1´γ

ˆ

u´δθ
1´θ

˙1´θ

, if u ą δθ

0, if u “ δθ

´8, if u ă δθ

.

Finally, let γ ă 1, γψ ą 1. Then

f̃pc, vq “

$

&

%

δ c
1´ 1

ψ

1´ 1
ψ

pp1´ γqvq1´
1
θ ´ δθv, v ą 0

8, v ď 0
,

where now θ P p0, 1q, in particular 1´ 1
θ ă 0. Thus by Corollary B.6

F pc, uq “ inf
vPR

!

f̃pc, vq ´ uv
)

“ inf
vą0

"

δ c
1´ 1

ψ

1´ 1
ψ

pp1´ γqvq1´
1
θ ` pu´ δθqv

*

and similar arguments as above show that

F pc, uq “

$

’

’

’

&

’

’

’

%

δθ c
1´γ

1´γ

ˆ

u´δθ
1´θ

˙1´θ

, if u ą δθ

0, if u “ δθ

´8, if u ă δθ

.

Concavity of F p¨, uq is immediate for u ď δθ and follows for u ą δθ from

Fccpc, uq “ ´γδ
θc´γ´1

´

u´δθ
1´θ

¯1´θ
ă 0.

As f̃pc, ¨q is proper, convex and closed for all c P p0,8q by Corollary B.8, F pc, ¨q is proper, concave
and closed by Theorem B.3. In particular Theorem B.3 implies f̃pc, vq “ supuPR tF pc, uq ` uvu.

Lemma B.10
Let γψ ě 1, ψ ą 1 and F ˚pλ, uq “ supcą0 tF pc, uq ´ λcu for λ P p0,8q be minus the concave
conjugate of F in c, where F is given in Lemma B.9. If γψ “ 1, then F ˚ is given by

F ˚pλ, uq “

#

δ
1
γ γ

1´γλ
γ´1
γ , u “ δ

´8, else
.
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If γψ ą 1, ψ ą 1, then

F ˚pλ, uq “

$

’

’

’

&

’

’

’

%

δ
θ
γ γ

1´γλ
γ´1
γ

ˆ

u´δθ
1´θ

˙
1´θ
γ

, u ą δθ

0, u “ δθ

´8, u ă δθ

.

In particular F ˚pλ, uq is always convex in λ and F ˚pλ, uq is concave in u.

Proof. The representation of F ˚ in the case u ą δθ follows by basic calculus. If u “ δθ then
supcą0t´λcu “ 0 is immediate as λ ą 0. Finally the case u ă δθ is trivial.
Moreover F ˚pλ, uq is convex in λ, as ´F ˚ is the concave conjugate of F , which is again concave
by Theorem B.3. Finally F ˚pλ, uq is concave in u ą δθ as

F ˚uupλ, uq “ δ
θ
γ

1

γp1´ γψq

ˆ

u´ δθ

1´ θ

˙
1´θ
γ
´2

ă 0

because γψ ą 1.

Lemma B.11
Let Φ˚ : p0,8q Ñ R, λ ÞÑ supcą0 tΦpcq ´ λcu be the Legendre-Fenchel transform of the terminal
utility function Φpcq “ ε 1

1´γ c
1´γ. Then

Φ˚pλq “ ε
1
γ

γ

1´ γ
λ
γ´1
γ .

Moreover Φ˚ is convex and decreasing in λ.

Proof. The formula for Φ˚ is basic calculus, convexity follows by Theorem B.3.

Remark B.12
Note that in Lemma B.9 and Lemma B.10 there doesn’t change much in the concave case. If
γψ ď 1, ψ ă 1, the conjugates stay essentially the same, only the ´8 becomes 8 and both
functions are now convex in u. In particular, in the concave and convex case the conjugates
coincide on their domain.
Finally Φ˚ is the same in both the concave and convex case. 4

Lemma B.13
For all λ P p0,8q and ν P V, the dual aggregator f˚ given by

f˚pλ, νq fi δψ λ
1´ψ

ψ´1

´

p1´γq
γ ν

¯1´ γψ
θ
´ δθ

γ ν.

satisfies

f˚λ pλ, νq “ ´δ
ψλ´ψ

´

1´γ
γ ν

¯1´ γψθ
f˚λλ pλ, νq “ δψψλ´ψ´1

´

1´γ
γ ν

¯1´ γψθ

f˚ν pλ, νq “ δψ 1´γψ
γpψ´1qλ

1´ψ
´

1´γ
γ ν

¯´
γpψ´1q
1´γ

´ δθ
γ

f˚λν pλ, νq “ δψ γψ´1
γ λ´ψ

´

1´γ
γ ν

¯´
γpψ´1q

1´γ

f˚νν pλ, νq “ δψ γψ´1
γ λ1´ψ

´

1´γ
γ v

¯´
γpψ´1q

1´γ ´1

In particular

f˚λ ă 0, f˚λλ ą 0, signpf˚λνq “ signpγψ ´ 1q, signpf˚ννq “ signpγψ ´ 1q.
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Thus f˚ is always decreasing and convex with respect to λ; f˚ is convex with respect to ν if
γψ ě 1 and concave with respect to ν if γψ ď 1; f˚ is (jointly) convex if and only if γψ ě 1 and
neither convex nor concave otherwise; f˚ν is bounded above if either γψ, ψ ě 1 or γψ, ψ ď 1 and
bounded below otherwise.

Proof. We have

pf˚λλ ¨ f
˚
ννq pλ, νq ´ f

˚2
λν pλ, νq “ δ2ψλ´2ψ γψ ´ 1

γ2

„

1´ γ

γ
ν

´2 γψ
θ

.

Since f˚λλ ą 0, the Hessian of f˚ is positive semi-definite if and only if γψ ě 1 and indefinite
otherwise. Finally, f˚ν ď 0 if and only if γψ, ψ ď 1 or γψ, ψ ě 1.

Lemma B.14
Let γψ ě 1, ψ ą 1. For all λ P p0,8q and ν P R, the function f̃˚pλ, νq “ supuPR tF

˚pλ, uq ´ uνu,
i.e. minus the concave of F ˚ as given in Lemma B.10 is given as

f̃˚pλ, νq “

#

f˚pλ, γνq, p1´ γqν ą 0

f˚pλ, 0`q ` f˚ν pλ, 0`q ¨ ν, p1´ γqν ď 0
, (B.2.2)

where

f˚pλ, νq fi δψ λ
1´ψ

ψ´1

´

p1´γq
γ ν

¯1´ γψ
θ
´
δθ

γ
ν.

In particular, f̃˚pλ, νq is convex with respect to λ, closed and convex with respect to ν.

Proof. Straightforward calculation similar as in Lemma B.9 shows that f̃˚ has three different
forms:

f̃˚pλ, νq “

#

δψ λ
1´ψ

ψ´1 pp1´ γqνq
1´ γψ

θ ´ δθν, p1´ γqν ą 0

´δθν, p1´ γqν ď 0
if γ ą 1, ψ ą 1,

f̃˚pλ, νq “

#

δψ λ
1´ψ

ψ´1 pp1´ γqνq
1´ γψ

θ ´ δθν, p1´ γqν ą 0

8, p1´ γqν ď 0
if γ ă 1, γψ ą 1

and

f̃˚pλ, νq “ δψ
λ1´ψ

ψ ´ 1
´ δν if γψ “ 1.

Then (B.2.2) follows by just comparing the limit therein with the three different cases. Now
convexity in λ is immediate by Lemma B.13; closedness and convexity in ν follows by definition
of minus the concave conjugate from Theorem B.3.

Remark B.15
The representation (B.2.2) is the same in the case γψ ď 1, ψ ă 1. 4

Proofs Skipped in Chapter 2

Lemma B.16
For any Λ P D, u P P and s, t P r0, T s, s ď t it holds

κut,sF
˚ppκut,sq

´1Λs, usq “ κ
u
γ

t,sF
˚pΛs, usq and κut,TΦ˚ppκut,T q

´1ΛT q “ κ
u
γ

t,TΦ˚pΛT q.
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Proof. We only consider γψ ě 1, ψ ą 1, as by Remark B.12 the concave case γψ ď 1, ψ ă 1 is
essentially the same argument.
First, let γψ ą 1 and ψ ą 1. Then F ˚ is given as in Lemma B.10. If F ˚ ” 0 or F ˚ ” ´8 the
result is trivial, so it suffices to consider u ą δθ and calculate

κut,sF
˚ppκut,sq

´1Λs, usq “ κut,sδ
θ
γ γ

1´γ

´

Λs
κut,s

¯

γ´1
γ

´

us´δθ
1´θ

¯
1´θ
γ
“

`

κut,s
˘

1
γ F ˚pΛs, usq “ κ

u
γ

t,sF
˚pΛs, usq.

The scaling property for Φ˚ and for F ˚ in the case where γψ “ 1 follows by the same calculation

with
´

u´δθ
1´θ

¯
1´θ
γ replaced by 1. For Φ˚ consider the same calculation with

´

u´δθ
1´θ

¯
1´θ
γ replaced

by 1 and δ
θ
γ replaced by ε

1
γ .

Analogue of Dual Variational Representation in the Concave Case

Within this paragraph we want to prove the analogoue of Lemma 2.10 in the case of concave
aggregators, thus let γψ ď 1, ψ ă 1 and note that

tγψ ď 1, ψ ă 1u “ tγ ă 1, ψ ă 1u Y tγ ą 1, γψ ď 1u.

To avoid going through all computations needed for the conjugations as in the previous section,
we start from the dual side, i.e. with the general form of f̃˚ : p0,8q ˆ RÑ r´8,8q given as

f̃˚pλ, νq “

#

f˚pλ, γνq, p1´ γqν ą 0

f˚pλ, 0`q ` f˚ν pλ, 0`q ¨ ν, p1´ γqν ď 0.

Note that the only difference is that ´8 is now included, whereas 8 is excluded from the image
set. Again, f̃˚ takes three different forms:

f̃˚pλ, νq “

#

δψ λ
1´ψ

ψ´1 pp1´ γqνq
1´ γψ

θ ´ δθν, p1´ γqν ą 0

´δθν, p1´ γqν ď 0
if γ ă 1, ψ ă 1,

f̃˚pλ, νq “

#

δψ λ
1´ψ

ψ´1 pp1´ γqνq
1´ γψ

θ ´ δθν, p1´ γqν ą 0

´8, p1´ γqν ď 0
if γ ą 1, γψ ă 1

and
f̃˚pλ, νq “ δψ λ

1´ψ

ψ´1 ´ δν if γψ “ 1.

In particular, f̃˚pc, ¨q is now a proper, upper semi-continuous (hence closed) and concave func-
tion, hence all results from Appendix B.1 apply under the appropriate adjustments.
Then similar as in Lemma B.9 one finds that the convex conjugate of ´f̃˚

F ˚ : p0,8q ˆ RÑ p´8,8s, pλ, uq ÞÑ sup
νPR

!

f̃˚pλ, νq ` uν
)

is given by

F ˚pλ, uq “

#

δ
1
γ γ

1´γλ
γ´1
γ , u “ δ

8, else
if γψ “ 1

and by

F ˚pλ, uq “

$

’

’

&

’

’

%

δθ c
1´γ

1´γ

´

u´δθ
1´θ

¯1´θ
, u ą δθ

0, u “ δθ

8, u ă δθ

if γψ ă 1, ψ ă 1.
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Again, F ˚ and f̃˚ are dual in the sense that f̃˚ is minus the convex conjugate of F ˚, i.e.

f˚pλ, νq “ inf
uPR
tF ˚pλ, uq ´ uνu. (B.2.3)

Then the stochastic variatonal dual is defined exactly as before as

U˚t rΛ, us fi Et
„
ż T

t
κ
u
γ

t,sF
˚pΛs, usqds` κ

u
γ

t,TΦ˚pΛT q



(B.2.4)

for all t P r0, T s, only now with F ˚ as above and Φ˚pλq “ ε
1
γ γ

1´γλ
γ´1
γ as before.

Lemma B.17 (Concave analogue to Lemma 2.10)
Let γψ ď 1, ψ ă 1 and for any u P P and Λ P Da, let V ˚rΛs be the stochastic differential dual
associated with Λ and U˚rΛ, us given as in (B.2.4). Then for any t P r0, T s,

V ˚t rΛs “ ess inf
uPP

U˚t rΛ, us .

Proof. The proof is similar to the one of lemma 2.4, but all arguments are mirrored on the
concave situation. First, let γψ “ 1. Then the Legendre-Fenchel transform F ˚ desintegrates to

F ˚pλ, uq “

#

δ
1
γ γ

1´γλ
γ´1
γ u “ δ

8 else
,

see above. In particular

inf
uPP

U˚t rΛ, us “ inf
uPP

Et
„
ż T

t
κ
u
γ

t,sF
˚pΛs, usqds` κ

u
γ

t,TΦ˚pΛT q



“ Et
„
ż T

t
δ

1
γ e
´ δ
γ
ps´tq γ

1´ γ
Λ
γ´1
γ

s ds` e
´ δ
γ
pT´tq

Φ˚pΛT q



,

so this case follows by (2.2.26), respectively standard results on linear BSDE as Example 2.9.
For the remaining parameter constellations F ˚ is given by

F ˚pλ, uq “

$

’

’

&

’

’

%

δθ c
1´γ

1´γ

´

u´δθ
1´θ

¯1´θ
, u ą δθ

0, u “ δθ

8, u ă δθ

.

Note that it suffices to focus on u P P such that U˚0 rΛ, us ă 8, so u ă δθ is automatically
excluded and we can without loss restrict ourselves to the space U “ tu P P : u ě δθu. We
divide the proof into three major steps:

1. Class (D) property of κ
u
γ

0,¨U
˚rΛ, us: We have

tγψ ă 1, ψ ă 1u “ tγ ă 1, ψ ă 1u Y tγ ą 1, γψ ă 1u.

and we split this part into two cases.
Case 1: γ ă 1, ψ ă 1. As γ ă 1 we have Φ˚ ą 0 and F ˚ ě 0, so for u P U we obtain

E
„ˇ

ˇ

ˇ

ˇ

ż T

0
κ
u
γ

0,sF
˚pΛs, usqds` κ

u
γ

0,TΦ˚pΛT q

ˇ

ˇ

ˇ

ˇ



“ U˚0 rΛ, us ă 8,
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so the process Et
„

şT
0 κ

u
γ

0,sF
˚pΛs, usqds` κ

u
γ

0,TΦ˚pΛT q



is a uniformly integrable martingale,

hence of class (D). As κ
u
γ is bounded for any u P U , the class (D) property of V ˚rΛs

for Λ P Da implies the integrability of κ
u
γ

0,TΦ˚pΛq and thus the class (D) property of

Et
„

κ
u
γ

0,TΦ˚pΛT q



. Then the inequality

E
„

κ
u
γ

0,TΦ˚pΛT q



ď κ
u
γ

0,tU
˚
t rΛ, us ď Et

„
ż T

0
κ
u
γ

0,sF
˚pΛs, usqds` κ

u
γ

0,TΦ˚pΛT q



implies the class (D) property of κ
u
γ

0,¨U
˚rΛ, us.

Case 2: γ ą 1, γψ ă 1. Now Φ˚ ă 0 and F ˚ ď 0, and we have to show U˚rΛ, us ą ´8.
To this end let Λ P Da and u P U and recall that

V ˚rΛs “ Et
„
ż T

t
f˚pΛs, Vsrcsqds` Φ˚pΛT q



, t P r0, T s,

where f˚pλ, νq “ f̃˚
ˇ

ˇ

p1´γqvą0

´

λ, 1
γ ν

¯

. Thus by the class (D) property of V ˚rΛs, the
process

M˚ fi V ˚rΛs `

ż ¨

0
f˚pΛs, V

˚
s rΛsqds (B.2.5)

defines a uniformly integrable martingale. An application of Itô’s formula yields

d

ˆ

κ
u
γ

0,tV
˚
t rΛs

˙

“ κ
u
γ

0,tdM
˚
t ´

ˆ

κ
u
γ

0,tf
˚pΛt, V

˚
t rΛsq ´

ut
γ κ

u
γ

0,tV
˚
t rΛs

˙

dt

“ κ
u
γ

0,tdM
˚
t ´ dA

u
γ

t ´ κ
u
γ

0,tF
˚pΛt, utqdt,

where
dA

u
γ

t fi κ
u
γ

0,t

´

f˚pΛt, V
˚
t rΛsq ´ pF

˚pΛt, utq ´
ut
γ V

˚
t rΛs

¯

dt. (B.2.6)

By the definition of f˚ and F ˚ respectively, we have f˚pλ, νq “ infuąδθ

!

F ˚pλ, uq ´ u νγ

)

.

As κ
u
γ ą 0 for all u P U , this implies thatA

u
γ is decreasing, so κ

u
γ

0,¨V
˚rΛs`

ş¨

0 κ
u
γ

0,sF
˚pΛs, usqds

is a local submartingale. Taking a localizing sequence pτnqnPN of stopping times, the sub-
martingale property of the stopped process implies

V ˚0 rΛs ď E
„

κ
u
γ

0,τn^T
V ˚τn^T rΛs `

ż τn^T

0
κ
u
γ

0,sF
˚pΛs, usqds



.

Since V ˚rΛs is of class (D) and F ˚ ă 0, taking the limit on the right hand side yields

E
„
ż T

0
κ
u
γ

0,sF
˚pΛs, usqds



ą ´8

by the monotone convergence theorem. As in the first case, the class (D) property of

κ
u
γ

0,tV
˚rΛs implies E

„

κ
u
γ

0,TΦ˚pΛT q



ą ´8, so in total we obtain U˚0 rΛs ą ´8.

Now similar as in the first case we obtain

Et
„
ż T

0
κ
u
γ

0,sF
˚pΛs, usqds` κ

u
γ

0,TΦ˚pΛT q



ď κ
u
γ

0,tU
˚
t rΛ, us ď Et

„

κ
u
γ

0,TΦ˚pΛT q



and therefore the class (D) property of κ
u
γ

0,¨U
˚rΛ, us.
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2. V ˚t rΛs ď U˚t rΛ, us @t P r0, T s a.s.: The tower property of conditional expectation implies
that the process

M
u
γ fi κ

u
γ

0,¨U
˚rΛ, us `

ż ¨

0
κ
u
γ

0,sF
˚pΛs, usqds (B.2.7)

is a martingale. Then a basic calculations using (B.2.5), (B.2.7) and Itô’s formula yields

d

ˆ

κ
u
γ

0,t pV
˚
t rΛs ´ U

˚
t rΛ, usq

˙

“ dL
u
γ

t ´ dA
u
γ

t ,

where dL
u
γ

t fi κ
u
γ

0,tdM
˚
t ´ dM

u
γ

t is a local martingale and A
u
γ as in (B.2.6) is decreasing. It

follows that κ
u
γ

0,¨pV
˚rΛs ´ U˚rΛ, usq is a local submartingale, hence a true submartingale

by the class (D) property of κ
u
γ

0,¨V
˚rΛs and κ

u
γ

0,¨U
˚rΛ, us and it follows that

κ
u
γ

0,tpV
˚
t rΛs´U

˚
t rΛ, usq ď Et

„

κ
u
γ

0,T pV
˚
T rΛs ´ U

˚
T rΛ, usq



“ Et
„

κ
u
γ

0,T pΦ
˚pΛT q ´ Φ˚pΛT qq



“ 0.

As κ
u
γ

0,t ą 0 for all t P r0, T s, this implies V ˚t rΛs ď U˚t rΛ, us almost surely for all t P r0, T s
and any u P U . By right-continuity of the processes it further follows that V ˚t rΛs ď
U˚t rΛ, us for all t P r0, T s almost surely.

3. V ˚t rΛs ě ess infuPU U
˚
t rΛ, us: To finalize the proof it suffices to identify u P U such that

V ˚rΛs ě U˚rΛ, us. Motivated by (B.2.3) we choose

uΛ fi ´ B
Bν f̃

˚
ˇ

ˇ

p1´γqνą0

´

λ, 1
γ ν

¯

“ ´δψ 1´γψ
γpψ´1qλ

1´ψ
´

1´γ
γ ν

¯´
γpψ´1q

1´γ
` δθ

and as γψ ă 1 and ψ ą 1 we find uΛ P U . Moreover f˚pΛ, V ˚rΛsq “ F ˚pΛ, uΛq´ uΛ

γ V
˚rΛs

by the first order conditions in (B.2.3), so clearly A
uΛ

γ ” 0. Thus similar as above

d

˜

κ
uΛ

γ

0,t

`

U˚t rΛ, u
Λs ´ V ˚t rΛsq

˘

¸

“ dL
uΛ

γ

t

is a local martingale, bounded from above since U˚t rΛ, us ě V ˚t rΛs. Hence it is in fact a
submartingale and it follows that

κ
u
γ

0,tpU
˚
t rΛ, u

Λs ´ V ˚t rΛsq ď Et
„

κ
u
γ

0,T pΦ
˚pΛT q ´ Φ˚pΛT qq



“ 0

and it follows that V ˚t rΛs ě U˚t rΛ, u
Λs almost surely, t P r0, T s. Again, due to right-

continuity of the processes we obtain V ˚t rΛs ě U˚t rΛ, u
Λs for all t P r0, T s almost surely.

Remark B.18
Certainly, as the proof of Lemma 2.4 carries over to Lemma 2.10, the proof of Lemma B.17
carries over to the concave analogue of Lemma 2.4 under reversed adjustments. As the second
step in the duality procedure remains the same in the concave aggregator setting, we have all
together shown the validity of the whole duality scheme in both cases, γψ ě 1, ψ ą 1 and
γψ ď 1, ψ ă 1. 4
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Appendix C

Hamilton-Jacobi-Bellman Equations

Within this part of the appendix we perform all calculations necessary to find and solve the
Hamiton-Jacobi-Bellman equations for the general primal and dual optimization problem from
Section 4.2 and Section 4.3, respectively.

C.1 Primal Hamilton-Jacobi-Bellman Equation

Recall that the dynamics of the assets and underlying state processes are in general form given
as

dSrisky “ diagrSriskys
`

µSdt` ΣSdW
˘

,

dY “ µY dt` ΣY dW,

where W is an pm`nq-dimensional Brownian motion, µS , µY , ΣS and ΣY are matrix functions
of Y in the appropriate dimension (c.f. (4.1.1)). We avoid to write the Y dependence explicitly
to keep notation simple.
Moreover the investors wealth process Xpπ,cq for any strategy pπ, cq P A is given by

dX
pπ,cq
t “ X

pπ,cq
t

``

r ` πJt χ
˘

dt` πJt ΣSdWt

˘

´ ctdt, X
pπ,cq
0 “ x,

where π denotes the proportions of the investors total wealth invested in the risky securities, c
is her consumption rate and χ “ µS ´ r1m is the excess return of the risky assets. To simplify
notation during our calculations below, we will just write X for the investors wealth, suppressing
the dependence on a particular strategy pπ, cq.

The investor chooses between investment and consumption to maximize her continuous time
recursive utility

V0 “ sup
pπ,cqPA

V0rcs “ sup
pπ,cqPA

E
„
ż T

0
fpcs, Vsrcsqds` ΦpcT q



where, the Epstein-Zin aggregator f is given as

fpc, vq “ δ 1
1´φc

1´φpp1´ γqvq1´
1
θ ´ δθv and Φpcq “ ε 1

1´γ c
1´γ .

We define the p1` nq-dimensional process Z “ pX,Y qJ with dynamics given by

dZ “ diagrZs
`

µZdt` ΣZdW
˘

,
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where

µZ “

ˆ

Xpr ` πJχq ´ c
µY

˙

and ΣZ “

ˆ

XπJΣS

ΣY

˙

.

Considering the indirect utility Vt “ Gpt,Xt, Ytq, the dynamic programming equation for the
agents optimization problem reads

0 “ sup
pπ,cqPΓpxq

"

Gt `
`

µZ
˘J
Gz `

1
2trace

”

`

ΣZ
˘J
GzzΣ

Z
ı

` fpc,Gq

*

(C.1.1)

with Gz “ pGx, Gy1 , . . . , Gynq
J and Gzz “

ˆ

Gxx Gxy
Gyx Gyy

˙

where

Gyx “

¨

˚

˚

˚

˝

Gy1x

Gy2x
...

Gynx

˛

‹

‹

‹

‚

“ pGxyq
J and Gyy “

¨

˚

˝

Gy1y1 ¨ ¨ ¨ Gy1yn
...

. . .
...

Gyny1 ¨ ¨ ¨ Gynyn

˛

‹

‚

.

By inserting the matrices of differentials and the definition of ΣZ we calculate

trace
“

pΣZqJGzzΣ
Z
‰

“ x2Gxxπ
JΣS

`

ΣS
˘J
π ` 2xGxyΣ

Y
`

ΣS
˘J
π ` trace

”

`

ΣY
˘J
GyyΣ

Y
ı

,

where we in particular used the invariance of the trace operator under circular shifts. Thus
(C.1.1) unfolds to

0 “ sup
pπ,cqPΓpxq

"

Gt `
`

xpr ` πJχq ´ c
˘

Gx ` pµ
Y qJGy `

1
2x

2πJΣS
`

ΣS
˘J
πGxx (C.1.2)

` xGxyΣ
Y
`

ΣS
˘J
π ` 1

2trace
”

`

ΣY
˘J
GyyΣ

Y
ı

` fpc,Gq

*

with terminal condition GpT, x, yq “ ε 1
1´γx

1´γ .

Proof of Proposition 4.3: Using the Ansatz Gpt, x, yq “ 1
1´γx

1´γgpt, yqk for some k P R we
obtain the differentials

Gt “ k 1
1´γx

1´γgpt, yqk´1gt Gx “ x´γgpt, yqk

Gxx “ ´γx
´γ´1gpt, yqk Gy “ k 1

1´γx
1´γgpt, yqk´1gy

Gxy “ kx´γgpt, yqk´1pgyq
J “ pGyxq

J Gyy “ k 1
1´γx

1´γgpt, yqk´1

ˆ

pk ´ 1q
gypgyq

T

g
` gyy

˙

.

Moreover gpT, yq “ ε
1
k . Inserting the differentials to (C.1.2), dividing by k 1

1´γx
1´γgpt, yqk´1

and simplifying yields

0 “ sup
pπ,cqPΓpxq

"

gt `
1´γ
k

´

r ` πJχ´
c

x
´ δθ

1´γ

¯

g `
`

µY
˘J
gy ´

1
2k p1´ γqγπ

TΣS
`

ΣS
˘J
πg

` p1´ γqpgyq
JΣY

`

ΣS
˘J
π ` 1

2trace
”

`

ΣY
˘J
gyyΣ

Y
ı

` k´1
2

1

g
pgyq

JΣY
`

ΣY
˘J
gy

` δθ
k

´ c

x

¯1´φ
g1´ k

θ

*

.
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The first order conditions for c and π imply1

π˚ “ 1
γ

´

ΣS
`

ΣS
˘J

¯´1
ˆ

χ` kΣS
`

ΣY
˘J gy

g

˙

and
´ c

x

¯˚

“ δψg´
kψ
θ .

Inserting and simplifying again we obtain the partial differential equation for g:

0 “ gt `
1´γ
k

ˆ

r ` 1
2

1
γχ
J
´

ΣS
`

ΣS
˘J

¯´1
χ´ δθ

1´γ

˙

g `

ˆ

`

µY
˘J
`

1´γ
γ χJ

´

`

ΣS
˘J

¯`
`

ΣY
˘J

˙

gy

` 1
2trace

”

`

ΣY
˘J
gyyΣ

Y
ı

` 1
2

1

g
pgyq

JΣY

ˆ

pk ´ 1qIm`n ` k
1´γ
γ

`

ΣS
˘J

´

`

ΣS
˘J

¯`
˙

`

ΣY
˘J
gy

`
δψφθ
k g1´ kψ

θ

where
´

`

ΣS
˘J

¯`

is the Moore-Penrose inverse of
`

ΣS
˘J given by

´

`

ΣS
˘J

¯`

“

´

ΣS
`

ΣS
˘J

¯´1
ΣS .

C.2 Dual Hamilton-Jacobi-Bellman Equation

Recall that the dynamics of the pricing deflators and state processes of our underlying market
are in general form given as

dDt “ ´Dt

`

rdt` ηJdW
˘

dY “ µY dt` ΣY dW,

where W is an pm` nq-dimensional Brownian motion, r, η, µY and ΣY are matrix (functions)
of Y in the appropriate dimension (compare (4.1.1) and (4.3.2), respectively). We avoid to write
the Y dependence explicitly to keep notation simple. Moreover, recall that

η “

ˆ

ηS

ηY

˙

denotes the market prices of risk, so we must have χ “ σSLSηS or equivalently

ηS “
´

Σ̂S
¯´1

χ. (C.2.1)

We define the p1` nq-dimensional process Z “ pD,Y qJ with dynamics given by

dZ “ diagrZs
`

µZdt` ΣZdW
˘

where

µZ “

ˆ

´Dr
µY

˙

and ΣZ “

ˆ

´DηJ

ΣY

˙

.

Considering the indirect dual utility V ˚t rDs “ Hpt,D, Y q, the dynamic programming equation
for the dual optimization problem reads

0 “ inf
ηPPm`n

ηS“pΣ̂Sq
´1
χ

"

Ht `
`

µZ
˘J
Hz `

1
2trace

”

`

ΣZ
˘J
HzzΣ

Z
ı

` f˚pd,Hq

*

, (C.2.2)

1The matrix ΣS
`

ΣS
˘J is invertible by the assumption that σSLS is of full rank.
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with Hz “ pHd, Hy1 , . . . ,Hynq
J and Hzz “

ˆ

Hdd Hdy

Hyd Hyy

˙

where

Hyd “

¨

˚

˝

Hy1d
...

Hynd

˛

‹

‚

“ pHdyq
J and Hyy “

¨

˚

˝

Hy1y1 ¨ ¨ ¨ Hy1yn
...

. . .
...

Hyny1 ¨ ¨ ¨ Hynyn

˛

‹

‚

.

Inserting the matrices of differentials and the definition of ΣZ we calculate

trace
”

`

ΣZ
˘J
HzzΣ

Z
ı

“ d2Hddη
Jη ´ 2dHdyΣ

Y η ` trace
”

`

ΣY
˘J
HyyΣ

Y
ı

,

where we used the invariance of the trace operator under circular shifts. Thus (C.2.2) unfolds
to

0 “ inf
ηPPm`n

ηS“pσSLSq
´1
χ

"

Ht´rdHd`
`

µY
˘J
Hy`

1
2d

2Hddη
Jη´dHdyΣY η` 1

2 trace
”

`

ΣY
˘J
HyyΣY

ı

`f˚pd,Hq

*

,

with terminal condition HpT, d, yq “ ε
1
γ γ

1´γd
γ´1
γ .

Proof of Proposition 4.4: First notice that ηS is already determined by (C.2.1), so it suffices
optimize over all ηY P Pn and we obtain

0 “ inf
ηY PPn

"

Ht ´ rdHd `
`

µY
˘J
Hy `

1
2d

2Hdd

´

`

ηS
˘J
ηS `

`

ηY
˘J
ηY

¯

´ dHdy

´

Σ̂SY ηS ` Σ̂Y ηY
¯

` 1
2trace

”

`

ΣY
˘J
HyyΣ

Y
ı

` f˚pd,Hq

*

.

Now using the Ansatz Hpt, d, yq “ γ
1´γd

γ´1
γ hpt, yql we calculate the differentials

Ht “ l γ
1´γd

γ´1
γ hpt, yql´1ht Hy “ l γ

1´γd
γ´1
γ hpt, yql´1hy

Hd “ ´d
´ 1
γ hpt, yql Hdd “

1
γd
´ 1
γ
´1
hpt, yql

Hdy “ ´ld
´

1
γ hpt, yql´1phyq

J “ pHydq
J Hyy “ l γ

1´γd
γ´1
γ hpt, yql´1

“

l´1
h hyphyq

J ` hyy
‰

.

Moreover, hpT, yq “ ε
1
l . Inserting the differentials, dividing by l γ

1´γd
γ´1
γ hpt, yql´1 and simplify-

ing yields

0 “ inf
ηY PPn

"

ht `
1´γ
γl

´

r ` 1
2

1
γ

´

`

ηS
˘J
ηS `

`

ηY
˘J
ηY

¯

´ δθ
1´γ

¯

h (C.2.3)

`

ˆ

`

µY
˘J
`

1´γ
γ

ˆ

´

Σ̂Y ηY
¯J

`

´

Σ̂SY ηS
¯J

˙˙

hy `
1
2trace

”

`

ΣY
˘J
hyyΣ

Y
ı

` 1
2

l ´ 1

h
phyq

JΣY
`

ΣY
˘J
hy `

δψθ
lγψh

1´l γψ
θ

*

Now the first order condition for ηY implies

`

ηY
˘˚
“ ´γl

´

Σ̂Y
¯J hy

h
.
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Inserting
`

ηY
˘˚ to (C.2.3) yields the partial differential equation for h:

0 “ ht `
1´γ
γl

´

r ` 1
2γ

`

ηS
˘J
ηS ´ δθ

1´γ

¯

h`

ˆ

`

µY
˘J
`

1´γ
γ

´

Σ̂SY ηS
¯J

˙

hy

` 1
2trace

”

`

ΣY
˘J
hyyΣ

Y
ı

` 1
2

1

h
phyq

J

ˆ

pl ´ 1qΣY
`

ΣY
˘J
´ lp1´ γqΣ̂Y

´

Σ̂Y
¯J

˙

hy

` δψθ
lγψh

1´l γψ
θ
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Appendix D

Explicit and Approximate Solutions

D.1 Exact Solutions in One Dimension

Let n “ 1 and k “ γ

γ`p1´γqpρSY q2
. Moreover let

ψ “ 2´ γ ` p1´γq2

γ

`

ρSY
˘2
.

Then as already mentioned in Section 5.1, the primal HJB equation (4.2.4) simplifies to

0 “ gt `
1´γ
k

´

r ` 1
2

1
γ

χ2

pσSq2
´ δθ

1´γ

¯

g `
´

µY ` 1´γ
γ

χσY ρSY

σS

¯

gy `
1
2

`

σY
˘2
gyy ` δ

ψ, (D.1.1)

see [Kraft et al., 2013].

Kim-Omberg Model

The 1-dimensional special case (m “ n “ 1) of our multivariate Kim-Omberg model introduced
in Example 4.1 reads

dSt “ St
`

pr ` λ̄` λYtqdt` σ
SdWS

t

˘

dYt “ ´κYtdt` σ
Y

ˆ

ρSY dWS
t `

b

1´ pρSY q2dW Y
t

˙

Let Ap¨, sq, Bp¨, sq and Cp¨, sq be given by

Ct “ 2
´

κ´ 1´γ
γ λσY ρSY

σS

¯

C ` 1´γ
k

1
2

1
γ

λ2

pσSq2
` 2

`

σY
˘2
C2,

Bt “
´

κ´ 1´γ
γ λσY ρSY

σS
` 2

`

σY
˘2
C
¯

B ´ 21´γ
γ λ̄σ

Y ρSY

σS
C ` 1´γ

k
1
γ

λ̄λ

pσSq2

At “
1´γ
γ λ̄

σY ρSY

σS
B ´ 1´γ

k

ˆ

r ` 1
2

1
γ
pλ̄q

2

pσSq2
´ δθ

1´γ

˙

` 1
2

`

σY
˘2
p2C ´B2q,

and Aps, sq “ Bps, sq “ Cps, sq “ 0. Then

hpt, y; sq fi exp
`

Apt, sq `Bpt, sqy ` Cpt, sqy2
˘

satisfies the linear homogeneous partial differential equation

0 “ ht`
1´γ
k

´

r ` 1
2

1
γ

1

pσSq2

`

λ̄` λy
˘2
´ δθ

1´γ

¯

h`
´

´κy ` 1´γ
γ

`

λ̄` λy
˘

σY ρSY

σS

¯

hy`
1
2

`

σY
˘2
hyy

on r0, ss ˆ R and a solution to (D.1.1) is given by

gpt, yq “ δ
1
ψ

ż T

t
hpt, y; sqds` ε̂hpT, y;T q.
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Heston-Model

The 1-dimensional special case (m “ n “ 1) of our multivariate Heston model introduced in
Example 4.2 reads

dSt “ St

´

pr ` λ̄Ytqdt` σ̄
S
a

YtdW
S
t

¯

dYt “ pµ̄´ κYtqdt` σ̄
Y
a

Yt

ˆ

ρSY dWS
t `

b

1´ pρSY q2dW Y
t

˙

.

Let Ap¨, sq and Bp¨, sq be given by

Bt “
´

κ´ 1´γ
γ λ̄ σ̄

Y ρSY

σ̄S

¯

B ` 1´γ
k

1
2

1
γ λ̄

2 ` 1
2

`

σ̄Y
˘2
B2

At “ µ̄B ´ 1´γ
k

´

r ´ δθ
1´γ

¯

,

where Aps, sq “ Bps, sq “ 0. Then

hpt, y; sq fi exppApt, sq ´Bpt, sqyq

satisfies the linear homogeneous partial differential equation

0 “ ht `
1´γ
k

´

r ` 1
2

1
γ λ̄

2y ´ δθ
1´γ

¯

h`
´

µ̄´ κy ` 1´γ
γ λ̄σ

Y ρSY

σS

¯

hy `
1
2

`

σY
˘2
yhyy

on r0, ss ˆ R and a solution to (D.1.1) is given by

gpt, yq “ δ
1
ψ

ż T

t
hpt, y; sqds` ε̂hpT, y;T q.

D.2 CS-ALFC Algorithm

The Campbell-Shiller approximation associated to the dual HJB equation (5.2.1) in a model
with power utility is in general form given as

0 “ gCS
t `

1´γ
γ

´

r ` 1
2

1
γ

`

ηS
˘J
ηS ´ δ

1´γ

¯

gCS `

ˆ

`

µY
˘J
`

1´γ
γ

`

ηS
˘J

´

Σ̂SY
¯J

˙

gCS
y

´ 1
2p1´ γq

`

gCS
y

˘J
Σ̂Y

´

Σ̂Y
¯J gCS

y

gCS
` 1

2trace
”

`

ΣY
˘J
gCS
yy ΣY

ı

` lptq
´

1´ lnplptqq ` lnpδ
1
γ q ´ ln

`

gCS
˘

¯

gCS (D.2.1)

subject to the terminal condition gCSpT, yq “ ε̂, where lnplptqq “ E
“

ln
`

c
x

˘˚
pt, Y8q

‰

and Y8 is a
random variable that has the stationary distribution of the process Y .

We already mentioned that the factor l should be regarded as endogenous, so we determine lptq
recursively: Starting with an initial function l0ptq, find the solution hCS to (5.1.7) and then
update the function l1ptq via

lnpl1ptqq “ E
„

ln
´ c

x

¯CS
pt, Y8q



“ lnpδ
1
γ q ´ E

“

ln
`

gCSpt, Y8q
˘‰

(D.2.2)

and iterate until a fixed-point is reached.
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Moreover, recall the partial differential equation associated to the artificially completed market
with arbitrary ηY and power utility by

0 “ g̃t ` r̃
`

ηY
˘

g̃ ` α̃
`

ηY
˘

g̃y `
1
2trace

”

`

ΣY
˘J
g̃yyΣ

Y
ı

` δ
1
γ , (D.2.3)

subject to the terminal condition g̃pT, yq “ ε
1
γ , where r̃ : Rn and α̃ : Rnˆ1 Ñ R1ˆn are given as

r̃pvq fi 1´γ
γ

ˆ

r ` 1
2

1
γ

ˆ

χJ
´

ΣS
`

ΣS
˘J

¯´1
χ` vJv

˙

´ δ
1´γ

˙

and
α̃pvq fi

`

µY
˘J
`

1´γ
γ

ˆ

χJ
´

`

ΣS
˘J

¯`
`

ΣY
˘J
` vJ

´

Σ̂Y
¯J

˙

.

D.2.1 Multivariate Kim-Omberg Model

Recall the model introduced in Example 4.1, where for a Rm`n-dimensional standard Brownian
motion W , let the assets and states follow the dynamics

dSt “ diagrSts
``

r ` λ̄` λJYt
˘

dt` ΣSdWt

˘

,

dYt “ ´diagrκsYtdt` ΣY dWt,

where r, λ̄ P Rm, λ P Rnˆm, κ P Rn and ΣS P Rmˆpm`nq, ΣY P Rnˆpm`nq as defined in (4.1.3).

Campbell-Shiller Approximation of the Dual HJB Equation

Let A, B and C be given by

C 1ptq “
´

lptq ` 2diagrκs ´ 21´γ
γ λΓ

¯

Cptq ` 1´γ
γ

1
2

1
γλΣλJ ` 2CptqJΞCptq

B1ptq “
´

lptq ` diagrκs ´ 1´γ
γ λΓ

¯

Bptq ` 1´γ
γ

1
γλΣλ̄´ 21´γ

γ CptqJΓJλ̄` 2CptqJΞBptq

A1ptq “ lptqAptq ´ lptq
´

1´ lnplptqq ´ lnpε̂q ` ln
´

δ
1
γ

¯¯

´
1´γ
γ

´

r ` 1
2

1
γ λ̄
JΣλ̄´ δ

1´γ

¯

`
1´γ
γ λ̄JΓBptq ´ 1

2Bptq
JΞBptq ` trace

”

`

ΣY
˘J
CptqΣY

ı

, (D.2.4)

where ApT q “ 0, BpT q “ 0nˆ1, CpT q “ 0nˆn and Ξ, Γ, Σ are given by

Ξ fi Σ̂SY
´

Σ̂SY
¯J

` γΣ̂Y
´

Σ̂Y
¯J

Γ fi

´

Σ̂S
¯´J ´

Σ̂SY
¯J

Σ fi

ˆ

Σ̂S
´

Σ̂S
¯J

˙´1

Then the function
gCSpt, yq “ ε̂ exp

`

Aptq ´ yJBptq ´ yJCptqy
˘

,

solves (D.2.1) and
`

ηY
˘CS

fi ηY1 ptq ` η
Y
2 ptqy (D.2.5)

with ηY1 ptq “ γ
´

Σ̂Y
¯J

Bptq and ηY2 ptq “ 2γ
´

Σ̂Y
¯J

Cptq are the associated (linear) market
prices of risk.
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Remark D.1
For the recursive definition of l from (D.2.2) we need to compute

ErY J8Bptqs and ErY J8CptqY8s

in every step. Following [Meucci, 2009], the multivariate Ornstein-Uhlenbeck process has a
stationary distribution which is multivariate normal with parameters

µ8 “ 0 and vecpΣ8q “ pdiagrκs ‘ diagrκsq´1vec
´

ΣY
`

ΣY
˘J

¯

,

where ‘ is the Kronecker sum which for M,N P Rnˆn defined via the Kronecker product as

M ‘N “M b Inˆn ` Inˆn bN

and vec is the stack operator that transforms a mˆn matrix to a mnˆ1 vector. Thus, for every
t P r0, T s we have ErY J8Bptqs “ 0 and

ErY J8CptqY8s “
n
ÿ

i“1

ErpY8qipCptqY8qis “
n
ÿ

i“1

E

«

pY8qi

n
ÿ

j“1

CptqijpY8qj

ff

“

n
ÿ

i“1

n
ÿ

j“1

CptqijErpY8qipY8qjs “
n
ÿ

i“1

n
ÿ

j“1

CptqijCovrpY8qi, pY8qjs

“

n
ÿ

i“1

n
ÿ

j“1

CptqijpΣ8qij “ tracerCptqΣ8s,

as Σ8 is symmetric. 4

Exact Solution for Power Utility in Completed Markets

We choose ηY “
`

ηY
˘CS as given in (D.2.5) and write

`

ηY
˘CS

pt, yq fi ηY1 ptq ` η
Y
2 ptqy for short,

omitting the t and y dependence for brevity of notation below. Then the function

hpt, y; sq “ exp
´

Ãpt, sq ´ yJB̃pt, sq ´ yJC̃pt, sqy
¯

with Ãp¨, sq, B̃p¨, sq, C̃p¨, sq being the solutions of the ODE system

C̃t “ 2
´

diagrκs ´ 1´γ
γ pλΓ` Ξ2q

¯

C̃ ` 1´γ
γ

1
2

1
γ

´

λΣλJ `
`

ηY2
˘J
ηY2

¯

` 2C̃JΣY
`

ΣY
˘J
C̃

B̃t “
´

diagrκs ´ 1´γ
γ pλΓ` Ξ2q

¯

B̃ ` 1´γ
γ

1
γ

´

λΣλ̄`
`

ηY2
˘J
ηY1

¯

´ 21´γ
γ C̃J

`

ΓJλ̄` ΞJ1
˘

` 2C̃JΣY
`

ΣY
˘J
B̃

Ãt “ ´
1´γ
γ

´

r ` 1
2

1
γ

´

λ̄JΣλ̄`
`

ηY1
˘J
ηY1

¯

´ δ
1´γ

¯

`
1´γ
γ

`

λ̄JΓ` Ξ1

˘

B̃

` trace
”

`

ΣY
˘J
C̃ΣY

ı

´
1

2
B̃JΣY

`

ΣY
˘J
B̃, (D.2.6)

where

Ξi fi
`

ηYi
˘J

´

Σ̂Y
¯J

, i “ 1, 2

Γ fi

´

Σ̂S
¯´J ´

Σ̂SY
¯J

Σ fi

ˆ

Σ̂S
´

Σ̂S
¯J

˙´1
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Ãps, sq “ 0, B̃ps, sq “ 0nˆ1, C̃ps, sq “ 0nˆn solves the linear homogeneous partial differential
equation

0 “ ht ` r̃
´

`

ηY
˘CS

¯

h` α̃
´

`

ηY
˘CS

¯

hy `
1
2trace

”

`

ΣY
˘J
hyyΣ

Y
ı

,

on r0, ss ˆ R subject to hps, y; sq “ 1, and

g̃pt, yq “ δ
1
γ

ż T

t
hpt, y; sqds` ε̂hpt, y;T q,

solves (D.2.3), see Section 5.1.

D.2.2 Multivariate Heston-Model

Recall the model from Example 4.2, where m “ n and for a R2n-dimensional standard Brownian
W let the assets and states follow the dynamics

dSt “ diagrSts
``

r `KdiagrYtsK
Jλ̄

˘

dt` ΣSpYtqdWt

˘

,

dYt “ pµ̄´ diagrκsYtq dt` ΣY pYtqdWt,

where r, λ̄, µ̄, κ P Rn, K P Rnˆno and ΣS , ΣY are pn ˆ 2nq-dimensional matrix functions as in
(4.1.3).

Campbell-Shiller Approximation of the Dual HJB Equation

Let A and B “ pB1, . . . , Bnq
J be given by

B1iptq “

˜

lptq ` κi ´
1´γ
γ

σ̄Yi ρi

σ̄Si

n
ÿ

j“1

Kjiλ̄j

¸

Biptq `
1´γ
γ

1
2

1
γ

˜

n
ÿ

j“1

Kjiλ̄j

σ̄Si

¸2

(D.2.7)

´ 1
2

`

σ̄Yi
˘2 `
p1´ γqp1´ ρ2

i q ´ 1
˘

Biptq
2

A1ptq “ lptqAptq ` µ̄JBptq ´ 1´γ
γ

´

r ´ δ
1´γ

¯

´ lptq
´

1´ lnplptqq ` ln
´

δ
1
γ

¯

´ lnpε̂q
¯

where ApT q “ 0 and BpT q “ 0nˆ1. Then the function

gCSpt, yq “ ε exp
`

Aptq ´ yJBptq
˘

,

solves (D.2.1) and
`

ηY
˘CS

pt, yq “ γ
´

Σ̂Y pyq
¯J

Bptq (D.2.8)

are the associated market prices of risk. Recall that Σ̂Y pyq behaves as ?y.

Remark D.2
For the recursive definition of l from (D.2.2) we need to compute ErY J8Bptqs. The single coor-
dinate processes Y i, i “ 1, . . . , n have the dynamics

dY i
t “ pµ̄i ´ κiY

i
t qdt` σ̄

Y
i

b

Y i
t

ˆ

ρidW
i
t `

b

1´ ρ2
i dW

2i
t

˙

.

As the Brownian motions W i and W 2i are independent, this is a classical CIR process and it is
well known that the asymptotic distribution of such is a gamma distribution with expectation µ̄i

κi
,

see e.g.[Cox et al., 2005]. Thus

E
“

Y J8Bptq
‰

“ E
“

Y J8
‰

Bptq “ µ̄J pdiagrκsq´1Bptq.
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Exact Solution for Power Utility in Completed Markets

We choose ηY “
`

ηY
˘CS

“ γ
´

Σ̂Y
¯J

B as given in (D.2.8) and omit the t and y dependence for
brevity of notation below. Then the function

hpt, y; sq “ exp
´

Ãpt, sq ´ yJB̃pt, sq
¯

with Ãp¨, sq and B̃p¨, sq “ pB̃1p¨, sq, . . . , B̃np¨, sqqJ being the solutions of the ODE system

B̃i
t “

˜

κi ´
1´γ
γ

˜

σ̄Yi ρi

σ̄Si

n
ÿ

j“1

Kjiλ̄j ` γBi
`

σ̄Yi
˘2
p1´ ρ2

i q

¸¸

B̃i (D.2.9)

`
1´γ
γ

1
2

1
γ

¨

˝

˜

n
ÿ

j“1

Kjiλ̄j

σ̄Si

¸2

` γ2
`

σ̄Yi
˘2
p1´ ρ2

i qB
2
i

˛

‚` 1
2

`

σ̄Yi
˘2

´

B̃i
¯2

Ãt “ µ̄JB̃ ´ 1´γ
γ

´

r ´ δ
1´γ

¯

Ãps, sq “ 0, B̃ps, sq “ 0nˆ1 solves the linear homogeneous partial differential equation

0 “ ht ` r̃
´

`

ηY
˘CS

¯

h` α̃
´

`

ηY
˘CS

¯

hy `
1
2trace

”

`

ΣY
˘J
hyyΣ

Y
ı

,

on r0, ss ˆ R subject to hps, y; sq “ 1, and

g̃pt, yq “ δ
1
γ

ż T

t
hpt, y; sqds` ε̂hpt, y;T q,

solves (D.2.3), see Section 5.1.

D.3 SA-PDI Algorithm

Assume that from the pj ´ 1q-th iteration we obtained some market prices of risk
`

ηY
˘pj´1q.

We choose k “ θ
ψ , then the partial differential equation associated to the

`

ηY
˘pj´1q-completed

market reads

0 “ g̃t ` r̃
´

`

ηY
˘pj´1q

¯

g̃ ` α̃
´

`

ηY
˘pj´1q

¯

g̃y `
1
2trace

”

`

ΣY
˘J
g̃yyΣ

Y
ı

` δψ, (D.3.1)

where r̃ : Rn Ñ R and α̃ : Rnˆ1 Ñ R1ˆn are given as

r̃pvq fi 1´γ
k

ˆ

r ` 1
2

1
γ

ˆ

χJ
´

ΣS
`

ΣS
˘J

¯´1
χ` vJv

˙

´ δθ
1´γ

˙

and

α̃pvq fi

ˆ

`

µY
˘J
`

1´γ
γ

ˆ

χJ
´

`

ΣS
˘J

¯`
`

ΣY
˘J
` vJ

`

σY LY
˘J

˙

´ 1
2
k´γ
kγ v

J
´

Σ̂Y
¯´1

ΣY
`

ΣY
˘J

˙

.
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D.3.1 Multivariate Kim-Omberg Model

Recall the model introduced in Example 4.1, where for a Rm`n-dimensional standard Brownian
motion W , let the assets and states follow the dynamics

dSt “ diagrSts
``

r ` λ̄` λJYt
˘

dt` ΣSdWt

˘

,

dYt “ ´diagrκsYtdt` ΣY dWt,

where where r, λ̄ P Rm, λ P Rnˆm, κ P Rn and ΣS P Rmˆpm`nq, ΣY P Rnˆpm`nq as defined in
(4.1.3).
Let the market prices of risk

`

ηY
˘pj´1q from the pj ´ 1q-th iteration be given and determine the

approximation of the associated sensitivities by their first-order Taylor approximation around
ȳ “ E rY8s as

Spt, yq “
gypt, ȳq

gpt, ȳq
`
B

By

ˆ

gypt, ȳq

gpt, ȳq

˙

py ´ ȳq.

Then the linearly approximated market prices of risk have a representation

`

ηY«
˘pj´1q

pt, yq “ ´k
´

Σ̂Y
¯J

Spt, yq fi ηY1 ptq ` η
Y
2 ptqy

for some ηY1 and ηY2 .
Let Ãp¨, sq, B̃p¨, sq, C̃p¨, sq be given by the solutions of the ODE system

C̃t “ 2
´

diagrκs ´ 1´γ
γ pλΓ` Ξ2q `

1
2
k´γ
kγ

`

ηY2
˘J

Ψ
¯

C̃ (D.3.2)

`
1´γ
k

1
2

1
γ

´

λΣλJ `
`

ηY2
˘J
ηY2

¯

` 2C̃JΣY
`

ΣY
˘J
C̃

B̃t “
´

diagrκs ´ 1´γ
γ pλΓ` Ξ2q `

1
2
k´γ
kγ

`

ηY2
˘J

Ψ
¯

B̃ ` 1´γ
k

1
γ

´

λΣλ̄`
`

ηY2
˘J
ηY1

¯

` 2C̃JΣY
`

ΣY
˘J
B̃ ´ 2C̃J

´

1´γ
γ

`

ΓJλ̄` ΞJ1
˘

´ 1
2
k´γ
kγ ΨJηY1

¯

Ãt “ ´
1´γ
k

´

r ` 1
2

1
γ

´

λ̄JΣλ̄`
`

ηY1
˘J
ηY1

¯

´ δθ
1´γ

¯

` trace
”

`

ΣY
˘J
C̃ΣY

ı

´

´

1
2
k´γ
kγ

`

ηY1
˘J

Ψ´ 1´γ
γ

`

λ̄JΓ` Ξ1

˘

¯

B̃ ´
1

2
B̃JΣY

`

ΣY
˘J
B̃,

Ãps, sq “ 0, B̃ps, sq “ 0nˆ1, C̃ps, sq “ 0nˆn, where

Ξi fi
`

ηYi
˘J

´

Σ̂Y
¯J

, i “ 1, 2

Γ fi

´

Σ̂S
¯´J ´

Σ̂SY
¯J

Σ fi

ˆ

Σ̂S
´

Σ̂S
¯J

˙´1

Ψ fi

´

Σ̂Y
¯´1

ΣY
`

ΣY
˘J
.

Then the function
hpt, y; sq “ exp

´

Ãpt, sq ´ yJB̃pt, sq ´ yJC̃pt, sqy
¯

solves the linear homogeneous partial differential equation

0 “ ht ` r̃
´

`

ηY«
˘pj´1q

¯

h` α̃
´

`

ηY«
˘pj´1q

¯

hy `
1
2trace

”

`

ΣY
˘J
hyyΣ

Y
ı

,
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on r0, ss ˆ R subject to hps, y; sq “ 1, and

g̃pt, yq “ δ
1
γ

ż T

t
hpt, y; sqds` ε̂hpt, y;T q,

solves (D.3.1).

D.3.2 Multivariate Heston Model

Consider the model introduced in Example 4.2, i.e. let m “ n and for a R2n-dimensional
standard Brownian W let the assets and states follow the dynamics

dSt “ diagrSts
``

r `KdiagrYtsK
Jλ̄

˘

dt` ΣSpYtqdWt

˘

,

dYt “ pµ̄´ diagrκsYtq dt` ΣY pYtqdWt,

where r, λ̄, µ̄, κ P Rn, K P Rnˆno and ΣS , ΣY are pn ˆ 2nq-dimensional matrix functions as in
(4.1.3).

Let the market prices of risk
`

ηY
˘pj´1q from the pj ´ 1q-th iteration be given and determine the

approximation of the associated sensitivities by their value at ȳ “ E rY8s, i.e.

Sptq “
gypt, ȳq

gpt, ȳq
.

Then the approximated market prices of risk are of the form
`

ηY«
˘pj´1q

pt, yq “ ´kΣ̂Y pyqSptq.

Recall that Σ̂Y pyq behaves as ?y. Then the function

hpt, y; sq “ exp
´

Ãpt, sq ´ yJB̃pt, sq
¯

with Ãp¨, sq and B̃p¨, sq “ pB̃1p¨, sq, . . . , B̃np¨, sqqJ being the solutions of the ODE system

B̃i
t “

˜

κi ´
1´γ
γ

˜

σ̄Yi ρi

σ̄Si

n
ÿ

j“1

Kjiλ̄j ´ kSi

`

σ̄Yi
˘2
p1´ ρ2

i q

¸

´ 1
2
k´γ
γ

`

σ̄Yi
˘2

Si

¸
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´
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Ãt “ µ̄JB̃ ´ 1´γ
k

´

r ´ δθ
1´γ

¯

Ãps, sq “ 0, B̃ps, sq “ 0nˆ1 solves the linear homogeneous partial differential equation

0 “ ht ` r̃
´

`

ηY«
˘pj´1q

¯

h` α̃
´

`

ηY«
˘pj´1q

¯

hy `
1

2
trace

”

`

ΣY
˘J
hyyΣ

Y
ı

,

on r0, ss ˆ R subject to hps, y; sq “ 1, and

g̃pt, yq “ δ
1
γ

ż T

t
hpt, y; sqds` ε̂hpt, y;T q,

solves (D.3.1).
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