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"You acted unwisely,” I cried, "as you see

By the outcome.” He calmly eyed me:

"When choosing the course of my action,” said he,
"I had not the outcome to guide me."

— Ambrose Bierce, A Lacking Factor



Abstract

This thesis deals with consumption-investment allocation problems with Epstein-Zin recursive
utility, building upon the dualization procedure introduced by [Matoussi and Xing, 2018|. While
their work exclusively focuses on truly recursive utility, we extend their procedure to include
time-additive utility using results from general convex analysis. The dual problem is expressed in
terms of a backward stochastic differential equation (BSDE), for which existence and uniqueness
results are established. In this regard, we close a gap left open in previous works, by extending
results restricted to specific subsets of parameters to cover all parameter constellations within
our duality setting.

Using duality theory, we analyze the utility loss of an investor with recursive preferences, that
is, her difference in utility between acting suboptimally in a given market, compared to her best
possible (optimal) consumption-investment behaviour. In particular, we derive universal power
utility bounds, presenting a novel and tractable approximation of the investors’ optimal utility
and her welfare loss associated to specific investment-consumption choices. To address quantita-
tive shortcomings of those power utility bounds, we additionally introduce one-sided variational
bounds that offer a more effective approximation for recursive utilities. The theoretical value
of our power utility bounds is demonstrated through their application in a new existence and
uniqueness result for the BSDE characterizing the dual problem.

Moreover, we propose two approximation approaches for consumption-investment optimization
problems with Epstein-Zin recursive preferences. The first approach directly formalizes the
classical concept of least favorable completion, providing an analytic approximation fully char-
acterized by a system of ordinary differential equations. In the special case of power utility,
this approach can be interpreted as a variation of the well-known Campbell-Shiller approxima-
tion, improving some of its qualitative shortcomings with respect to state dependence of the
resulting approximate strategies. The second approach introduces a PDE-iteration scheme, by
reinterpreting artificial completion as a dynamic game, where the investor and a dual oppo-
nent interact until reaching an equilibrium that corresponds to an approximate solution of the
investors optimization problem. Despite the need for additional approximations within each
iteration, this scheme is shown to be quantitatively and qualitatively accurate. Moreover, it is
capable of approximating high dimensional optimization problems, essentially avoiding the curse
of dimensionality and providing analytical results.
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Chapter 1

Introduction

Portfolio optimization plays a central role in finance. Since the pioneering works of [Markowitz,
1952|, [Samuelson, 1969] and [Merton, 1971], a large volume of academic work focussed on the
problem of maximizing expected time-additive utility of [Von Neumann and Morgenstern, 1944]
type. Among those time-additive utilities, power utility functions with constant relative risk
aversion (CRRA) are the most common, and solutions to the associated portfolio optimiza-
tion problems have been found in several settings featuring complete and incomplete markets,
see e.g. |Brandt, 2010 or [Wachter, 2010| for a broad review. Despite its strong presence in
the literature, time-additive utility has its limitations. In particular, it imposes a strict rela-
tion between the investors attitude towards the smoothness of consumption over time and over
states. This restriction in the connection between an investors risk aversion (RA) and her elastic-
ity intertemporal substitution (EIS) becomes particularly visible in the field of equilibium asset
pricing, where it produces various inconsistencies between model predictions and empirical data.
Those inconsistencies lead to a rich literature on so called asset pricing puzzles, see e.g. |Mehra
and Prescott, 1985 for the prominent equity premium puzzle: The excess return of stocks im-
plied by classical asset pricing models is considerably too high for reasonable market parameters.

In order to bypass these limitations of time-additive utility, recursive utility has been developed
in a discrete-time framework by [Kreps and Porteus, 1978, [Epstein and Zin, 1989, [Weil, 1990].
It dissolves the strict connection between risk aversion and elasticity of intertemporal substitu-
tion, allowing for more flexibility in the modelling of an investors preferences. [Bansal and Yaron,
2004] found that long-run risk asset pricing models featuring recursive utility fit more accurately
with financial data then models based on time-additive preferences; thus recursive utility be-
came a highly relevant tool in the asset pricing literature, see for instance [Hansen et al., 2008|,
|Guvenen, 2009], |Kaltenbrunner and Lochstoer, 2010|, [Borovicka et al., 2011|, |Gabaix, 2012],
[Wachter, 2013]. Almost all of those publications use the so called Epstein-Zin-Weil parametriza-
tion. Stochastic differential utility, as a continuous time analogue to recursive utility, was in a
deterministic setting proposed by |Epstein, 1987| and in a stochastic setting by |[Duffie and Ep-
stein, 1992b|. The authors provide convincing arguments for the connection between recursive
utility and stochastic differential utility, however their definition is axiomatic and a mathemati-
cally rigorous link between the two concepts has only much later been established by [Kraft and
Seifried, 2014]. For the widely used Epstein-Zin specification of stochastic differential utility,
the associated continuous-time optimal consumption and investment problems have in particular
been studied in [Schroder and Skiadas, 1999], [Schroder and Skiadas, 2003|, [Chacko and Viceira,
2005], [Kraft et al., 2013, [Seiferling and Seifried, 2016, [Xing, 2017|, [Matoussi and Xing, 2018|.

In general, there are two main approaches to obtain a solution of a consumption-investment
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optimization problem. The first approach uses dynamic programming techniques, to reduce the
problem to finding a solution of a certain partial differential equation (PDE), the Hamilton-
Jacobi-Bellman (HJB) equation. The solution to this HJB equation characterizes not only the
investors optimal utility, but also the associated investment and consumption strategy, see for
example |Liu and Muhle-Karbe, 2013 for a general overview in the time-additive case or [Chacko
and Viceira, 2005], [Kraft et al., 2013|, [Seiferling and Seifried, 2016] in case of recursive utility.
The second approach is often called the martingale approach and was first introduced by [Cox
and Huang, 1989|, |Karatzas et al., 1987| and |Pliska, 1986] in a time-additive framework and
later also employed in problems featuring recursive preferences by [Schroder and Skiadas, 1999|
and [Schroder and Skiadas, 2003|. Informally speaking, it is based on a separation of the dy-
namic optimization problem to a static problem and a representation problem: First, using the
Lagrangian method, one determines the optimal payoff profile, then one computes the realizing
strategies using martingale representation results. Thus, the optimal strategies generally have
an abstract representation that can only in special cases be computed explicitly. However, the
big advantage of the martingale approach over the dynamic programming approach is, that it
can much easier be extended to various types of incomplete markets, such as trading constraints
or undiversifiability of risk. While incompleteness of the considered market usually leads to an
unsolvable HJB equation, it appears natural within the martingale method to embed the con-
strained optimization problem into a family of unconstrained ones, and then finding a member
of this family whose optimal strategy obeys the constraints. In the case of time-additive utility,
this dual approach was first developed in |[He and Pearson, 1991|, |[Karatzas et al., 1991] and
[Cvitani¢ and Karatzas, 1992].

According to |Karatzas et al., 1991|, the particular member of the family of unconstrained
problems, that obeys the constraints of the incomplete market, can be interpreted as the least
favorable completion of the market. The optimization problem within this least favorably com-
pleted market is then equivalent to the initially constrained optimization problem. Finding this
least favorable completion, corresponds to solving the associated dual optimization problem.
This idea of a dual approach had significant impact on the theory of consumption-investment
optimization theory with time-additive utility. Besides far reaching theoretical implications, the
concept of least favorable completion is particularly fruitful when it comes to the approximation
of solutions, as the associated complete market problems are often much easier to solve. More-
over, the dual optimization problem yields an upper bound on the optimal utility. In particular,
the dual approach automatically implies an upper bound on the utility loss associated to any
particular consumption-investment strategy, that can be utilized to validate the accuracy of any
given (numerical) approximation of the solution, without the need of a benchmark approach.
This idea has prominently been employed by [Haugh et al., 2006|, |[Brown et al., 2010|, [Brown
and Smith, 2011], [Bick et al., 2013|, [Kamma et al., 2020] and |[Kamma and Pelsser, 2022].

Inspired by the dual approach for time-additive utility, [Matoussi and Xing, 2018|, propose a
dual formulation for optimization problems with Epstein-Zin preferences if the RRA () and
EIS (¢) satisfy the restriction

v >1,9 >1 or v < 1,9 < 1. ()

Their dual problem is characterized by the solution of a BSDE, which they call the stochastic
differential dual. The economic interpretation of time-additive duality theory carries over to the
recursive case, in particular the solution of the dual problem can be interpreted as the least
favorable completion of the underlying market. [Matoussi and Xing, 2018| provide existence
and uniqueness results for the stochastic differential dual, and find conditions under which the
primal and dual solution actually coincide in certain Brownian models. In general, the paper



of [Matoussi and Xing, 2018| provides great insights on optimization problems with Epstein-Zin
utility in incomplete markets and paves the way for new methods to approach their solution. For
example [Becherer et al., 2023| use the dual approach to solve a recursive optimization problem
for an investor, who receives a stochastic stream of income and is faced with liquidity constraints.

Other aspects of duality theory, such as (numerical) approximations of the solution via least
favorable completion, or the implied bound on the welfare loss linked to such approximations,
have not been applied within the context of recursive Epstein-Zin utility thus far. Hence, the
main goal of this thesis is to generalize these concepts in that regard. In pursuit of that objec-
tive, we enhance the existing theory in the multiple directions:

First, note that while time-additive power utility is a true special case of recursive Epstein-Zin
utility, (f)) explicitly excludes the time-additive utility case where 4 = 1. Hence, so far the
duality methods for time-additive and recursive utility coexist. We connect both by extending
the procedure proposed in [Matoussi and Xing, 2018| to include the power utility scenario as
a special case. In particular, the duality theory for power utility of |[He and Pearson, 1991],
[Karatzas et al., 1991] and |Cvitani¢ and Karatzas, 1992] is a special case of our enhanced
recursive dualization method, which is valid for

yp =1, >1 or Y < 1,1 < 1. (*)

Having established the dual optimization problem, we close a gap left open in |Becherer et al.,
2023|, by proving existence, uniqueness, convexity and monotonicity of the stochastic differential
dual for all parameter constellations in a general semimartingale setting.

Next, we turn to bounding an investors welfare loss. Note that, as in the case of power utility,
the stochastic differential dual yields an upper bound on an investors welfare loss associated to
any admissible strategy. However, evaluating these bounds, corresponds to solving non-standard
forward-backward stochastic differential equations (FBSDEs), which is in general not feasible. In
order to bypass this issue, we enclose the stochastic differential dual by transformed dual power
utility functions. Combining them with their primal analogoues previously derived by [Seifer-
ling and Seifried, 2016|, we introduce our universal power utility bounds on an investors utility
loss. To the best of our knowledge, those provide the first tractable method in the literature,
that allows to validate the accuracy of approximations to Epstein-Zin consumption-investment
allocation problems, without the need of a benchmark solution. Moreover, we demonstrate the
theoretical value of the power utility bounds, by utilizing them in the proof of a new existence
and uniqueness result for the stochastic differential dual, that requires less restrictive integra-
bility assumptions as our general existence result mentioned before. Thus, our power bounds
are valuable both in theory and applications. However, note that their quality in measuring an
investors utility loss may deteriorate when the investors preference parameters are unfavorable.
We make a first step in overcoming those quantitative shortcomings by additionally introducing
variational bounds, that are better suited to recursive utilities when RA and EIS differ signifi-
cantly from the power utility case v = 1.

Finally, by combining the classical dynamic programming approach with our duality results,
we develop two novel algorithms that approximate the solution to investment-consumption op-
timization problems with Epstein-Zin preferences in incomplete markets. Our first approach
focuses on the special case of power utility, where our general algorithmic idea has already been
established e.g. in [Kamma and Pelsser, 2022|. However, while previous works mainly focus
on the martingale method, we utilize the analytic Campbell-Shiller (CS) approximation known
from [Chacko and Viceira, 2005| to approximate the dual problem. Using this approximation to
complete the market, we are able to explicitly solve the HJB equation associated to the complete
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market problem. Thereby we obtain an analytic approximation of the optimal solution that is
explicitly characterized by a system of ordinary differential equations. As far as we know, such
an analytic approximation that takes a detour through the truly recursive utility case via the
CS approximation, is not present in the literature so far.

Our second algorithm is an iterative scheme, where a primal and a dual optimizer play against
each other until they find an equilibrium, that corresponds to the solution of the investors op-
timization problem. More precisely, the investor is allowed to trade in a complete market and
therein finds her optimal strategy, possibly violating the constraints imposed by the incomplete
market. On the other hand, the opposing dual optimizer will not allow for such violations and
forces her strategy to follow the restrictions by changing her market conditions. This leads the
investor to adjust her overall strategy and the game goes on until both are content, i.e. under
the conditions set by the dual optimizer the investor maximizes her utility while respecting the
constraints imposed by market incompleteness. This reinterpretation of least favorable com-
pletion and its manifestation as an algorithm to approximate optimal solutions, appears to be
absent from the current literature. Note, that we solve the investors HJB equation in every
iteration and in that we rely on additional approximations. Consequently the algorithm cannot
converge to the true solution. However, both our algorithms are shown to be accurate and stable
under parameter variations. They are applicable and easy to implement even in high dimensions
and in particular the iterative scheme appears to essentially avoid the curse of dimensionality,
despite being based on repeatedly solving high dimensional PDEs.

The remainder of this thesis is organized as follows. Within we extend the duality
approach by [Matoussi and Xing, 2018| to explicitly include the case of power utility. Moreover,
our general existence and uniqueness result for the stochastic differential dual is established.
contains our main result, the derivation of the universal power utility bounds on an
investor’s welfare loss. We additionally establish our variational bounds and state our refined
existence and uniqueness result for the stochastic differential dual. In we introduce
our general market model and analyze its solution using dynamic programming techniques.
presents our first two-step approximation approach via least favorable completion and
investigates its accuracy in several numerical simulations. Our second, iterative approximation
approach is introduced in [Chapter 6| Multiple numerical applications in different dimensions
analyze its accuracy and convergence behavior. concludes this thesis.

In addition, some preliminaries on BSDEs and convex analysis are provided in
and respectively, and technical calculations are outsourced to and
to improve readability of the main text.



Chapter 2

Duality for Recursive Systems

This first chapter is dedicated to the derivation of the dual problem associated to an Epstein-
Zin investment-consumption allocation problem and its analysis. We start by introducing the
general setting and the detailed optimization problem under consideration in The
associated dual problem is then rigorously derived in [Section 2.2} it is based on the three-step
approach introduced by |[Matoussi and Xing, 2018|. It turns out that the dual problem (as the
primal one) is characterized in terms of a nonstandard backward stochastic differential equation
(BSDE), and is concerned with proving existence and uniqueness of a solution to
this equation, as well as several of its properties.

2.1 The Primal Epstein-Zin Optimization Problem

Let (€2, {St}efo,17> 8> P) be a filtered probability space and let the filtration {S}iefo,1) satisfy the
usual conditions of completeness and right-continuity. Throughout this whole thesis we follow
the common practice of identifying almost surely equal random variables and indistinguishable
stochastic processes, respectively. Moreover, our assumptions on the underlying filtration allow
us to work with suitable (in particular right-continuous) versions of stochastic processes and we
do so without further mention.

We denote the class of all nonnegative and progressively measurable processes on [0, 7] x by C.
A stochastic process {ct }e[0,7) € C is called a consumption stream, where for t < T, ¢; represents
the consumption stream at time ¢ and ¢y models the lump sum consumption at time 7.

The subjective preferences of a representative agent can in general be described by a utility index
functional v : C — R. We say that a consumption stream c is weakly preferred to ¢, if and only
if v(c) = v(¢). In the context of stochastic differential utility as in |[Duffie and Epstein, 1992a],
we define the utility index functional as

Ve - R, V(o) = Vile]

where C* < C is the set of admissible consumption streams defined below. The wtility process
V = V[c] associated with a consumption stream ¢ € C* satisfies a backward stochastic differential
equation (BSDEED of the form

T
Vilc] zEt[L f(cs,VS[c])ds—i-q)(cT)], te[0,T]. (2.1.1)

! A short introduction to the notion of BSDEs and a collection of results used within this thesis is provided in
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We consider the Epstein-Zin parametrization of recursive utility as in |Epstein and Zin, 1989|

and [Weil, 1990|, with relative risk aversion (RRA) 0 < v # 1 and elasticity of intertemporal

substitution (EIS) 0 < ¢ # 1. Define § = =% and V = {v € R : (1 —y)v > 0}, ie.
»

1
V = (0,00), if v < 1 and V = (—00,0), if v+ > 1. Then the continuous-time Epstein-Zin
aggregator f: (0,00) x V— R reads
1—
c
1_

€=

Fle,v) =6 (1 — 7)) 8 — 660, (2.1.2)

<=

and the terminal utility function is given as ®(c) = 5ﬁc1_7, where the coefficients § > 0 and

€ > 0 capture the agent’s rate of time preference and weight on terminal consumption, respec-
tively; in particular we exclude the case of zero terminal bequest € = 0.

Denote by S the space of (§,P)-semimartingales, then the relevant class of Epstein-Zin utility
processes is given by V = {V e §: (1 — )V > 0}. We call a consumption stream c admissible,
if V[c] uniquely exists, satisfies (1 — )V [c] > 0 and is of class (D). The class of admissible
consumption streams is denoted as C* and the class of corresponding recursive utilities as V.

If not further specified, we assume that any c € C* at least satisfies the minimal integrability
condition

T 1—1
E U ¢, "dt+ clT‘V} < 0. (2.1.3)
0

The following example shows how the classical case of power utility is incorporated by this
general recursive framework.

Example 2.1
When v = 1, then f(c,v) = dp(c) —ov and (2.1.1)) reduces to the classical time-additive utility

specification with constant relative risk aversion ~:
T
Vile] = By [J 5&0;_7 — 6Vs[c]ds + (I)(CT):| (2.1.4)
t

T
=E [J 66_5(5_t)90(cs)d3 + e_a(T_t)CD(cT)],
t

=

where ¢ : (0,0) — R, p(c) = {= . The second equality is due to the classical evistence result
for linear BSDE provided in applicable as c satisfies (2.1.3)). o

In general the Epstein-Zin aggregator f is in particular not Lipschitz continuous in the utility
variable v, hence standard BSDE results as in cannot be applied and existence,
respectively uniqueness of a solution to is a highly non-trivial question. In the special
case of a Brownian framework, existence and uniqueness results have previously been estab-
lished by [Schroder and Skiadas, 1999] and [Xing, 2017] as cited from |[Matoussi and Xing,
2018|[Proposition 2.1

Proposition 2.2
Let (L%W)te[o,T] be the augmented filtration generated by some Brownian motion W. Then the
following two existence results hold:
(1) [Schroder and Skiadas, 1999][Theorem 1f°| When either v > 1,0 < ¢ < 1, or 0 < v <
1,9 > 1, then for any c € C such that E S(? cidt + cZT] < o for all £ € R, there exists a

2The parameter 1 + o therein is § in our notation
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unique semimartingale V- = V|c| satisfying (2.1.1) such that E [ess SUPyeo,7] \Vt|£] < ®
for every £ > 0.

(i1) [Xing, 2017/[Pr0p032t20n 2.2 & Proposition 2.4] When ~v,1 > 1, then for any c € C such

that E XO ct wdt + CT 7| < oo, there exists a unique semimartingale V = Vc] satisfying
(2.1.1) such that V is of class (D).

In both cases (1 —~)V >0, i.e. V €V and Vp[c| is concave in c.

By [Proposition 2.2] we also obtain C* # (7.

[Seiferling and Seifried, 2016] were the first to prove existence and uniqueness of Epstein-Zin
utility in a general semimartingale framework. Their result is further investigated in
see |Proposition 2.17]

We construct the consumption-investment optimization problem with Epstein-Zin utility as
follows. Consider a financial market S where S = (Sp,...,Sp) is a (m + 1)-dimensional positive
semimartingale. SO represents the price of the risk-less asset, whereas S;, i = 1,...m are the
price processes of the m risky assets. Given an initial endowment x > 0, a representative agent
may invest in the given market by choosing a portfolio represented by a predictable S-integrable
process m = (7’,...,7™). Here 7} is the fraction of her current wealth invested in the risky
asset S; at time ¢t and 7) = 1 — Y | is the fraction invested in the riskless asset. Given her
initial wealth x, an investment strategy m and a constumption stream c¢, the wealth process of
our investor follows the dynamics

ds
dx(™) = x"Vxf Z22 _cdt, XY =2
Sy
Such an investment-consumption strategy (m,c) is called admissible if ¢ € C?, Xt(w’c) > ( for all
te[0,T] and ¢ = Xq(f7c). We denote the class of those strategies by .A.
Then the agent’s optimization problem is to
find (7*,¢*) € A such that v(c¢*) = sup v(c), (2.1.5)

(m,c)eA

so she aims to maximize her utility at time ¢ = 0 over all admissible investment-consumption
strategies. We refer to (2.1.5)) as the primal optimization problem.

2.2 The Dual Epstein-Zin Optimization Problem

Having established the primal optimization problem under consideration in ([2.1.5)), we now go
through all necessary details to finally obtain the associated dual optimization problem at the

end of Plugging everything together in we obtain the duality inequal-

ity for a consumption-investment optimization problem with recursive Epstein-Zin preferences.

Most technical computations have been outsourced to in order to make this main
text as readable as possible.
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2.2.1 Dualization - A Three-Step Procedure

Recall the BSDE characterizing the primal optimization problem

Vile] = Et[LT f(cs, Vi[c])ds + <I>(CT)}, te[0,7].

First note that, as the second argument of the Epstein-Zin aggregator f from depends on
the whole future path of the consumption stream ¢, straight forward dualization as in [Karatzas
et al., 1991] is not possible. A workaround is provided by |[Matoussi and Xing, 2018| and we
follow their ideas, slightly generalizing their approach in several directions. The procedure is
essentially built on three separate steps as illustrated in [Figure 2.1]

In a first step we reformulate the investor’s recursive Epstein-Zin preferences to a variational
formulation as introduced by |Geoffard, 1996|; the result is given in Intuitively
speaking, variational utility expresses recursive utility associated to a fixed consumption stream
as a specific discounted time-additive utility of the same consumption plan, maximized over
the rate of time preference. The primal problem is now formulated in a time-additive way
which allows us to apply the classical approach of [Karatzas et al., 1991| using state price de-
flators. This is the actual dualization step and leads to a dual variational utility, which is again
of time-additive structure. The final step, in particular reverts the first one by
reformulating the dual variational utility to what |[Matoussi and Xing, 2018| call a stochastic
differential dual, i.e. a dual utility process in recursive form.

Primal Problem | Step 1: ‘ Varatlolnal
few), 8@ | oo - Form (Primal)
) .7 ransrormation 1 v ‘ F(C, U), @(C)
Step 2: | transformation in ¢
v T
Dual Problem | Step 3: ‘ Variational
FOup), () — Form (Dual)
V), ’ transformation in ‘ F*(\u), ®*()\)

Figure 2.1: Illustration of the Dualization Procedure

We slightly generalize this three-step scheme by not only considering the aggregator f as in
, but a suitable extension in the second argument v to the whole real line. The difference
will show in the following way: As |[Matoussi and Xing, 2018]| restrict themselves to the domain
V of f, which is designed specifically for recursive utility of Epstein-Zin type, they indirectly
exclude the parameter constellation vy = 1, i.e. power utility, from their analysis. Duality
results for power utility are well known, however, as pointed out in they are a true
special case of recursive utility. With our extension, we are able to include the case vy =1 to
our analysis and find that straight forward dualization for power utility is also just a special
case of our extended dualization approach for recursive utility. Moreover, this yields a natural
connection between the duality procedure for recursive utilities and the associated power utility
bounds derived in [Chapter 3|
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The procedure heavily relies on convex (concave) conjugation of the aggregator f, one argu-
ment after the other. Hence, before we jump into the first step, we briefly give the definition of
convex (concave) conjugates in our specific setting, just to convey the idea to the reader; for a

more general treatment see [Appendix B.1|based on |[Rockafellar, 1997], where the whole topic is
treated in close detail.

Definition 2.3
Let h : R — (—o0,0], z — h(z) be a lower-semz’continuouﬂ conver function such that there
exists some x € R with h(x) < 0. Then the function

h* : R — (=0, ], ¥ — sup {zz* — h(z)} = — inf {h(z) — z2™*}

2R zeR

is called the convex conjugate of h and is another lower-semicontinuous convex function. Anal-
ogously, let g : R — [—00,00), x — g(z) be an upper-semicontinuous concave function, such that
there exists some x € R with g(x) > —o0. Then the function

gx ' R — [—00,0), x4 — inf {zz, — g(2)}
zeR
1s called the concave conjugate of g and is another upper-semicontinuous concave function.

Figuratively speaking, the convex (concave) conjugate describes the intersection of the y-axis of
the pointwise supremum (infimum) of affine functions majorized (minorized) by h. Moreover,
the convex conjugate of h* equals h, i.e. (h*)* = h and the analogous relation also holds for the
concave conjugate. Thus the conjugacy operation implies some kind of duality relation on con-
vex functionsﬁ The convex and concave conjugate are sometimes also called Legendre-Fenchel
transformation of h. We usually go by this name for simplicity and only specify the type of
conjugation if necessary.

In the following we transfer the duality relation between convex (concave) functions and their
conjugates just described to the notion of duality for recursive systems as in (2.1.1)), thus we only
allow parameter constellations where the aggregator f in (2.1.2)) is either convex or concave. By

we know
L1 &
1,9 < 1. (2)

Similar to [Matoussi and Xing, 2018|, we now provide the detailed analysis only for the convex
case vy = 1,9 > 1E| The case of concave aggregators as in (2) follows analogously with the

appropriate adjustments, see below.

f is convex in v < ~

f is concave in v = ¥

Note: We emphasize that during this whole thesis we assume that either
=zl >1 or <Ly <l

as in (1) and (2) above holds. Naturally there might be additional restrictions, but this is the minimum require-

ment that stands behind every result, even if it might not be explicitly mentioned.

3Recall that a function b : R — [—00,00] is said to be lower-semicontinuous at some point z, if h(z) <
lim; o h(z;) for every sequence (z;)ien such that lim; . z; = x and lim;_,o h(x;) exists in [—c0,00]. This may
be expressed as h(z) = liminfy_. h(y). A function h is called lower-semicontinuous, if it is lower-semicontinuous
at any x € R. The definition of upper-semicontinuity is analogous replacing lim inf by lim sup.

4This is not true in general, but only for convex functions h that don’t take the value —o0 as we claimed in

Definition 2.3] For the general case see |[Appendix B.1|or |[Rockafellar, 1997].

As mentioned earlier, [Matoussi and Xing, 2018| actually only consider the constellations v > 1,1 > 1.
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Step 1: Transformation from Recursive to Variational Form

Step 1:
concave conjugate in v

Step 2: [ convex conjugate in ¢

v . Variational
Step 3: ‘
Dual Problem | b Form (Dual)

F*(A ), @*(A) | convex conjugate in u ‘ F*(\,u), 9*(\)

Figure 2.2: Dualization: Step 1

In a first step, we transform the utility process Vi[c] to its variational representation, i.e. for
a fixed consumption plan ¢ we express the associated recursive utility V;[c] as the maximum
of an associated discounted time-additive utility process over future discount values. The time-
additive utility within this variational representation is given exactly by the Legendre-Fenchel
transformation of the recursive aggregator f in the utility variable v. This first step is nei-
ther directly connected to any model specifications, nor to an investment optimization problem;
it is merely a reformulation of the investor’s utility specification based on the duality feature
of convex conjugates as mentioned above. The idea of a variational representation for recur-
sive utilities was first introduced by in a deterministic setting. Later, [Karoui
et al., 1997] and [Dumas et al., 1998| extended the idea to a stochastic framework assuming
Lipschitz-continuity of f in its second argument and certain integrability of the value function.
Finally [Matoussi and Xing, 2018| generalized the approach to Epstein-Zin utility only relying
on convexity (concavity) of the aggregator and the class (D) property of Vi[c], but excluding
the power utility case v¢ = 1. To incorporate this special case, we define a suitable extension
of the Epstein-Zin aggregator f as follows.

Consider the Epstein-Zin aggregator f from (2.1.2). Then the smallest lower-semicontinuous
convex extension f of f is given by

Fle,v) : (0,00) x R = (=, 0], (¢, ) > {f(c’ v), (L=7o=>0 " 9o

f(e,04) + fu(e,04) v, (1—7)v<0
where f(c,0+4) = lim(;_,),0 f(c,v) and analoguously for f,.

For the parameter constellations vy > 1,4 > 1, the function f has three different forms:

3 - f(cvv)a (1_’7)’U>0 :

fle,v) = {—601}, (1— ) <0 ify>1,¢>1,
F f(cvv)a (1_’7)’U>0 :

f(c’v)_{oo7 (1—’)/)U<0 1f7<17’7w>17
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and

fle,v) = 5&01_7 —ov if ) =1.

An illustration of the extended graphs is given in [Figure 2.3] By definition f (c,) is a lower-
semicontinuous function in v in all cases, convex as f(c,-) is convex by

4>1,¢p>1 4 <1, = 1 p =1, >l

1000 0.3

-5 0 ] -0.5 0 0.5 1 -5 0 5
v v

Figure 2.3: f(c,v) for ¢ =1; f in blue, the extension to (1 —~)v < 0 in red dots

Now consider the concave conjugate of —f in its second argument given by

F:(0,00) x R — [~00,0), (¢,u) — inf {f(c, v) + uv} . (2.2.2)

veR

Then F'(c,u) is concave in ¢ and in u, see and by [Theorem B.3|the functions f and

F are dual in the sense that f is minus the concave conjugate of F' in u, i.e.

f(e,v) = sup {F(c,u) — uv}. (2.2.3)

ueR

Note: The concave conjugate of —f is exactly minus the convex conjugate of f in —v, which might seem like a
more natural way to conjugate a convex function. However, the transformation as chosen above is notationally
more convenient and in particular the dualization procedure within Step 2 below stays naturally consistent with

straight forward dualization of time-additive utility as e.g. in [Karatzas et al., 1991].

We denote by P the class of all progressively measurable processes on [0,T] x Q. Then for any
ue P, ceC®andte[0,T], define the stochastic variational utility by

T
Utlc,u] = E, [J ki o F(cs,us)ds + /i;T@T(cT)], (2.2.4)
t

where k', = exp(— §; uydr), s = t. Note that the right hand side of (2.2.4) always exists (in R),
see (2.2.5)) and ([2.2.10)) below.

In We show that the supremum of U[c, u] over all progressively measurable processes
u actually equals the recursive utility process Vi[c]. This is how the duality between fand F
from transfers to the stochastic processes U and V. The result is an extension of Lemma
2.3 in [Matoussi and Xing, 2018|. The core steps of the proof still follow their approach, although
most arguments are either simplified or carried out in more detail.

Lemma 2.4
For any uw € P and c € C?, let V[c] be the utility process associated with ¢ and Ulc,u] as given

11
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in (2.2.4). Then for any t € [0,T] the recursive utility Vi[c] can be expressed by the essential
supremuwﬂ of the variational utilities Uy[c,u] over u, i.e.

Vi[c] = esssup Ug[c, u].
ueP

Moreover, the supremum is attained at

S

W€ = fole, VIe]) = 6¢ v (1 — 0)((1 — )V[e])~7 + 66.

Proof. First consider the case yi) = 1,70 > 1. Then f is given by f(c,v) = 0p(c) — dv, where

o(c) = ﬁckW as in |[Example 2.1} thus the Legendre-Fenchel transform desintegrates to
) =0
R

—0 else

see [Lemma B.9] In particular

T
sup Ui[c, u] = sup Et[f /ﬁﬁsF(cs, ug)ds + HZT(I)(CT)]
ueP ueP t

T
=F, [J 5e_é(s_t)g0(cs)ds + e_‘s(T_t)(I)(cT)},
¢

so this case follows by (2.1.4)) in [Example 2.1] and [Theorem A.6| respectively.
For the remaining parameter constellations F' is given by

) 1-0

[ u—00

691_7<1_0> , u > 06

Flew) =1y u=346
—00, u < 00

see again [Lemma B.9| Note that it suffices to focus on u € P such that Up[c, u] > —o0, so u < 06
is automatically excluded. Thus by introducing the space U = {u € P : u > 060}, we can without
loss restrict ourselves to u € Y < P. The reminder of the proof consists of three major steps:

1. Class (D) property of rg U|c,u]: Note that

(W>Ly>1={y>1L¢y>1}u{0<y<lyp>1}

and we split this part of the proof into those two cases.
Case 1: v> 1,9 > 1. Asvy>1 we have ® < 0 and F < 0, so for u € Y we obtain
d

T T
J Ko, sF(cs, ug)ds + H&ch(c;p) ] < E[f 56"3|F(CS, us)|ds + 58’T|<I>(CT)|} (2.2.5)
0

0

_ E[ L i (= Pley, ug))ds — ﬁgyT@(cT)}

= —Uj|c,u] < .

5 A measurable random variable Y is called essential supremum of a random family (X i)ig LiftYy>X * almost
surely for any i € I and Y < Z almost surely for any measurable random variable Z that satisfy Z > X' for any
1 € I almost surely. We write Y £ esssup;.; X", Analogously, the essential infimum of a random family (X*)ier
is defined as essinfier X® = — ess SUD,c 1 — X,

12
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It follows that the stochastic process E; [Sg Ky F(cs,us)ds + mngl)(cT)] is a uniformly

integrable martingale and hence of class (D). Moreover k" is bounded for any u € Y. Thus
the class (D) property of V[c] for ¢ € C* implies the integrability of x ®(cr) by choosing
7 =T, and hence the class (D) property of the process E¢[rg ®(cr)].

Since F' < 0 we have

T T
E, {f ko5 F(csy us)ds + H&TCI)(CT)] < E; f Ko, s (cs, us)ds + Hg,T‘I)(CT)] (2.2.6)
0 ¢

= kg Ut [c, u]

<E; K&T(I)(CT)]

and the class (D) property of both the upper and lower bound implies the class (D) prop-
erty of /i}i,U[c, ul.

Case 2: 0 < < 1,4 > 1. In this case, F' = 0, ® > 0, so we have to show Up[c,u] < o
first. Let c € C%, u € U and recall that

Vil = E[ | " e Valelds + <1><CT>}, te [0,7],

thus by the class (D) property of V[c], the process

M = Vie] + L f(cs, Vi[c])ds (2.2.7)

defines a uniformly integrable martingale. An application of Itd’s formula shows

d (kg Vilel) = w0, dMy — (6, f (er, Vilel) — uerg, Vile]) dt
= ko dMy — dAY — kg F (e, ug)dt,
where
dAY = kg (f (e, Vile]) — (F(er, ug) — ueVilel)) di. (2.2.8)

Now by the definition of f and F respectively, we have f(c,v) = sup,-s9 {F(c,u) — uv}
and as k" > 0, A" is increasing in this case. If u = 66, (2.2.8]) simplifies to

U a g u J1—
dAt = ﬂ’%,tct ¢dt (229)

and as again £ > 0 and moreover ¢ < 1, A" is increasing. Thus g V[c]+, st (F(cs, us)ds
is a local supermartingale. We take a localization sequence (7, )nen, then by the super-
martingale property of the stopped process we obtain

Tn AT
Vole] = E[KB‘JMTVT”AT[C] + J ko5 F (s, us)ds].
0
Since Vc] is of class (D) and F' > 0, by taking the limit on the right hand side, the mono-
tone convergence theorem implies E Sg K sF(cs,us)ds| < 00, As above E[rg @ (cr)] <
o0, 80 we obtain

Uole, u] < o0. (2.2.10)

13
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Now similar as in (2.2.6), F' > 0 implies

T

E¢ [k r®(cr)] < K By [mﬁTti)(cT) —i—f ki s F(cs, us)ds]
t

= Hg’tUt [e, u]

< E, [Fag’T@(cT) + f
0

T
KBﬁSF(cS,uS)ds} ,

therefore, x5 Ulc,u] is of class (D).

Concluding, if v > 1,9 > 1, then g Ulc,u] is of class (D) and the first step of the proof
is complete.

2. Vi[c] = Uec,u] Vt € [0,T] a.s.: As Up|c,u] is finite, the tower property of conditional
expectation implies that the process

)

M" = kg Ule,u) ~|—j ko s F(cs, us)ds (2.2.11)
0

is a martingale. Then a basic calculation using (2.2.7]), (2.2.11)) and It6’s formula yields
d (&, (Vile] - Uile,ul)) = L — dAY (2212)

where A} as in is increasing and dLj" = kg ,dM; —dMy" is a local marginale. Hence
K. (V[e] = Ule,u]) is a local supermartingale. On the other hand, we have seen that
Kg.Ule, u] is of class (D) and moreover, kg V] is of class (D) thanks to the boundedness
of k* and class (D) property of V[c]. Thus the local supermartingale g (V[c] — Ule, u])
is an honest supermartingale and

k6.0 (Vele] = Utle, ul) = By [5G 0 (Vrle] — Urle, ul)] = Ee[xg 2 (®(cr) — @(er))] = 0,

so as kg, > 0 we have Vi[c] = Uy[c,u] almost surely for all ¢ € [0,T] and any u € U. By
right-continuity of V|[c] and Ule, u] it follows that Vi[c] = Ui[c,u] for all ¢ € [0, 7] almost
surely.

3. Vi[c] < esssup,ey Ui[c, u]: To finalize the proof it suffices to find some u¢ € U such that
V]ec] < Ule, u]. We choose said u¢ by the first order condition of f(c,v) = sup,,-s0{ F(c,u)—
uv}, more precisely

=

w2 —fo(e, VI[e]) = 8¢5 (1 — 0)((1 — 1)V [e])™7 + 86

As 6 < 1 it follows that u® € U and we have f(c,V[c]) = F(c,u®) — uV|[c], so clearly
A" = 0[] Then by ([2:2.12)

d (ki (Vile] = Uile,u))) = dLy”

is a local martingale, bounded from above as k" > 0 and V;[c] = U[c, u] for any u € U.
Hence the local martingale is in fact a submartingale and

kg (Velel = Urle,u]) < Be [k p(Vele] = Urle, u))] = B[k r(®(er) — ®(er))] =0

which implies Vi[c] < Uy[e, u¢] almost surely. Again, due to right-continuity of the pro-
cesses, we obtain Vi[c] < Ug[c,u] ¥t € [0,T] almost surely.

"By (2.2.9) the case u = 60 yields A" > 0, so the supremum cannot be attained there.

14
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Combining the above we obtain Vi[c] = esssup,gy Ut[c, u] = esssup,ep Utc, ul.

The crucial consequence of is that our problem can be written as

T
/igysF(cs, ug)ds + /f&TCI)(cT)],

]

Vo = sup Vylc] = sup supUplc,u] =sup sup E[f
(m,c)eA (m,c)e A ueP ueP (mw,c)eA 0

~—

~(P)

where the inner problem (P’) is a time-additive investment optimization problem. Thus, in
the second step, we can dualize (P’) by the methods well known from the time-additive utility
framework.

Step 2: Duality for the Variational System

Primal Problem | Step 1: v/
f(e,v), ®(c) ’ concave conjugate in v
Step 2: | convex conjugate in ¢
- Ql
Dual Problem | Step 3:

[*(Av), @*(A) ’ convex conjugate in u

Figure 2.4: Dualization: Step 2

We now establish duality for (P’). While the first step was merely a reformulation of the in-
vestor’s recursive utility functional, in this true dualization step the market model and the
investor’s wealth comes into play:

For a fixed u € P the problem (P’), i.e. sup(, e Uo[c, u], can be interpreted as an optimization
problem with bequest utility ® and a time-additive intertemporal utility function F'(c,u), pa-
rameterized by fictitious discount rates u. Thus we can dualize (P’) by the standard procedure
for optimization problems with time-additive utility as e.g. in |Karatzas et al., 1991]. To this
end, consider the Legendre-Fenchel transformations of F' and ® in ¢ given by

F*:(0,00) x R — [—00,0), (A u) — sclig {F(c,u) — Ac}, (2.2.13)
®*: (0,00) > R, A — su%) {®(c) — Ac}.

Then F* and ®* are convex in A and F* is concave in u, c.f. [Lemma B.10| and [Lemma B.11}
respectively.

We denote the set of state price deflators with initial value A > 0 as

D, = {A eP:A>0,A)=A\AXT) 4 f Ascqds is a supermartingale for all (,¢) € A}
0
(2.2.14)

15
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and the set of all state price deflators
D= | ] D
A>0

For notational convenience we introduce state price deflators with arbitrary positive initial val-
ues as above. Note that every A € D has a trivial decomposition A = AD where D € D; by
choosing A = Ag. We call processes D € Dy pricing deflators to distinguish the particularly
important case where A = 1.

From now on, we assume that at least one such state price deflator exists, i.e.

D+ . (2.2.15)
Note that (2.2.15) excludes arbitrage opportunities, c.f. [Karatzas and Kardaras, 2007].

Remark 2.5

The condition in is motivated by a particularly important special case with a nice
interpretation, the so called budget constraint: Consider a pricing deflator D € Dy, then
DX(me) 4 So Dgcsds is a supermartingale and hence

T
E[DTxg“C) + f Dscsds] <z (2.2.16)
0

is satisfied for all (mw,c) € A. Thus the expected discounted terminal wealth plus the expected
discounted total consumption from any admissible trading strategy (7, c) cannot exceed the initial
capital x. The same is true for every intermediate time-step, as (2.2.14) implies

T T t

Et[ f Dyesds + DTX?’C)] - Et[ f Dycqds + DTX?’C)] - f Dyceds < D,X™. (2.2.17)
t 0 0

A

Recalling that an admissible consumption plan c satisfies ¢ = X:(Fﬂ’c), the duality relation is
established as follows: Consider A € D and fix some u € P. Thenfl

T
E{ J Kl F(cs, us)ds + ﬁgﬂ(@)] (2.2.18)
0

T
B [ () = () A + (@) = (s) rer)|
0

T
+ E[ATCT + j Ascsds]
0

T
< E[J ko5 (F'(cs, us) — (ngvs)_lAscs)ds + Ko r(®(er) — (/#O‘jT)_lATcT)] + Az
0

T

< E[J mﬁ)"SF*((mg’s)*lAs, ug)ds + ng,Tq)*((m}J"T)lAT)] + Az,
0

where the first inequality comes from the supermartingale condition in (2.2.14)) and the second

from the definitions of F* and ®* in (2.2.13]). A quick calculation, see [Lemma B.16| shows that

F* and ®* satisfy the scaling property

Ky ((/@Zs)_lAs,us) = /{ZSF*(AS, Us) and Ky ®* ((/a:;”’T)_lAT) = HZTCI)*(AT).

8The calculation is as above if u > §6, becomes easier if u = 60 (then F = F* = 0) and is trivial if u < 60
(then F = F* = —o0), compare [Lemma B.10| and [Lemma B.9} respectively.

16
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Applying this property to the last line of (2.2.18]), we introduce the stochastic variational dual
T u u

U [Au] = E, [j K I (As, us)ds + nt“’TCI)*(AT)]. (2.2.19)
t I

for all u e P, A € D and t € [0,T]. Note that analogously to the stochastic variational utility
from ([2.2.4)), the stochastic variational dual always exists (in R).

By taking SUP (7 c)ed ON the left-hand side and infaep on the right-hand side in (2.2.18)) and
applying the scaling property from above, we obtain for any v € P the duality relation

u u

T T u u
sup E[J kg o F(cs,us)ds + KO’T(I)(CT)] < inf E{f kg F* (Ag, ug)ds + H,ST‘I)*(AT):| + Az
(m,c)eA o AeD 0 ; )

=(D")
or in a more compact form

sup Ule,u] < inf {U*[A,u] + A\x}. (2.2.20)
(m,c)eA AeD

Summing up our progress so far, we have transformed our initial optimization problem to a
mini-max problem of the form

T
Volc] =sup sup E [J Ky o F(cs,us)ds + /ﬁgTCI)(cT)}
ueP (m,c)eA 0 7 ,

T u u
< sup inf E U kg F*(As, us)ds + FJSTCI)*(AT)] + \x
uep AeD 0 ’ ’

T w u
< inf supE [j kg F*(Ag, us)ds + ngTq)*(AT)] + Az,
A€D yep 0 ’ '

or in compact form

Vole] < inf {sup Ug [A,u] + )\x}.
AeD  yep

We have thus derived a dual problem, but currently in a variational formulation.

Step 3: Retransformation from Variational to Recursive Form

Primal Problem | Step 1: v ‘ Varatlo.nal
FENOEIN . cove conjugate in v Form (Primal)
b .’ concave (,Oll']llO(L € 111 U ‘ F(C, u), q)(c)

Step 2: v | convex conjugate in ¢

Step 3:
convex conjugate in u

Figure 2.5: Dualization: Step 3
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This last step of the dualization procedure reverses step 1, by introducing the so called stochastic
differential dual. This process allows for a recursive formulation of the variational dual problem

infpep {supyuep U§ [A, u] + Az}. Motivated by we provide a candidate representa-

tion V*[A] for sup,g, U [A, u] and prove the equality of both processes in [Lemma 2.10, which
is the dual analogue to

We start reversing the Legendre-Fenchel transformation performed in step 1, by considering
minus the concave conjugate of F* in u, i.e.

f*:(0,0) x R — (—00,00], (A, v) — sup {F*(\,u) — uv}. (2.2.21)
ueR
Then f* reads as
Pouw) = 4w, (1=7v>0 (2.2.22)
’ FEONO0+H) + 2N 0+) v, (1—9)r <0’ o
where f* is defined by
=¥ /(1 — 1=

[¥:(0,00) x V>R, (\,v) — (wqj)\ — <(1 ; wu) — (201/, (2.2.23)

see Lemma B.14l

Note: The similarity of the extended primal and dual aggregators f from (2.2.1)) and f* is apparent, but the
additional factor « in the second argument of f* in (2.2.22]) may seem peculiar on first sight. This is mainly for

notational convenience, compare [Remark 2.

By [Theorem B.3|it follows that f* is a lower-semicontinuous, convex function in v and that the

functions F* and f* are dual in the sense that F* is the concave conjugate of — f*, i.e.

F* 1 (0,50) x R — [—00,00), (A, u) — inf {f*()\, V) + uz/} . (2.2.24)

veR

We are now ready to define the stochastic differential dual as follows.

Definition 2.6
An Epstein-Zin stochastic differential dual associated to a deflator A € D is a semimartingale

VH[A] = (Vi*[A]Dsefo,ry satisfying
T
V*[A] = B U £ (A, VF[A]) ds + @*(AT)], te [0, 7], (2.2.25)

where f* as given in (2.2.23).

Remark 2.7
Note that f* is exactly minus the concave conjugate of f in c, i.e.

f*(\v) =sup {f(c,u) — /\c}.

c>0

This transformation has little to do with dualization though, as one doesn’t address the process
Vc] and its recursive dependence on consumption, however it shows that the two variational

18
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transformations in step 1 and 3, respectively, cancel each other out. Hence moving to variational
utility 1s really just a tool that allows us to apply the well known dualization in time-additive
frameworks. The additional factor% in the definition of the dual aggregator f* is thus a byproduct
of this true dualization step. A

We denote by DY the class of state price densities A with Ag = A, whose associated stochastic
differential dual V*[A] uniquely exists, satisfies (1 —~)V*[A] > 0 and V*[A] is of class (D). For

notational convenience, we moreover set D* = | J,_,D$ as above.

Similar as in (2.1.3]), we assume that A € D® satisfies the minimal integrability condition

T 2=l
E {J Atlﬂ/’dt + A7 } < 0.
0

We prove an existence and uniqueness result in a general semimartingale setting as in [Seiferling
and Seifried, 2016| in For the Brownian setting, the existence and uniqueness results
from [Schroder and Skiadas, 1999 and [Xing, 2017| from |Proposition 2.2 can be transferred to
the stochastic differential dual as shown in [Matoussi and Xing, 2018§].

Proposition 2.8 (|[Matoussi and Xing, 2018|, Proposition 2.5)
Let (ﬁtw)te[oj] be the augmented filtration generated by some Brownian motion W. Then the
following holds for the stochastic differential dual:

(i) When either v > 1,0 < ¢p < 1 or 0 < v < 1,90 > 1, then for any A € D such that
E [Sg Afdt + AZT] < o for all £ € R, there exists a unique semimartingale V* = V*[A]
satisfying such that E[ess supeo 7 [V,*|*] < oo for every £ > 0.

(ii) When ~,1 > 1, then for any A € D such that
E Sg A%_wdt + A;%l < o0, there exists a unique semimartingale V* = V*[A] satisfying

(2.2.25)), such that V* is of class (D).

In both cases (1 —v)V* >0, such that V* € V.

In particular D* # (.

Further existence and uniqueness results for solutions of (2.2.25)) in a general semimartingale
setting are provided in [Section 2.3| and [Section 3.3|

Example 2.9
As for the primal problem, if vip = 1, (2.2.25) reduces to a time-additive optimization problem
T —S(s—t) —9(T—1)
VF[A] = By J dre ©*(Ag)ds + e~ *(Ar) |, (2.2.26)
t

~y—1

—1 1
where * : (0,00) — R, p*(\) = ﬁ)\% and ®*(\) = €7 2=A"7 are the Legendre-Fenchel
transformations of ¢ and ® in c, respectively, see . Note that this is ezactly the

dual utility process resulting from straightforward dualization of V'[c| in the power utility case as

guven in |Example 2.1). o
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The following lemma is the actual third step of the dualization procedure, i.e. it formalizes the
retransformation of the dual variational utility U*[A, u] to recursive form, more precisely to the
stochastic differential dual V*[A]. It is a slight extension of Lemma 2.6 in [Matoussi and Xing,
2018 in the same way as extends Lemma 2.3 therein. We only show the proof of
the parameter constellation v = 1 in detail, as it emphasizes the consistency of our extended
dualization procedure with straightforward dualization of the problem in the power utility case.

Generally the proof is analogous to the one of [Lemma 2.4

Lemma 2.10
For any u € P and A € D%, let V*[A] be the stochastic differential dual associated with A and

U*[A,u] given as in (2.2.19). Then for any t € [0,T],

V¥[A] = esssup U} [A, u] .

ueP
Moreover, the supremum is attained at
~ (=1
uh = =2 (\w) = =8N () T .

Proof. Let 1) = 1. Then the Legendre-Fenchel transform F* desintegrates to

1 y=1
67 L\~ u=20
T—y
—0 else

F*(\u) = {

see In particular

T u u
sup U [A, u] = sup E; [J ki F*(As,us)ds + Iithq)*(AT)]
ueP ueP t ’ ’
~y—1
=

T -1
—Et[f 5%6—%“—”&% ds+e—3<T—t>q>*(AT)],
t

so the proof follows by (2.2.26) in [Example 2.9} )
As the functions f* and F'™* have exactly the same properties as f and F' in the relevant second
argument in terms of sign, convexity and so on, the remaining parameter constellations are

proven exactly as in [Lemma 2.4 O

Note: Instead of repeating the exact same arguments from [Cemma 2.4] here, we prove the analoguous statement
of for the parameter constellations y3 < 1,v¢ < 1 in the appendix to emphasize the adjustments
one needs to make in order to transfer all results from the convex to the concave case. We thereby also provide
ourselves with the rigorous reference, as the concave analogue of is used within
For notational convenience we define the dual utility index functional as

v* DY >V, vi(A) = Vi [A] + Az
Then the agent’s dual problem is to

find A* € D* such that v*(A*) = Airg {V5'[A] + Az} . (2.2.27)
(= a
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2.2.2 Duality Inequality and a Simplified Version
Combining all the steps in the previous section, we obtain the final duality inequality.

Theorem 2.11
Let yip = 1,9 > 1, theif)

sup Vole] < inf {V{'[A] + Az}. (2.2.28)
(m,c)eA AeDe
Proof.
sup Wolc] = sup supUp|c, u] (Lemma 2.4))
(m,c)eA (m,c)e A ueP
=sup sup Uplc,u]
ueP (m,c)eA
< sup inf {UJ[A,u] + Az} (12.2.20))
uep AeD?
< inf ) [A
Jnf {ilelg Ug[A, u] + /\:I;}
= inf {V{[A] + Az} (Lemma 2.10])
AeDe
O
Remark 2.12

With a slight abuse of notation we define

v(c*) = sup Vp[c] and v¥(A*) = inf {Vj[A] + Az}
(m,c)eA AeDe

although the optimal strategies might not exist in gemeral. Note that if the primal and dual
optimizer exist, this definition coincides with the primal and dual utility index, respectively, as
defined above. A

Remark 2.13

As already mentioned our extended procedure also carries over to the concave case with parameter
constellations vip < 1,9 < 1: First, f can be defined as above, but the image set changes from
(—o0,0] to [—o0, ), however the conjugates from the convex and concave case coincide on
their real domains, see , As [ is now an upper-semicontinuous concave function,
the suprema and infima in (2.2.2), (2.2.3)), (2.2.21) and become infima and suprema,
respectively. The adjustment in the image set of f naturally carries over to all conjugates. Also
the essential suprema in [Lemma 2.4 and [Lemma 2.100 now become essential infima. In order
to eludicate those adjustments formally, we have treated the concave case of in the
appendiz, see[Lemma B.17. The duality procedure in the case of concave aggregators can then

9The result is also valid if y¢ < 1,7 < 1, but with a slightly different proof, see [Remark 2.13
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in a compact form be written as
sup Vo[e] = sup inf Uple, u] (Remark B.18)
(mc)eA (m,c)e A UEP

< inf sup Uple, ul
UEP (7,c)ed

< inf inf {UZ[A 222
inf inf {Ug[A,u] + Az} (2.2.20)

= inf {inf US[A, u] + /\:1:}
AeDe (ueP

= inf {V{[A] + \z}. (Lemma B.17))
AeDe

In particular [Theorem 2.11] stays true if v < 1,4 < 1. A

We now want to extend [Theorem 2.11| to all ¢ € [0,7] to obtain a dynamic duality relation of
the value processes. To this end, consider for every strategy (m,c) € A and deflator A € D%,
respectively, the sets

A(m, e, t) = {(,¢) € A: (7, ¢) = (m,¢) on [0, 1]},

DA, t) = {AeD*: A=A on [0,t]},

and define the primal and dual value processes as

Ve[m,e] = esssup Vi[¢] and Vi[A] = essinf V,*[A].
(7,6)eA(m,c,t) AeDa(At)

Corollary 2.14
Ifvyp =19 >1o0rvp <1,9 <1, then
Vi[r, c] < VE[A] + A X9 ¢ e [0, 7). (2.2.29)
Proof. Using (2.2.17)) and the scaling property of £* and ®* from |Lemma B.16|equation (2.2.18)
generalizes to
T

T u . u -
E, [f ki o F(Csy us)ds + KJZT‘I)(éT):| < E {J /@gsF*(AS, ug)ds + K;T(I)*(AT):| + AtXt(w,c).
t t ’

Now, taking esssup(; sed(r,c,) and essinfz pa (AD) in the above inequality we obtain
T
esssup [E; [J ki F(Cs,us)ds + Ht’T(I)(éT)]
(7,8)eA(m,c.t) t

T y u i
< essint Byl [ 6 P (Ruuds + 87 ()| + 0.
AeDa(At) t ’ )

As[Lemma 2.4] and [Lemma 2.10] are already stated in a dynamic manner, the result follows as
in the proof of [['heorem 2.11| and [Remark 2.13| respectively. [

It often turns out to be convenient to reduce ourselves to pricing deflators D € Df. The
transformation of stochastic differential duals we introduce in [Proposition 2.16| below, allows to
transfer all results for such pricing deflators to general deflators A = AD € D®. The following
scaling property of stochastic differential duals is the key to the proof.
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Lemma 2.15
The mapping D* — V*, A — V*[A] is homothetic, i.e. for every k > 0 it holds that

VHkA] = k5 V*[A].

1 _
Proof. A small calculation reveals that f* (k‘)\, k‘WTZ/> = kWTl f*(\,v), and certainly ®*(k\) =

k‘%l@*()\). Then the result follows immediately by uniqueness of the BSDE solution. O

Analogously to the sets A(m, c,t) and D%(A,t) above, define for any D € Df the set
D}(D,t) = {DeD}:D =D on [0,t]}.
Then the following duality inequality in terms of pricing deflators holds.

Proposition 2.16
Let A = AD € D and V*[A] be the associated dual value process. Then for any t € [0,T] we
have

VAL + AKX = L (DtXt(“’c))H (PTW;: [D])V.

In particular (2.2.28) can be expressed in terms of D* € DY as

v(e) < it (52 (Y)

Proof. Write A = AD for A € DY, where A > 0 and D € D is a pricing deflator. Then the
homotheticity of the stochastic differential dual implies

-1
VF[A] = VAAD] = A5 V(D).
Inserting this equation to the duality relation (2.2.29)) yields

Vi[A] + AtXt(”:C) = essinf {V;* [A] + AtXt(ﬂ’c)}
AeDa(At)
= essinf inf {V;*[)\f)] + )\DtXt(ﬂ:C)}
DeD¢(D,t) A>0
= essinf inf {A%Vt*[ﬁ] + )\DtXt(W’C)}
DeD(D,t) A>0

-1 ~
The inner problem infy~ {)\WT V*[D] + )\DtXt(”’c)} is convex in A and the first order condition

yields
gl

X = (Dx{m) " <1;Wt* [D]> ,

which is strictly positive as (1 — v)V;*[D] > 0. Inserting A* to the inner problem yields the
infimum

Y

. -1 ~ ,C T, 1=y — ~ R T,C -
int (VT VID) DX} = ok (Dx9) T (518 a0ix (v (D)),
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v y—1
where ?(z,v) = ﬁxl_'y (1_771/) . Then d,(z,v) = 2! (1_771/> > 0, so 0 is strictly

increasing in v and

y—1

V¥[A] + AtXt(“:C) = essinf inf {)\ S % [[)] + /\DtXt(W»C)}
DeDe(D,t) A>0

1— ~ Y
= €SS lnf {137 <DtXt(7T7C)> v <1,y'y‘/t* [D]) }

DeD¢(D,t)
ot (2xie) 7 (5 . {01}
- & (px(™) 7 (2vi))

O

Now [Proposition 2.16| allows us to transfer all further investigations from pricing deflators D to
general deflators A by applying the transformation

Y
o) = et (5)

to the associated stochastic differential dual V*[D]. In particular [Proposition 2.16| allows to
determine the dual value by solely optimizing over D € D{ as the optimization over A > 0 is
implicitly already incorporated in the above representation.

2.3 The Stochastic Differential Dual: Existence, Uniqueness, Con-
vexity and Utility Gradients

The goal of this section is to answer several questions about existence, uniqueness, monotonicity
and convexity of the stochastic differential dual in a general semimartingale setting, see
below. We already mentioned that with classical results the existence of a solution to
the BSDE characterizing the Epstein-Zin utility process cannot be guaranteed, as the aggregator
f is not Lipschitz in v; the same is true for the BSDE characterizing the stochastic differential
dual so we have to take some extra efforts.

We also treat a dual utility gradient inequality. Utility gradients and their far reaching implica-
tions are discussed in [Remark 2.18

As we have seen in [Proposition 2.8 [Matoussi and Xing, 2018| already provide some general
existence and uniqueness results for the associated backward stochastic differential equation in
a Brownian setting. In the recent paper |Becherer et al., 2023|, the authors show existence and
uniqueness of stochastic differential duals in a general semimartingale setting, prove monotonic-
ity and convexity properties and derive a dual utility gradient inequality. However, as they
consider a certain modification of our classical Epstein-Zin aggregator, their result only covers
the cases v < 1,7 = 1 and v > 1,v¢ < 1, see equation . Our contribution is to include
the case 7,1 < 1 and in particular the empirically relevant case 7,1 > 1. As in [Becherer
et al., 2023| we do this by transferring the respective results for stochastic differential utility to
stochastic differential duals via a BSDE transformation. Hence we start briefly restating the
corresponding results on the primal side provided by |Seiferling and Seifried, 2016]|.

Denote the set of consumption streams under consideration by

T
Cwé{ceC:E[J cfdt+c§] <ooforall€eR}
0
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and the set of corresponding utility processes by

vwé{Vev:E[am|mV
te[0,T]

< oo forall e R} . (2.3.1)

We define a partial order on C* via
c<c¢ ifandonlyif ¢ <¢ for dt-a.e. t€[0,T) and ep < .

The following proposition summarizes the main results presented in [Seiferling and Seifried,
2016] which we transfer to the dual value function below.

Proposition 2.17 (|Seiferling and Seifried, 2016|, Theorem 3.1, 3.3 & 3.4)
When vip = 1,9 > 1 or vy < 1,9 < 1, then

(i) for any c € C* there exists a unique semimartingale V[c] € V* that satisfies

Vild] = E, UtTf(cs, Vilel)ds + <1><cT>] Vi 0.7

In particular C* < C®.

(ii) the mapping C* — V*, c— V|c] is concave and increasing in the sense that if ¢ < ¢, then
Vile] < Vi[é] for all t € [0,T].

(iii) for all c,c e C* and everyt e [0,T] we have

Vi[e] < Vi[e] + (m'(e),c— &), (2.3.2)
where {m,y); = Ky [S;‘F mgysds + mTyT] and the time-t utility gradient m*(¢) is given by

fe (s, Vile]), 0<s<T,

t(=) a X ’ C C T wi =
ms(C) = exp <J; fv( TaVT[ ])d ) Vs th Vs {(I)’(CT)7 s="T.

As we aim to prove the dual analogue to [Proposition 2.17] we define

T

D* = {A €eD:E [f Adt + Al}} < oo for all £ € R} (2.3.3)
0

and to emphasize the special importance of pricing deflators also D = {D € D : D(0) = 1}.

As above we define a partial order on D® as

A <A ifandonlyif A; <A for dt-ae. te[0,7]) and Ar < Ap.

Remark 2.18

Since the pioneering work of [Duffie and Skiadas, 199/4)], utility gradients as in|Proposition 2.1')(iii)
have proven to be an essential tool in optimal portfolio allocation and equilibrium asset pricing.

The profound observation made by [Duffie and Skiadas, 1994 is that the first-order optimality

condition can be expressed as a martingale property of prices, once normalized by the correspond-

ing utility gradient, see also [Harrison and Kreps, 1979]. This has far reaching implications in

the theory of portfolio optimization and asset pricing. On the one hand, portfolio optimization

problems can now be directly addressed using the implied first-order conditions, see for example
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|Schroder and Skiadas, 1999, |Schroder and Skiadas, 2003/, [Bank and Riedel, 2001b], [Kallsen|
land Muhle-Karbe, 2010/ and [Skiadas, 2015]. A general overview on this approach is given in
|Skiadas, 2008]. On the other hand, the same line of reasoning can be applied to the repre-
sentative agent’s portfolio in a general equilibrium setting, which leads to the representation of
the state-price deflator in the underlying economy as a utility gradient. Numerous authors have
exploited this fact, see for example [Duffie and Epstein, 1992b], [Duffie et al., 1994, [Bank and
|Riedel, 2001d] or [Campbell, 2003] and the references therein.

Ultimately, utility gradients inhabit a natural connection to duality: Recall the budget constraint
(2.2.16) from |Remark 2.5

T
E{DTX;W’C) —i—J Dscsds] < .
0

By the above, using the utility gradient as the deflator, the budget constraint evolves from a
supermartingale property to the mentioned martingale property, but this means the inequality
within the second step of our duality procedure becomes an equality, leaving no space for a duality
gap. Thus utility gradients naturally arise as the minimizer of the dual problem, c.f. [Cox and
Huang, 1989] [Karatzas et al., 1991, [Kramkov and Schachermayer, 1999/, [El Karoui et al.,
2001/, [Matoussi and Xing, 2018]. A

In [Becherer et al., 2023|[Theorem 3.8] the authors transfer all results from [Proposition 2.17|
to a stochastic differential dual generated by a certain modification of the dual Epstein-Zin
aggregator, namely

1%
(0,0) x V= R, (A,p) = 6% ;LAY (%"fy) v _s8, (2.3.4)
where
‘= 1, if6>0
-1, ife<o0’

They do so because they need always positive derivatives of the aggregator for their main results;
however, this means that their existence result only includes the cases 0 < v < 1,41 > 1 and
v > 1,7y < 1 of our standard Epstein-Zin aggregator, but does not take into account the cases
v, > 1 and v,¥ < 1. Moreover, they consider a different set of admissible dual controls than
we do.

Upon close inspection one notices that their arguments, specifically a certain BSDE transfor-
mation, can be adjusted to apply to our standard stochastic differential dual, then including all
those parameter constellations. We do so in [Theorem 2.20, which may be seen as a ramification
of [Becherer et al., 2023|[Theorem 3.8].

We prepare for the proof with the following basic lemma.

Lemma 2.19
Let V* € V* satisfy

T
Vi =E,; {J fH(As, VF)ds + @*(AT)] , tel0,T]
t
for some A € D®. Then the process M* given by
T
M} =F, [f f* (AS,V:)dS%—q)*(AT)] ) te[0,T]
0

26



2.3. THE STOCHASTIC DIFFERENTIAL DUAL: EXISTENCE, UNIQUENESS,
CONVEXITY AND UTILITY GRADIENTS

is a LP-martingale for allp = 1 and
dVF = —f* (A, VJ*) dt + dMF. (2.3.5)

Proof. Integrability of Mt*, t € [0,T1], follows immediately by Holder’s inequality and the inte-

grability assumptions in and - the martingale property is immediate.
Moreover V;* = M} — So f * AS, V) ds for any t € [0, T], which clearly implies ([2.3.5]). O

Theorem 2.20
When v = 1,9 > 1 or v < 1,9 < 1, then

(i) for any A € D® there exists a unique semimartingale V*[A] € V* that satisfies
T
V*[A] = By [J I (As, VF[A]ds + @*(AT)} , t e [0,T7]. (2.3.6)
t

In particular D* < D°.

(ii) the mapping D* — V°, A — V*[A] is convexr and decreasing in the sense that if A < A,
then V*[A] = V*[A] for all t € [0,T].

(iii) for all A, A € D® and every t € [0,T] we have

ViF[A] = VIIA] = {(m")*(A), A = A), (2.3.7)
where (m*,y), = E, [S;‘F miy.ds + m%yT] and the time-t dual utility gradient (m')*(A) is
given by

iy @) e ([ 2 (828 ar ) w2
where - -
or o [RBLVIRD, 0<s<T
B (®*) (A7), s=T
Proof. For the first part, let )} = . Then by an application of It6’s formula we obtain
AV, = (0¥ LAY (MV*)l_W:) — 00y ) 4t — M (2.3.8)
t = P—1 ~ Yt ~ 't t -0

_ (51#1_11”2% (1-1) yt)l_wew — ‘Sfyt) dt — dM;

and Ypr = —®*(Ap) = %%A 7 . Now setting ¢* = 1 — %, § & §ip, £ & SYT-verT,
Y
A = %w v=1 Ay, (2.3.8) transforms to

4y, = (5 A (-1 yt) - yt> dt + dM?, (2.3.9)

where M™* = —M* is an LP- martmgale for all p > 1. Moreover, A € D® implies A € D® < C®,
thus for the parameters as in

ﬁgland%<1 < vy =landy >1
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and

ﬁ}land%>1 < Yy <landy <1.
the BSDE (2.3.9) is exactly the BSDE as considered in |Se1ferhng and Seifried, 2016] as cited
in |Pr0p051t10n 2. 17| with & o W C and V replaced by 1, 1 > A and Y, respectlvel Thus by

[Proposition 2.17(1), it follows that (| admits a unique solution

Ve VGS:<1—7>V>OE sup |Vi|f| <o forall feRy = —V*®.
te[0,T]

In particular, for any A € D® there exists a unique V*[A] = =) € V*.

For the second part, |Proposition 2.17|(ii) yields that the map A — y[[x] is concave and increasing,
thus Ay — V*[A] = —Y[A] is convex and decreasing for any ¢ € [0, 7.

Regarding (iii), we first define the aggregator and terminal utility of ) as

*

R B q ¢ Gt
) =32 A = (1-2)y)" - 2y and HOY = 2 (V77
Y

Then by [Proposition 2.17(iii), we obtain for any A, A € D® and any t € [0, 7]

VA +<m ( %fi)a%(@ﬁ (A—f&)> 7 (2.3.10)

where (m, y); = E, [StT msysds + mTyT] and

and .
oL M (J@)7TALD0A]),  0<s<T
s = v
H' ()7 1Ar), s=T
We plug the parameters from above into (2.3.10) and obtain
T - - w N1 N .
hy (3718, D A]) = b5y (R oA ) (-2 wIAl) T -6
¥ 1=y (x \1=¥ (1 T 50
_ — U (L
oS ()T (Al T -
A *

Furthermore, for 0 < s < T, we obtain

Vo )T (A - K,) = ha (@) TR, DA]) H@) T (A, — &)

and

Opnote that our ¢* is exactly their ¢ when one replaces v and % by % and v, respectively.
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Thus plugging in, (2.3.10)) becomes
~ VFA] < —VP[A] + {(m")*(A),A - K,
and the result follows. O

Remark 2.21

Dual utility gradients and the associated inequality in have not revealed as far reaching
theoretical implications as the primal ones so far. Although m*(A*) is intuitively connected to
optimal consumption, in asset pricing consumption is a priori known and the deflator is the
actual object of interest.

However, they could potentially be used to derive verification results for the dual value function,
similar as in [Kraft et al., 2017][Theorem 5.1/, where the authors use the primal gradient in-
equality as in to verify their optimal strategy. Verification in turn is closely connected
to duality as pointed out by [Matoussi and Xing, 2018]. This connection is shortly discussed in

[oection 4.4 1} A

The assumptions on integrability imposed by are quite strong and we make some
efforts to soften them up in For now we finish our analysis of the stochastic differ-
ential dual as the solution to the BSDE ([2.3.6)).
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Chapter 3

Bounding the Optimality Gap

In the previous chapter we introduced the primal and dual optimization problem and established
the fundamental theory of the associated value processes. However, a solution to both is in
general far out of sight and has only been found under very restrictive parameter conditions, see
[Section 5.1] for more details.

In our later chapters we develop two numerical methods to find at least approximate solutions
to the problem based on dynamic programming. However, as exact solutions are in general
not available, there is no way to evaluate the accuracy of our approximations. Thus, before
investigating any approximation methods, in this chapter we extend the idea of using duality
theory to derive an upper bound on the welfare loss as introduced in [Haugh et al., 2006]. In
other words we tackle the question

If an investor with recursive preferences behaves suboptimally in a given market, how much
worse is she off compared with optimal behavior?

To understand our approach, denote by c¢* the optimal strategy associated to our consumption-
investment optimization problem and by ¢ an arbitrary admissible strategy. Then the intuitive
answer to the motivating question of this chapter is given by the (primal) welfare loss v(c*)—v(c).
There are two major issues with this answer. First, the optimal strategy ¢* is in general not
known, so there is no way to determine the associated utility v(c*). Second, even for simple
(e.g. constant) consumption streams ¢, the associated recursive utility v(c) is in general hard to
compute, as one would have to solve the non-standard BSDE

Vole] = E[ j " e Vile)ds + <I><cT>].

We tackle the two issues by gradually allowing for larger errors in the answer. The absence of
the optimal consumption stream seems to be the biggest issue, but a solution is already at hand

in terms of the duality inequality derived in [Chapter 2| Denote by A* the (unknown) optimal
deflator to the associated dual problem and by A an arbitrary admissible deflator. Then by

Theorem 2.11| (recall also Remark 2.12)) we know
v(e) < v(c*) < vF(AF) < vF(A), (3.0.1)

so v¥(A) — v(c) is an upper bound on the welfare loss. We call this upper bounds associated
to the strategies (m,c) and A the optimality gap. In particular one does not need the optimal
primal or dual strategies to express this bound. It follows a precise definition of the concept, an

illustration is given in [Figure 3.
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Definition 3.1 (Optimality Gap)

In a given market model //ZEL let (7*,c*) € A be an investor’s optimal investment-consumption
strategy and let A* € D® be the optimal dual strateqy. Then we define the market specific duality
gap as D(A) = v*(A*) —v(c*) € [0,0).

For arbitrary strategies (m,c) € A and A € D* we define the investors primal and dual welfare
loss Z(m,c) and L*(A) as

ZL:A—[0,0),(m c)—v(c*)—v(c) and ZL*:D*—[0,00),A— v¥(A)—v*(A¥).
Finally, we define the optimality gap associated to the strategies (m,c) € A and A € D, as
G Ax D - [0,50), (1,0, A) r L, ) + L*(A) + D) = v*(A) — ¥(c).

Dual Admissible Strategies Dual Admissible Strategies

A

(m, ¢)

Primal Admissible Strategies

Primal Admissible Strategies

Optimality Gap including Duality Gap Optimality Gap without Duality Gap

Figure 3.3: (Primal/Dual) Welfare Loss, Duality Gap and Optimality Gap

The optimality gap has in different appearances been used as an upper bound on the welfare loss
for a while. Historically, various approximation techniques have been developed to numerically
approach the solution of an intractable optimization problem in incomplete markets, e.g. the
log-linear analytical approximation of |[Chacko and Viceira, 2005|, finite difference PDE-methods
as in |[Brennan and Xia, 2002| and more. However, it was usually difficult to evaluate the accu-
racy of the obtained approximations. [Haugh et al., 2006] were the first to come up with the idea
of evaluating approximative strategies based on duality theory. Their idea was picked up and
generalized to various forms of market frictions by different authors, e.g. |Brown et al., 2010],
[Brown and Smith, 2011], [Bick et al., 2013|, [Kamma et al., 2020] or [Kamma and Pelsser, 2022].
However, all existing results consider time-additive utility and as mentioned above, in our case
of recursive utility the optimality gap itself is in general hard to evaluate, which presents us with
additional issues. Our approach to bypass those, is to find upper bounds on &(m,c, A) that can
easily be simulated. These upper bounds on the optimality gap are then also bounds on the
duality gap and in particular on the welfare loss.

"We use .# as an abstract notation for anything that might have an impact on the duality gap, in particular
the specific model dynamics and the investor’s risk preferences. Note that all quantities directly or indirectly
depend on .#, but the dependence is omitted for notational simplicity.
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CHAPTER 3. BOUNDING THE OPTIMALITY GAP

3.1 Universal Power Utility Bounds

The first kind of bounds we establish are in terms of specifically scaled power utility functionals;
hence we call them power bounds. It turns out that in the derivation of those bounds it is more
convenient to consider the reciprocal of elasticity of intertemporal substitution ¢ = i instead of
the EIS 4 itself. In this notation the primal and dual Epstein-Zin aggregators read as

_ 1
O\ v) = 5%&)\% <ﬂv) . %%

where 0 = }:—; From now on we may switch between the notation in terms of ¢ and ¢,

respectively, whenever it is convenient.

Primal Power Bounds

Upper and lower bounds for the stochastic differential utility have already been provided by
[Seiferling and Seifried, 2016|: For any ¢ € C* and 0 < g # 1 define

Py(c) = ¢y 0 05 (LP[c]), (3.1.1)
where ¢,(c) = 1%961_9, D,(c) = e flgcl_g, e >0 and L?[c] = L? is given b
T
L? = 'R, [J Se %, (cs)ds + e5T<I>Q(cT)] . (3.1.2)
t

Those transformed power utility processes are admissible in the sense of the following lemma.

Lemma 3.2 ([Seiferling and Seifried, 2016, Lemma 4.5)
For all ce C* and 1 # p > 0 it holds that P,(c) € V*.

In their work, [Seiferling and Seifried, 2016| show that those power utility processes can be used
as upper and lower bounds on the recursive utility associated with a fixed consumption stream
ceC®.

Proposition 3.3 (|Seiferling and Seifried, 2016|, Theorem 4.6)
If V]c] € V* is a recursive utility process associated with ¢ € C* we have

P'yvqb(c) <Vl < P’Y/\Cb(c)'

[Proposition 3.3|is already half the answer to our problem, as it provides a lower bound on v(c)
that can easily be evaluated numerically; the upper bound however is not useful for our purpose.
The issue is that for a non-optimal consumption stream the upper power bound provided in
[Proposition 3.3 might still be smaller than the primal utility associated to the optimal strategy,

Pyue(c) < Vel < Pyag(c) < V[ (3.1.3)

This is certainly the case for any suboptimal strategy in the power utility case, where the first

three quantities in (3.1.3) actually coincide, c.f. (3.1.1) and (2.1.4). However, it already allows
us to expand our chain of inequalities from (3.0.1]) on the left hand side:

P.uo(c) < v(e) < v(c*) < vF(A*) < v*(A). (3.1.4)

“Note that in contrast to [Seiferling and Seifried, 2016] we have to rescale the weight of terminal bequest €
within ®,, as we use a different parametrisation.
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3.1. UNIVERSAL POWER UTILITY BOUNDS

Within the next section we derive similar power bounds for the stochastic differential dual
associated to an arbitrary but fixed deflator process A € D®. Then the upper bound on v*(A)
can be used to expand on the right hand side by an easily computable quantity.

In total we thereby obtain our desired bound on the optimality gap.

Dual Power Bounds

Analogously to [Seiferling and Seifried, 2016|, for any 1 # g, > 0, define the mappings
-1
@y 1 (0,00) > R A rgg)\% and

% _o—1 o=l
®%: (0,00) > R A > g20-T (20 e

that is the dual time-additive utility functions with risk aversion p. Furthermore, define for any
A € D the stochastic process

Py(A) = @ o (93) 7 (L2[A]), (3.1.5)
where £¢ = L2[A] satisfies

s T 1 s, _ép
L} =ec'E, f dee e py(Ag)ds +e e @ (A7) |. (3.1.6)
t

Thus PZ(A) is just the dual power utility function for a given deflator A € D® with utility
parameter g, transformed to a ~-scale. Note that the rescaling of the weight of terminal be-
quest is not only a technical necessity, but also important for its interpretation as it depends on
the risk preference ~, see below. The rescaling could have been avoided by a different

parametrization of our terminal bequest function.

Showing that those power utility functionals actually characterize an upper, respectively lower
bound on the stochastic differential dual heavily relies on a so called comparison theorem. One
that is general enough for our semimartingale setting is provided by [Seiferling and Seifried,
2016]. We briefly recall the prerequisites in the following definition and state the theorem there-
after without proof. For a more detailed elaboration on the topic, including a proof of the
comparison result [I'heorem 3.5| see |Appendix A.2|

Definition 3.4 (BSDE - Sub-/Supersolutions)
Let g: Q x [0,T] x R - R be G ® B-measurable, where G is the progressive o-field and B is the
Borel o-field. Let £ € LY(P) and suppose X is a semimartingale with supseqo,r] E[| X¢[] < o0 and

moreover E[Sg lg(t, X¢)|dt] < 00. Then we call X a subsolution of the BSDE with aggregator g
and terminal value &, if

dX; = —g(t, Xy)dt + dM; — d4;, Xp <&

where M is a martingale and A is a decreasing and right-continuous process such that Ag = 0.
We say
X is a subsolution of BSDE(g, &)

for short. Analogously X is supersolution of BSDE(g,&), if Xr = € and A is increasing. X is
a solution of BSDE(g, &) as in|Definition A.1}, if it is a sub- and supersolution.

We say that the aggregator g satisfies (M), if there is a constant k > 0 such that for dt a.e.
te[0,T]
g(w,t,z) — g(w, t,y) < k(x —y) for all z,y € R with = > . (M)
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CHAPTER 3. BOUNDING THE OPTIMALITY GAP

The property is sometimes called monotonicity condition.

Note: The primal and dual aggregators f and f* both satisfy as their derivatives with respect to v,

respectively v, are bounded from above, see |[Lemma B.7] and [Lemma B.13]

Theorem 3.5 (|Seiferling and Seifried, 2016|, Theorem 4.3)
Suppose X is a subsolution of BSDE(g, &) with E[supefo 1) | Xt|]] < 00 and Y is a supersolution
of BSDE(h,n) with E[supcpo ) |Yil] < o0 where § <.

(a) If g(t, Y1) < h(t,Y;) for dt a.e. t € [0,T] and g satisfies (M), then X <Y.
(b) If g(t, Xi) < h(t, X;) for dt a.e. t € [0,T] and h satisfies (M), then X <Y.

We now have everything at hand that we need to show that the rescaled power utility process
as in (3.1.5)) provides upper and lower bounds on the dual value process.
First observe that for A € D® standard representation results on linear BSDEs with BSDEP-

standard parameters, see e.g. yield that £2 has a representation as
1
ace = — [5w;<At) _ gcf] dt+dMg, L8 = ®F(Ar), (3.1.7)
where M? is a LP-martingale for all p > 1, 0 < p # 1. Recall also that V* = V*[A] solves

AV = —f* (A, Vi) dt + M, Vi = @%(Ar)

where M} = E; [S(:)F [ (As, VF[A]) ds + CID*(AT)} is a LP-martingale for all p > 1.
Then first part of our bounds follows immediately from

Lemma 3.6
Let V*[A] € V* be the stochastic differential dual associated to a pricing deflator A € D®.
If v = ¢, then V*[A] = P%(A), and if v < ¢ then V*[A] < P%(A).

1—v y—1

Proof. Define J(\) =67 %AT. Then a technical calculation shows
FrOON) = =67 A T and £ (A 9(N) = 2.

When v > ¢ then f* (), v) is convex by [Lemma B.13| so we obtain the convexity inequality

2 Av) = fF(0N) + 7 (A 9(N) [v = 9(N)]

=675\ — 2.

The result follows from [Theorem 3.5/ since V' = ®*(Ap) = L. On the other hand, if v < ¢
then f* (A, v) is concave by [Lemma B.13land the result follows by the same calculations. O

The two remaining inequalities of our bounds requires more work. While the final step is once
again a straightforward application of the comparison result we need some more
information on the dynamics of the involved processes first. We outsource the calculations to
the following technical lemma, which is a dual analogue to Lemma 4.8 in |Seiferling and Seifried,
2016].
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3.1. UNIVERSAL POWER UTILITY BOUNDS
Lemma 3.7

Let V* € V® be a stochastic differential dual associated to some A € D and define
9% (3)~ YV*). Then L satisfies

Az, — —[s50r Ay — oz ] dr + (=212 ) an — da
t o) — gLe| dt + (V2 t t

(3.1.8)
where (1_77‘/;* )ﬁi dM; is a LP-martingale for all p > 1 (md
_%s [}

dA, = 17 o Loales] + (%ﬁt_) A (%ct) T AL (3.1.9)
is decreasing if v = ¢ and increasing if v < ¢.
Proof. For V* € V* and A € D%, let L = ¢F o (o)~ Lv*). Denote g : V> R, g(v) =
@40 (@) v) = % (1_771/) ¢. Then ¢'(v) = <1;Vu)9251 and ¢"(v) = ’Y,Y_—f (1;71/)91)2. So
L= —(z) (1;7\/”‘);Zzb and thus we have

Le {VES:(1—¢)V>OandIE[ sup H/}|£] <ooforall€eR}.
te[0,T]

Moreover, as V* € V* and M* = E; [SO (As, VF[A]) ds + @*(AT)} is a LP-martingale for
2 _1
> , S ta -

all p > 1, so is L 1V, )9¢ dM;*. An application of Ito’s formula, see |[Jacod and Shiryaev
2013|[Theorem 4.57], yields

ALy = dg(V") = g/ (Vi)dV" + 59" (V)d[(V,)] = d e

where

dJi = g'(VE)AV?

— Ag(V}*) (3.1.10)
A direct calculation shows that
Ve * Lo 6 * 1—yy/ * ﬁ_l *
VAV = = [550*(A) — 2g(v) |t + (Z2v2) ™ gy,
so to obtain (3.1.8) it remains to show that 3¢”(V*)d[(V;*)] — dJ; = —d4; as in (B.1.9)
Inserting V* = g~!(£) to (3.1.10]) we first compute

dJy = g (Vi) AV — Ag(VyF)

_99 2¢
o () Ta (e’

)¢, thus d[(M)¢] =

— ALy
Moreover we have dC§ = ¢'(V;*)d(M,

Wd[ﬁ;] and we obtain

(L )A(M) = gg,”((v‘;i)> a[cg) =

7 (1 ¢>) [ct]

3For a semimartingale X we denote by X° the unique continuous local martingale that satisfies [X°]
|[Jacod and Shiryaev, 2013|[Proposition 4.27] and [Theorem 4.52]
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CHAPTER 3. BOUNDING THE OPTIMALITY GAP

yielding (3.1.8]). We complete the proof by verifying that A; is actually increasing, if v < ¢ and
decreasing otherw1se Note that

m-2)=0, if v >
g(V)_'y(;S< V)% 1y ¢‘
A <0, if v <o
Consider the case v = ¢, then g is convex and in particular
g(V*) = g(Vi2) + g (VE(VF = ViE),
so J only has only non-positive jumps. Moreover v > ¢ implies %@(1 ;) 7 < 0, s0 A s
decreasing. The case v < ¢ follows analogously by the concavity of g and 2 5 7 (1 <lt>) =>0. O

Lemma 3.8

Let V*[A] € V* be the stochastic differential dual associated to a pricing deflator A € D*.

If v = ¢, then V*[A] < PF(A), and if v < ¢ then V*[A] = PE(A).

Proof. For A € D®, let V* € V* be its associated stochastic differential dual. As in
g

let g : V>R, g(v) =¢fo (p2) ' (v) and L = g(V*). As ¢'(v) = (%V) >0, gis

increasing. Thus the claim is equivalent to showing g(V*) = £ < L = g(P*(A)) if v = ¢ and

g(P;(A)) = L? < L = g(V*) if vy < ¢. Consider the case v > ¢, the case v < ¢ follows by the

same arguments. First, note that

L5 = 5(Ar) = g(@*(Ar)) = (Vi) = L1, (3.1.11)

where ®* is the usual dual terminal utility as in|Example 2.9] Thus, if v > ¢, £ is a subsolution to
the linear BSDE (3.1.7)) by [Lemma 3.7/and the result follows immediately from [Theorem 3.5 [

Putting both results from above together yields the following dual power bounds.

Proposition 3.9
Let V*[A] € V* be the stochastic differential dual associated to a pricing deflator A € D®. Then
we have the upper and lower bounds

PTua(A) < VAL < PT 4(A).

Using [Proposition 2.16] the reduction to pricing deflators D € D{° is straight forward.

Corollary 3.10
Let V*[A] € V* be a utility process associated to A € D*. Then we have

*oe(D) < VF[A] + AX (™) < (D)

7A¢

-
where P5(D) =0 (X(”’C)D,PZ(D)) and d(x,v) = ﬁx1*7 (ly'yy) as in |Proposition 2.16,

Proof. By |[Proposition 3.9 we have for D € D

Py, (D) < V*[D] < P3,4(D). (3.1.12)

By applying the increasing function (X (™) D, -) on every element of (3.1.12) the result follows
as

V¥[A] + AX(™9) = o(X(™9) D, V*[D]),
by [Proposition 2.16] O
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3.2. VARIATIONAL UTILITY BOUNDS

We are now ready to formulate our desired bounds on the optimality gap and more importantly,
the primal welfare loss.

Theorem 3.11

Let (7*,c*) € A with ¢* € C* be the optimal strategy associated to the primal problem
and A* = X*D* € D® be the optimal deflator associated to the dual problem (2.2.27)). Then for
any strategy (m,c) € A with ¢ € C* and any pricing deflator A = AD € D we have

P'yvqi)(c) < V[C*] < :‘;/\¢(D)

and in particular

f(?r,c) < ﬁ(”?@ A) S 'ﬂ;/\gb(D) - P’YV¢(C)

Proof. Using [Proposition 3.3| in the first, the duality relation (2.2.29) in the third and
in the last step, we obtain the first inequality in the theorem:

Povo(c) < V[e] < V[e*] < VFA*] + A*X ) < VHA] + AX (™) < PZ (D).

The second one follows immediately as &(m, ¢, \D) = v*(A) —v(c) = (V5 [A] + Az) — Vple]. O

The power bounds from are, to the best of our knowledge, the first ones in the
literature that apply to recursive Epstein-Zin utility and do not rely on solving the BSDEs for V'
and V* respectively. On the contrary they are easy to simulate and valid for every parameter
constellation for which we established the duality relation . In particular, they are a
suitable tool in the evaluation of numerical schemes that provide approximations to the optimal
primal and associated dual strategies, if no other benchmark is available: The upper and lower
power bound associated to the strategies provided by the algorithms’ output are evaluated and
yield an upper bound on the optimality gap, so if this bound is tight, the welfare loss associated
to the approximate strategies must be small and the approximation must be good. However,
we must mention that even for good strategies, the power utility bounds cannot be expected to
provide a good bound on the optimality gap when the RRA ~ and EIS ¢ differ too much from
the power utility case.

As a first approach to counteract those potential quantitative shortcomings, we consider a dif-
ferent kind of (one sided) bounds arising from our duality theory in . As part of our
numerical analysis in we see that they are indeed an asset when it comes to parameter
constellations where the power bounds fail.

Besides providing a first general tool to measure the performance of suboptimal strategies when
there is no benchmark available, dual power bounds can be a powerful tool in the theoretical
treatment of stochastic differential duals. In our case we use them in to soften the
integrability conditions that are needed to ensure existence and uniqueness of the stochastic

differential dual from [Theorem 2.20

3.2 Variational Utility Bounds

Our power bounds work especially well in the case of power utility; in fact, in that case they
really just evaluate the considered strategy and hence are exact. However, it is intuitively clear,
that their precision declines when the difference between v and ¢ becomes large. Thus this

short section explains how our duality procedure from already provided us with
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CHAPTER 3. BOUNDING THE OPTIMALITY GAP

alternative bounds.

The following corollary captures the fact that by [Lemma 2.4} [Lemma 2.10| and [Remark 2.13]
the variational representation provides a lower, respectively upper bound on the value function,
depending on whether the problem is convex or concave. Even if those bounds are one-sided,
they are a first step in overcoming potential quantitative shortcomings of our power bounds.

Corollary 3.12
For any investment strategqy (m,c) € A and pricing deflator D € D* such that V[m,c],V*[D] €
V¢, the following hold:

(L) If v,4 = 1,¢ > 1, then for any u € P
Ule,u] < Vi[c],
where Uy[c,u] = E; [S,:T ki F(cs,us)ds + /if;TtIDT(cT)], in particular

Z(T(,C) < ﬁ(ﬂ-acv A) < P:AQS(D) - Ut[c7 u]

(U) If v, < 1,9 < 1, then for any ue P

Vi [D] < Uf [D, u]
where U [D,u] = E; [StT mgsF*(Ds,us)ds + ’ng(I)*(DT)]; in particular for

Citol = 2 (poxe?) (07 o)

we obtain
ZL(m,c) < O(m,e,A) < U*[D,u] —Pyye(c)

Proof. The inequality in (L) follows immediately from the inequality in (U) follows

from [Lemma B.17, The bounds on the optimality gap are then clear by (3.1.4) and
ition 2,106l L]

Within the proofs of and and the concave version of [Lemma 2.10| (i.e. [Lemma B.17)),

respectively, we have seen that,

u® = argsup Ui[c,u] = —fy(c,V[c]) and uP = argsup U} [D,u] = —f* (D, V*[D))
ueld ueld

Now, if we can find at least an approximate solution for the primal and dual problem and the
associated strategies respectively, we also have an approximation for u¢ and u”. As the vari-
ational representation of recursive utility is exact for exact u¢ and u”, one would expect that
good approximations of the optimal strategy, the processes Ui[c, u] and U;* [D, u] provide good
lower and upper bounds, respectively. In particular those bounds are specifically designed for
recursive utility and of time-additive structure, hence easily computable e.g. by Monte Carlo
simulation.

Finding such approximations of the primal and dual value process and the associated primal
and dual strategies is the goal of our numerical methods examined in [Chapter 5| and [Chapter 6|
where all the above bounds on the optimality gap are put to use.
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3.3. APPLICATION: A REFINED EXISTENCE RESULT

3.3 Application: A Refined Existence Result

The assumptions on integrability within [Theorem 2.20| (i) are quite restrictive and within this
section we apply our power bounds to soften them up.

Throughout this section we assume that
2 1)
v, > 1 such that <0 and q*_l—%>1

and moreover, that for all ~, ¥ = % > 1 we have

T =1 41 -1 et
E [J A+ AT A+ A A ] < o, (3.3.1)
0

such that our dual power bounds from [Proposition 3.9 exist.

We introduce the set of B-integrable semimartingales as SP = {V eS:E [Supte[O,T] |Vt|ﬁ] < oo}
and the sets of relevant deflators and stochastic differential duals as

T 21
DB = {A € D : A satisfies (3.3.1) and E [J Afdt + A B] < oo} and (3.3.2)
0
VP o {Vesﬁ : (1—7)V>0},
where ﬁ > 1 and qﬁ* > 1 such that
1 _ *
Imv @y
x B

Then the existence and uniqueness result we prove within this section reads as follows.

Theorem 3.13
Let v, > 1 and «, B as in (3.3.2). Then for any A € D*P there exists a unique V* = V*[A] €
VB satisfying

T
V*[A] = E, Ut f*(AS,V;*[A])der(I)*(AT)}, te[0,T]. (3.3.3)

The idea of the proof is similar to the approach taken by [Seiferling and Seifried, 2016|[Theorem
3.1] and [Seiferling, 2016][Theorem 3.33], i.e. we transfer our results for A € D* to the D*F case
by using a monotone convergence result. Consequently, the steps we take in this approach are
similar to the ones taken in [Seiferling and Seifried, 2016| and [Seiferling, 2016|, but by making
use of our dual power bounds and the duality theory from the first chapter we simplify many of
the arguments therein.

The uniqueness part of is an immediate consequence from the comparison result

Corollary 3.14

Let V*, V* € VB be the dual value processes associated to the deflators A € D*P and A € D*P,
respectively, and assume A < A. Then V* < V* and in particular for any A € D*P there exists
at most one associated utility process V e DB,
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Proof. We know from [Lemma B.13|that f*(),v) is decreasing in A for all v € V, so[Theorem 3.5
applied to X = V* and Y = V* yields the result. O

Lemma 3.15
Let V* € VP satisfy

T
vV =E, U F* (A, VF)ds + @*(AT)] . tel0,T]
t

for some A € D*B. Then M; = E; [Sg 5 (A, V) ds + @*(AT)], t € [0,T], is a uniformly

integrable martingale and V* satisfies
AV = —f* (A, Vi¥) dt + M, Vi = ®*(Ap). (3.3.4)
Proof. Define r—1 = % + % < 1. Then an application of Holder’s inequality yields
_ *
T ® NLE % ¥ T o % T 1—vy /% B % 1156| ®
fF(As, VE)Tds ) < = AXds (TVS> ds +T+25 sup |ViF|.
0 0 0 t€[0,T

In particular the integrability assumption ((3.3.2)) implies S(:)F |f*(As, VI)|ds + |@*(A7)| € LL(P)
and M is a uniformly integrable martingale; thus V* is a solution of (3.3.4)).
O

We now want to establish a monotone convergence result on VP, We say that a sequence
(A™),.cyy S D%P is increasing if A" < A" n e N and we write A" — A in D*P if

A — A for ae. t€[0,7] and A% — Ap with A e D%F,

In particular A € D*P by definition. If a sequence (A™),,cn Is increasing with A™ — A in DB,
we write A” 1 A in D%P. The decreasing case is defined analogously.

Lemma 3.16
Let (A"),cny © D%F and (V*"), oy < {V €SP : (1—~)V =0} such that

T
Vot =Ry [J FH(AL, V™) ds + <I>(A7TL)] , tel0,T], neN.
¢
If A" 1 A or A" | A in D%B | then there exists a unique V* € {V eSP.(1-y)V= 0} with
T
V*[A] = Ey [J f*(As, VF[A]ds + CIJ*(AT)] Vt e [0,T]
t

and V" — V;* for all t € [0, T].

Note: Note that as v,7 > 1 and in particular ¢* > 1, the dual aggregator f*(),-) is well defined in zero.
Including zero to the set of possible limits simplifies the proof by automatically providing an upper bound on

V*™ for all n € N. We show a posteriori in that (1 —~)V*[A] > 0, so in particular V*[A] € VP,
Proof. We know from |Corollary 3.14that for every A € D%P_ there is at most one V*[A] = V* €

VP that satisfies (3.3.3)).
Also by|Corollary 3.14{we have V*! < V¥ (resp. V*" < V*1) for any n € N, if A” is decreasing

(resp. increasing). As v > 1 we always have V*™ < 0 for any n € N. It remains to find a lower
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bound if A” is increasing. This bound is immediately given by the variational representation of

V*m: By [Lemma 2.10| we have

V*[A™] = esssup Et[JT ffiF* (A7, ug)ds + HzTCP*(A%)] = Ey [e_ie(T—t)q)*(A%)] = U
e (3.3.5)
The inequality in (3.3.5) is clear by choosing u = 66, which implies F* = 0, see
As ®* is decreasing by [Lemma B.11] we have U; = E; [e_%(T_t)tI’*(AT)] < Up. Finally U € VP
by Doob’s LP-inequality and the integrability assumption .
Summarizing the above we always have U < V*" < 0 for all n € N. Hence we can define the

stochastic process V* as the monotone pointwise limit V;* = lim,,_,, V;*" for all t € [0,T].
Note that for any n € N and almost every s € [0,T"] we have

— _ — 1_
PRV < 2 (I ) (520

Then the same Holder argument as in the proof of [Lemma 3.15/ shows that B; € L'(P ® dt).
1 =1

Finally we have |®*(A")| < = 7|€’Y <(A1T)77 + A > e L'(P) by (3.3.2)), so dominated con-

vergence yields that for all t € [0, T]

T

= lim E U FH(A", VA ds + 0 (A’%)] ~E, Ut f(AS,V;*)der@*(AT)].

O]

Proof of [Theorem 3.13 Let A € D*F. By monotonicity of the stochastic differential dual there is
at most one process V* = V*[A] € VP that satisfies . To apply the monotone convergence
theorem, we first consider A € D%P such that Iy < A for some Iy > 0 and define for each
n € N the truncated pricing deflator A} = A; A n, t € [0,7]. In particular A® € D®, hence
by [Theorem 2.20| there exists a unique stochastic differential dual V*"* = V*7[A"]. Certainly
A™ 1 A in D%P thus [Lemma 3.16| yields a unique V* € {V eSP:(1-y)V= O} that satisfies

T
Vt*:EtU f*(AS,VS*)der@*(AT)], te[0.7].
t

Now set A" = A + % Then as 0 < A, % < A" and the previous argument yields an associated
stochastic differential dual V;*" € {V € SP: (1 —+)V > 0} for any n € N. Again, since A" | A,

by we know V""" — V¥, t € [0,T], where V* € {V € SP : (1 — )V > 0} satisfies
T
VE =K, U F*(Ag, VF)ds + @*(AT)] . telo,T).
t

O

The following corollary states a dominated convergence result, that is used in [Proposition 3.18]
to show that the stochastic differential dual V* e {V eSP:(1-—y)V > 0} constructed above
actually satisfies (1 —~)V* > 0, i.e. V* e VP,

Corollary 3.17
Suppose (A™)pen © DB and there exist Ay, A* € DP such that Ay < A, < A* for alln e N. If
A" — A in DB then V*[A"] — V,*[A] for all t € [0,T].
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Proof. Let (A™),eny < D*P and define i, = inf;>, A* and s, = SUDg>n A¥. Then, as Ay < A, <
A* and Ay, A* € D*P we have (i) nen, (Sn)neny © D%P. By definition 4,, 1 A and s,, | A in D%,
so for any ¢ € [0, 7]

Vi lind, Vit [sn] — Vi[A]

by [Lemma 3.16{ On the other hand i,, < A,, < s, and V*[A] is decreasing in A, so in particular
V*in] = V*[A] = V*[sn], n € N, which implies the assertion. O

Proposition 3.18
Let A € DB then the associated stochastic differential dual V¥[A] € {V € S : (1 — )V = 0}
satisfies

PX(A) < VF[A] < Pj(A), (3.3.6)

where P%(A) is given by (3.1.5).
In particular we have (1 —y)V*[A] > 0 for A€ D*P ie. V*[A] e VB.

Proof. Consider the truncated deflator A™ = (% v A) A n for n € N. Note that A" — A in D%P
and that A A1 < A™ < A v 1 for each n € N. Then dominated convergence ([Corollary 3.17))
implies

VIA" ] = VP[A], - te[0,T].
Now consider £2[A"] defined as in (3.1.6) by

T

OA"] = o'y | | Sre et pl(AT)ds + o D5 (AR
LA =erBy | | ore ety (A)ds +een @(A7) |

Then dominated convergence yields

L][A"] — L£][A] and L[A™] — L[A] for all t € [0,T].

As A™ € D® | [Proposition 3.9|implies

LY[A"] = P3(A") < VF[A"] < PE(A") = @ o (¢) T (L7[A")),

thus sending n — o0 yields the claim.

Finally, note that by Doob’s LP-inequality we have

Sk

thus (3.3.6) yields E [supte[O’T] (ﬂvt* [A])

- ] < 00. As 0 < 0 this shows (1—v)V*[A] > 0. O
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Chapter 4

The Consumption-Investment Problem
and its Dual Formulation

Within this chapter we describe and analyze the type of models that we consider for the rest of
this thesis. To this end we first derive in detail a general multidimensional market model on a
probability space with an underlying Brownian filtration. Our general market model captures
several specific models that are widely used in portfolio optimization, in particular the Kim-
Omberg model as in |[Kim and Omberg, 1996] or [Wachter, 2002| and the Heston model as in
[Heston, 1993|. As we later use those two special cases to test our algorithmic approaches to the
Epstein-Zin optimization problem, they are explained in more detail.

Having introduced the general setting, we formulate and discuss an investor’s primal investment-
consumption optimization problem under Epstein-Zin utility and emphasize several aspects of
the associated partial differential equations (PDEs). The same is done for the dual problem as
derived in [Section 2.2l Finally, we investigate the connection between the primal and dual prob-
lem in detail, with an emphasis on the connection of their dynamic programming equations. The
insights gained from this analysis are the basis of the approximation approaches we introduce
in [Chapter 5| and [Chapter 6]

Most technical calculations are omitted in the main text and can be found in

4.1 The General Market Model

Let (Q, {Sthefo,17 B> ]P’) be a filtered probability space, where the filtration is generated by an
(m + n)-dimensional Brownian motion W. We consider the consumption-optimization problem
of an agent who consumes at a rate c. She can invest in a locally risk free money-market account
Sp or in m risky assets SYKY = (Sy,...,S,,)", whose price dynamics depend on an n-dimensional
state process Y = (Y1,...,Y;,)". The first m components of the Brownian motion W, W< =
(W1,...,Wy,)" model the idiosyncratic shocks of the stocks and the correlation between the
stocks and state variables, whereas the last n components WY = (W,41,..., Winin)' can
be thought of as the shocks driving the state variables and the correlations among the state
variables. The dynamics of the risk free asset is always given as

dS() = ’I“S()dt
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and the dynamics of the assets and state variables in terms of our (m +n)-dimensional Brownian
motion W are given as
dS™Y = diag[ SR (u(Y)dt + B (YV)dW) (4.1.1)
dy = p¥ (V)dt + =Y (YV)dw,

where 1 and ;¥ are a m-dimensional, respectively n-dimensional vector function of Y’ andlﬂ
SI(Y) = (£5(Y), Omxn) and ZY(Y) = (5 (Y), 2Y(Y)) (4.1.2)

are (m x (n + m))-dimensional, respectively (n x (n + m))-dimensional matrix functions of Y,
such that 35(Y) and £ (Y') are invertible.

In the following we note that the above model structure is without loss of generality and on the
way introduce a different notation that is more convenient in some occasions, e.g. within our
numerical examples in [Chapter 5| and [Chapter 6| Indeed, consider a model

dSTskY = diag[STisky] (us (Y)dt + o S(Y)dWS> )
Ay = @ (Y)dt + ¥ (Y)dW?Y,

where the (m + n)-dimensional correlated Brownian motion

W= (5, 0Y) = (W, i)

n

has positive definite correlation matrix p, i.e.
- A\T S Sy T
A (a) = pdt = (PSY (™) > dt,
p P

Y

and 0, oY are invertible matrix functions of appropriate dimension.

m4n)x(

Then p has a unique Cholesky decomposition p = LLT, where L € R( m+1) i an invertible

lower triangular matrix with representation with representation
1 (L Omn
—\LSY LY :
Then W = L~'W is a standard (m + n)-dimensional Brownian motion and defining

oY) = <%i(3;) :ﬁ%)

and

ASY)LS Opsn \ . [ Z5(Y)  Opxn 25(Y)
O‘(Y)L = <JY(Y)LSY UY(Y)LY> = (i]SY(Y) 2Y(Y)> = (EY(Y)>’ (4.1.3)

we obtain

S (V)AWS = ¢5(Y) (LAW)® = £5(Y)dw,
o (V)YAWY = oY (V) (LdW)Y = Y (Y)aw,

"We denote by 0,,xn the (m x n)-dimensional matrix containing only zeros.
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4.1. THE GENERAL MARKET MODEL

where (LdAW)® and (LAW)Y denotes the first m and the last n coordinates of the (m + n)
dimensional process LAW, respectively. In particular, basic algebra implies that £°(Y) and

YY(Y) are of the form as in (£.1.2).

Note that we avoid to write the Y dependence explicitly if there is no room for confusion.
Moreover, note that while our general results use the model as defined in (4.1.2]), within special
cases and in particular our examples we sometimes use the more specific notation as in (4.1.3])
if beneficial.

With the appropriate specifications of the above parameters, our general market model captures
in particular the multi-factor Ornstein-Uhlenbeck Model and the multi-factor stochastic volatil-
ity model. In the following we provide those specifications.

Note: We use n as the dimension of a model, for example when we talk about a one-dimensional model this
corresponds to n = 1 and arbitrary m € N, as the number of assets is of no concern when it comes to our solution

approaches below.

Example 4.1 (Multi-Factor Kim-Omberg Model)

N

Define R, = (0,00)P for any p € N. In the general model above, denoting by 1,, the m-
dimensional vector containing only ones, we choose

() =1l + A+ ATy o (y) = diag [65]
¥ (y) = —diag[x]y ¥ (y) = diag[o" ]

where r € R is the risk free rate, \ € R™, A e R™*™, 55 ¢ R, ke R} and ¥ e R% .
Then the general model describes a Gaussian model with correlated Brownian motions given by
the dynamics ]

ASTY = diag[ST9] ((nm FA+ATY)dt + asdvvf) ,
dY; = —diag[s]Y;dt + oY AW .

We rewrite the system such that we have independent Brownian motions as above. To this end
let ©° and XY be given as in (E.1.2)), then the market dynamics are given by

dSy™ = diag[S;™] ((rLm + A + ATY;) dt + 25dW)
dY; = —diag[s]YV;dt + XY dW,

where £5 € RM*(m+n) gng 33 e RWXM+1) - This is a straightforward extension of the classical
model of mean-reverting returns as e.g. in [Wachter, 2002). o

Example 4.2 (Multi-Factor Heston Model)

In the general model above choose m = n, p° = p¥ = I,, where I, denotes the (n x n)-
dimensional identity matriz, in particular processes W5 and WY, respectively, are standard
Brownian motions. However, let the Brownian motions W5 and WY be mutually correlated
with correlation matriz p°Y = diag[p1,..., pn]. Note that the market is incomplete if |p;| < 1
for at least one i = 1,...,n. Denote the set of orthogonal matrices in R™*™ by R2*"™ and let

2The structure of Y is without loss of generality, for general mean-reversion structure consider K =
U diag[k]U, where U is orthogonal and write Y = UY.
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K e R je. for K € R™"™ we have KK =1,. Now choose
o (y) = Kdiaglo*] y? 1o (y) = rlp + Ky2 (Ky2) A
. eyl
p" (y) = [~ diag[s]y o (y) = diag[o” ]y

where € R denotes the risk free rate, X € R", fi,k,5°,57 € R% and for a vector y € R’} we

define y% = diag[\/Y1, - - - \/Unl-

Then the general model describes a multi-factor stochastic volatility model given by the dynamics
4SS = diag[SHY] ((mm + Kdiag[V;]K "A) dt + Kdiag[a]Y;2 W ) :
dY; = (i — diag[k]Y;) dt + diag[ay]n%thY.
Note that the risky assets are uncorrelated if K = 1,, so even though the Brownian motions

WS are independent, a correlation between the assets is introduced by the matriz K. To ensure
positivity and stationarity of the state processes Y, we require the Feller condition

2ji;
ki >0 and @%)2 >1 (4.1.4)
to be met for allt =1,...,n. When considering this Heston specification of our general model

we always assume that the condition (4.1.4) is satisfied without further mention.

The model includes existing multi-factor stochastic volatility models as e.g. in [Escobar and Oli-
vares, 2013] or [Escobar et al., 2017].

Again, we rewrite the system such that we have independent Brownian motions, then the dynam-
ics read

dSP™Y = diag[S;™] ((r1, + Kdiag[V;]K TX) dt + 2%dW;)
dY; = (@ — diag[x]Y;) dt + XY dW,

where ©° and XY are (n x 2n)-dimensional matriz functions as in (#.1.2)).

Note: The diagonal form of the covariance matrices and the fact that KK = I, is of particular importance here.

This structure in particular implies that L°Y = pSY and LY = diag[\/l —p3 ..., \/1 — p2] are also diagonal

matrices, which ensures that the HIB equation associated to the model separates (if modified appropriately). ©

4.2 The Primal Optimization Problem

Consider a financial market S where the asset pricies S = (Sp, ..., Sp) and the associated state
variables Y = (Y7,...,Y,,) are as given in . Endowed with an initial capital =z > 0,
our agent may invest in the given market by choosing a portfolio represented by a predictable
S-integrable process m = (7,...,7™). Here 7} is the fraction of her current wealth invested
in the risky asset S; at time ¢t and 7 = 1 — Y," 7} is the fraction invested in the riskless
asset. Moreover, let ¢ € C* be the investor’s consumption stream. Recall that the set of
admissible trading strategies was previously defined as A. In the following we avoid to write the
Y dependence explicitly when there is no room for confusion.

The investor’s wealth process following a certain strategy (7, c) € A is denoted by X (7€) and is
given as

ax™ = X ((r + 7/ x) dt + 7 £5dW,) — edt, X =,
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where ¥ = p¥ — 71, is the excess return of the risky assets. The investor now chooses her
investment and consumption strategies to maximize her continuous time recursive utility, that
is she aims to determine (7*,c*) € A such that

v(c*) = sup Vo[c] = sup E[f fles, Vil ds—|—<I>(cT)] (4.2.1)
(mc)eA (m,c)eA

where, the Epstein-Zin aggregator f is given as
c,v) =0—c — )7 — §6u and P(c) = e=c'7.
fle,v) 511¢ ! d)((l ) )1

For more details and interpretations of the parameters, see

In we show that the associated dynamic programming equation for the agent’s
indirect utility Vi[c] = G(¢, X+, Y:) reads
T T
0= sup {Gt + (x (7" + 7rTx) — c) Gy + (,u,Y) Gy + %xszES (ES) TG pa (4.2.2)
(m,c)eA

+ Gy XY (Z)S)T T + Ltrace [(EY)T nyZY] + f(e, G)}

where G(T, z,y) = 5ﬁx1_7 with a constant weight of bequest e > 0. Following |[Zariphopoulou,

2001] we conjecture
G(t,z,y) = ' g(t, )", (4.2.3)

where g(t,y) > 0 for all (t,y) € [0,T] x R™ and k € R is a constant yet to be determined; then
the solution to is summarized in the following proposition.

Proposition 4.3
Assume that the agent’s indirect utility has a representation as in (4.2.3), then the optimal
strategqy reads

m* =1 (z8 (ZS)T)_lx +E(E9T) (EY)ngy and  (2) =0,

T

where g satisfies the nonlinear partial differential equation

O—gt+1;€7<7"+11 T(ZS(Z) >1X_)g+<(MY)T+1 ol T((ES) ) (ZY)T)Qy

 trace [(2) 2|+ 10T (0= Dt 152 (29) (29)7) ) ()T

i %egl—% (4.2.4)
with terminal condition g(T,y) = ek
Procf =

Note: For a matrix AT € R(+™X™ we denote by (AT)Jr € R™*(m+7) the Moore-Penrose inverse which is

defined by (AT)+ = (AAT)_1 A, in particular

()7) = ((2)7) o). (125)
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In (4.2.4), two terms give rise to nonlinearities, but we have only one degree of freedom in

. . . _k¥ . .
terms of the constant k. Certainly the nonlinearity ¢~ could be eliminated by choosing k
appropriately, but in any case the nonlinearity

%;(gy)TEY <(k7 DLy — k%fl (ES)T ((ES)T)+) (EY)Tgy

Il

(gy)TEYN (EY)T 9y
(4.2.6)

11
Zg

remains: By inserting the matrices ¥¥ and %9 from ([#.1.2)) above, we calculate
~ ~ T N o T
SN (V)T = BV (S5) 4 (k- 1)8Y (8Y)

which is a system of n equations, so for n > 1 there is in general no way to choose a scalar k

such that (4.2.6)) disappears.

+ -1
However, if the market were complete, then in particular ((ZS )T) = ((ZS )T> and

T k— T
SN (EY) =T (EY)

and setting k = - eliminates the non-linearity (4.2.6). Thus, we want to complete the market
using duality theory, more precisely by the notion of least favorable completion. The idea is
classical and due to |Karatzas et al., 1991]; in the following we explain their concept.

In addition to the m risky assets within our market model from we introduce n
artificial assets S® = (S¢,...S%) T with dynamics

dS® = diag[S”] (u5 (Y)dt + =5 (Y)dW) ,

where g1, and ¥ are n-dimensional and (n x (m + n))-dimensional matrix functions of the
n-dimensional state process Y, respectively. Then the risky assets in the artificially completed

risky
market S¢ = (S

ga > follow the dynamics

dS° = diag[S°] (u5 (YV)dt + =5 (Y)dW) ,

S S
where pS = (ZS> and X5 = (gs .
a a

In order to make this artificial completion of the market meaningful, we have to choose the
parameters uas and Eg in specific ways. We certainly have to pick the matrix Ef such that
the market is actually complete, i.e. the augmented correlation matrix ¥ is invertible. As we
assumed that ¢ L° has full rank, this is accomplished by setting Ef = (OnXm, o ), where pas is
a (n x n)-dimensional matrix with orthonormal rows. As the specific form of pJ plays no role
in the solution of the optimization problem, we choose pS = I, for simplicity.

The significant choice within the completion is the drift vector us. If we would arbitrarily
choose some p2 € R”, the investor following her optimal strategy in the augmented market
would certainly trade some of the artificial assets, so her strategy would not be admissible in
our incomplete market setting where those assets don’t actually exist. This means we have to
specify p2 in such a way that the investor following her optimal strategy in the completed mar-
ket chooses not to trade any artificial asset. In that case the optimal strategy in the artificially
completed market is still admissible and coincides with the optimal strategy in the original mar-
ket.
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This is exactly the idea of least favorable completion as introduced by |[Karatzas et al., 1991]. As
they point out, this least favorable completion is achieved by choosing p2 such that the artificial
assets’ excess return is exactly the optimal strategy of the associated dual problem.

In particular, if we can solve the dual problem, we can artificially complete our model from
and formulate an equivalent optimization problem in a complete market. The as-
sociated complete market problem is in general more tractable, for example we can remove the
nonlinearity . Thus our next step is to analyze the dual optimization problem associated
to (4.2.1)).

4.3 The Dual Optimization Problem

By our results from the investor’s dual optimization problem reads
T
v*(A*) = inf {VJ'[A] + Az} = inf {E{J IH(As, VF[A]) ds + @*(AT)} + )\x}, (4.3.1)
AeDa AeDe 0

where

Y
1=

PO ) = 8% gAY (%y) ~ %y and (N =er LA

As we have seen in [Proposition 2.16] it suffices to solve the problem for pricing deflators, i.e. find
D* e DY such that v*(D*) = inf peps V5*[D]. Then by [Proposition 2.16| the optimal solution to

(E3.1) is given by

_ _ Y
v (A%) = et (A2 (0m)

We assume that our pricing deflators have the form

dDy = —Dy (rdt +n/dW) and Dy =1, (4.3.2)

S
where 7 = ( zy > is a (m + n)-dimensional vector function of ¥ containing the market prices

Ao —1
of risk, hence n° = (2% x can easily be derived from the supermartingale condition in

[Equation (2.2.14)| and is already determined by the market. Note that since a process D as
in (4.3.2)) is a stochastic exponential, it is positive and a straightforward application of It6’s
formula shows that the stochastic process

DX (™) 4 J Dcyds
0

is a supermartingale for all (7, ¢) € A and n € P"™*" so D is indeed a pricing deflator.

In we show that the dynamic programming equation for the indirect dual utility
Vi*[D] = H(t, Dy,Y;) reads
0= i, {Ht —rdHy+ (1) Hy + 30" 0 Hag

ns:(UsLs)*lx

— dHg, XY n + trace [(EY)T HnyY] + f*(d, H)}, (4.3.3)
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1 —1
with terminal condition H(T',d,y) = €7 %d%

Note: Note that in the complete market case the dual problem is redundant as then n = ns is fully set by the
market, so there is nothing to optimize.

Similar as for the primal problem, we conjecture that the agent’s indirect utility has a represen-
tation L
H(t,d,y) = 15d "7 ht,y)', (4.3.4)

where h(t,y) > 0 for all (t,y) € [0,T] x R™ and [ € R is a constant yet to be determined. Then
the solution to (4.3.3) is summarized by the following proposition.

Proposition 4.4
Assume that the agent’s indirect utility has a representation as in (4.3.4), then the optimal
market prices of risk determining the pricing deflator read

1

S 25 - X
n* = (( "Y)*> = T, (4.3.5)
vl ()
where h satisfies the nonlinear partial differential equation
. T T 1oy (e T
e G O I (R B I
1 vy T Y 11 T Y (YY) T Sy (o)
+ dtrace [ (5Y) T hyy B | + 32 ()T (0 DY (5Y) -0 -2 (2Y) ),
+ 9Oy (4.3.6)

1
with terminal condition h(T,y) = .

Proof. =

Again, two terms in (4.3.6) give rise to nonlinearities and while k'~ "9 would vanish with an
appropriate choice of [, the nonlinearity

b7 (-8 )T 108 (1))

which is a system of n equations, cannot be eliminated by the choice of the scalar [.

Apparently the dual problem does not help us directly, as the dual dynamic programming
equation is as hard to solve as the primal one. However, taking a closer look at the partial
differential equations associated to the primal and dual problem, one notices a deeper connection

also between the PDEs (4.2.4) and (4.3.6). This connection and its implications are further
highlighted in the next section.

4.4 Primal and Dual Problem Connected

We first investigate the direct relation between the primal and dual solutions derived above. The
chapter is completed with the analysis of the concept of artificial completion and in particular
least favorable completion as described in on PDE level. Both connections between
the primal and dual problem provide valuable insights that we further exploit in our iterative
solution approach.
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4.4.1 Primal & Dual Solution and Duality

By straightforward manipulations of the partial differential equation associated to the dual
problem, the direct connection between the primal and dual solutions becomes apparent: Recall
the dual partial differential equation from (4.3.6]) derived as

— T T _ ~ T
0=t 5 (43 0%) = ) e ()T 4222 (570F) g

1 T
+ trace | (2Y) by, | + b (hy)T <(z —EY (=) i - )Y (2Y) ) hy
]

with h(T,y) = =

Plugging in the predetermined market prices of risk n® = (25 ) B X, we notice that
) =1 (2 )) e (579) =47 ((29)) @)
Moreover a small calculation, using in particular , reveals
(-5 () — 11— 7% (EY>T - ((m Vi + 11— ) (39)7 ((ES)TY) (=7,
thus becomes
0=h+ 17 (r + 13y (=8 (zS)T)_lx = f%) h+ ((u")T + 1oy T ((ZS)T)+ (EY)T> hy

+ Jtrace [ (5Y) "y, BV | + %%(hy)TEY ((l’y Vi +1(1—7) (35)" ((ZS)T)+> (=) " n,

9vg 1122
+ sl

with h(T,y) = =

Now the primal and dual partial differential equations only differ in the parameters k£ and I,
respectively. Choosing k = lv reveals that the PDEs - and hence also their solutions g and
h - actually coincide. This fact has interesting implications. First, assume we can verify that
the strategies from |Proposition 4.3| and [Proposition 4.4] are indeed optimal, and let D* be the
pricing deflator from associated to (ny)*. Then [Proposition 2.16[implies

Vt[ﬂ*,c*] _ ﬁ (Xt(”*’c*)>1_7g(t,5ﬁ)k
= L (X ) n, v (9=1)
- = (DZ‘X(”*»C“)H ((D;k)”%1 h(t, yt)l)7 (k = 1)
= o (ppxeen) T (v
= Vi[A*] + A;"Xt(w*’c*). (Proposition 2.16)

In particular, there is no duality gap.
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Moreover, since g = h, the optimal strategies for the primal and dual problem share a simple
one to one relation. By |Proposition 4.3| and [Proposition 4.4 we have

—1 *
oF % (ES (ZS)T> Y- %IC (UY) ,

e () () (1))

is fully determined by the market and can be interpreted as a Y-dependent (m x n)-dimensional
covariation matrix. The other way around find the relation

() = (25 )) ).

In particular, every investment strategy 7«* implies certain market prices of risk (ny)*, which
can be used to evaluate our upper and lower bounds from the previous chapter.

where

From now on and for the rest of this thesis we choose [ = % such that the primal and dual
solution are characterized by the one function g = h and we choose g to denote said solution.

4.4.2 Least Favorable Completion

As the reduced partial differential equations associated to the primal and dual solutions coincide,
the concept of least favorable completion explained in the previous section can be understood
directly on PDE level and without abstract arguments as provided e.g. in [Karatzas et al., 1991].

We first state the problem in an artificially completed market where the artificial assets exhibit
an arbitrary market price of risk n¥. Recall the definition of the considered market with risk
free asset Sp, m assets ST and n state variables Y given by the dynamics

dS™EY = diag[S™RY] (1S (Y)dt + B9 (Y)dW)
dY = ¥ (Y)dt + Y (Y)dw.

Moreover, we introduce the n artificial assets S® with dynamics
dS® = diag[S”] (u5 (YV)dt + =5 (Y)dW) ,

as explained in Then the risky assets of the artificially completed market S¢ =
(Srisky §9) follows the dynamics

dS° = diag[S°] (u5 (YV)dt + =5 (Y)dW) , (4.4.1)
S .S
by 0
where we set p5 = H and ¥5 = ( mx”).
He <T1n + 77Y> ¢ Onxm  Inxn
We denote an investment strategy in this artificially completed market as @ = (7°,...,#™*")

where 7} is the fraction of the investor’s current wealth invested in the risky asset S¢ at time
tand 7 = 1 — Y4 7 is the fraction invested in the riskless asset. Moreover, let ¢ € C% be
the investors consumption stream. We denote the set of admissible trading strategies in the
extended market by A. Then the investors wealth process following a certain strategy (m,c)e A
is denoted by X (™) and is given as

dxX™ = X7 ((r + 7/ xo) dt + 7 S5dW3) — edt, X7 =1,
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Xa pa — 71y
primal optimization problem certainly depends on the market prices of risk QY used in the
augmentation of the market and the optimization problem is to find (7%, c¢*) € A such that

S 5,9
—r1 . :
where y. = (X > = <M " m) = (Enﬁ > is the excess return of the risky assets. The

T

v (c*;ny) = sup VW [c; ny] = sup E[f f (CS,VS [c; nY]> ds + (I)(CT):|.
(7,c)eA (7c)ed LJo

Analogously to the primal problem in the incomplete market, the associated dynamic program-

ming equation for the agent’s indirect utility V; [c; ny] = G(t, X, Y:) in the extended market

reads

0= sup ~{C~}t +(z(r+7"x) —¢) Gy + (uy)T Gy + %a:erTEf (Zf)T 7Gyw
(7rc)ed

+ 2Gy B (Ef)T 7 + strace [(EY)T éyyZY] + f(e, é)} (4.4.2)

where G(T, x,y) = eﬁ:ﬁl_“y with a constant weight of bequest € > 0. As before we conjecture
G(t,z,y) = 5 gt y)", (4.4.3)

with g(t,y) > 0 for all (¢,y) € [0,7] x R™ and k € R; then the solution to is summarized

in the following corollary; the proof is analogous to the one of |Proposition 4.3| with the only
difference being that 7 is now invertible.

Corollary 4.5
Assume that the agent’s indirect utility in the artificially completed market (4.4.1)) has a repre-
sentation as in (4.4.3)), then the optimal strategy reads

Aol ED)) e ()T L wa (5) -0 @y

where § satisfies the nonlinear partial differential equation
0=g; + 1_Tﬂ’ (7” + %%XCT <Ef (EE)T>_1 o — 1607> g+ <(,UY)T + PTVXCT ((Zf)T)—l (ZY)T) i,
+ Strace [ (5Y) 3,27 | + 14522 (3) TSV (7)) gy + Gt (4.4.5)
with terminal condition §g(T,y) = ek

Note that (4.4.4) in particular yields another direct relation between the fraction invested in the

artificial assets and the market prices of risk . Let ﬁ:l‘y = (7?;7"1 flree e Ty +n)T, then
wo — Ly k(5v) 9 (4.4.6)
A v i o
and

Moreover, when considering the completed market as above it is worth mentioning that A < A
implies
v(c*) = sup Vple] < sup Vo [¢; 77Y] =v (c*;ny).
(m,c)eA (7,c)e A
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FORMULATION

Now assume that n* from (4.4.1)) is not arbitrary, but chosen such that the additional utility
from artificial completion is minimized, i.e. we want to find

. . - Y
Ve & ot V().

We again use dynamic programming and the associated equation reads
0= ;n%; {ét + (x (r + (7T Xc) - c) G + (,uY)T Gy + 22° G N (Z)CS)T 7* Gn
ntepn
+ 2Gy B (EE)T 7* + Ltrace [(ZY)T @yyZY] + f(e, G)}
where G is as in ([£.4.3) and § solves (£.4.5). Then the first order condition for ¥ yields
~ T g
()" =k (=) 2. (4.4.7)
g
Plugging (ny)* to (4.4.5) and simplifying shows that g must actually solve (4.2.4). But this
means that we have g = g, hence G = G and in particular v(c*) =V (c*; (ny)*) where (ny)*

is the solution of the dual problem as given in (4.3.5). Moreover the optimal strategy from

Corollary 4.5|is admissible in our incomplete market in the sense that ﬁz*ny)* = 0,1 by (4.4.6),

1.€e.
*
=T ).
Onxl

This is exactly what the abstract concept of least favorable completion is from a PDE point of
view and it is the last step we need to fully understand the intuition behind our approximate
solution schemes introduced in the upcoming chapters.

Note: As mentioned earlier, we denote the solution to the primal, respectively dual dynamic programming

equation by g. For the complete market case we continue to use the notation g, as it is important to distinguish

between those two scenarios in the following chapters.
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Chapter 5

Approximation via Suboptimal
Completion

First we considered the primal and dual problem separately. When talking about the primal
problem we investigated an agent’s investment-consumption decision under given market con-
ditions. Similarly, when talking about the dual problem, we investigated optimal market condi-
tions, without taking into account an investor’s actions. Based on the classical idea of artificial
market completion, introduced by |Karatzas et al., 1991] and [Cvitani¢ and Karatzas, 1992|, we
connected both points of view on a PDE level in This connection opens the door
to numerical approaches to find (approximate) solutions to the primal investment-consumption
optimization problem with Epstein-Zin utility in incomplete markets, one of which we present
in this chapter.

Approximations based on duality theory have often been used in the literature on time-additive
utility in various incomplete market settings. One reason is that, while optimization problems in
incomplete markets are usually unsolvable, their complete market analogues are generally easier
to handle. Furthermore, as we have seen in duality approaches directly or indirectly
provide a tool to evaluate the accuracy of an approximation via the optimality gap. [Haugh
et al., 2006| were the first to make use of the optimality gap, by taking existing approximations
of the primal problem and evaluating the optimality gap using a dual approximation derived
from the primal one. Other examples are |[Brown et al., 2010| and [Brown and Smith, 2011],
where the authors heuristically determine suboptimal policies whose associated utility can easily
be evaluated to obtain a lower bound on the optimal utility. They then consider a frictionless
variant of their model to obtain an upper bound and using certain penalties on the relaxed
market frictions they gradually improve their strategies to tighten up the resulting gap until it
is ’small enough’. Closest to our approximation approach explained below are|Bick, 2012|, |Bick
et al., 2013|,|[Kamma et al., 2020| and |[Kamma and Pelsser, 2022|. The basic idea of the SAMS
algorithm introduced in |Bick et al., 2013| is to artificially complete the underlying market and
then consider only subsets of feasible strategies for which the complete market primal problem
can be solved explicitly, so that the explicit solution is parameterized by the artificial completion.
This parameterized optimal solution is then minimized over the subset of feasible dual strategies
and projected to the set of admissible primal ones. Just recently, [Kamma and Pelsser, 2022|
extended their approach. They consider the dual problem first, optimizing it over a convex sub-
set of feasible dual strategies, using the approximate dual solution to artificially complete the
market and then project the resulting primal strategies and solution to the set of admissible ones.

All those duality methods only work with time-additive utility. For the recursive case, there are
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CHAPTER 5. APPROXIMATION VIA SUBOPTIMAL COMPLETION

some approximation approaches in the literature, e.g. the analytic approximation of [Chacko and
Viceira, 2005](see and a variety of algorithms to simulate the associated forward-
backward SDEs, e.g. the regression methods of |[Bouchard and Touzi, 2004] or [Gobet et al.,
2005|, the Wiener chaos expenansion method of [Briand and Labart, 2014] and the neural net-
work approach by |Lin, 2022|. With the exception of |Lin, 2022|, all the above algorithms suffer
heavily from the curse of dimensionality. An iterative dynamic programming based method
is introduced in [Seiferling, 2016| (see , however, this method is only applicable in
one-dimensional models. Our goal is to develop numerical approximation algorithms based on
the dynamic programming approach, that are applicable in high dimensions, do not suffer too
heavily from the curse of dimensionality and allow for a direct evaluation of our power, respec-

tively variational bounds derived in [Chapter 3|

5.1 Existing Solutions and Approximations

The basic idea of our first approach is very similar to the one of [Kamma and Pelsser, 2022|,
however, instead of using the martingale method, we focus on the dynamic programming method.
Thus, in order to approximate the primal optimization problem

v(c*) = sup Vo[c] = sup E[J fles, Vi[ ds—i—(I)(cT)] (5.1.1)
(m,c)eA (m,c)eA

we always tackle the partial differential equation characterizing its solution, i.e.

-1

O—gt+1,ﬂ<r+11 T(ES(E ) ) X—£)9+<(MY)T+1 ol T((ES) ) (EY)T)gy

+ durace (%) 07|+ 12 (0) 757 ((k )l — 2L (59) ((zS)Tf) =)
n %g - (5.1.2)

subject to the terminal condition ¢(T,y) = ek 22,

In general the problem of finding a solution to remains unsolved. However, there are
scenarios where solutions can be found (numerically) and before we start our own investigation,
we present some already existing results. Most cases appear in our further discussion either as
benchmarks for our own solution techniques or even as part of those and it is worth to take a
closer look before proceeding.

Exact solution by [Kraft et al., 2013]

Consider our general market model in one dimension, i.e. m = n = 1. Choosing the parameter

k= W, the nonlinearity featuring g, (...) % vanishes. The interesting observation
Y+(1=7)(p

made in |[Kraft et al., 2013] is, that by restricting to parameters v and 1 satisfying
1—7)? 2
¥ =2—7+ 525 (o) (H)

. . . 1_k¥ . . . .
one can also eliminate the nonlinearity g~ @ , which leaves the linear inhomogeneous equation

2

— — 2
0= g+ 157 (r+ 522 — 2% ) o+ () + 157228 ) gy 5 (07) gy + 6,
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5.1. EXISTING SOLUTIONS AND APPROXIMATIONS

subject to the terminal condition g(7T,-) = . Hence the solution is given by

T
lty) = U H(p) + (L BT), where  H(ty) = [ h(tgis)ds
¢
and h satisfies the associated homogeneous equation
1— 2 59 Y 1—y xa¥ pSY Y2
0= mtg (rt 3y — o) ot () + 52206 )y + 4 (07) .

on [0, s] x R with terminal condition h(s,y;s) = 1.

A remarkable feature of this method is the explicit representation of the solution and conse-
quently the optimal investment-consumption strategy in feedback form. So far, this is the only
case where an analytic solution to the PDE has been found, when considering Epstein-
Zin utility in incomplete markets with ¥ # 1. A drawback of this approach is certainly the
restriction to one-dimensional affine models and in particular the parameter constellation (HJ.

Fixed-Point Iteration by [Kraft et al., 2017|

Consider our general market model in one dimension, i.e. m = n = 1. Again, by choosing the

parameter k = W, the nonlinearity including g, (...) %’ vanishes. Setting ¢ = 1 — %

yields the semilinear partial differential equation

1— 2 1— Y ,SY 2 2
0=g:+ 5" (’" tayEsE T 1%) 9+ <(NY) + S )99 +2(07) g + 159" (5.13)

subject to the terminal condition g(7,-) = €. |Kraft et al., 2017] establish the existence and
uniqueness of a solution.

Proposition 5.1 (|[Kraft et al., 2017], Theorem 4.6)

Assume that the coefficients r, x, ¢° and « are bounded and Lipschitz continuous and that
oY is bounded and has a bounded Lipschitz continuous derivative. Moreover, assume that
infyer o%(y) > 0 and infyer 0¥ (y) > 0. Then for all v,4,8 > 0 with v,1) # 1 there exists

a unique solution g € CH*([0,T] x R) to (5.1.3) and positive constants 0 < g < g such that
g<g<g and |gy|w < 0.

Moreover, they show the following convergence result.

Corollary 5.2 ([Kraft et al., 2017|, Corollary 7.4)
Let g € C’;’Q([O,T] x R) be the unique solution to (5.1.3). Moreover, let g9 = € and let g, be
recursively defined as the unique bounded solution to the Cauchy problem

— 2 _ Y SY
0= (gn)e + 5~ (r + 3y {%) n + ((uy) + % ) (9n)y (5.1.4)

2 ¥
+ % (UY) (gn)yy + 157_[1 0V gn-1)?,

subject to the terminal condition g,(T,-) = é. Then

lgn — gl < C <£>n for all n > ¢
n e

and some constants C,c > 0.
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CHAPTER 5. APPROXIMATION VIA SUBOPTIMAL COMPLETION

In particular, the following PDE-fixed point iteration converges to the true solution of ([5.1.3)):

Algorithm: (Fixed-Point Iteration)

1. Set go =€ andn =1
2. Compute g, as the solution to the linear partial differential equation 1)

3. If gn is not sufficiently close to g,_1, increase n by 1 and return to 2

The big advantage of the fixed-point method by |[Kraft et al., 2017|, compared to the exact
solution of |Kraft et al., 2013, is that it does not enforce any restrictions on the paramters 7y
and 1. Moreover, when solving , one does not rely on an affine market model, making
the algorithm even more flexible. However, the method is only applicable in one-dimensional
models and the accuracy of the numerical approximation is unknown.

Campbell-Shiller Approximation a la [Chacko and Viceira, 2005|

The idea behind this specific approach is to apply a linear approximation to the optimal
consumption-wealth ratio, such that the PDE ([5.1.2)) corresponds to a investment-consumption
problem with unit EIS.

Interludium
Investment-consumption choice problems with unit FIS are a limit case of the non-unit EIS
parametrization as ¢ — 1. This is similar to logarithmic utility being the limit case of power
utility when risk aversion tends to 1. If ¢ = 1, the specification of the Epstein-Zin aggregator f
corresponds to

e, v) = 6(1 —y)v <1n(c) — ﬁln((l — fy)v)) .

The associated dynamic programming equation for the agent’s indirect utility Vi*[c] = G1(t, X, Y;),
gilven as

0= sup {G% + (z(r+ 7TTX) —c) GL + (uy)T Gé + %xQTrTZS (ES)T rGL,
(m,c)el’(x)

+ xGiyEY (ES)T T + strace [(EY)T G;yEY] + (e, Gl)},

subject to the terminal condition G (T, z,y) = sﬁxl_% can be solved explicitly for affine model

dynamics. Using the ansatz

GH(t,z,y) = 752" gt (ty)

[Chacko and Viceira, 2005] were the first to find that the optimal strategy is of the form

=1 (xS (zS)T)‘1X+ 1 ((ES)T)+ (zY)Tﬁ and (g) )

In [Kraft et al., 2013] the authors use a semi-implicit Crank-Nicolson scheme to approximate the solution
numerically.
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where g'(t,y) = cexp (A(t) —y T B(t) —yTC(t)y) and A, B and C are specified by a model
dependent system of ODEs. Then g' solves

0=gt+(1—7) <r + 11T (25 (ES)T>71 X + 8 (In(8) — 1)) gt (5.1.5)
(0752 (9)7) ) g+ derace [ (57) gy

+ 1
+ (g7 (LW ~= =% (%)) ) ()" % — 61— 79" mg").

with terminal condition g*(T,y) = .

Note that the PDE (5.1.5)) is still nonlinear, but due to the exponential ansatz the equation still
separates if the considered market model is affine.

We already excluded the case of unit EIS in our duality analysis by demanding v # 1 and
it is well understood, so we will not consider it further. Besides, unit EIS is empirically less
relevant and used in particular because of its tractability. We state the solution as above solely
for completeness and for a better understanding of the Campbell-Shiller approzimation. *

In [Chacko and Viceira, 2005|, the authors use the Campbell-Shiller approzimation to transfer
their result from the case of unit EIS to general parameter constellations. The idea is to ap-

. . . _ky . . .
proximate the nonlinearity g~ ¢ from (5.1.2)) by a linear PDE corresponding to the investment-
consumption choice problem under recursive utility with unit EIS. More precisely, introduce the
log-linear approximation

C\* Cc\* C\*
(7> (t,y) = exp (m (<f) (t, y))> ~ (1) (1 ~In(I(t)) + In (<f) (t, y))> (5.1.6)
x x x
= [(¢) (1 —In(I(¢)) + In <5w> — % ln(g(t,y)))
of the optimal consumption rate, where In([(¢)) = E [ln (%) *(t, Yoo)] and Yy, is a random variable
that has the stationary distribution of the state process Y. Put differently, the Campbell-Shiller
approximation uses a first-order approximation of the consumption-wealth ration around its

long-term stationary value. [Chacko and Viceira, 2005| find the solution to be of a similar form
as in the case with unit EIS:

When 9 # 1 there exists an approximate analytical solution to the indirect utility associated to
the primal consumption-investment choice problem (5.1.1)) as

Vel = G(t,2,y) ~ 52" 7% (¢, y).

The approximate investment and consumption strategies read

(5 ) () T (9 -0 ),

where the function g®5(¢,y) = exp (A(t) —y" B(t) —y"C(t)y) for model specific A, B and C
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solves
—1
+ 1777 (7“ + %%XT (ES (ZS)T) X — 1‘&) <5 + %trace [(EY)TgSySZY] (5.1.7)
+
+ ((MY)T + 5207 ((=9)") (zY)T> 955 + 1) (1= m(U(®) + 1 (6¥) = 5 m (%) )
cs
35S (k= D~ 125 (27)(29)7)7) 1) s,
subject to the terminal condition ¢®5(T,y) = é.
Remark 5.3
As pointed out by [Kraft et al., 2013/, the factor | should be regarded as endogenous, so in

applications we determine I(t) recursively: Starting from an initial function ly(t), we find the

solution g©S to (5.1.7) and then update the function [1(t) via

e\ CS
In(ly(£)) = E {m () (t,Yoo)] = In(6¥) — FE[ln (§(¢, Ya0))]
and iterate until a fired-point is reached. A

The advantage of the Campbell-Shiller approximation is that the PDE separates if one
chooses g“3(t,y) = eexp (A(t) — y " B(t) — y" C(t)y) where the functions 4, B and C' completely
characterize the solution. In particular, the approximation is applicable in any dimension n € N
and for any parameter k € R\{0} as long as the model under consideration is affine.

One main drawback of this method is that one cannot understand what this approximation
really does to the underlying problem and how it behaves if parameters deviate from the case
with unit EIS. In particular, it is not clear how the solutions relate to each other, i.e. if the
approximation yields a smaller or bigger value than the true one.

Moreover, in |Kraft et al., 2013|, the authors compare their exact solution to the one resulting
from the approximation in a Heston model similar to the one considered by [Chacko
and Viceira, 2005|.E| They find the quantitative differences between the exact solution and the
approximation to be small when volatility is low, but if volatility increases they become more
pronounced. Quantitative measures aside, they in particular reveal several qualitative short-
comings with respect to the solution associated to the Campbell-Shiller approximation in their
Heston setting. More precisely, while the consumption-wealth ration (%)* associated to the
exact solution increases linearly in y and the optimal investment strategy 7* is state dependent,
the consumption strategy (%)CS associated to the Campbell-Shiller approximation increases ex-
ponentially in y and the investment strategy 75 is constant. While this comparison was made
in a model with an infinite time horizon, the qualitative shortcomings persist in our setting with
finite time. This is the second main drawback of the naive application of the Campbell-Shiller
approximation.

Special Case: Power-Utility

In the special case of power utility, i.e. y3 = 1 which implies # = 1, the partial differntial equa-
tion (5.1.2)) simplifies accordingly. However, even in this time-additive special case of Epstein-Zin

2They consider the one-dimensional special case of our model from [Example 4.2] in an infinite-time setting
while |Chacko and Viceira, 2005| use an inverse Heston model.
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utility the dynamic programming equation remains nonlinear and unsolvable if markets are in-
complete. On the other hand, if the market is complete, i.e. ¥° is invertible, choosing k = 7,

(5.1.2)) simplifies to
0— 1— 11TESEST_1 s T 19 T (S oy’
—o 5 (e AT (259 T) x5 o (00T 5T ()T ) ) g
+ Strace [(ZY)T gyyZY] + (5%, (5.1.8)
subject to the terminal condition g(7,y) = 5%. The associated optimal strategies read
-1 -1 *
=Lz E) x+ (7)) @2 aa (5) =ag
g x

As shown e.g. in |Liu, 2007], a solution is obtained by a separation approach similar to the one
by [Kraft et al., 2013|. This is, a solution to (5.1.9)) is given by

T

g(t,y) = 53 f h(t,y;s)ds + éh(t,y; T)
t

and h satisfies the associated homogeneous equation
-1 +
1— 11T (yvS (vS s AT | 1= T sy T T
()=ht+j<r+2V (Z (E)) X — 1>h+<(u) + 57X ((E)) (Z))hy
+ 1trace [(EY) hyyZY] ) (5.1.9)

on [0, s] x R, subject to the terminal condition h(T,y) = 1. This is in contrast to truly recursive
Epstein-Zin utility, where even in the complete market scenario the HJIB equation associated to
our problem in general has no known solution.

5.2 The ALFC-Algorithm

Consider the primal Epstein-Zin utility optimization problem

v(c*) = sup Vp[c].

(m,c)eA

In[Section 4.4 we realized that the solution is characterized by three equivalent partial differential
equations, which we briefly recall here for easier reference.

1. The equation associated to the primal, respectively dual, optimization problem from
[Proposition 4.3}

0—gt+1,ﬂ(T+§$ T(ZS(Z) )IX—{mW)g*((uY)TﬁLlﬂ T((zS) ) (EY)T>gy

+ %trace [(EY)T gnyY] + %

5v0 150
+ Wg 0

“ T
ot 2 (e 2000 - ) e (002 (5) ) g
“ . T
+ Jtrace [(EY)TgnyY] + %1 (g,)" ((5 - 1) »Y (ZY)T - k‘l%zy (EY) ) Gy
+ 80g1k 7, (5.2.1)

subject to the terminal condition g(7,y) = ek
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2. The equation associated to the least favorable completion as derived in [Section 4.4.2

_ 1 S (v T 7 -
0=gi+ 3 (10 (2 ) rem £2) 9

-1
+ <(,uY)T + I_Tvxz ((Ef)T> (ZY)T) gy + %trace [(ZY)TgnyY]
1, - 1_k¥
+HE )T () gy + (5:2.2)

subject to the terminal condition §(7,y) = % where the market is completed with the
optimal market prices of risk

() = -k (57) 2

Note that in the above we actually have g = g, but in the following it is important to no-
tationally distinguish between the primal, respectively dual differential equation and the one
associated to the artificially completed market. The idea behind the ALFC approach is to find
an approximate solution g~ to , complete the market with the associated approximation
of the least favorable market prices of risk and then solve the more tractable complete market
problem with (ny)* in replaced by said approximation. If our approximation of the dual
solution is good, then the solution g to the equation associated with the optimization problem
in a market completed with a good approximation of the least favorable market prices of risk
should be a good approximation to the true solution g.

We put this idea to algorithmic form:

Algorithm: (ALFC)

1. Find an approximation g~ to (5.2.1)) and seﬁ

x

() =k (5Y) &

g~

2. Replace (ny)* in (5.2.2)) by (ny)% and find a solution g to the resulting partial differential
equation. Then

g=g

Similar to the approximations based on duality theory mentioned in the introduction, the ALFC
algorithm makes use of the fact that the complete market problem is generally easier to solve
than the one in incomplete markets. Note that as we complete the market only with an approx-
imation of the dual solution, that is in particular suboptimally, the resulting strategies are in
general not admissible in the actual market. The investment strategy 7 can easily be projected
on the set of feasible actions by setting n entries associated to the artificial assets to zero, c.f.
[Bick et al., 2013| or [Kamma and Pelsser, 2022|. If the consumption-wealth ratio is bounded,
there is no issue for consumption. When considering unbounded policies, one has to verify the
admissibility of the consumption stream separately.

3We use 'a’ as a placeholder for the specific approximation used by the applicant.
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Note: During our numerical analysis we have to restrict ourselves to bounded domains by the nature of the
matter. It is clear that the model parameters in our specific models are then bounded on those domains and e.g.
by [Proposition 5.1| we know that the solution is bounded above and below on those domains as well. Hence, we do
not discuss admissiblity of consumption within our numerical analysis and generally proceed without introducing

suitable truncated versions of our models as is done for example in [Kraft et al., 2017|.

Suboptimal completion has nice implications as well. In particular, it implies that the result of
this algorithm is automatically an upper bound on the true value, see [Section 4.4.2] Moreover
the algorithm is very flexible. One could theoretically use any approximation (ny)% for the
market prices of risk as long as one is able to solve the resulting complete market problem.

The following exemplary approach is based on the Campbell-Shiller approximation of the dual
dynamic programming equation.

5.2.1 Campbell-Shiller ALFC (CS-ALFC)

To obtain an approximation of the market prices of risk, we make use of the Campbell-Shiller

approximation of
Algorithm: (CS-ALFC)

1. As in|Section 5.1 an approzimation g to (5.2.1) and set

~ T gCS
(") ==k (2) 05

2. Replace (ny)* in (5.2.2) by (ny)cs and find a solution § to the resulting partial differential
equation. Then

g=g

Applying the Campbell-Shiller approximation to the dual PDE instead of the primal one has
several advantages. First, as the Campbell-Shiller approximation yields affine market prices
of risk, the complete market PDE still has a chance to separate. Moreover, even though the
approximation of MPRs is affine, the solution is of a more general structure, see and
(6.1.8). Finally, even if the approximation might be quantitatively good, the approximation is
kind of a black box and applying it to the primal PDE completely changes the problem in an
unforeseeable way. An application to the dual PDE, however, makes use of the good approxi-
mation but only for the market prices of risk used in the artificial completion. In particular, the
actual investment problem on the primal side remains untouched.

For our numerical analysis of this algorithm, we restrict ourselves to the special case of power
utility, i.e. 1) = 1. This is mainly because we focus on the dynamic programming equation,
which in the power case has a closed form solution for the complete market problem as stated
in [Section 5.1} As there is no known solution for the PDE associated to the incomplete mar-
ket problem with power utility, this case is still interesting enough and suffices our purpose
to demonstrate the performance of the CS-ALFC algorithm. Also note that we have to make
the detour to the truly recursive case of unit EIS to obtain our approximation of 7 via the
Campbell-Shiller approximation. To the best of our knowledge this has not been done in the
literature so far.
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5.2.2 Numerical Results (Power Utility)

For notational convenience, we write the PDE associated to the artificially completed market in
terms of arbitrary market prices of risk ¥ and as

. L. N T. 1
0=3g+7n")g+an") g, + strace [(EY) gnyY] + 07,
1
subject to the terminal condition §(7,y) = €7, where 7 : R® — R and & : R™! — RY" are

given as

- _ ™!

F(v) = 177 <r +35 (XT (ES (=) ) X—i—vTv) - 1_‘%)
and

)= )+ 52 (37 ((9)7) )07 (1)),

As already mentioned, the qualitative drawbacks of the Campbell-Shiller approximation as dis-
cussed in become an asset when it is used in the first step of the CS-ALFC approach.
When completing the market with the resulting approximate MPRs, equation separates
and the solution g is of the same structure as the one in provided by [Liu, 2007].

Comparison with Exact Solutions

We first compare the numerical results from the CS-ALFC algorithm with the exact numerical
solution provided by the fixed-point iteration algorithm of in a one-dimensional Kim-
Omberg model as in then in a one-dimensional Heston model as in

Kim-Omberg Model: We first state the general approximate solution and strategies provided
by the algorithm. To this end, consider the model introduced in [Example 4.1} i.e. for a R™*"-
dimensional standard Brownian motion W, let the risky assets and states follow the dynamics

dSP™ = diag[S;™] ((rLm + A + ATY;) dt + 25dW)
dY; = —diag[s]V;dt + XY dW,
where 7 € R, A € R™, A e R™*" ke R? and £% e R™*(m+n) 53¥ ¢ Rnx(m+7) are as defined in

(4.1.3)).
Applying the Campbell-Shiller approximation to ([5.2.1]) yields market prices of risk given by

() (1) = k() (B() +20())

where B and C solve the system of ordinary differential equations (D.2.4) in [Appendix D.2.1]

Introducing artificial assets with market prices of risk given by (nY)CS, the resulting complete
market problem is explicitly solvable according to |[Liu, 2007| and the solution is obtained by a
separation approach as

T
d(ty) = SVH(Ly) + éh(t.y:T),  where  H(ty) = f Bt y: 5)ds, (5.2.3)
t
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with h(t,y;s) = exp (A(t,s) + B(t,s)y + y'C(t,s)y), where A(t,s), B(t,s) and C(t,s) solve
(D.2.6) in [Appendix D.2.1} The associated approximate strategies readlﬂ

=2 (55(5)) oA+ (39)) (57) BED oy

(269505 7 == () T

In particular, we obtain an analytic representation of the approximating strategies and note that
even if we approximated the market prices of risk linearly in the first step, all three strategies as-
sociated to the approximation are ultimately not forced to remain linear by the two step scheme
and take the more general form as in |Liu, 2007]. As mentioned, this is a major distinction
between the CS-ALFC approach and a naive application of the Campbell-Shiller approximation
to the primal PDE.

We set m = n = 1 and analyze the performance of the CS-ALFC scheme by comparing its ap-
proximation with the exact result provided by the fixed-point algorithm discussed in

In a meta study on the calibration of risk aversion in the literature, |[Elminejad et al., 2022| find
that the calibrated « in models that separate RRA and EIS is accumulated between 1 and 10.
We follow |Liu and Muhle-Karbe, 2013| and choose the agent’s preference parameters according
to and the following (monthly) model parameters (c.f. [Campbell and Viceira, 1999],
[Barberis, 2000|, [Wachter, 2002|).

v Y 0 € T r A 7 K gy %Y
5 % 0.52% 1 20 0.14% 0.34% 4.36% 2.26% 0.08% -93.5%
Table 5.1: Preference Parameters Table 5.2: Model Parameters (monthly)

Moreover, we set A = 1. depicts the solution in a $-scale, to maintain comparability.
k
More precisely, in the upper left plot we see the function §° (t,0) = g(t,0) ™=, such that

1 e 1 _ 1=y
G(t,.%',O) = 1— ,_Y:Ul ’yg(t,o)k = ﬁ <$g$(t70)) ’ (525)

associated to the CS-ALFC scheme (red) and the exact solutions from the fixed-point algorithm
of that is used as benchmark (blue). The upper middle and right plot show the
g3 (¢,0
Hio ~
The lower three plots show the associated strategies #(t,0), (£)(¢,0) and 7" (¢,0) as given in
in red (dashed) and the exact solution from the fixed-point algorithm [Section 5.1]in blue.
shows exactly the same, only the solutions are now plotted as functions in y at the
fixed time ¢ = 0. The dashed vertical lines indicate the 99% quantile associated to the stationary
distribution of the state process Y.

associated derivatives §§ (t,0) and sensitivities

compared to the exact solution, respectively.

4Note that setting 7 immediately like this corresponds to cutting off the last n coordinates of 7 to make the
investment strategy admissible in the original market.
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Solution as $-Multiplier (5%)
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Figure 5.1: Kim-Omberg: Algorithmic solution of the FKC-algorithm from IIKraft et al., 2017[]
in blue and the CS-ALFC approximation in red (dashed). The preference and model parameters
are given in [Table 5.1| and [Table 5.20 All functions are plotted as ¢t — -(¢,7)
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Figure 5.2: Kim-Omberg: Known algorithmic solution of the FKC-algorithm from [Kraft et al.,
2017| in blue and the CS-ALFC approximation in red (dashed). All functions are plotted as
y — +(0,y). The dashed vertical lines indicate the 99% quantile of the stationary distribution

associated to the state process.
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Heston Model: We first derive the general approximate solution and strategies. Consider the
model introduced in [Example 4.2 i.e. let m = n and for a R?*-dimensional standard Brownian
motion W let the risky assets and states follow the dynamics

dSP™Y = diag[S;™] ((r1m, + Kdiag[Y;]K TA) dt + 2%(Y,)dW;)
dY; = (i — diag[x]Y;) dt + XY (Y;)dW,

where r € R, A e R", i, s € R, K € R?" and %, %Y are (n x 2n)-dimensional matrix functions
as in (4.1.3)).

Applying the Campbell-Shiller approximation to ([5.2.1) yields the market prices of risk given
by

cs o T

(") () =k (3 W) B,

where B solves the system of ordinary differential equations (D.2.7)) in [Appendix D.2.2l Recall
that 3 (y) behaves as ,/y.
Introducing artificial assets with market prices of risk given by (nY)CS, the resulting complete

market problem is explicitly solvable according to |Liu, 2007] and the solution is obtained by a
separation approach as

~ ~ T~
) = ey +RT), where () = [ it gis)ds
t

with iz(t, Y; S) = exp (fl(t, s) — yTB(t, s)), where A(t, s) and B(t, s) solve (D.2.9)) in|]Appendix D.2.2

Moreover, the approximate strategies readE|

rlty) = Liding [(55)?] KA+ Kding [0 ] ding [05] ' ¥ 2EY - (50)

g(t,y)
1
C) o v 1 yrydy(ty)
—)(ty) = ——, n (ty) = —yyzdiag[o” JL" = ;
<:c 9(t,y) o] 9(t,y)
where (65 )2 = ((6f )2 ey (65 )2) In particular, note that even if we approximate the market

prices of risk by a scaled square root of y in the first step, all three strategies associated to the
approximation are ultimately not forced to remain of that structure by the two step scheme and
are of a more general structure as in [Liu, 2007].

We set m = n = 1 and for our comparison with the exact solution provided by the fixed-point

algorithm from choose the agent’s preference parameters similar to More-

over, we use the following (yearly) model parameters based on |Liu and Muhle-Karbe, 2013], c.f.
[Pan, 2002].

y 0 € T T AN K 7 ok I gy  p%
5 0.062 1 10 0.033 44 1 1 53 013 0.38 -0.57

OT\»—A*@

Table 5.3: Preference Parameters Table 5.4: Model Parameters (yearly)

Figure 5.3{shows the solution § as a $-multiplier (i.e. §%, see (5.2.5))), the associated differentials,

sensitivities and strategies provided by the CS-ALFC algorithm as functions in ¢ (red, dashed);
the exact solution from the fixed-point algorithm is plotted in blue.

®Note that setting = immediately like this corresponds to cutting off the last n coordinates of 7 to make the
investment strategy admissible in the original market.
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Solution as $-Multiplier (§°)
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Figure 5.3: Heston: Known algorithmic solution of the FKC-algorithm from IIKraft et al., 2017[]
in blue and the CS-ALFC approximation in red (dashed). All functions are plotted as t — (¢, )
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Figure 5.4: Heston: Known algorithmic solution of the FKC-algorithm from |Kraft et al., 2017] in
blue and the CS-ALFC approximation in red (dashed). All functions are plotted as y — -(0,y).
The dashed vertical lines indicate the 99% quantile of the stationary distribution associated to
the state process Y.
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shows exactly the same as only as functions in y at the fixed time ¢t = 0.
The dotted vertical lines indicate the 99% quantile of the stationary distribution associated to

the state process Y.

Large Scale Model

In order to test the CS-ALFC algorithm in higher dimensions, we construct a market that is
arbitrarily scalable.

We assume that there is an underlying economy index process S* and state of the economy
process Y*, driven by one dimensional Brownian motion W* and W*, respectively, where W*
and W* are independent. Both of them are not part of the tradable market we consider, they
are merely the driving forces of the overall market randomness. The tradable market is given
by one risk-free asset with rate r and n identically distributed risky assets with dynamics

dSyEY = grisky <(r FAEAYT) dt+ 05 (VprdW* 4 /1 P*dWi)>’ i=1....n,

< J

2dWs

where W;, i = 1,...,n, are mutually independent Brownian Motions, also independent of W*
and W*. In particular, every asset SfiSky has a correlation of 1/p* with the underlying index and
the return of every asset depends on a single state process Y. The processes Y are identically
distributed and each has correlation ¢ with the associated share S* and correlation 4/(1 — £2)¢
with the state of economy process, more precisely

AY' — —kYidt + 0¥ (gdW" /1 (\/gdW* n dei)), i=1,....n,

2dWY
where Wi, 1 =1,...,n, are again Brownian Motions, mutually independent and independent of
W*, W* and all W% i =1,...,n. In short, we assume the overall correlation structure
p$-= L, =7 psy: 3 =7 and pY~= L, =]
R VAR A Yoot i# ) Y@+ (=8¢ i# )

Thus, we are in a special case of the multivariate Kim-Omberg setting as in and
the approximated solution and strategy are given as in and .

As we have no benchmark to compare the algorithm with in higher dimensions, now is when
our bounds for the optimality gap derived in come into play. In this power utility
scenario we naturally stick to the power utility bounds provided in to bound the
optimality gap. Before starting the numerical analysis of the CS-ALFC algorithm with respect
to its accuracy in high dimensions, we briefly discuss a better way to measure the welfare loss
than using the power bounds itself.

Remark 5.4

Using one can directly bound the utility loss associated to using the suboptimal
strategies ¢ and D, respectively. However, it is also possible to transfer them to an upper bound
on the wealth equivalent loss(WEL) as is often done in the literature, see e.g. [Bick et al., 2015).
To this end, use the classical separation Ansatz for the power utility associated to the lower bound

from B1.2), i.e. L]"?[c] = ﬁxl_“‘bgL(t,y). Then, for gr = gr.(0,7), we have

1—v
1—vy=1—v~ 1— 1— v
Prvole) = 52" gL 7% and  P3(D) = 25t (52PI,,(D))
é}JFU
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Then the wealth equivalent loss associated to the utility loss for the lower bound compared with
the upper one corresponds to a constant L € [0,1], such that

P'yv(b(c) = ﬁ (:C(l - L))I_A/ gu,

which is determined by
1 1

L=1-g; g, "

Now L describes the fraction of wealth that is equivalent to the utility loss of the lower bound
with respect to the upper one, and hence is an upper bound on the true wealth equivalent loss,
which can be interpreted as the fraction of initial capital x an investor trading with the optimal
strategy can forego and still obtain the same utility as an investor trading suboptimally. Hence,
the smaller L, the better the associated strategies. In order to obtain a fair idea of the stability
of the approzimation for different time horizons T, we follow [Kamma and Pelsser, 2022] by
introducing an annualized wealth equivalent loss. We define the annualized WEL as

Lr=1—(1—L)T.
A

Remark 5.5
Also note that, by the representation of the value function Vi[c] = G(t,z,y) = ﬁxlf“yg(t, y)k
and consumption (i)* = (W’g(t,y)_%, we can express the optimal value by the optimal con-
sumption ratio:
1 C\F\ "%
Gt = oo (9
(t,2,y) = 7= o .
Applying the upper and lower bounds similar as above allows us to transform the power bounds
on utility to bounds on the optimal consumption, i.e.

_ %= C\ * _Y
5_¢§L a=ne) (2 < 5—¢gUe if ¢ <1,
T
Y CN * _ Y=y
§ Vg, < <E> <o Vg, if > 1.

A

In our numerical simulations we use the parameters from for every asset and state
process, respectively. Moreover, we set p* = 41.6%, i.e. we choose

T r A o° K ¥ P 13
20 0.14% 0.34% 4.36% 2.26% 0.08% 41.6% -93.5%

Table 5.5: Large Scale Model Parameters (monthly)

Furthermore, we set A = 1 and ¢ = 0. shows the result of our bounds applied to the
strategies provided by the CS-ALFC scheme in dimension n = m = 50 and different preference
parameters v € {3,5,7}.

The first line of contains the lower power bound, the second presents the upper power
bound from evaluated by Monte Carlo simulation. The resulting (annualized)
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wealth equivalent loss is given in the last line. The entries presented are the average of 10 simu-
lation with 5000 samples each. The brackets below provide the associated standard deviations.

In particular, shows that even in dimension n = 50, the CS-ALFC algorithm provides

strong upper and lower bounds on the welfare loss of less than 1% annualized WEL for each ~.

n = 50
vy=3 ¥Y=25 vy="T
P,(c) -6.47e-03  -9.50e-05  -2.00e-06
(1.46e-04) (4.28e-06) (1.99e-07)
P*(D) -3.99e-03 -3.57e-05 -5.17e-07
(2.04e-04) (5.34e-06) (2.10e-07)
Vole] -4.84e-03  -5.74e-05  -1.04e-06
Log 7.21e-03 6.25e-03 5.36e-03
(5.66e-04) (5.49e-04) (7.25e-04)

Table 5.6: Large Scale Kim-Omberg: Accuracy of CS-ALFC algorithm in dimension n = 50 and
investment horizon T' = 20 years for different risk preferences . The bounds are the average of
10 Monte Carlo simulations of the respective expectations in with 5.000 sample
paths each. The associated standard deviations are given in brackets.

5.2.3 Conclusion and Extension to the Recursive Case

The comparison of the outputs provided by the CS-ALFC algorithm and the known algorithmic
solution in [Figure 5.1HFigure 5.4] verify that the approximation is accurate in one dimension.
In high dimensions, when there is no benchmark available, its accuracy is backed up by our
bounds on the optimality gap presented in [Table 5.6l Note that the CS-ALFC algorithm does
suffer from the curse of dimensionality, i.e. running times increase exponentially in dimension,
as the search for the fixed-point of the Campbell-Shiller approximation in becomes
more and more difficult in higher dimensions. Nevertheless, as the overall approach is simple
and computationally feasible, the exponential increase in running time only becomes noticeable
in very high dimensions. The computation of the approximate solutions to our large scale model
in dimension n = 50 with time horizon T' = 20 years takes about 12 seconds[f]

A remarkable property of the CS-ALFC algorithm is that, even if we used the affine Campbell-
Shiller approximation to artificially complete the given market, the resulting strategies do in
general not stay affine. This is a major qualitative distinction compared with the classical ap-
proach of applying the Campbell-Shiller approximation to the primal HJB equation. Thus, at
least in our power utility setting, the analytic representation in and can be in-
terpreted as a two step Campbell-Shiller approximation, improving its qualitative shortcomings

identified by [Kraft et al., 2013], c.f.

Conceptionally, the CS-ALFC algorithm is close to the approach of [Kamma and Pelsser, 2022],
as both are based on the following general idea:

SMachine: Intel(R) Core™ i7 — 8650U Processor, 1.9GHz, 16GB RAM.

71



CHAPTER 5. APPROXIMATION VIA SUBOPTIMAL COMPLETION

Algorithm: (ALFC - General Idea)

1. find an approximation to
v¥(A*) = Ame {V'[A] + Az} (5.2.7)
e a

2. complete the market using the MPR (ny)% induced by the approzimation of (5.2.7) to
solve

~

V(e M)7) = s W[ ().

(7,c)eA

While we focus on dynamic programming techniques, [Kamma and Pelsser, 2022| employ the
martingale method, which allows them to also treat more general (non-affine) models and more
general types of utility functions. Our CS-ALFC algorithm on the other hand is conceptionally
easier because it does not rely on Monte-Carlo evaluation or additional convex optimization
techniques. Instead, we make use of the Campbell-Shiller approximation that is already at
hand. Moreover, while [Kamma and Pelsser, 2022| are able to treat e.g. state dependent utility
functions, their method heavily relies on the time-additive structure, i.e. in our setting they
only treat the case v = 1. While we only tested the CS-ALFC scheme for time-additive power
utility here, the algorithm can easily be extended to the recursive case. However, not without
using additional approximations for the sensitivity %y in the partial differential equation ,
thereby loosing the upper bound property of the approximation. An exemplary approximation of
those sensitivities is used in our second algorithm introduced in the next chapter, see

and in particular Remark 6.1]
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Chapter 6

Approximation by Iterative
Suboptimal Completion

After we have seen how the introduction of duality can lead to numerical approximations of
optimal strategies in the last chapter, we consider the concept of least favorable completion
from a slightly different angle. To begin, assume that the market is complete and that the agent
trades all m + n shares to maximize her utility. Denote the market prices of risk of the n shares
that do not actually exist in the incomplete market by 1, then the investor’s optimal utility is
given as
f/(c*;ny) = sup Vj [c; nY].
(7,c)eA

Now we introduce a price setting opponent, who controls the market prices risk of the additional
n assets and will not allow the investor to trade in the artificial stocks. He determines the
associated market prices of risk based on her investment choice, i.e. he sets n¥ such that her
investment in the n additional assets (m,v ) becomes zero,

This adjustment now changed the market conditions for the investor and she adapts her asset
allocations appropriately, forcing the price setter to again change market conditions and so on.
This is the general idea of our Primal-Dual-Iteration(PDI) algorithm:

Algorithm: (PDI - General Idea)

1. initialize the market prices of risk with j = 1 and (ny)(jfl),

2. solve (approximate) the (ny)(j_l)—completed market problem introduced in as
3 (c*; (nY)(j*1)> - sup Vo [C; (nY)(jfl)]
(7,c)eA

and denote the associated investment strategy by ™ = (Wns,wny),

3. set (ny)(j) such that
v = 0.

n
4. e ifd ((ny)(j) , (T]Y)(jfl)> is large: set j — j + 1 and return to
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o clse: '
v <c*; (ny)(])> 1s the approzimate primal solution

Speaking in terms of HJB equations, recall from [Section 4.4.2 that in the 1Y -completed market

we have
V() = Gt a,y) = 529t y)",

where g satisfies the nonlinear partial differential equation

=gt 2 (e Pl (32)) x5 )o ()45 (7)) ),

~ kY
(3) S (2Y) g, + Sty (6.0.1)

T _
+ Strace [(EY) gnyY] + %kwi

Q|

-

with terminal condition §(7',y) = e%. Moreover, the investor’s optimal strategy reads
- T\ ! T\ ! Tg c\* kv
P (559 etk (E)) T @) and  (9) =g
as well as -
v Ly e B (2Y) L
Thus, as in (4.4.7)), the appropriate adjustment of the MPR is determined as

) =k (s) L

<N

%
n

Note that up to now 7* is admissible after each adjustment of the MPR. Thus, if the algorithm

converges, i.e. (ny)(j) = (ny)(jfl), the output is admissible in the original marked as opposed
to the output of the ALFC-scheme of

6.1 Sensitivity-Approximation PDI (SA-PDI)

Consider the PDE associated to the completed market and set k = %, such that the nonlinearity

ky . . . g . . .
gt= Vamshes Unfortunately, due to the nonlineariy g;’ we cannot solve the partial differential

equation (|6 and thus cannot translate the idea of the PDI algorithm to the notlon of PDEs
without applylng additional approximations. Our approach to approximate (6 is as follows.

We represent the sensitivities %y with the optimal market prices of risk, i.e.

N L (6.1

then similar as before, we can equivalently formulate the complete market equation ((5.2.2) as
~ - ~ ~ ~ T .
0=g¢+7 ((ny)*> g+ a ((ny)*) Gy + %trace [(ZY) gnyY] + 6, (6.1.2)
where 7 : R” — R and & : R™*! — RY*" are given as
N 11 (T (v (v5yT) ! T 50
r(v)—,ﬁ(r—I—Qv (X (E (%) ) X+ v) —17>
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6.1. SENSITIVITY-APPROXIMATION PDI (SA-PDI)

at) = () + 52 (7 (9)7) @) o (1)) - peer (1) T @),

We guess some initial 7Y, solve (6.1.2) and update nY according to the solution by nt, =
~ T 5
—k <2Y> %y. The issue with the dynamic programming method now is that, even if the model

is affine, the resulting sensitivities %y and hence market prices of risk are in general not. Thus,

we approzimate the market prices of risk n¥ ~ nY ., such that 7Y is affine and separates
when plugging it into the approximation, accepting the additional approximation error. Then
nY is used as initialization of the next iteration and we proceed until convergence, i.e. until the
approximations of sensitivities coincide.

Algorithm: (SA-PDI)

-1

1. initialize the market conditions with j = 1, (ng) = 0px1

2. solve the approzimated complete market problem by finding a solution g to
. . 1
0=g;— 7 <(77Z)(J 1)> g+a ((ng)(j 1)) gy + §trace [(EY)TgyyZY] + 07, (6.1.3)

subject to the terminal condition g(T,y) = et and set (D) = —k(=V)T

v
bx‘@

3. suitabl approximate the resulting sensitivities %y by some function S : [0,T] x R™ — R"
and set

4. o ifd ((ng)(j_l) , (ng)(j)) is large, increase 7 by 1 and return to

e clse: the approrimated solution is characterized by g

Note that due to the completion with the approximations of sensitivities, the resulting invest-
ment strategies are no longer admissible and have to be projected on the set of admissible ones
by cutting off the last n entries that are associated to the artificial assets. Moreover, besides
the usual numerical inaccuracies, there are two sources of errors. The first one comes from the
affine approximation of the market prices of risk, so we complete the market suboptimally. The
second one is that resulting from the representation , we also approximate the sensitivities
that do not actually correspond to the artificial completion. This certainly has an impact on
the solution and, similar as the Campbell-Shiller approximation, it is not really clear what this
does to the optimal value. At least, there is a probabilistic interpretation of this approximation
which we briefly state in a heuristic manner:

In order to not take into account the affine approximation of Y, consider the partial differential
equation corresponding to the exact completion (5.2.2) as above. A short manipulation shows

that (5.2.2)) is equivalent to

0=g+75+(3,) <MY SR <g;>> + Ltrace [(EY)TgyyZY] 48,

"What kind of approximation is suitable depends on the model under consideration, see our numerical examples
below.
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CHAPTER 6. APPROXIMATION BY ITERATIVE SUBOPTIMAL COMPLETION

—1
g(T,y) = €, where 7 & 2 (r +5ixT (25 (ES)T) Y — &) and
AP s .
f (;) 2 2 (25) = 4 (k= Dl — k252 (55) 7 55) (29)

Then 6 as a process of t and Y can be interpreted as a Girsanov kernel inducing a change of
measure under which

AWe = AW, + 0 <gg}/> dt

is a (m + n)-dimensional Brownian motion, thus g(¢,y) has an implicit Feynman-Kac represen-
tation

T
g(t,y) = 0 E] U ol )d“ds] + €Ef e i r(r)an]
¢
where E? is taken under the new measure of risk induced by 6 and Y? has the dynamics
v’ = <uY -3V <gf’>> dt + 3¥dw?’,
g

Hence, the affine approximation of the sensitivities that are not associated to the completion
of the market with 7Y, can be interpreted as an affine approximation of an actually nonlinear
change of measure.

Remark 6.1
The approximation (6.1.1)) could also be used to extend the CS-ALFC algorithm to the recursive

case:

1. set k = £ and determine the Campbell-Shiller approzimation ¢S associated to the dual

partial differential equation (5.2.1))
2. set

CS
v 9
(") = -k (V) 05

3. solve with (nY)CS instead of (T]Y)*, then g ~ g

Note however, that in the truly recursive case we have no closed form solution, even for the
artificially completed market problem. A

6.1.1 Numerical Results

We test the SA-PDI algorithm with our multivariate Kim-Omberg and Heston model. All nec-
essary computations can be found in

Comparison with Exact Solutions

First, we compare the numerical results provided by the PDI algorithm with the exact numerical
solution provided by the fixed-point iteration algorithm of in a one-dimensional Kim-

Omberg model as in [Example 4.1} then in a one-dimensional Heston model as in [Example 4.2
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6.1. SENSITIVITY-APPROXIMATION PDI (SA-PDI)

Kim-Omberg Model: Recall the model introduced in [Example 4.1, where for a R™*"-
dimensional standard Brownian motion W, the risky assets and states follow the dynamics

dSy™ = diag[S;™] ((rlm + X+ ATY:) dt + Z5AW7)
dY; = —diag[k]|Vidt + XY AW,

where r € R, A € R™, A € R™™ k € R? and X5 € Rm*(m+n) 51V ¢ Rnx(m+7) a5 defined in
(4.1.3). Then the algorithm in the j-th step behaves as follows.

Let the market prices of risk (ny)(j D from the (j — 1)-th iteration of the form

i—1
(") =0 @) + ) 0y
be given. Plugging these into (6.1.3]), a solution is given by the function
T
) = 8% | bt s s)ds + bt ), (6.1.4)
t
where

h(t,y;s) = exp ([l(t, s) — yTB(t, s) — yTC'(t, s)y)

and fl(‘,s), B(-,s), C’(-,s) solve (D.3.2)) in |Appendix D.3.1|. In particular, the update for the
market prices of risk are given as

(nY)(j) _ (gy)Tégy.

We determine the approximation of sensitivities by the first-order Taylor approximation around

y=E[Yy] as 5 (6.9) o ()
_ 9Ly O [ 9y\L, Y -
StV = Gen o <§<t,y) ) v=9)

Then the linearized market prices of risk have a representation

i1 . T
)V (t,y) = =k (2y> S(t,y) = G1(t) + Ga(t)y
for appropriate &1 and G,. Evaluate
. , )
()" 00 = 1t = &illz + @llny — Sl (6.1.5)

for some weight &ﬂ Now we are either finished if (6.1.5) is ’small’; or we set 7 — j + 1 and
repeat. In case we are finished, the approximate strategies read a;

=3 (7)) e () 67 5

& (W) - gy(tﬁU)
(;) (t,y) = ) and nY (t,y) = —k <2Y> St (6.1.6)

2We introduce the weight @ to compensate for potential mismatches between the two Euler and Frobenius
norm. In our numerical analysis we generally do fine with @ = 1.

3Note that setting 7 immediately like this corresponds to cutting off the last n coordinates of 7 to make the
investment strategy admissible in the original market.
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CHAPTER 6. APPROXIMATION BY ITERATIVE SUBOPTIMAL COMPLETION

In particular, even though we approximated the sensitivities by the linear first order Taylor
approximation, the strategies obtained from the SA-PDI algorithm are of the more general
structure similar as in [Kraft et al., 2013].

As benchmark for the performance of the SA-PDI approximation, we utilize the fixed-point
algorithm discussed in In terms of preference parameters, we follow |Liu and Muhle-
Karbe, 2013| by choosing v = 5 and [Bansal and Yaron, 2004| by choosing ¢ = 1.5. In particular,
in our numerical analysis we focus on parameters 7,1 > 1, which are sometimes labeled as the
empirically relevant case in the literature, c.f.[Xing, 2017|. As in the CS-ALFC algorithm, we
choose our (monthly) model parameters based on |[Liu and Muhle-Karbe, 2013| and |[Wachter,
2002|, c.f. |Barberis, 2000].

vy o € T r A o K ol Y
5 1.5 052% 1 20 0.14% 0.34% 4.36% 2.26% 0.08% -93.5%
Table 6.1: Preference Parameters Table 6.2: Model Parameters (monthly)

Note that we choose our preference parameters far away from the power case, to stress the
performance of our power bounds.

Finally, we set A = 1. show the solution g as a $-multiplier (see ), the associated
differentials, sensitivities and approximated strategies provided by the SA-PDI algorithm in red
(dashed); the exact solution from the fixed-point algorithm is plotted in blue. All graphs show
the associated mappings in ¢ at the mean reversion level of the state process .

Solution as $-Multiplier (5%) Differnential () Sensitivities (3/3°)
1
——TRC ——FKC
0.9 ——-PDI 1 5 — — —pPmi
0.8
0.8 4
0.7
0.6 0.6 3
0.5
0.4 2
0.4
0.3 0.2 1
0.2
0 0
0 5 10 15 20 0 5 10 4] 5 10 15 20
+<[0,20] t<[0,20] te[0,201
Investment Strategy . Consumption-Wealth Ratio (c/z) Deflator factor n*
.04
043 FKC FKC FKC
— ——rn1 — —-rnl |
0.44 0.02
0.035
0.43
0.015
0.42 0.03
0.41
0.025 C
0.4
0.39 0.02 0.005
0.38
0.015 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
t<[0,20] t[0,20] te[0,20]

Figure 6.1: Exact solution from fixed point algorithm in blue and the SA-PDI approximation in
red (dashed). Parameters are as in [Table 6.1 and [Table 6.2) where T' = 20 years. All results are
plotted as t — -(¢,0).

again shows the solution ¢® and the associated strategies of the SA-PDI algorithm in
red (dashed) and the exact solution of [Kraft et al., 2017] in blue, this time as functions in y at
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Solution as §-Multiplier (7°) Differnential (7;) Sensitivities (77/5°)
| | | | i) | |
5 | | 160 | | — — —ror| e ! !
| | | I | |
A | | it | | 2 | |
I I I I I I
4 I 1 i I I 20 I I
5 I i 1 i I I I
| | | I 15 | I
| I 100 ] | |
2 | l I I 10 | |
I I 80 I I I I
24 I 1 I I 5 | I
I i i I i I
2 I I 6o i | 0 I
| l I I | |
13 | 1 40 1 | 5 | |
I 1 I I I I
1 I i 20 i I 10 I I
5 | | | I | |
| I | s I I
| o 1 | | |
02 015 01 -005 0 005 0l 015 0.2 02 015 01 005 © 005 01 015 02 02 015 01 -005 0 005 01 015 02
ye[-0.2,0.2] ve[-0.2,0.2] y<l[-0.2,0.2]
Investment Strategy Consumption-Wealth Ratio (c/z) Deflator factor "
2.5
I I I I | I
| | 0.04 | | 0.12 | |
2 | | | | | |
| l I I 01 | |
£x | | 0,035 | | | I
: I I I 0.08 | |
I i i i I I
1 | .08 | I 0.06 | I
| | I I |
I I I I 0.04 I |
05 | I DR | | | |
| 1 I I 0.02 | I
0 i ia i I | I
| | : | I 0 |
| l I I | |
“0.5 | 1 0.015 1 | -0.02 | |
I 1 I I I I
a I i i I -0.04 I I
| | 0.01 | I | |
| I I I -0.06 | I
-1.5 I 1 1 L | |
02 015 01 -005 0 005 0l 015 0.2 02 015 0.1 005 © 005 01 015 02 02 015 01 -005 0 005 01 015 02
yel02,02] yel02,02] yel-0.2,0.2]

Figure 6.2: Exact solution from fixed point algorithm in blue and the SA-PDI approximation in
red (dashed). Parameters are as in[Table 6.1|and |[Table 6.2, All results are plotted as y — (0, ).
The dashed vertical lines indicate the 99% quantile of the state process with our given model
parameters.

We compare the results in dimension m = n = 1 for several risk preference parameters, while
the model parameters remain fixed as in When iterating over v € (0, 10] we follow
[Bansal and Yaron, 2004] and fix ¢ = 1.5; when iterating over ¥ € (0, 5] we fix v = 5 according
to [Liu and Muhle-Karbe, 2013|[] Note that the PDE iteration of [Kraft et al., 2017] diverges if
1) gets close to 1, while the SA-PDI algorithm runs stable.

Finally, we investigate the convergence of the algorithm. shows the function g$(0, Y)
of every iteration step as a function of y within the 99% quantile of the given state process on
the left side. The plot on the right side shows the error degression in terms of on a
logarithmic scale.

4The gaps within the graphs are the parameter constellations 7, that are out of our duality setting.
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Solution as $-Multiplier 5°(0,7)

Investment Strategy w(0, 7)

0.28 25
FKC FKC
o —— -l ———pDI
2
0.24
0.2 i
02
0.18 E
0.16
05
0.14
0.12 0
2 4 [ 8 10 0 4 6 8 10
~e [0.1,10] ~€ [0.1,10]
Solution as $-Multiplier 3°(0, 7) Tnvestment Strategy (0, 7)
0.6
0.35 FKC
— — —PDI
03 0.55
0.25
05
02
e S ] 0.45 /Ki
01 -
005 A
0
0.3
0.05
it 03
0 1 4 5 o 4 5

3
ve [0.01,5]

2 3
ye [0.01,5]

Consumption-Wealth Ratio (e/x)(0,7)

2 4 6 8 10
%€ [0.1,10]

Consumption-Wealth Ratio (c/r)(0, )

FRC
0.09 ———eni

e [0.01,5]

Figure 6.3: Exact solution from fixed point algorithm in blue and the SA-PDI approximation

in red (dashed).

Parameters are as in [Table 6.1 and [Table 6.2 All results are plotted at

(t,y) = (0,7) as functions in v and 1 respectively.
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Error Degression
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Figure 6.4: Convergence behavior of our SA-PDI scheme in the Kim-Omberg model.

-0.02

0
y<([-0.045,0.045]

0.02

The

function iterates on the left plot are given as y — -(0,y) on the 99% quantile of the state
process. The error on the right hand side are on a logarithmic scale. Model parameters are as

eiven
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6.1. SENSITIVITY-APPROXIMATION PDI (SA-PDI)

Heston Model: Consider the multivariate Heston model introduced in ie. let
m = n and for a R?"-dimensional standard Brownian W let the assets and states follow the
dynamics

dS; = diag[S] ((r + Kdiag[Y;]K " X) dt + $5(Y;)dW3) ,
dY; = (1 — diag[x]Y;) dt + XY (Y;)dWy,

where 7, \, fi, s € R?, K € R?”™ and ¥, %Y are (n x 2n)-dimensional matrix functions as in
(4.1.3). Then the SA-PDI algorithm in the j-th step behaves as follows.

(-1

Let the market prices of risk (77Y) of the form

(-1 :
(") (k) = =k (27 @) @),

where g is the solution of the previous iteration. Recall that i]y(y) behaves as /y. Plugging
these into (6.1.3]), a solution is given by the function

T

g(t,y) = 5¢f h(t,y; s)ds + €h(t, y; T),

t

where

h(t,y;s) = exp (fl(t, s) — yTB(t, 5)) ,

and A(-,s), B(-,s) solve (D.3.3) in [Appendix D.3.2l In particular, the update for the market
prices of risk are given as

. N T =
g
We approximate the sensitivity %y by its the value at y = E Y] as

T
s(t) - 2b9)
9(t,9)
Then the approximated market prices of risk are of the form
j—1 .o 1
()77 (¢ ) = —hding 7" 1LY y & (2).
Finally, evaluate

(@) @)Y) = 1~ &lle (6.1.7)

and we are either finished if (6.1.7]) is 'small’ or we set j — j + 1 and repeat. In case we are
finished, the associated approximate strategies read a

-1 _ _ a. (t
7(t,y) = %Kdiag [(65) ] K™\ + %Kdiag [6Y] diag [65] 1pSY ggy((t ’yy)), (6.1.8)
C) 5v v 1 yrydy(ty)
— ) (ty) = = ) n' (t,y) = —kyzdiag|c” |L" = ,
<x :9) 9(t,y) ¢.9) o] 9(t,y)
where (65)2 = ((5‘19)2 yeees (5,‘5)2) In particular, even though we approximated the sensitiv-

ities with a constant function in y, the strategies from the SA-PDI algorithm are of the more

®Note that setting = immediately like this corresponds to cutting off the last n coordinates of 7 to make the
investment strategy admissible in the original market.
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general form of |Kraft et al., 2013|.

For our comparison, we choose m = n = 1 and stick to the preference parameters from [Table 6.1]
and for the (yearly) model parameters we follow |Liu and Muhle-Karbe, 2013, c.f. [Pan, 2002]|.

vy oY 1) € T r AN K & &k i ¥  pY
5 1.5 0.062 1 10 0.033 44 1 1 53 013 0.38 -0.57

Table 6.3: Preference Parameters Table 6.4: Model Parameters (yearly)

[Figure 6.5| and |[Figure 6.6 show the solution g as a $-multiplier (see (5.2.5))) and the associated
differentials, sensitivities and approximated strategies provided by SA-PDI in red (dashed); the
exact solution from the fixed-point algorithm is plotted in blue. shows all mappings

as functions t — -(¢,0), while |[Figure 6.6| shows them as functions y — -(0,y).
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Figure 6.5: Exact solution from fixed point algorithm in blue and the SA-PDI approximation in
red (dashed). Parameters are as in [Table 6.3[ and [Table 6.4) where 7' = 10 years. All results are
plotted as t — (¢, 7).

We now compare the results for several risk preference parameters, while the model parameters

remain fixed as in|Table 6.4, When iterating over v € (0, 10] we follow [Bansal and Yaron, 2004
and fix ¢ = 1.5; when iterating over v € (0,5] we fix v = 5 according to [Liu and Muhle-Karbe,|

2013

5The gaps in the graphs correspond to parameter constellations where 7, 1 are out of our duality setting.
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Solution as §-Multiplier (5°) Differnential (7} i Sensitivities (75/3°)
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Figure 6.6: Exact solution from fixed point algorithm in blue and the SA-PDI approximation in
red (dashed). Parameters are as in|Table 6.3/and [Table 6.4] All results are plotted as y — -(0,y).
The dashed vertical lines indicate the 99% quantile of the state process with our given model
parameters.
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Figure 6.7: Exact solution from fixed point algorithm in blue and the SA-PDI approximation in
red (dashed). Model parameters are as in [Table 6.41 All results are plotted at (¢,y) = (0,7) as
functions in v and v respectively.
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Concerning the convergence of the SA-PDI algorithm, shows the function ¢%(0,v) of
every iteration step as a function of y within the 99% quantile of the given state process on
the left side. The plot on the right side shows the error degression in terms of on a
logarithmic scale.

Funktion Iterates
T T

Error Degression

i .
0 0.05 0.1 0.15 0.2 1 2 3 4 5 6 7 8 9 10
y€(0,0.2471] i=1....10

Figure 6.8: Convergence behavior of our SA-PDI scheme in the Heston model. The function
iterates on the left plot are given as y — -(0,y) on the 99% quantile of the state process. The
error on the right hand side are on a logarithmic scale. Parameters are as in

Large Scale Model

In order to test the SA-PDI algorithm in higher dimensions, we consider our large scale market

from [Section 5.2.2] i.e. we assume the correlation structure

1, i=j & i=j 1 i=j
S ’ SY ’ Y )
Prj =N o . Pig =9, o oand pip=q e
v {p, i# ] " {fp, i# ] R R ¢ e S SR Ay

As mentioned above this is a special case of the multivariate Kim-Omberg setting as in

thus, the behavior of the algorithm in the j-th step is given as above and the approxi-
mated solution and strategy are given as in (6.1.4) and (6.1.6]).

Again, we have no benchmark to compare the algorithm with in higher dimensions, so we have to
utilize our bounds from However, as we are now in a truly recursive setting, the accu-
racy of our power bounds from deteriorates if v, 19 deviates too much from the case
vt = 1. While on our focus area v, > 1 we have no alternative for the upper bound, we utilize
our lower variational version from as a lower bound to evaluate the optimality gap.

Similar as in we take the annualized welfare loss as a measure of accuracy derived
from the actual optimality gap. The derivation here is analogous to the derivation within

with P ¢(c) from [Theorem 3.11| replaced by U(c, ) from [Corollary 3.12

In our numerical simulations, we set A = 1, p* = 41.6% and ¢ = 0, and otherwise stick to the

parameters from for every asset and state process:
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T r A A o K a¥ p* & ¢
20 0.14% 0.34% 100% 4.36% 2.26% 0.08% 41.6% -93.5% 0

Table 6.5: Large Scale Model Parameters (monthly)

shows the result of our bounds applied to the strategies provided by the SA-PDI scheme

in dimension n = m = 50 and for different preference parameters (y,v) € {(5,1.5), (3,1.3), (1.1, 1.1)}.
The first line of contains the lower variational bound, the second presents the upper
power bound from evaluated by Monte Carlo simulation. The resulting (annu-
alized) wealth equivalent loss is given in the last line. The entries presented are the average

of 10 simulation with 5000 samples each. The brackets below provide the associated standard
deviations.

n =50
(V=59 =15) (=3,0=13) (y=1.1,¢=11)

Ulc,u) -1.79¢-06 -9.80e-04 -6.746

(8.95e-07) (5.41e-05) (0.010)
P*(D) -2.83¢-12 “1.14e-05 ~6.463

(2.82e-13) (5.69¢-07) (0.013)
Vole] -1.32¢-06 -8.86e-04 -6.713
Log 56.3% 28.3% 2.3%

(9.19e-03) (3.05e-03) (8.01e-04)

Table 6.6: Large Scale Kim-Omberg: Accuracy of SA-PDI algorithm in dimension n = 50 and
investment horizon T = 20 years for different RRA v and EIS . The bounds are the average
of 10 Monte Carlo simulations of the respective expectations in with 5000 sample

paths each. The associated standard deviations are given in brackets.

It turns out that evaluating the truly recursive scenario by using our power bounds is unsatis-
factory, see in particular the second row of compared to the first and third.
verifies the intuition, that our power bounds become worse, if we deviate much from the power
utility case and become better (but not great) when we are closer to v = 1.

Searching for a better way to verify the performance of the SA-PDI algorithm, its high accuracy
in dimension n = 1, c.f. [Figure 6.1{Figure 6.8] as well as the upper bound property of the
value function from the suboptimal completion in every step, tempts to use f/o[c] itself as an
upper bound. However, one cannot be sure whether this upper bound property provided by the
duality theory of |Cvitani¢ and Karatzas, 1992] was destroyed by the additional approximation of
sensitivities or not. Nevertheless, as the first column of [Table 6.6) provides almost no information
about the performance of the algorithm, we do take ‘N/o[c] as an approrimate upper bound as
this is the best hint we can get, even if results might be too good (see in particular the first
column of where v(c*) slightly exceeds Vp[c]). We denote the resulting approzimated
annualized WEL by L7, the derivation is analogous to with P ,4(D) replaced by

Volel]

"Note that the results differ slightly from the ones in [Table 6.6] as they are computed by a separate Monte

Carlo simulation.
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CHAPTER 6. APPROXIMATION BY ITERATIVE SUBOPTIMAL COMPLETION

(y =54 =15) (y=3¢=13) (v =11, ¢ = 11)
n=1 n = 50 n=1 n = 50 n=1 n = 50
U(e,u) -7.687e-06 -1.602e-06 -3.134e-03  -1.057e-03 -7.670 -6.746
(1.813e-07)  (2.264e-07) (3.102e-05)  (7.834e-05) (9.283e-03)  (7.951e-03)
Vole] -7.553e-06 -1.3251e-06 -3.117e-03  -8.865¢-04 -7.666 -6.7132
v(c*) -7.551e-06 - -3.117e-03 - -7.666 -
L5, 1.08e-03 0.0112 4.19¢-04 0.0129 2.98e-04 2.74e-03
(1.04e-03)  (8.135e-03) (4.21-04) (5.22e-03) (6.65e-04) (6.44e-04)

Table 6.7: Large Scale Kim-Omberg: Accuracy of SA-PDI algorithm in dimension n = 50 and
investment horizon T' = 20 years for different RRA ~ and EIS 1. The lower variational bound is
the average of 10 Monte Carlo simulations of the respective expectation in with
5000 sample paths each. The associated standard deviations are given in brackets.

6.1.2 Conclusion and Notes on Convergence

The comparison of the outputs provided by the SA-PDI algorithm and the known algorithmic
solution in [Figure 6.IFigure 6.3] and [Figure 6.5Figure 6.7] respectively, verify that the one-
dimensional approximation is accurate in both, the Kim-Omberg and Heston model. Moreover,
it is stable under variations of the preference parameters v and v, even more stable than the
PDE-iteration algorithm, that diverges if 1 gets close to 1. Even in higher dimensions the algo-
rithm is fasﬁ and stable under changing preference parameters. The verification of accuracy in
high dimension, however, turns out to be difficult, as our power bounds become arbitrarily bad
if the preference parameters deviate too much from the power utility case, recall The
arguably more accurate approximate bounds calculated with the direct use of the algorithms
output indicates high accuracy with annualized WEL of about 1% (c.f. , however,
those bounds have to be treated with caution, as the linear/constant approximation of sensi-
tivities potentially destroys the upper bound property inherited by suboptimal completion. In
particular, the solution provided by the SA-PDI algorithm might be smaller than the true solu-
tion and thus yield too small welfare losses, as can be seen in the first column of

The SA-PDI algorithm converges fast and reliable, c.f. however it never converges to
the true solution but only to the approximation of the problem with linear /constant sensitivities.
It can be shown that a variation of the PDI scheme, where instead of the approximation of
sensitivities, we use the Campbell-Shiller approximation in every step, converges to the direct
Campbell-Shiller approximation of the primal problem.

The main drawback of the SA-PDI algorithm is its limitation to affine market models and its
convergence not to the true solution but only to an approximation. The approach by [Kraft
et al., 2017| is more flexible in that point of view, as by solving the associated PDE numerically
with a Crank-Nicolson scheme, they don’t need it to separate. However, their scheme is only
applicable in one dimension, while the SA-PDI algorithm can handle high dimensions without
suffering too much from the curse of dimensionality. Also the SA-PDI algorithm provides an
analytical representation of the approximation, instead of a solely numerical solution. The only

8The running time is almost independent of the dimension. Evaluations in dimension n = 50 take about
12 seconds. Machine: Intel(R) Core™ i7 — 8650U Processor, 1.9GHz, 16GB RAM. Note that the computation
time of the bounds on the other hand does depend on the dimension and may take several minutes.
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6.1. SENSITIVITY-APPROXIMATION PDI (SA-PDI)

running times in different dimensions
T T T

Figure 6.9: Running times of the large scale Kim-Omberg model in different
seconds.

dimensions in

analytical approximation to high dimensional incomplete market problems is the Campbell-
Shiller approximation of |[Chacko and Viceira, 2005|, but as pointed out by |Kraft et al., 2013,
the CS approximation implies several qualitative issues on the optimal strategy, such as expo-
nential state dependence of consumption and no state dependence in the investment strategy.
The approximate solution of our SA-PDI scheme does not inherit those shortcomings, as the

solution structure coincides with the one found by |[Kraft et al., 2013|.
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Chapter 7

Conclusion

Overall, this thesis extends the theory on investment-consumption optimization problems of an
investor with recursive Epstein-Zin preferences by further developing the convex duality theory
introduced by [Matoussi and Xing, 2018, bridging gaps in existing research, providing effective
approximation methods for a agent’s optimal strategies and introducing novel duality bounds
on the optimality gap associated to said approximations.

More precisely, while [Matoussi and Xing, 2018| exclude power utility from their duality pro-
cedure, our extended approach derived in captures power utility as a special case.
As duality results for this time-additive utility specification are well known (c.f. |Pliska, 1986],
|[Karatzas et al., 1987|, [Karatzas et al., 1991], |He and Pearson, 1991]), this extension is rather
of aesthetic nature and mainly shows consistency of the two approaches within our enlarged
framework. The resulting dual problem is of similar structure as the primal one, i.e. it is given
as the solution to a non-standard BSDE. |Becherer et al., 2023| were the first to establish ex-
istence, uniqueness, as well as monotonicity and convexity results for solutions of this specific
BSDE. However, as they consider a variation of the classical Epstein-Zin parametrization, their
analysis excludes relevant parameter constellations for the RA ~ and EIS 1. We close that gap
in [Section 2.3l

Moreover, we investigate duality bounds in terms of the optimality gap (see ,
which have successfully been used since their introduction by |[Haugh et al., 2006| in various
time-additive utility settings, see e.g. |Bick et al., 2013| or [Kamma and Pelsser, 2022|. The
primary benefit of those bounds is that they provide a measure for the accuracy of an approx-
imate solution, without knowing what the exact solution is, so they can be utilized to validate
numerical approximations without the need of a benchmark approach. In a time-additive set-
ting those bounds are easy to determine by Monte Carlo simulation; in our recursive setting
however, the computation of this optimality gap would correspond to solving a coupled forward-
backward stochastic differential equation. Thus, in particular in high dimensions, the optimality
gap itself is not a suitable tool to measure the accuracy of an approximation. We bypass this
issue by introducing bounds on the optimality gap itself, in terms of transformed power utility
functions in To the best of our knowledge, those are the first universal bounds for
the true solution of an investment-consumption optimization problem with Epstein-Zin utility,
whose evaluation is feasible. However, it is later verified that those scaled power utility bounds
deteriorate when the Epstein-Zin parameters vary too much from the time-additive case and
are only valuable in the evaluation of numerical solutions if v is not too far from 1. Thus,
we additionally establish better suited, one-sided bounds in terms of the variational utilities,
that were already introduced within the derivation of the duality inequality in [Chapter 2] In
particular, we obtain a well-suited lower bound in the case of a convex Epstein-Zin aggregator
and a well-suited upper bound in case of a concave Epstein-Zin aggregator. In order to further
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emphasize the value of our bounds, we finish this chapter with a theoretical application, i.e.
we derive an existence and uniqueness result for the stochastic differential dual that allows for
weaker integrability conditions than the one in

sets ground for our numerical approximation schemes presented in the final chapters.
We introduce a general multivariate market model and embed the multivariate Kim-Omberg
and Heston models later used for numerical testing. Moreover, we utilize the dynamic program-
ming technique to characterize the optimal solutions to the primal and dual problem by their
respective partial differential equations. Taking a closer look, we notice that both solutions are
actually characterized by only one PDE; the same equation also characterizes the solution of the
problem associated to the least favorable completion of the market.

In we introduce our first approximation of the Epstein-Zin consumption investment
allocation problem in terms of the CS-ALFC two-step scheme, based on said connection between
the least favorable completion of the market and the primal, respectively dual problem on a PDE
level. The first step employs the Campbell-Shiller transformation of the general problem to the
one with unit EIS, which yields an approximation of the least favorable market prices of risk,
c.f. In the next step, the market is completed with said approximation and the
artificially completed market problem is explicitly solved, such that the solution yields an ap-
proximation of the true solution (after projecting the resulting strategies to the admissible set).
This analytic approximation is fully characterized by a system of ordinary differential equations.
The accuracy of the CS-ALFC solution is validated in dimension one by direct comparison with
the numerical solution of [Kraft et al., 2017] and in dimension 50 by our duality power bounds
from which yield an annualized wealth equivalent loss (c.f. of less than
1%. The CS-ALFC approximation can be interpreted as a variant of the classical Campbell-
Shiller approximation in the incomplete market power utility scenario, improving its qualitative
shortcomings identified by |Kraft et al., 2013]. To the best of our knowledge, an analytic approx-
imation of the power utility problem, which makes use of the truly recursive CS approximation,
has not been documented in the existing literature.

presents our second approximation approach. The idea of the Primal-Dual-Iteration
scheme is a reinterpretation of least favorable completion as a dynamic game played by the
investor against an opposing price setter, that appears not to be present in the literature so
far. Each iteration corresponds to the investor choosing her optimal investment strategy under
given complete market conditions, while the price setter forces her strategy to remain within the
constraints set by market incompleteness. This corresponds to solving the associated complete
market HJB equation in every step. While we still need to approximate the sensitivities with
respect to the underlying state in every iteration, the SA-PDI scheme is shown to be accurate
when compared to the known algorithmic solution of |Kraft et al., 2017] in one dimensional
models. Even with our one-sided variational bound, verifying the accuracy in high dimensions
proves to be difficult in this truly recursive setting, as the respective other power bound may fail.
Thus, lacking a suitable measure of error, we utilize the output of the SA-PDI algorithm itself
as an approximate bound, even though the upper bound property inherited from suboptimal
completion was generally destroyed by the approximation of sensitivities. While yielding small
approximate error bounds in the area of 1% annualized WEL, those results need additional
verification.
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Appendix A

Preliminaries on Backward Stochastic
Differential Equations

Within this section we give an overview on the preliminaries we need from the theory of backward
stochastic differential equations (BSDEs) of the form

T
X, =E; {J g(s,Xs)ds+£], te[0,T],
t

where g and ¢ are specified in below. The material within this section is strongly
influenced and in parts borrowed from [Dufhie and Epstein, 1992a], |Karoui et al., 1997],|An-
tonelli, 1993|, [Antonelli, 1996|, [Seiferling, 2016] and |Seiferling and Seifried, 2016|. In particular

Appendix A.2|is due to [Seiferling and Seifried, 2016].

Let (2, {St}te[o,r]; 5> P) be a filtered probability space, where the filtration {§}c[o,r) satisfies
the usual conditions of right-continuity and completeness. Denote by G be the og-algebra of
progressively measurable sets in (Q, {St}tefo, ), S ]P) and by B the Borel-o-field.

A.1 Existence and Uniqueness of Solutions
We first define what we mean by a solution of a BSDE.

Definition A.1 (Solution of a BSDE)

Let g: Q x [0,T] x R — R be G ® B-measurable and ¢ € L*(P). Suppose X is a semimartingale
with supepo ) E[|X¢|] < 00 and moreover E[Sg lg(t, Xy)|dt] < 0. Then we call X a solution of
the BSDE with aggregator g and terminal value &, if X satisfies

T
X; =E, {J g(s,Xs)ds—i-f} , te[0,T1, (A.1.1)
t
Then we say X solves BSDE(g, &) for short.

Of course the question whether a BSDE admits a (unique) solution strongly depends on the
aggregator g and the terminal value £&. We now define the basic requirements for the existence
and uniqueness of a solution.

Definition A.2 (BSDEP-standard parameter)
Forp=1,let{e LP(P) and g:Q x [0,T] x R > R be G ®B measurable. If
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A.1. EXISTENCE AND UNIQUENESS OF SOLUTIONS

(S1) g is uniformly Lipschitz, i.e. there exists L > 0 such that

|g(t,$)*g(t,y)|<lz|l'*y| V.CL‘,yER,tE[O,T] and

(S2) g is p-integrable in zero, i.e. g(t,0) € LP(P® dt).
then (g,&) is called a BSDEP-standard parameter.

Theorem A.3
Let (g,&) be a BSDEP-standard parameter. Then there is one and only one cadldg semimartingale
X satisfying supyefo 17 | Xt| Lr(py < 00 that solves BSDE(g,§).

Moreover, if p > 1, then X satisfies E [supte[O’T] |Xt|p] < .

Proof. For p > 1, a rather technical proof in a more general setting is provided by [Antonelli,
1993|[Theorem 2.4]. An easier proof, but only for the case p > 1, can be found in [Duffie and
Epstein, 1992a||Proposition Al]. O

Lemma A.4
Letp > 1, (9,€) be a BSDEP-standard parameter and X be a semimartingale with supco 7 | Xt | o (p) <
0. Then X is a solution of BSDE(g,§), if and only if there exists a uniformly integrable mar-
tingale M such that

dX; = —g(t, Xp)dt + d My, Xr =¢. (A.1.2)

If p> 1, then M is a LP-martingale and E [supte[O,T] ]Xt\p] < 0.

Proof. The Lipschitz condition in implies that

1
l9(t, X o p@ary < LT? sup | Xelze) + 19(E 0)l Lo pgary < -

te[0,T']

As also £ € LP(IP), we can define the uniformly integrable martingale M via

T
Mt = ]Et |:J0 g(S,XS)dS + §:| s te [O,T]

Note that M is a LP-martingale if p > 1.
As X is a solution to BSDE(g, &), we obtain for all ¢ € [0, 7]

T t
X, ~ E, [ [ ot xs + 5} —— [ gt xas
t

which certainly implies (A.1.2)).
On the other hand, suppose that (A.1.2)) holds and M is at least uniformly integrable, so by

integrating from ¢ to T we obtain (A.1.1)).
Finally we have

T
x| <E, U (s, X.)[ds + \5@ LN,
0

where N; is a LP-martingale if p > 1 by the same argument as above, hence Doob’s LP-inequality
shows

E[ sup Xt|p] < E[ sup |Nt|p] < <p>pE[|f|p] < 0.

te[0,T] te[0,T] p—1
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APPENDIX A. PRELIMINARIES ON BACKWARD STOCHASTIC DIFFERENTIAL
EQUATIONS

Proposition A.5
Let (g™, &™), ne N and (g,§) be a BSDEP-standard parameter. Suppose that there is a constant
L > 0 such that

’gn(tvx) - gn(ta y)| < L|$ - y| fO’f’ all T,y € R? te [O7T]

and all n € N. Finally denote by X™, n € N and X the solutions to BSDE(g",£"), n € N and
BSDE(g,€), respectively. If

g"(t, X)) — g(t, Xy) in LP(P®dt) and " — & in LP(P), as n — o,
then supyepo | Xt — Xi| Loy — 0 and if p > 1 also E [supte[O’T] | Xt — Xt”|p] — 0.

Proof. By applying Jensen’s inequality twice, for any 0 < s < T

T
X, — X" oo < j g, X) — g™ (u, X)du + (€ — €)

s Lr(P)
r ;
<[ [ lotu 0 - g X+ le - €y
S
< [g(t, Xe) — 9"t Xe)| Lo poar) + 1€ — €[ Lo @)
Thus
S[up] 1Xe — X{' 2oy < llg(t, Xo) — g™ (8, Xo)| ooy + 1€ — €™ | o (w)
te|0,T
and supyepo 7y [ Xs — XJlle@) — 0. If p > 1, similar as in Doob’s LP inequality
yields E [SuPte[o,T] | Xt — Xf|p] — 0. O
Theorem A.6

Let £ € LP(P) and B, ¢ be R-valued and G-measurable processes such that [ is bounded and
ot Lo (pary < o0 for p = 1. Then the solution of the linear BSDE

dXy = — (¢ + B Xy)dt + dM;, Xr=¢ (A.1.3)

s given by the closed formula
T S T
X;=E [ J oI Budu iy qs 4 ol M“g] . (A.1.4)
t

Proof. As (3 is bounded, the linear function g(t,z) = ¢y + B¢z is uniformly Lipschitz, so (g,&) is

a BSDEP-standard parameter and by [Theorem A.3|the BSDE (|A.1.3]) has a unique solution X.

First let p > 1, then It6’s formula, yields
defo Budux, — _eloBuduy qp 4 ofoBuduqpy,.

As ( is bounded and M is an LP-martingale by s0 is e Budud M, - so integrating by
parts yields

T
ofuduy, _ [J elo Budu gy ds + elo W“g] , tel0,T]
t
which yields (A.1.4)).

For the case p = 1, introduce the truncated parameters ¢ = (—nv ) An and £" = (—nv &) An.
Then for any n € N, the semimartingales

T
X =E; [f ol B“dugo’;ds + eStT B“duﬁn]
t
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A.2. COMPARISON THEOREM

are the unique solutions of dX* = — (¢} + B X}")dt + dM*, X7 = £". Then [Proposition A.5|
implies that supscfo ) | X — Xi'|| 1o (p) — 0, where X denotes the unique solution of feq. (A.1.3)}
But on the other hand, by dominated convergence we obtain

T T
X' =E {J ol B“d”ga’;ds + eStT 'B“d"f"] — [, [J el B“d“gosds + eStT ﬁ“d“g] in L',
¢ ¢
so X; = E; [StT elt Buduiy g+ el ﬂ“duf]. O

A.2 Comparison Theorem
justifies to define Sub-and Supersolutions to BSDEs in the following way:

Definition A.7 (BSDE - Sub-/Supersolutions)

Let g : Qx[0,T] xR — R be G®B-measurable. Let & € L*(P) and suppose X is a semimartingale
with supyepo ) E[| X¢|] < 00 and moreover E[Sg lg(t, Xy)|dt] < oo. Then we call X a subsolution
of the BSDE with aggregator g and terminal value &, if

dX; = —g(t,Xt)dt + dM; — dAt, Xr<¢ (A21)

where M is a martingale and A is a decreasing and right-continuous process such that Ag = 0.
We say
X is a subsolution of BSDE(g, &)

for short. Analogously X is supersolution of BSDE(g, &), if X7 = £ and A is increasing.

Of course, X is a solution of BSDE(g, £) as in [Definition A.1} if it is a sub- and supersolution.
We say that the aggregator g satisfies (M), if there is a constant k > 0 such that for a.e. w e Q

and dt a.e. t e [0,T]
g(w,t,x) — g(w,t,y) < k(x —y) for all z,y € R with > y. (M)

The property is sometimes called monotonicity condition. Note that the dual aggregator

f* satisfies (M) as f¥ is bounded from above, see [Lemma B.13

Having introduced the notion of Sub-and Supersolutions of BSDEs, we are now able to state
the crucial comparison theorem. Most comparison theorems for BSDEs require BSDEP-standard
parameters; however, as neither the Epstein-Zin aggregator nor the dual aggregator are uniformly
Lipschitz, those wouldn’t be applicable in our setting. In [Seiferling and Seifried, 2016|, the
authors provide a comparison theorem for BSDEs where the aggregators only have to satisfy the
monotonicity contion (M) above, which is the case for both, the primal and dual aggregator.
For the theorem itself and the following prerequisites (in particular the stochastic Gronwall
inequality |[Proposition A.10|), we follow [Seiferling and Seifried, 2016|, including the proofs.

Lemma A.8
If X is a subsolution of BSDE(g,§) satisfying E[supefo ) [Xt]] < 0 and 7 is a [0,T]-valued
stopping time, we have

H{T>t}Xt < Ey |:]I{T>t} J 9(57 XS)dS + H{7’>1€}‘Xrﬂ':| ) te [0’ T] (A22)
t
If X is a supersolution, then (A.2.2) holds with " =".
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Proof. Let X be a subsolution of BSDE(g, &) and let 7 be a [0, T']-valued stopping time. Define

o = 7 A t, integrate (A.2.1) from o to 7 and use that fact that A from (A.2.1)) is decreasing to

obtain
~

X, + (M; — M,) < J g(s, Xs)ds + X;.

[

Taking §;-conditional expectations and multplying with I,y yields (A.2.2)). If X is a superso-
lution, then A is increasing and we obtain (A.2.2)) with ” >". O

Lemma A.9
Let X be a right-continuous adapted process, such that E[supepo 1 |Xt|] < oo. If there is a
constant k > 0 such that

T
X < kE, {f Xsds] for every t € [0,T]
t

then Xy <0 for all t € [0,T1].
Proof. See |Antonelli, 1996||Theorem 1.8|. O

Proposition A.10

Let a be progressively measurable, let X be right-continuous and adapted with E[sup,epo ry [Xe[] <
00, and suppose that « is bounded from above on {X > 0}. If X7 < 0 and for every [0, T]-valued
stopping time T we have

H{T>t}Xt < E; [H{T>t} f asXgds + H{T>t}XT:| for allt e [O, T], (A.2.3)
t

then Xy <0 for all t € [0,T1].

Proof. Assume by contradiction that there exists some u € [0,7") such that the event F' = {X,, >
0} satisfies P(F') > 0. We define a [u, T']-valued stopping time 7 via

T=Ipinf{t > u: X; <0} + ullpe

and observe that Xy > 0 on {7 > s > u}, and X, < 0 by right-continuity. By (A.2.3) we have
for all ¢t € [0,T]

I[{T>t}Xt < E |:]I{‘r>t} f s Xgds + ]I{T>t}XT]
t
< E; |:]I{T>t}f a;'Xsds] < kE; [J ]I{T>S}Xsd8] ,
t t

where k is an upper bound for o on {X > 0} = {(w,s) € 2 x T': X (w) > 0}. Then
implies that Iy, X; <0 for all ¢ € [u, T], and it follows that

0<IpX, = ]1{7—>u}Xu < 0.
This is a contradiction to P(F') > 0. O

Theorem A.11 (|Seiferling and Seifried, 2016|, Theorem 4.3)
Suppose X is a subsolution of BSDE(g, &) with E[supefo 1y | Xt|]] < 00 and Y is a supersolution
of BSDE(h,n) with E[supseor) |Yel] < o0 where § <n.

(a) If g(t, Y1) < h(t,Y;) for dt a.e. t € [0,T] and g satisfies (M), then X <Y
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(b) If g(t, Xi) < h(t, X;) for dt a.e. t € [0,T] and h satisfies (M), then X <Y

Proof. Set A = X —Y and note that Ar = § —n and E[sup[o 1 [A¢|] < 0. If 7 is a stopping

time, implies
.
VAV [H{r>t}j (9(s, Xs) — h(s,Ys))ds + H{T>t}AT] for all ¢ € [0,T7].
t
To prove (a), define a progressively measurable process « via

Xs _h 7Y:9
ol é]I{Xs;,gys}g(S7 )A (5, ¥5) for s € [0,T]

and note that « is bounded above on {A > 0} = {(w,s) € 2 x [0,T] : As(w) > 0} by (M). Since
g(s,Ys) < h(s,Y;) for ds-a.e. s € [0,T], it follows that

T

]I{7->t}At < E; |:I[{T>t} f asAgds + H{T>t}A7—:| forte [0, T]
t

and [Proposition A.10| yields the desired conclusion. The proof of (b) is analogous. O
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Appendix B

Legendre-Fenchel Dualization

B.1 A Very Short Introduction to Conjugates of Convex Func-
tions

In the following we provide a quick overview on the basic theory of convex functions and their
conjugates based on Section 12 in [Rockafellar, 1997]. Note that after the appropriate adjust-
ments all the results given in this section carry over to concave functions.

We follow the abstract approach of [Rockafellar, 1997 in hope to give the reader a more pictorial
intuition of the concept, but restrict ourselves to the one-dimensional setting as this is all we
need within this thesis. We begin with some vocabulary around the topic.

Let h : S — R be a function, where S is a subset of R and R denotes the extended real line.
Then the set

epih = {(z,p) :ze S, peR, u=> h(zx)}

is called the epigraph of h. A function h is said to be conver on S if epih is a convex subset of
R2. A function h is said to be concave on S if its negative is convex. An affine function on S is
a finite, convex and concave function.
We define the effective domain of a convex function h on S as the projection of the epigraph of
hon R, i.e.

domh ={zeS: 3y, (x,n) eepih} ={xeS: h(zr) < ow}.

A convex function h is said to be proper if its epigraph is non-empty and contains no vertical
lines, i.e. if h(z) < oo for at least one x and h(xz) > —oo for every x. The relative interior of a
convex set C' in R, which we denote by riC' is defined as the interior which results when C' is
regarded as a subset of its affine hull aff C, i.e.

riC ={zeaff C:3¢>0,(x+eB)n (aff C) < C},

where B is the Euclidean unit ball. Note that in this one-dimensional setting, the only convex sets
are either intervals or singletons. Thus, in our simplified setting, the relative interior corresponds
to either the interior of the respective interval or the singleton itself.
An extended-real-valued function h is said to be lower semi-continuous at a point x if

h(z) < lim h(z;)

1—00

for every sequence (x;)ien such that lim; ., x; = x and lim;_,o h(z;) exists in R. A function
is called lower semi-continuous if the function is lower semi-continuous at every point of its
domain. The importance of semi-continuity comes from its connection to closedness of the
epigraph, which is pointed out by the following theorem.
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Theorem B.1 (|Rockafellar, 1997|, Theorem 7.1)
Let h be an arbitrary function from R to [—o0,0]. Then the following are equivalent

(i) h is lower semi-continuous
(ii) The epigraph of h is a closed set in R?

Proof. Lower semi-continuity of h at x can be expressed as the condition that y > h(z) whenever
w = lim;_,o p; and z = lim;_,o x; for sequences {y;}ien and {x;}ien such that u; > h(z;) for
every 4. But this is the same as closedness of the epigraph of h. ]

Given any function h on R, there exists a greatest lower semi-continuous function majorized by
h namely the function whose epigraph is the closure of the epigraph of h in R?. In general this
function is called the lower semi-continuous hull of h.

The closure of a convex function h is defined to be the lower semi-continuous hull of A if
h(x) > —oo for all x € R and is denoted by clh. Then clh is another convex function and a
convex function is said to be closed if clh = h. For a proper convex function, closedness is thus
the same as lower semi-continuity.

The following theorem provides the basis for the conjugation of convex functions.

Theorem B.2 (|[Rockafellar, 1997|, Theorem 12.1)
A closed convex function h is the pointwise supremum of the collection of all affine functions H
such that H < h.

Now one can describe the set H* consisting of all pairs (z*, u*) in R? such that the affine function
H(x) = xzx* — p* is majorized by h. We have H(z) < h(z) for every z if and only if

w* = sup{xz™ — h(z)}.
zeR

Thus H* is actually the epigraph of the function h* defined by

h*(z*) = sup{za™ — h(z)} = — inf {h(x) — z2™}.

xeR zeR

This h* is called the conjugate of h. It is the pointwise supremum of affine functions g(x*) =
xx™ — p such that (z, u) belongs to the set epih. Hence h* is another convex function, in fact
a closed convex function. Since h is the pointwise supremum of the affine functions H(z) =
xx® — p* such that (z*, u*) € epi h*, we have

h(z) = sup {zz* — h*(2™)} = — inf {h*(2¥) — z2™}.

r*eR x*eR

But this means that the conjugate h** of h* is h.

We summarize those facts in the following theorem and highlight two major insights in small
corollaries thereafter.

Theorem B.3 (|Rockafellar, 1997|, Theorem 12.2)
Let h be a convex function. The conjugate function h* is then a closed convex function, proper
if and only if h is proper. Moreover (clh)* = h* and h** = clh.

In particular [Theorem B.3|justifies to speak of duality of (proper and closed) convex functions.
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Corollary B.4 (|Rockafellar, 1997, Corollary 12.2.1)
The conjugacy operation h — h* induces a symmetric one-to-one correspondence in the class of
all proper and closed convex functions.

Remark B.5

Note that all functions of which we consider conjugates within this thesis are closed, proper and
convex. What introduces the duality for our recursive systems in is thus the duality
of the proper, closed and convexr aggregators in the associated BSDEs.

In fact, one can even restrict oneself to the real interior of the effective domain to conjugate a

convex function h, which we will do in some cases within below.

Corollary B.6 (|Rockafellar, 1997, Corollary 12.2.2)
For any convex function h on R™ one actually has

h*(z*) = sup {zz* — h(z)}.

zeridom h

B.2 Applications during Dualization

Convex/Concave Conjugates and Their Properties

This subsection collects all the technical computations regarding the conjugation steps in the
dualitzation procedure from that have been avoided in the main text for the sake of
readability.

Lemma B.7 (|Seiferling and Seifried, 2016|, Lemma A.1)
For all ce (0,0) andveV ={veR: (1 —~)v >0} the Epstein-Zin aggregator

-1

Flev) = 65— (1 — 7)) =5 — 66v

-3
satisfies
Fole,v) = 8¢ (1 — y)v]t= elesw) = —LoeH (1 — )]
fole,v) = S5 TH[(L =)o) 70 =00 fuu(e,v) = 612 TH[(1 — y)u] 8

S

feo(c,v) = ‘5%0—(#[(1 — ]~
and in particular

fe>0, fee <0, sign(fe) =sign(l —¢), sign(fun) = sign(yy — 1).

Thus f is always increasing and concave with respect to ¢; f is convexr with respect to v if vy = 1
and concave with respect to v if yip < 1: f is (jointly) concave if and only if yi» < 1 and neither
convex nor concave otherwise; f, is bounded above if either yvip = 1,9 > 1 oryy < 1,¥ <1 and
bounded below otherwise.

Corollary B.8

Let f be the Epstein-Zin aggregator as in . Then for all ¢ € (0,0) and v € R the
extended Epstein-Zin aggregator

f(e,v) = {ﬂc,v% (1=7)v>0
’ f(e,04) + fu(c,04+) v, (I1—=9)v<0
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where f(c,0+) = lim(1 )10 f(e,v), is always increasing and concave with respect to c; f 18
convex with respect to v if vy = 1 and concave with respect to v if yip < 1. In any case f(c, )
s proper and closed.

Proof. In the easiest case y9 = 1 we have

fle,v) = 5?1:; — dv.

Ify>1,4v>1orvy<1,9 <1, then § <0 and in particular 1 — % > 1, which yields

~ ) flev), T=y)v>0
flew) = {591}, (I1—=9y)v<0 ’

If on the other hand v < 1,71 > 1 or v > 1,vy¢ < 1, then 6 € (0,1) and in particular 1 — % <0,
thus

~ f(e,v), (I=7)v>0
fle,v) = .
(I=9)-00, (I1=7)v<0
Thus all the claims follow immediately from O

As we only consider conjugates in the case v > 1,4 > 1 in the main text, we also restrict
ourselves to this case in the following lemmas. As always the case ¢ < 1,9 < 1 would be

analogous under the necessary adjustments, see below.

Lemma B.9 . . .
Let v = 1,9 > 1 and F(c,u) = infer {f(c, v) +uv ¢ be the concave conjugate of —f, where f
is the extended Epstein-Zin aggregator as in|Corollary B.8. If v¢ = 1, then F' is given by

55— =4
Fle,u) = {_2077 lee '

If vip > 1,9 > 1, then

) 1-6
59'”(1;—599) , u> 60
F(e,u) = 0 w50 (B.2.1)
—00, u < 00

In both cases F(c,u) is concave in ¢ and F(c,u) is concave in u. Moreover F(c,-) is proper and
closed for all c € (0,00), in particular f(c,v) = sup,eg {F(c,u) — uv}.

Proof. Let v¢p = 1. Then f(c,v) = 5011__; — v and inf eg {5611% + (u— 5)1}} can be made

arbitrarily small by taking v arbitrarily small(large) if u > ¢ (u < §), so the infimum there is
—00. Only the case u = § remains where the infimum is trivially given as 6‘311__;.

Let v > 1,4 > 1. Then, as 0 < 0 and in particular 1 — % > 1 the extended aggregator is given
as

1

flew) = Clig ((1— ’y)v)lfé — d6v, v<0
—4§0v, v=0
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Hence we investigate

1

St (1 —m)0) i+ (u—d0)w, v <0
P

iné
v (u—d6)v, ifv=0

Some elementary calculus shows that, if © > §6, then
1—1 1—v _ (59 1-6
. P 1—1 € U
11}1;%{50111#((1—7)11) 9+(u—59)v}—51_7(1_9> <0,
whereas inf,>o{(u — 00)v} = 0, implying the first case of (B.2.1)). If u = 6, in the case v = 0
11

the infimum is trivially zero and the same goes for the case v < 0 as cl ? >0 and 1— % > 1.

P
This implies the second case from (B.2.1). If u < 66 then (u — d60)v can be made arbitrarily
small by making v arbitrarily big, so the infimum is —oo. Combining the above we obtain

6901_“’ u—a6 0 if 50
=0 , if u >

1=y
Fleu) =14, if =60
—00, if u < 90
Finally, let v < 1,1 > 1. Then
1
c ¥ 1-1
flew) = 517i((1—'y)v) o — 00v, v>07
0, v<0

where now 6 € (0,1), in particular 1 — % < 0. Thus by |Corollary B.6
1

F(c,u) = inf {f(c, v) — uv} = inf {501111& ((1— ’y)v)l_% + (u— 59)1}}

veR v>0 ~ v

and similar arguments as above show that

1-0
s (“1‘509> , ifu> 66
0, if u=00"
—00, if u < 90

Concavity of F(-,u) is immediate for u < §6 and follows for v > d6 from
0 1 1-0
Feo(e,u) = —y8%¢ 7~ (%‘?) < 0.

As f(e, ) is proper, convex and closed for all ¢ € (0, 50) by [Corollary B.SL F(c,-) is proper, concave

and closed by [Theorem B.3| In particular [Theorem B.3|implies f(c,v) = sup,eg {F(c, u) + uv}.
O

Lemma B.10
Let v = 1,7 > 1 and F*(\,u) = sup.-g{F(c,u) — Ac} for A € (0,00) be minus the concave
conjugate of F in ¢, where F is given in[Lemma B.9 If v = 1, then F* is given by
1 y—1
07 ﬁ)\T, u=_4
—00, else

F*(\u) = {
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If vp > 1,9 > 1, then

1-6
531_77%1(“1_599) T u> 8

F*(\u) = .
w) =14, u =60
—00, u < 00

In particular F*(\,u) is always convex in A and F*(\,u) is concave in u.

Proof. The representation of F* in the case u > §0 follows by basic calculus. If u = 56 then
sup,-o{—Ac} = 0 is immediate as A > 0. Finally the case u < 06 is trivial.
Moreover F*(\,u) is convex in A, as —F™ is the concave conjugate of F', which is again concave

by [Theorem B.3| Finally F*(\, u) is concave in u > 6 as

1=0_o
" 8 1 u—2090Y\
Faw) =0 =) < 1-¢ <Y

because vy > 1. O

Lemma B.11
Let ®* : (0,00) — R, A = sup.. o {®(c) — Ac} be the Legendre-Fenchel transform of the terminal
utility function ®(c) = Eﬁck”. Then

Moreover ®* is convex and decreasing in A.
Proof. The formula for ®* is basic calculus, convexity follows by [Theorem B.3| O

Remark B.12

Note that in and [Lemma B.1( there doesn’t change much in the concave case. If
vy < 1,9 < 1, the conjugates stay essentially the same, only the —o0 becomes o0 and both
functions are now convex in w. In particular, in the concave and convex case the conjugates
coincide on their domain.

Finally ®* is the same in both the concave and convex case. A
Lemma B.13
For all A € (0,0) and v €'V, the dual aggregator f* given by
. o oA () N g
Frovw) =00y (B20) 7 — 2y,

satisfies

1- 1%
B Q) = =aA7 (52w) T i ) = avoa~t ()

y(p—1)
* _ s =y y1-y (1=y \  1-7 _ 80
i) =9 w(w—l)/\ ( v V) Y
_a=n —aemh

_ sbav=ly—y (1= =
f}"\‘y(}\,y)_é’d”Y’y A ’/’(JV)

Y

_ Y—1y1—1 (1= g
ij(A7V)_6w/Y’Y >\ ¢( ’y’Y,U>
In particular

fX <0, fix>0, sign(fy,) =sign(yy—1), sign(fy,) = sign(yy —1).
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Thus f* is always decreasing and conver with respect to A; f* is convexr with respect to v if
v = 1 and concave with respect to v if yip < 1; f* is (jointly) convex if and only if yip = 1 and
neither convex nor concave otherwise; f is bounded above if either yi,1p =1 or vy, <1 and
bounded below otherwise.

Proof. We have

v
1071 = —2%
(Fa 12 Oun) = 5 () = @ T2 [0, ]
g gl
Since fy, > 0, the Hessian of f* is positive semi-definite if and only if 77 > 1 and indefinite
otherwise. Finally, f; <0 if and only if vy, < 1 or y¢,¢ > 1. O

Lemma B.14 .
Letyip = 1,4 > 1. For all X € (0,0) and v € R, the function f*(\,v) = supyer {F*(\,u) — uv},
i.e. minus the concave of F* as given in|Lemma B.10] is given as

f*()\, v) = {f*()\ﬁu)a (1—=7y)r>0 ’ (B22)
FEON04) 4+ f5(N04) v, 1—~)w<0
where )
o 045 (252) - 2

In particular, f*()\, v) is convex with respect to X\, closed and convex with respect to v.

Proof. Straightforward calculation similar as in shows that f* has three different
forms:

. WAL (] ) —
f*(>\7 y) _ {(iégyl ((1 V)V) 0 597/, 8 B X;Z Z 8 i N> 1,9 > 1,
1—1p _a
ff(\v) = 5V (1= 7)) T —80v, (1—7y)v>0 if vy < 1,7 >1
? 0, (1 - 7)” < 0 ,
and

- 1-9
f*(Aju)zélﬁ;_l—éu if v = 1.

Then (B.2.2)) follows by just comparing the limit therein with the three different cases. Now
convexity in \ is immediate by closedness and convexity in v follows by definition

of minus the concave conjugate from O
Remark B.15
The representation (B.2.2)) is the same in the case yip < 1,7 < 1. A

Proofs Skipped in

Lemma B.16
For any A€ D, ue P and s,t € [0,T], s <t it holds

HﬁSF*((ﬁzs)*lAs,us) = nﬁSF*(AS,uS) and mf’Tq)*((ﬁ;ZT)*lAT) = RETQ*(AT).

102



B.2. APPLICATIONS DURING DUALIZATION

Proof. We only consider 1) > 1,4 > 1, as by the concave case y1) < 1,1 < 1 is
essentially the same argument.

First, let y7) > 1 and ¢ > 1. Then F* is given as in [Lemma B.10} If F* =0 or F* = —0 the
result is trivial, so it suffices to consider u > §6 and calculate

7-1 1-0 ) w
R () T A ) = w07 75 (B) T (BER) T = ()T FR (M) = kg FF (A ).

=7 \ Ft,s

The scaling property for ®* and for F'* in the case where y1) = 1 follows by the same calculation
1-6 1-6

with <“ 60) " replaced by 1. For ®* consider the same calculation with (” 59) 7 replaced

by 1 and § 5 replaced by 5?. O

Analogue of Dual Variational Representation in the Concave Case

Within this paragraph we want to prove the analogoue of in the case of concave
aggregators, thus let y¢ < 1,9 < 1 and note that

<Lyp<li={y<lLg<l}u{y>Lly <1}

To avoid going through all computations needed for the conjugations as in the previous section,
we start from the dual side, i.e. with the general form of f*: (0,00) x R — [—00,00) given as

f*(x,m:{f:(MV% ) (1=~)w >0
SN 0+) + f2(N04) v, (1—7)r<0.

Note that the only difference is that —co is now included, whereas o0 is excluded from the image
set. Again, f* takes three different forms:

~

A1 =) 60y, (1-~)v >0

FE O\, V) = ifvy<1,9 <1,
frAv) —50u, (1—-r<0 7 v
_ YAV (1 1= _
ff\v) = e (@ =y =0y, (1= > ify>1,v <1
—0, (1 _V)V
and .
FrOuw) =03 —ov  if =1

In particular, f *(c,-) is now a proper, upper semi-continuous (hence closed) and concave func-
tion, hence all results from [Appendix B.1] apply under the appropriate adjustments.
Then similar as in |[Lemma B.9|one finds that the convex conjugate of — f*

F*:(0,00) x R — (—00,00], (A, u) — sup{f*()\,u) —I—uu}

reR
is given by
1, _
Frovu) =0 TN T S0 o
0, else
and by
o wso\ 170
005 (w2) u > 00
F*(\u) = 0, u=30 if vp <1, < 1.
0, u < 06

103



APPENDIX B. LEGENDRE-FENCHEL DUALIZATION

Again, F* and f* are dual in the sense that f* is minus the convex conjugate of F*, i.e.
f*(\v) = inf {F*(\,u) — uv}. (B.2.3)
ueR
Then the stochastic variatonal dual is defined exactly as before as

T u
U [A,u] = E, [J Ky B (As, us)ds + “gT(I)*(AT)} (B.2.4)
t

for all ¢ € [0,T], only now with F* as above and ®*(\) = 5%%)\%1 as before.

Lemma B.17 (Concave analogue to |[Lemma 2.10))
Let vip < 1,9 < 1 and for any uw € P and A € D?, let V*[A] be the stochastic differential dual

associated with A and U*[A,u] given as in (B.2.4)). Then for any t € [0,T],
V*[A] = essinf U [A, u] .
ueP

Proof. The proof is similar to the one of but all arguments are mirrored on the
concave situation. First, let 49 = 1. Then the Legendre-Fenchel transform F* desintegrates to

1, 2t B
F*(\u) = {5”1—7A Toou=0

00 else

see above. In particular

T u o
igf) U [Au] = igf) E; [L K I (As, us)ds + K;T(I)*(AT)]

T -1
:EtU premal T A;”ds+ej(Tt)<I>*(AT)],
t

so this case follows by ([2.2.26), respectively standard results on linear BSDE as [Example 2.9

For the remaining parameter constellations F'* is given by

= (u—60 1-0
005 () u > o0
F*(Au) =10, u =60
0, u < o6

Note that it suffices to focus on w € P such that Uf[A,u] < o0, so u < 66 is automatically
excluded and we can without loss restrict ourselves to the space U = {u € P : u = 06}. We
divide the proof into three major steps:

1. Class (D) property of /ﬁ&.U* [A,u]: We have

WwW<ly<l}={y<lLv<llu{y>1y) <1}

and we split this part into two cases.
Case 1: v <1, < 1. As v <1 we have ®* > 0 and F'* > 0, so for u € U we obtain

T u u
f K o F (Asy us)ds + kg 2% (A7)

gl

| - vs1a <
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u

so the process E; [Sg H&SF*(AS, ug)ds + HST(I)*(AT)] is a uniformly integrable martingale,

hence of class (D). As k> is bounded for any u € U, the class (D) property of V*[A]
for A € D®* implies the integrability of /ag +P*(A) and thus the class (D) property of

E, [K&T‘I)*(AT)]- Then the inequality
u u T u u
E [R&T@*(AT)] < KU A u] < By [L Ko I (As, us)ds + /ia’T@*<AT)j|
implies the class (D) property of /f(i U*[A, ul.

Case 2: v > 1,7 < 1. Now ®* < 0 and F* < 0, and we have to show U*[A,u] > —o0.
To this end let A € D* and u € U and recall that

v =g [ raeviasean]. e

where f*(\,v) = fN*‘(l—'y)v>O ()\, %I/) Thus by the class (D) property of V*[A], the
process

M* = V*[A] + J f*(As, VF[A])ds (B.2.5)
0
defines a uniformly integrable martingale. An application of [t6’s formula yields
@ ( VETAT) = i 0F — (5, VPTAD) — 2] 7 [AT )
= n&tht* — dA? — Ii(itF* (A, up)dt,

where

a4y = rg, (1* (A, VAL = (F* (Mg, wg) — VP[A]) dt. (B.2.6)
By the definition of f* and F* respectively, we have f*(\,v) = inf,~s9 {F*()\, u) — u%}

Askr > Oforallue U, this implies that A7 is decreasing, so m&,V*[A]—i—Sb H&SF* (As,ug)ds
is a local submartingale. Taking a localizing sequence (7, )nen of stopping times, the sub-
martingale property of the stopped process implies

u Tn AT w
Vo' [Al <E ["537 Vi r[A] + J ﬁasF*(As,us)ds] .
yIn n 0 )

Since V*[A] is of class (D) and F* < 0, taking the limit on the right hand side yields

T u
E [J Ko o (As,us)ds] > —0
0
by the monotone convergence theorem. As in the first case, the class (D) property of
n(itV*[A] implies E |:K,8T(I>*(AT):| > —00, so in total we obtain Ug[A] > —o0.

Now similar as in the first case we obtain

T u u u
E; [f Ko o F (As, us)ds + H(YT(I)*(AT)} < kL UF A u] < Ey [RST(I)*(AT)]
0 ’ I’ )

and therefore the class (D) property of /i(i U*[A, u).
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2. V¥[A] < UF[A,u]Vt € [0,T] a.s.: The tower property of conditional expectation implies
that the process

M5 = kg U*[A, u] +f Ko F* (Mg, us)ds (B.2.7)
0

is a martingale. Then a basic calculations using (B.2.5)), (B.2.7)) and 1t6’s formula yields
(s 07N~ U LA ) ) = 4z - aa,

where dL; = K,g,tht* —dM," is a local martingale and A~ asin (B.2.6) is decreasing. It
follows that K?(i (V*[A] — U*[A,u]) is a local submartingale, hence a true submartingale

by the class (D) property of /i[i V*[A] and Iig U*[A,u] and it follows that
(VP TA-UF A < B [ 01T = U ) | = Be s (8° (A) — 07(a0) | = 0.

As /10;7 , > 0 for all ¢ € [0,T], this implies V*[A] < U/[A, u] almost surely for all ¢ € [0,T]
and any u € U. By right-continuity of the processes it further follows that V;*[A] <
UF[A, u] for all t € [0, T] almost surely.

3. Vi*[A] = essinfyeq UF[A, u]: To finalize the proof it suffices to identify w € U such that
V*[A] = U*[A, u]. Motivated by (B.2.3)) we choose

Y1)

ul = _a%f*|(1—7)u>0 ()" %V) - _le(;zdl}))‘l_zﬂ (1_7710 a0

and as y1 < 1 and ¢ > 1 we find u® € U. Moreover f*(A, V*[A]) = F*(A,u™) — %V*[A]
wr
by the first order conditions in (B.2.3)), so clearly A» = 0. Thus similar as above

d <ﬁ0i (UF[A, u?] - V;“[A]))) = dL:TA

is a local martingale, bounded from above since U [A,u] = V;*[A]. Hence it is in fact a
submartingale and it follows that

/@it(Ut*[A,uA] — V¥[A]) < Ey [’{(?,T((I)*(AT) _ @*(AT))] -0

and it follows that V*[A] = U/[A,u"] almost surely, t € [0,7]. Again, due to right-
continuity of the processes we obtain V*[A] = UF[A,u”] for all € [0, T] almost surely.

O]

Remark B.18

Certainly, as the proof of [Lemma 2.7) carries over to the proof of [Lemma B.17
carries over to the concave analogue of [Lemma 2.]] under reversed adjustments. As the second
step in the duality procedure remains the same in the concave aggregator setting, we have all
together shown the wvalidity of the whole duality scheme in both cases, vy = 1,9 > 1 and
b < 1,9 < 1. A
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Hamilton-Jacobi-Bellman Equations

Within this part of the appendix we perform all calculations necessary to find and solve the
Hamiton-Jacobi-Bellman equations for the general primal and dual optimization problem from
[Section 4.2] and [Section 4.3] respectively.

C.1 Primal Hamilton-Jacobi-Bellman Equation

Recall that the dynamics of the assets and underlying state processes are in general form given
as

dS™ = diag[S™N] (uSdt + £dW)
dy = p¥dt + 2Vdw,

where W is an (m + n)-dimensional Brownian motion, wS, 1Y, 25 and BY are matrix functions
of Y in the appropriate dimension (c.f. ) We avoid to write the Y dependence explicitly
to keep notation simple.

Moreover the investors wealth process X(™¢) for any strategy (r,c) € A is given by

ax™ = X ((r + 7] x) dt + 7] S5AW,) — epdt, X =,

where 7 denotes the proportions of the investors total wealth invested in the risky securities, ¢
is her consumption rate and y = p° — r1,, is the excess return of the risky assets. To simplify
notation during our calculations below, we will just write X for the investors wealth, suppressing
the dependence on a particular strategy (m, c).

The investor chooses between investment and consumption to maximize her continuous time
recursive utility

Vo= sup Vylc] = sup E[J fes, Vs[ ds+‘I>(cT)]
(mc)eA (m,c)eA

where, the Epstein-Zin aggregator f is given as
fle,v) = (51%(1)61_‘1’((1 — ’y)v)l_% — 66v and P(c) = et
We define the (1 + n)-dimensional process Z = (X,Y)" with dynamics given by
dZ = diag[Z] (pZdt + £4dW) ,
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where

Ty TyS
MZ:(X(T+/1TYx) c> and ZZ:(ngE>'

Considering the indirect utility V; = G(t, Xy, Y}:), the dynamic programming equation for the
agents optimization problem reads

0= sup {GtJr (uZ)TGZ+%trace [(EZ)TGZZZZ] + f(c, G)} (C.1.1)
(m,c)el(x)
with G, = (Gy, Gy, ..., Gy,)" and G, = (Gm G“’) where
Gya Gy
Gy»
Gyl Gylyl T Gylyn
Y2z T . .
Gye = : = (Gay) and Gyy = : :
GZ,.ln$ Gyny1 e Gynyn

By inserting the matrices of differentials and the definition of £4 we calculate
trace [(37)7G..37] = 22Gopr 25 (35) 7+ 2060, 27 (25) 7 + trace | (2) T 6,27

where we in particular used the invariance of the trace operator under circular shifts. Thus
(C.1.1)) unfolds to

0= sup {Gt + (z(r+7'x) —¢) Go + (W) TGy + 12?7 TEd (ES)T G (C.1.2)
(m,c)el(x)

+ Gy, XY (Es)T T + Ltrace [(EY)T nyEY] + f(e, G)}

with terminal condition G(T,z,y) = Eﬁxl_W

Proof of [Proposition 4.3 Using the Ansatz G(t,z,y) = t=z'7g(t,y)* for some k € R we

¥
obtain the differentials
Gr = k' g(t,y)F g, Gy =27 7g(t,y)"
Gox = —v2z " g(t,y)* Gy = k2" gt y)* gy
— k—1 T T I k—1 gy(gy)T
Gay = ka7 7g(t,y)" (9y) = (Gya) Gyy = kg2 Tg(t,y) (k—1) + Gyy

Moreover g(T,y) = et. Inserting the differentials to (C.1.2), dividing by kﬁxl_Vg(t, y)k—1
and simplifying yields

_ c T T
O=( S)UI;( ){gt—i—lkﬂ(erTrTx—x—l‘s_a)g—i-(uy) gy—i(l—’y)'waES (Es) g
,c)el(x

+(1=7) (gy)TEY (ES)T T+ %trace [(EY)TgyyZY] + % (gy)TEY (ZY)Tgy

c\1-¢
()"
x

Q| =
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The first order conditions for ¢ and 7 implyE]

Pt () ()T E) () e

Inserting and simplifying again we obtain the partial differential equation for g:

0=g+ 12 <r +3ixT (ES (ES)T>_1 X — 1‘&) g+ <(,UY)T + 2y T ((ES)T>+ (EY)T) 9y
+ Jtrace | (2V) " gy =Y | + 3-(0))TSY ((k: — Dl + K22 (85) <(25)T)+> (=) "g,

+ M%gl*%w

+ . . ST .
is the Moore-Penrose inverse of (E ) given by

((ES)T)+ - (=* (ES)T)f1 xS,

where ((ES) T)

C.2 Dual Hamilton-Jacobi-Bellman Equation

Recall that the dynamics of the pricing deflators and state processes of our underlying market
are in general form given as

dDy = —Dy (rdt +n'dW)
dy = p¥dt + =Ydw,

where W is an (m + n)-dimensional Brownian motion, r, n, #¥ and ¥ are matrix (functions)
of Y in the appropriate dimension (compare (4.1.1]) and (4.3.2)), respectively). We avoid to write
the Y dependence explicitly to keep notation simple. Moreover, recall that

=)
denotes the market prices of risk, so we must have x = 0°L%n or equivalently
n® = (ES) Ty (C.2.1)
We define the (1 + n)-dimensional process Z = (D,Y)" with dynamics given by
dZ = diag[Z] (p?dt + £7dW)

—Dr —Dn'
MZ:<MY> and ZZ=<E;/7>.

Considering the indirect dual utility V;*[D] = H(t, D,Y), the dynamic programming equation
for the dual optimization problem reads

where

0= inf {Ht + (n?) " B+ trace | (37) T HL27 |+ £(d, H)}, (C.2.2)
nepmn
7S =(55)""x

!The matrix £° (Es)T is invertible by the assumption that ¢°L? is of full rank.

109



APPENDIX C. HAMILTON-JACOBI-BELLMAN EQUATIONS

. Hdd Hd
with H, = (Hg, Hy,,...,Hy,)" and H,, = ( Hy Hyz> where

Hy1d Hy1y1 T Hylyn
Hyq = : = (de)T and Hy, = : :
Hynd Hynyl o Hynyn

Inserting the matrices of differentials and the definition of % we calculate
trace [(EZ )| H..%7 ] = d®Hygn"n — 2dH,SY 1 + trace [(EY)T Hyyzy] ,

where we used the invariance of the trace operator under circular shifts. Thus (C.2.2)) unfolds
to

0= inf {Jtlr,f—fmuj{dﬂr (1) " Hy+ 5d* Haan n—dHa, ¥ n+ Strace | (5Y) T Hy, =Y |+7%(d, H)},
nszn(izLS)*l

1 -1
with terminal condition H(T,d,y) = &~ ﬁd%

Proof of [Proposition 4.7 First notice that 7 is already determined by (C.2.1)), so it suffices
optimize over all ¥ € P" and we obtain

0= int (= rarta s () o+ 3 ((0%) 00 + ) )

nYe’Pn

— dHg, (f]syns + f]yny> + Strace [(ZY)T HnyY] + f*(d, H)}

-1
Now using the Ansatz H(t,d,y) = %d% h(t,y)! we calculate the differentials

=
I
~
=
IS

= h(t,y) T hy Hy =12 d TRt y) 'hy

&
I

|
SH
2
>
—~
\.H-
E

1 ,;
Hy = ;d Tt y)!

Hyy = —ld Th(t,y)' Y hy)" = (Hya)"  Hyy =17L d 5 h(t Y)' T[S Ry (hy) T+ hyy] -

N\,_.

Moreover, h(T,y) = €. Inserting the differentials, dividing by I2= d 2 h(t y)=1 and simplify-

ing yields
Ozngrgyn{ht+1;ﬂ<r+§}y ((175) n° + (n” ) n ) )h (C.2.3)
+ <(;LY)T+1;7 ((EYUY)T ZSY S ! >h + trace [(Ey)ThnyY]
AT (=) ¢ R0

Now the first order condition for 7Y implies

(") == (57) 2L
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Inserting (ny)* to (IC.2.3) yields the partial differential equation for h:

A T
0= he + 7 (r+%(nS)Tﬁsf15_—ey>h+ <(uY)T+1;7<ESYnS> >hy

+ %trace [(EY)T hyyzy] + %%(hy)T <(l - 1)2Y (ZY)T — (1~ 7)2Y (gY) T) iy

540 1-1%"

T
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Appendix D

Explicit and Approximate Solutions

D.1 Exact Solutions in One Dimension

Let n=1and k = W. Moreover let

1—v)2 2
1/1:2—74—7( 77) (psy) .
Then as already mentioned in the primal HJB equation (4.2.4) simplifies to

_ 2
0=g:+ 11;/ (7"‘*‘ L 579) g+ (M + L A/XUYpSY) gy +5(0") gy +6%,  (D.11)

see |Kraft et al., 2013].

Kim-Omberg Model

The 1-dimensional special case (m = n = 1) of our multivariate Kim-Omberg model introduced

in reads
dSy = Sy ((r + X + AYy)dt + o°dW)

dY; = —kYydt + 0¥ <pSYthS + mdwf>

Let A(-,s), B(-,s) and C(-, s) be given by

1— Y 1—y11 X2 Y2 ~2
(;%:2(’"i T’Y)\U >C+T’y§§(05)2+2(0 ) ",
_ Y .S 2 N =AY SY _ 3
Bt=(n—177>\"f +2(0") 0)3—217A“;; C+ Ll
Y SY <\ 2
1937 P 1- 11 (M) 50 1/ Y\2 2
5 (e ) e

and A(s,s) = B(s,s) = C(s,s) = 0. Then
h(t,y;s) = exp (A(t, s) + B(t,s)y + C(t, s)yQ)

satisfies the linear homogeneous partial differential equation

0=ht+1‘7”(r ( ) : (A +Ay)’ ——)h+< Ky + =2 (A + Ay) < Sy)hy+%(oy)2hyy
n [0, s] x R and a solution to is given by
T

g(t,y) = 67 f h(t,y;s)ds + En(T,y; T).
t

112



D.2. CS-ALFC ALGORITHM

Heston-Model

The 1-dimensional special case (m = n = 1) of our multivariate Heston model introduced in

xample 4.2| reads

as; = S, ((r + At + 55/ VW)
dY; = (5 — kYy)dt + 67 \/Y; <pSYde FAf1= ()2 thY) :

Let A(-,s) and B(-, s) be given by

h(t,y;s) = exp(A(t, s) — B(t, s)y)

satisfies the linear homogeneous partial differential equation

SY

1— 3 _ 1-—vy oY
0=+ 52 (r+ 320 — 22 ) h+ (1 - ky + AT

2
) hy + % (UY) Yhyy

on [0, s] x R and a solution to (D.1.1)) is given by
T

g(t,y) = 5 f h(t,y;s)ds + én(T,y; T).
t

D.2 CS-ALFC Algorithm

The Campbell-Shiller approximation associated to the dual HJB equation ([5.2.1) in a model
with power utility is in general form given as

R T
0 :gtcs I 1—77 (TJr %% (nS)TnS— %> gcs 4 ((MY)T n 1_% (nS)T (ZSY) )QSS

o T gCS
— %(1 —7) (gycs)T nY (EY) gyﬁ + %trace [(ZY)ngySZY]

1) (1 ~1n(I(£)) + In(67) — In (gCS)) g°s (D.2.1)

subject to the terminal condition ¢“(T,y) = &, where In(I(t)) = E [In (%)* (t,Ye)] and Y, is a
random variable that has the stationary distribution of the process Y.

We already mentioned that the factor [ should be regarded as endogenous, so we determine [()
recursively: Starting with an initial function ly(¢), find the solution h®S to (5.1.7) and then
update the function [4(¢) via

e\ CS

In(1y(t)) = E [ln (5) m] —In(67) ~ E[In (4°5(t, 1)) (D.2.2)

and iterate until a fixed-point is reached.
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Moreover, recall the partial differential equation associated to the artificially completed market
with arbitrary ¥ and power utility by

O=gi+7 (ny) Jg+a (ny) gy + %trace [(EY)T gyyZY] + 6%, (D.2.3)

1
subject to the terminal condition §(T,y) = 7, where 7 : R” and & : R**! — R*" are given as

and

D.2.1 Multivariate Kim-Omberg Model
Recall the model introduced in [Example 4.1 where for a R™T"-dimensional standard Brownian

motion W let the assets and states follow the dynamics

dSy = diag[S)] ((r + X+ ATY;) dt + £5dW)
dY; = —diag[k]Y;dt + XY dW,

where 7, A € R™, A € R"*™, k€ R” and X5 e R™*(m+n) 5Y g Rnx(m+n) 35 defined in (4.1.3).

Campbell-Shiller Approximation of the Dual HJB Equation
Let A, B and C be given by

C'(t) = ([(t) + 2diag[x] — 227AT) (1) + ZXLIXEAT + 20(1) T=C(1)
B'(t) = (l(t) + diag[k] — 12AT) B(t) + 2SN — 22220 (1) 'TTA +20(1) 'EB(1)
1 _ — _
A'(t) = 1) A(t) — 1(t) (1 —In(I(t)) — In(8) + In 5w)) - = (r +32IATEA - 12)
+ L9TTB(t) — 1B() EB(t) + trace [(EY)T C(t)EY] , (D.2.4)
where A(T) =0, B(T) = Opx1, C(T') = Opxp, and E, I', ¥ are given by
N A T ~ ~ T
= e ZSY (ZSY> + ")/ZY <ZY>
N -T /4 T
e ()7 ()
cwfanT\ !
3 - <25 (25) )
Then the function
g (t,y) = exp (A(t) —y ' B(t) —y' C(t)y),
solves ({D.2.1)) and
CS
()7 =m () +n3 (t)y (D.2.5)

~ T N T
with ¥ (t) = v <2Y> B(t) and nd (t) = 2y (EY) C(t) are the associated (linear) market
prices of risk.
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Remark D.1
For the recursive definition of | from (D.2.2)) we need to compute

E[Y,)B(t)] and E[Y,)C(t)Yy]

in every step. Following [Meucci, 2009], the multivariate Ornstein-Uhlenbeck process has a
stationary distribution which is multivariate normal with parameters

too =0 and  vec(Xy) = (diag[x] @ diag[x])vec (EY (ZY)T) ,
where @ is the Kronecker sum which for M, N € R™*"™ defined via the Kronecker product as
MG‘)N = M®In><n +In><n®N

and vec is the stack operator that transforms a m x n matriz to a mn x 1 vector. Thus, for every
t € [0,T] we have E[Y,] B(t)] = 0 and

E[Y,]C(1)Yo] = X, B[(Yoo)i( C()Yo)i] = D E | (Yao)i Y, C(t)ij(yoo)j]
i=1 i=1 Jj=1
=), ). 2)i(Yoo);] = D X, C(1)iCovl(Yao)is (Yao);]
i=1j=1 i=1j=1
= Z Z C(t)ij(Xe)ij = trace[C(t)Xw],
i=1j=1
as Yoo 1S symmetric. VAN

Exact Solution for Power Utility in Completed Markets

We choose n¥ = (ny)cs as given in (D.2.5)) and write (ny)cs (t,y) = ni (t) +n3 (t)y for short,
omitting the ¢ and y dependence for brevity of notation below. Then the function

Bty 5) = exp (A(t,s) =y Blt,s) = yTC(t, 5)y)
with A(-,s), B(-, s), é(, s) being the solutions of the ODE system

Gy =2 (diagln] — 52 (AL +25)) €+ 520 (AmAT + () ")) + 2075 (27) ' €

<d1ag[

I—I

BTy (=¥)' B, (D.2.6)

where



APPENDIX D. EXPLICIT AND APPROXIMATE SOLUTIONS

fl(s, s) = 0, B(s,s) = Opx1, C(s,8) = Opxn solves the linear homogeneous partial differential
equation

0=he+7 () ) bt a (7)) by + Strace | (21) T Ay =¥
on [0, s] x R subject to h(s,y;s) =1, and

T

ity) = o f B(t, y; s)ds + eh(t,y:; T),
t

solves (|D.2.3)), see [Section 5.1{

D.2.2 Multivariate Heston-Model

Recall the model from [Example 4.2, where m = n and for a R?"-dimensional standard Brownian
W let the assets and states follow the dynamics

dS; = diag[S] ((r + Kdiag[Y;]K ") dt + $%(Y;)dW;) ,
dY; = (i — diag[x]Y;) dt + % (Y;)dW,

where 7, \, i, ks € R", K € R?" and »9, BY are (n x 2n)-dimensional matrix functions as in
(14.1.3)).

Campbell-Shiller Approximation of the Dual HJB Equation
Let A and B = (By,...,B,)" be given by
_v n n K 5\ 2
—~ 9 Pi 3 — ji\j
Bi(t) = <[(t) + K — IT'Y? Z Kji)\j> B;(t) + %%% (Z z5]> (D.2.7)
i =1 i
v\ 2
—5 (@) (L=~ p}) = 1) Bi(1)*
A'(t) = (DA + 3T B(t) — =2 (r - L) (1) (1 ~In(I(t)) + In (5%) _ ln(é))
lu“ Y 17’7
where A(T) = 0 and B(T") = 0,,x1. Then the function
g (t,y) = cexp (A(t) —y ' B(t)),
solves ({D.2.1)) and
Cs - T
(") (ty) =7 (Y w) B (D.2.8)

are the associated market prices of risk. Recall that f]y(y) behaves as /y.

Remark D.2
For the recursive definition of | from (D.2.2) we need to compute E[Y,] B(t)]. The single coor-
dinate processes Y, i =1,...,n have the dynamics

Yy = (@ — wiY)dt + 64y (pz‘de + defi> .

As the Brownian motions W* and W2 are independent, this is a classical CIR process and it is
well known that the asymptotic distribution of such is a gamma distribution with expectation %,
see e.g.[Cox et al., 2005]. Thus

E[Y,)B(t)] =E[Y,)]|B(t) = " (diag[x]) " B(t).
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Exact Solution for Power Utility in Completed Markets

AN\ T
We choose n¥ = (ny)cs =7 (EY) B as given in ([D.2.8)) and omit the ¢ and y dependence for
brevity of notation below. Then the function

h(t,y;s) = exp (fl(t, s) —y ' B(t, s))

with A(-,s) and B(-,s) = (B'(-,s),...,B"(-,s))" being the solutions of the ODE system

i (3 pi < 5 _y\2 Fi
B; = (Hz‘ - =1 < 5 D IEKjidj+Bi(8)) (1—p}) | | B (D.2.9)
T =1

A(s,s) = 0, B(s,s) = 0,1 solves the linear homogeneous partial differential equation

0=he+7 (1)) bt a (")) hy + Strace | (5Y) " hyy Y|

on [0, s] x R subject to h(s,y;s) =1, and

T
ity) = 6% f h(t, ; 5)ds + Ehit, y: T),
t

solves (D.2.3)), see [Section 5.1}

D.3 SA-PDI Algorithm
Assume that from the (j — 1)-th iteration we obtained some market prices of risk (ny)(jfl).

We choose k = %, then the partial differential equation associated to the (ny)(Jfl)—completed
market reads

0=g:+7 ((ny)(jfl)) g+a ((ny)(j71)> Gy + 3trace [(EY)T gyyZY] +6Y, (D.3.1)

where 7 : R — R and & : R**! — R*" are given as

_ T !
= (r—i—%i (XT (ES (Es) > X+UTU) —1‘5_%)

=
—
e
N—
[P
—_
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D.3.1 Multivariate Kim-Omberg Model
Recall the model introduced in [Example 4.1 where for a R™*T"-dimensional standard Brownian

motion W let the assets and states follow the dynamics

dSy = diag[S)] ((r + X+ ATY;) dt + £5dW)

dY; = —diag[k]Y:dt + XY dW,
where where 7, A € R™, X € R"™™_ € R" and £ € Rm*(m+n) 53V ¢ Rnx(m+n) 49 defined in
(14.1.3).

Let the market prices of risk (ny)(jfl) from the (j — 1)-th iteration be given and determine the
approximation of the associated sensitivities by their first-order Taylor approximation around

y=E[Yy] as
G(t,y) _ gy(tu y) + i <9y(t7g)> (y _g)

9(t,y) oy \ 9(t,)
Then the linearly approximated market prices of risk have a representation

()7 (ty) = (8) (t.y) = 0l (1) + 0¥ (1)

for some ny and ny 5
Let A(-,s), B(-,s), C(-,s) be given by the solutions of the ODE system

= 2 (diag[w] — 12X (AL + Zo) + 3520 () \p) ¢ (D.3.2)
+ L (ASAT + () ") 4207V (=) C

Then the function 3 ) )
Bty ) = exp (A(ts) =y  Blt,s) = y"Clt,5)y)

solves the linear homogeneous partial differential equation
0=he+7 ((ng )“‘”) h+a ((ng)U‘U) hy + Ltrace [(zY)T hnyY] :
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on [0, s] x R subject to h(s,y;s) =1, and
T

ity = o f h(t, y; 5)ds + Eht, y: T),
t

solves ([D.3.1)).

D.3.2 Multivariate Heston Model

Consider the model introduced in [Example 4.2| i.e. let m = n and for a R?>"-dimensional
standard Brownian W let the assets and states follow the dynamics

dS; = diag[S] ((r + Kdiag[Y;]K " X) dt + £%(Y;)dW3) ,
dY; = (i — diag[x]Y;) dt + % (V;)dW,
where 7, \, fi, s € R", K € R?" and »S, BY are (n x 2n)-dimensional matrix functions as in

@1.3).

Let the market prices of risk (ny)(j Y from the (7 — 1)-th iteration be given and determine the
approximation of the associated sensitivities by their value at § = E [Y], i.e.

gy(ta g)
) = 9t 9)

Then the approximated market prices of risk are of the form
- .
()" (ty) = kS )& ).
Recall that 3Y (y) behaves as \/%. Then the function
hlt ;) = exp (Alts) =y B(t,s))

with A(-,s) and B(-,s) = (B'(-,s),...,B"(-,s))" being the solutions of the ODE system

W
[l
/N
&
|
Q‘“

2
N
sql
n bh<
1=
5
>~

A — kS, (a7) (1 - p$)> — Lk (02/)26i> B' (D.3.3)

ioj=1
N2
1-v11 S KjiA;j 12 (5Y 2 1 2)&2 1 /-Y\2 B 2
+5755 (X el s (@) (1=p)&; | +5(a7)
j=1 i

A(s,s) = 0, B(s,s) = 0,1 solves the linear homogeneous partial differential equation
. . 1
0=he+7 () ) hra ()77 by + gtrace [(57) kg, =Y

on [0, s] x R subject to h(s,y;s) =1, and
T

ity) = oF f h(t, y; 5)ds + Ehit, y: T),
t

solves ([D.3.1)).
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