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Preface

Universality has been fascinating since the first third of the twentieth century.

Many types of this phenomenon have been elaborated since. The universal

objects that will be studied in this thesis are universal power series whose

universal property is defined by means of overconvergence. Their definition

will be given in the fifth chapter.

But studying universal power series and their properties for their own sake

is neither the major nor the minor concern—much work has been devoted to

this task in the past. A central part of this thesis is the following question:

What happens if a given universal power series is modified? Is the result of

this modification still universal? If this is the case, one speaks about derived

universality. This topic will be treated in detail in the sixth chapter.

Before exploring derived universality, it has to be described how to modify a

given power series. This modification is realized by the Hadamard product,

which is the other central part of this thesis. First introduced for power series,

it was later generalized to functions holomorphic at the origin. But it turns

out that considerations concerning universality make it necessary to define a

Hadamard product for functions holomorphic in open sets that do not contain

the origin. In the third chapter, a definition of a Hadamard product for this

situation will be given. Since this new version of the Hadamard product is

defined by means of a parameter integral, its definition requires appropriate

integration curves. These objects and their properties (especially their exis-

tence) will be studied in the second chapter.

The Hadamard product can be regarded as a bilinear and continuous operator

between Fréchet spaces. These properties can be exploited to prove the Hada-

mard multiplication theorem and the Borel-Okada theorem. Furthermore, the

new version of the Hadamard product makes it possible to state generalizations

of these two theorems that will be proved in the fourth chapter.

There is an intimate link between the Hadamard product and Euler differential

operators. This connection will be revealed in the seventh chapter.

In the first chapter, notations and conventions will be introduced. Further-

more, the star product, the set on which the Hadamard product is defined,

will be defined.
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In the last chapter, open problems concerning universal power series will be

posed.
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Chapter 1

Notations and preliminaries

In the first section, we will set the topological stage upon which the holomor-

phic functions act.

In the second section, we will introduce the notation concerning the analytic

surroundings. The main purpose is to have a mutual language—this is neces-

sary because the concepts are not consistently used throughout the literature.

In the third section, we will define the star product, and we will prove prop-

erties of the star product. The star product plays an important role in the

definition of the Hadamard product (see section 3.4).

1.1 Topological preliminaries

In this section, we want to summarize essential topological concepts. The

notions of topological vector spaces refer to [Rud1].

The set of complex numbers will be endowed with the topology TC consisting

of all subsets of the complex plane that are open with respect to the norm

induced by the absolute value. This is a locally compact topological Hausdorff

space, that is not compact. By means of the Alexandrov compactification

we obtain the extended complex plane C∞ and its topology T∞. Equipped

with the new topology, we get a compact topological Hausdorff space, that is

metrizable—for instance by the chordal metric.

Let M ⊂ C and S ⊂ C∞ be sets. By M we denote the closure with respect

to TC, and by S
∞

we denote the closure with respect to T∞. By ∂M we

1



Chapter 1 – Notations and preliminaries 2

denote the boundary with respect TC, and by ∂∞S we denote the boundary

with respect to T∞. The symbol SC refers to the complement with respect

to the extended complex plane. The complement with respect to the complex

plane will be denoted by the symbol C \ S. Continuity of functions has to

be understood as continuity with respect to the these topologies. By C(S) we

denote the linear space of all complex-valued continuous functions on S.

A connected and open subset of the (extended) complex plane is called a

domain.

For ζ ∈ S, we denote by Sζ the component of S that contains the element ζ.

A subset of the (extended) complex plane is called simply connected if its

complement with respect to the extended plane is connected in the extended

plane. It can be shown that an open set is simply connected if and only if all

of its components are simply connected (domains).

For ζ ∈ C, r > 0, and % ≥ 0 we define

Ur(ζ) := {z ∈ C : |z − ζ| < r} ,
Ur[ζ] := {z ∈ C : |z − ζ| ≤ r} ,
Tr(ζ) := {z ∈ C : |z − ζ| = r} ,
U%(∞) := {z ∈ C : |z| > %} ∪ {∞},
U%[∞] := {z ∈ C : |z| ≥ %} ∪ {∞}.

Since disks and circles around the origin appear frequently, we additionally

define Dr := Ur(0) and Tr := Tr(0).

Let Ω be a non-empty open subset of the complex plane. For each n ∈ N we

define the set

Kn(Ω) :=

{
z ∈ Ω : |z| ≤ n, dist(z, ∂Ω) ≥ 1

n

}
. (1.1)

If it is clear which open set is meant, we simply write Kn instead of Kn(Ω).

The family (Kn(Ω))n∈N forms a compact exhaustion of Ω. Each component

of the set C∞ \ Kn(Ω) contains a component of C∞ \ Ω. In particular, if Ω

is simply connected, then all the sets C∞ \Kn(Ω) are connected. In this case

we call (Kn(Ω))n∈N a compact exhaustion with connected complements. Here,

we would like to mention one more thing: For a plane compact set K the set

C \K is connected if and only if the set C∞ \K is connected.
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It will also be important to study subsets of the extended complex plane. Let

Ω be an open subset of the extended complex plane containing the point at

infinity. For n ∈ N the (countable) family consisting of the sets

Kn(Ω) :=

{
z ∈ Ω ∩C : dist

(
z, ∂(Ω ∩C)

)
≥ 1

n

}
∪ {∞} (1.2)

forms a compact exhaustion of Ω.

For a non-empty open subset Ω of the (extended) plane, a non-empty compact

set K ⊂ Ω, and f : K → C continuous we define

‖f‖K := max{|f(z)| : z ∈ K}. (1.3)

With the exhaustion (1.1) or respectively (1.2), the vector space topology

induced by the family
(
‖ · ‖Kn(Ω)

)
n∈N is called the topology of compact con-

vergence or the compact-open topology. The linear space C(Ω) will always be

endowed with this topology, that makes it a Fréchet space.

1.2 Analytical preliminaries

Let Ω be a non-empty open subset of the extended complex plane. A function

f : Ω → C is called holomorphic in Ω if f is continuous on Ω and f
∣∣
Ω∩C

is holomorphic in Ω ∩ C. If Ω does not contain the point at infinity, this

definition coincides with the usual definition of holomorphy. If Ω contains the

point at infinity, we set Ω̃ := {1/ω : ω ∈ Ω, ω 6= 0}† and associate with f a

new function f̃ : Ω̃ → C defined by f̃(z) := f(1/z). It can be shown that f

is holomorphic in Ω if and only if f
∣∣
Ω∩C is holomorphic in Ω ∩ C and f̃ is

holomorphic at 0. The derivatives of f at the point at infinity are defined by

f (k)(∞) := f̃ (k)(0) (k ∈ N0).

For k ∈ N we have

f (k)(∞) = lim
z→0

f (k−1)(1/z)− f (k−1)(∞)

z

= lim
w→∞

w ·
(
f (k−1)(w)− f (k−1)(∞)

)
.

† We set 1/∞ := 0.
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Moreover, f has a power series expansion around the point at infinity of the

form

f(z) =
∞∑
ν=0

f (ν)(∞)

ν!
· 1

zν
(
z ∈ Ud(∞)

)
with d :=

(
dist(0, ∂Ω̃)

)−1
. If R > 0 satisfies UR[∞] ⊂ Ω, the coefficients in

this expansion can be represented in the form

f (ν)(∞)

ν!
=

1

2πi

∫
|ζ|=R

f(ζ) ζν−1dζ
(
ν ∈ N0

)
.

We remark that in general the derivatives are not continuous at the point at

infinity, as the next example shows.

1.2.1 Example:

For the function f : C∞ \ {1} → C defined by f(z) := 1/(1− z) we have

f(z) =
∞∑
ν=1

−1

zν
(
z ∈ U1(∞)

)
.

Thus, we get f (k)(∞) = −(k!), but lim
z→∞

f (k)(z) = 0 for all k ∈ N. 3

A function f referred to as holomorphic in Ω has to be understood as a func-

tion f : Ω → C that is holomorphic in Ω. If f is holomorphic in an open set

containing the origin, then we denote by
∞∑
ν=0

fνz
ν its local power series expan-

sion around the origin. Similarly, if f is holomorphic in an open set containing

the point at infinity, we denote its power series expansion around the point at

infinity by
∞∑
ν=0

fν/z
ν .

Next, we define several sets of holomorphic functions that will frequently ap-

pear.

1.2.2 Definition:

Let Ω ⊂ C∞ be a non-empty open set and k ∈ N0. If Ω contains the point at

infinity, we define

H(k)(Ω) :=
{
f ∈ CΩ : f holomorphic and f (p)(∞) = 0 (0 ≤ p ≤ k)

}
.

Moreover, by H(Ω) we denote the set H(0)(Ω). If Ω does not contain the

point at infinity, we denote by H(Ω) or by H(k)(Ω) the set of all functions

holomorphic in Ω. 3
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The linear space H(k)(Ω) will always be endowed with the compact-open topol-

ogy. Since it is a closed linear subspace of C(Ω), it is a Fréchet space.

If K is a non-empty compact subset of the complex plane, we denote by A(K)

the subset of C(K) that consists of all functions whose restrictions to the

interior of K are holomorphic. It is admissible that the interior of K is the

empty set; in this case the set A(K) coincides with C(K). The linear space

A(K) will always be endowed with the uniform norm, that makes it a Banach

space.

Next, we will introduce an important class of operators. To this end, let

ξ ∈ {0,∞}. We consider the germs of holomorphic functions at ξ: On the set{(
f, U

)
: U neighborhood of ξ, f ∈ H(U)

}
the relation(

f, U
)
∼{ξ}

(
g, V

)
if f (k)(ξ) = g(k)(ξ) for all k ∈ N0

defines an equivalence relation. The equivalence class [(f, U)]∼{ξ}
is called the

germ of f (at ξ). By H
(
{ξ}
)

we denote the corresponding quotient space.

Moreover, we identify a germ with each of its representatives.

1.2.3 Remark:

Let Ω ⊂ C∞ be a non-empty open set, ξ ∈ {0,∞}, and T : H({ξ}) →
H(Ω) linear. The continuity of T can be characterized in the following way

(cf. [Köthe, pp. 375]):

(a) Let ξ = 0. Then T is continuous if and only if for every K ⊂ Ω compact

and every m ∈ N there exists a C > 0 so that ‖T (f)‖K ≤ C · ‖f‖U1/m[0]

for every f ∈ A
(
U1/m[0]

)
.

(b) Let ξ = ∞. Then T is continuous if and only if for every K ⊂ Ω compact

and every m ∈ N there exists a C > 0 so that ‖T (f)‖K ≤ C · ‖f‖Um[∞]

for every f ∈ A (Um[∞]). 3

An infinite matrix A is a mapping A : N0 × N0 → C. We usually write

A = (anν)(n,ν)∈N0×N0 = (anν) with anν := A(n, ν) (n, ν ∈ N0). Furthermore, in

the whole thesis, we assume that each infinite Matrix A = (anν) satisfies the

following condition:

lim
ν→∞

ν
√
|anν | = 0 (n ∈ N0), (1.4)
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i.e. each row of the matrix consists of the Taylor coefficients of an entire func-

tion.

Using infinite matrices, we can now define the operators mentioned above.

1.2.4 Definition:

Let A be an infinite matrix. For n ∈ N0 we define σAn : H({0}) → H(C) by

σAn (f)(z) :=
∞∑
ν=0

anν fν z
ν

(
z ∈ C

)
.

The sequence of operators (σAn )n∈N0 is called A-transformation, and the se-

quence (σAn (f))n∈N0 is called the A-transform of f . Moreover, we define

sn : H
(
{0}
)
→ H(C) by

sn(f)(z) :=
n∑
ν=0

fν z
ν

(
z ∈ C

)
.

The operator sn is called the n-th partial sum operator. 3

1.2.5 Remarks:

1. If there is no confusion to be expected, we simply write σn instead of σAn .

2. If we consider the infinite matrix A defined by

anν :=

{
1, ν ≤ n

0, ν > n
(n, ν ∈ N0),

then we have σAn = sn for all n ∈ N0. 3

The partial sum operators sn are applied to germs of holomorphic functions at

the origin. We will also need operators that are applied to germs holomorphic

at the point at infinity (see the Hadamard multiplication theorem at infinity).

1.2.6 Definition:

For n ∈ N we define s∞n : H({∞}) → H(C∞ \ {0}) by

s∞n (f)(z) :=
n∑
ν=1

fν z
−ν (

z ∈ C∞ \ {0}
)
.

The operator s∞n is called the n-th partial sum operator at infinity. 3
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The operators σAn : H({0}) → H(C) have the following two important prop-

erties.

1.2.7 Proposition:

Let A be an infinite matrix and n ∈ N0. Then σAn : H
(
{0}
)
→ H(C) is linear

and continuous.

Proof: The linearity follows from the associativity and commutativity prop-

erty of series.

Let m ∈ N, K ⊂ C compact, r ∈ (0, 1/m), and M := max{|z| : z ∈ K} + 1.

Furthermore, choose ε := r/(2M). By (1.4) there exists ν0 ∈ N0 so that

|anν | ≤ εν for all ν > ν0. If we set T := σAn
∣∣
A(D1/m), we get for every f ∈

A
(
D1/m

)
and every z ∈ K:

|T (f)(z)| =

∣∣∣∣∣∣∣
∞∑
ν=0

anν ·

 1

2πi

∫
|ζ|=r

f(ζ)

ζν+1
dζ

 · zν

∣∣∣∣∣∣∣
≤

{
ν0∑
ν=0

|anν | ·
(
M

r

)ν
+

∞∑
ν=ν0+1

(
εM

r

)ν}
· ‖f‖

D1/m
=: C · ‖f‖

D1/m
.

(Notice that C is independent of z and of f .) Since z ∈ K was arbitrary, this

yields

‖T (f)‖K ≤ C · ‖f‖
D1/m

(
f ∈ A

(
D1/m

))
.

According to Remark 1.2.3, T is continuous. 2

From this proposition, we immediately get the following consequence.

1.2.8 Corollary:

For each n ∈ N0 the operator sn : H
(
{0}
)
→ H(C) is linear and continuous.

Proof: Apply Proposition 1.2.7 to the matrix of Remark 1.2.5.2. 2

1.2.9 Remark:

It can also be shown that each operator s∞n : H({∞}) → H(C∞ \{0}) is linear

and continuous. 3
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1.3 The star product

The star product naturally emerges in the context of the Borel-Okada theorem

and the Hadamard multiplication theorem. For the original statements we refer

to [Bo99], [Ok25], or [Ha99].

Working in the extended complex plane, makes it necessary to agree upon

some arithmetical rules concerning the point at infinity. For this purpose, we

set
1

0
:= ∞,

1

∞
:= 0,

∞
0

:= ∞,
0

∞
:= 0

as well as

ζ · ∞ := ∞ · ζ := ∞
(
ζ ∈ C∞ \ {0}

)
. (1.5)

Expressions of the form “0 ·∞” and “∞· 0” will be excluded from our consid-

erations.

Let A and B be non-empty subsets of the extended plane in such a way that

0 6∈ A if ∞ ∈ B and 0 6∈ B if ∞ ∈ A. In this case we say that the algebraic

product

A ·B :=
{
ab : a ∈ A, b ∈ B

}
of A and B is well defined. For the empty set we define

A · ∅ := ∅ · A := ∅ · ∅ := ∅.

Furthermore, we set

1

A
:= 1/A := A−1 :=

{
1

a
: a ∈ A

}
.

1.3.1 Example:

Let ζ ∈ C and r > 0 so that r 6= |ζ|. Then the relation

1

Tr(ζ)
=

{
z ∈ C :

∣∣∣∣z − ζ

|ζ|2 − r2

∣∣∣∣ =
r∣∣|ζ|2 − r2

∣∣
}

holds, i.e. 1/Tr(ζ) is also a circle.‡ 3

‡ Which is not really surprising since inversion is a Möbius transformation.
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For a non-empty set S ( C∞ the following important property holds:(
ζ

S

)C
=

ζ

SC
(
ζ ∈ C \ {0}

)
. (1.6)

We proceed with a property of the algebraic product.

1.3.2 Lemma:

Let A,B ⊂ C∞ compact sets in such a way that A · B is well defined. Then

A ·B is compact, too.

Proof: 1. Assume, without loss of generality, that A 6= ∅ and B 6= ∅. The

multiplication mapping(
A×B, (T∞ ∩ A)× (T∞ ∩B)

)
→
(
C∞,T∞

)
, (z, w) 7→ z · w

is continuous. (The multiplication involving the point at infinity has to be un-

derstood in the sense of (1.5).) To see this, let (z, w) ∈ A×B and ((zn, wn))n∈N
a sequence in A×B with (zn, wn) → (z, w) in the product topology as n→∞.

Denote by χ the chordal metric on C∞. If z, w ∈ C, the assertion follows from

the continuity of the multiplication in C. Now let z = ∞. (Hence, we get

|zn| → ∞ as n → ∞.) Since A · B is well defined, we have w 6= 0. Without

loss of generality, we can assume that zn 6= ∞ and wn 6= ∞ for all n ∈ N. We

obtain

χ(zn · wn,∞) =
1√

1 + |zn · wn|2
≤ 1√

1 + C2 · |zn|2
n→∞−−−−→ 0.

From this we get the continuity. (The case w = ∞ is handled analogously.)

2. Since the multiplication mapping is continuous, and since A×B is compact,

the set A ·B, i.e. the image of A×B under the multiplication mapping, is also

compact. 2

Now, we define the star product.

1.3.3 Definition:

Let A,B ⊂ C∞ be non-empty sets. If the two conditions

• 0 ∈ A if ∞ ∈ C∞\B,

• 0 ∈ B if ∞ ∈ C∞\ A
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are satisfied, we say that A and B satisfy the star condition. If A and B satisfy

the star condition, then the set

A ∗B := C∞\
(
(C∞\A) · (C∞\B)

)
is called the star product of A and B. If in addition A 6= C∞, B 6= C∞, and

A ∗B 6= ∅, then A and B are called star-eligible. Furthermore, we define

S∗ :=
1

C∞\S

for each set S ( C∞. 3

1.3.4 Remark:

Notice that the undefined expressions “0 · ∞” and “∞ · 0” do not appear in

(C∞\A) · (C∞\B) if A and B satisfy the star condition. 3

In some papers and monographs only plane sets are considered, and the com-

plement is taken with respect to the plane instead of the extended plane. For

star-eligible sets the result is the same (see Proposition 1.3.10.4). In this set-

ting the set (C\M)−1∪{0} appears for a set M ( C with 0 ∈M (see [Mü92]).

But (C \M)−1 ∪ {0} = M∗ holds for every such M .

We give some first examples.

1.3.5 Examples:

1. If A ⊂ C∞ is not empty, then A and C∞ satisfy the star condition, and

the relation C∞ ∗ A = A ∗C∞ = C∞ holds.

2. For r, s > 0 we have Ur(0) ∗ Us(0) = Urs(0).

3. For R,S ≥ 0 we have UR(∞) ∗ US(∞) = URS(∞).

4. For A := C∞ \ {eit : 0 ≤ t ≤ π} and B := C∞ \ [−∞, 0] we have

A ∗B = {z ∈ C : Im(z) > 0}. 3

1.3.6 Example:

Let A ⊂ C∞ and B ⊂ C \ {0} be non-empty and star-eligible sets. Then the

relation

A ∗ (C∞ \B) =
⋂
b∈B

b · A

holds. 3
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1.3.7 Example:

Let A ⊂ C∞ be a non-empty set and η ∈ C∞.

(a) If η 6∈ {0,∞}, then A and C∞ \ {η} are star-eligible, and the relation

A ∗
(
C∞ \ {η}

)
= η · A

holds. In particular, C∞ \ {1} is a neutral element for the star product.

(b) If η = 0 and ∞ ∈ A, then A and C∞ \ {0} are star-eligible, and the

relation

A ∗
(
C∞ \ {0}

)
= C∞ \ {0}

holds.

(c) If η = ∞ and 0 ∈ A, then A and C∞ \ {∞} = C are star-eligible, and

the relation

A ∗C = C

holds. 3

1.3.8 Example:

Let θ ∈ R, p ∈ N, and

ξ
(p)
θ, j := exp

(
2π(j − 1) + θ

p
i

)
(1 ≤ j ≤ p).

If Ω1 ⊂ C∞ is a non-empty open set, and if Ω2 := C∞ \ {ξ(p)
θ, j : 1 ≤ j ≤ p},

then Ω1 and Ω2 are star-eligible, and we have

Ω1 ∗ Ω2 =

p⋂
j=1

ξ
(p)
θ, j · Ω1

according to Example 1.3.6. 3

Definition 1.3.3 gives rise to the question whether two sets that satisfy the star

condition are necessarily star-eligible. The next example shows that this is not

the case.
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1.3.9 Examples:

1. Let Ω1 := C∞ \ [0,∞] and Ω2 := C∞ \ T1. The sets Ω1 and Ω2 satisfy

the star condition. But we have Ω1 ∗ Ω2 = ([0,∞] ·T1)
C = ∅.

2. Let θ ∈ R and p ∈ N \ {1}. For ξ
(p)
θ, j, Ω1, and Ω2 as in Example 1.3.8, we

denote by

W
(p)
θ, j :=

{
teiβ : t > 0,

2π(j − 1) + θ

p
< β <

2πj + θ

p

}
be the angle induced by the two rays starting in the origin and emanating

through the points ξ
(p)
θ, j and ξ

(p)
θ, j+1 (1 ≤ j ≤ p). If there exist j ∈ N, j ≤ p,

and θ ∈ R so that ΩC
1 ⊃ W

(p)
θ, j , then we have Ω1 ∗ Ω2 = ∅. 3

Next, we summarize some properties of the star product.

1.3.10 Proposition:

Let A,B ⊂ C∞ be star-eligible sets, ζ ∈ C \ {0}, and M ⊂ C∞ in such a way

that M ·B∗ is well defined. Then the following assertions hold:

1. A ∗B = B ∗ A.

2. 0 ∈ A ∗B if and only if 0 ∈ A ∩B.

3. ∞ ∈ A ∗B if and only if ∞ ∈ A ∩B.

4. If A,B ⊂ C, then A ∗B = C \
(
(C \ A) · (C \B)

)
.

5. M ⊂ A ∗B if and only if M ·B∗ ⊂ A.

6. ζ ∈ A ∗B if and only if AC ⊂ ζ/B.

7. If in addition B is an open set and if K ⊂ A ∗ B is a compact set, then

K ·B∗ is a compact subset of A.

Proof: ad 1.: For complex numbers this follows from the commutativity of

the multiplication; for the point at infinity this follows from (1.5).

ad 2.: We have 0 ∈ A ∗ B if and only if 0 6∈ AC · BC , which is the case if and

only if 0 6∈ AC and 0 6∈ BC .

ad 3.: We have ∞ ∈ A ∗ B if and only if ∞ 6∈ AC · BC , which is the case if

and only if ∞ 6∈ AC and ∞ 6∈ BC .
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ad 4.: Since A and B are plane sets, we get(
(C \ A) · (C \B)

)
∪ {∞} = (C∞ \ A) · (C∞ \B).

This implies

C \
(
(C \ A) · (C \B)

)
= C∞ \

(
(C∞ \ A) · (C∞ \B)

)
= A ∗B.

ad 5.: (i) Let M ⊂ A ∗ B and z ∈ M · B∗. Then there are elements a ∈ M

and b ∈ B∗ so that z = ab.

Case 1: a = 0. By part 2 we get 0 ∈ A ∩B, and hence z ∈ A.

Case 2: b = 0. Thus ∞ 6∈ B. According to the star condition, we get z ∈ A.

Case 3: a = ∞. By part 3 we get ∞ ∈ A ∩B, and hence z ∈ A.

Case 4: b = ∞. Thus 0 6∈ B. According to the star condition, we get z ∈ A.

Case 5: a 6∈ {0,∞} and b 6∈ {0,∞}. Assume that z 6∈ A. Then we get

a = zb−1 ∈ ACBC = (A ∗B)C , which is a contradiction.

(ii) Let M ·B∗ ⊂ A and z ∈M .

Case 1: z = 0. Thus 0 ∈ A. Since the algebraic product is well defined, we

have ∞ 6∈ B∗, and hence 0 ∈ B. Therefore, we have z ∈ A ∗B.

Case 2: z = ∞. Thus ∞ ∈ A. Since the algebraic product is well defined, we

have 0 6∈ B∗, and hence ∞ ∈ B. Therefore, we have z ∈ A ∗B.

Case 3: z 6= 0 and z 6= ∞. Assume that z 6∈ A ∗ B. Then there exist a ∈ AC

and b ∈ BC so that z = ab. Thus, we get a = zb−1 ∈ M · B∗ ⊂ A, which is a

contradiction.

ad 6.: Part 5 yields ζ ∈ A∗B if and only if ζ ·B∗ ⊂ A. By taking complements,

we get ζ · B∗ ⊂ A if and only if AC ⊂ (ζ · B∗)C = (ζ/BC)C = ζ/B, where the

last equality is furnished by (1.6).

ad 7.: Because of part 5 the set K ·B∗ is contained in A. The sets K and B∗

are compact subsets of the extended plane. According to Lemma 1.3.2, K ·B∗

is compact, too. 2

1.3.11 Remark:

If A,B ⊂ C∞ both contain the origin or both contain the point at infinity,

then A and B are star-eligible. (The assumption implies that A and B satisfy
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the star condition; the non-emptiness is guaranteed by Proposition 1.3.10 part

2 or 3, respectively.) We will use this property of the star product tacitly

throughout the rest of the thesis. 3

Next, we will prove some topological properties of the star product.

1.3.12 Proposition:

If Ω1,Ω2 ⊂ C∞ are open sets that satisfy the star condition, then Ω1 ∗ Ω2 is

an open set.

Proof: Since Ω1 and Ω1 satisfy the star condition, ΩC
1 · ΩC

2 is well defined.

According to the assumption, ΩC
1 and ΩC

2 are compact, and hence ΩC
1 · ΩC

2 is

also compact by Lemma 1.3.2. This implies that Ω1 ∗ Ω2 is open. 2

We remark that the star product can be the empty set (see Example 1.3.9).

As the next example shows, Proposition 1.3.12 is not true in general for the

plane version of the star product.

1.3.13 Example:

Let Ω1 := C \ [0,∞) and Ω2 := C \ {i+ eit : −π/2 ≤ t ≤ π/2}. Here we have

(C \ Ω1) · (C \ Ω2) = {z ∈ C : Re(z) ≥ 0, Im(z) > 0} ∪ {0}

which is neither closed in the plane nor in the extended plane. 3

According to Proposition 1.3.12, the star product of open sets that satisfy the

star condition is open (maybe empty). What can we say about other topolog-

ical properties? Is the star product of connected star-eligible sets connected

again? The next example shows that this is not the case.

1.3.14 Example:

The sets

Ω1 := Ω2 := C∞\
(
{eit : −π/2 ≤ t ≤ π/2} ∪ [1,∞]

)
are star-eligible, simply connected plane domains. The star product is the set

Ω1 ∗ Ω2 = D ∪ {z ∈ C : Re(z) < 0, |z| > 1}

which is not connected. 3
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Notice that the star product in Example 1.3.14 is simply connected. This is

true for a more general situation.

1.3.15 Proposition:

Let A ⊂ C∞ and B ⊂ C satisfy the star condition. If B is simply connected,

then A ∗B is also simply connected.

Proof: Without loss of generality, we may assume that the star product is

not the empty set. Moreover, we have

(A ∗B)C =
⋃

w∈AC
w ·BC .

Since w ·BC is connected and ∞ ∈ w ·BC for all w ∈ AC , the set (A ∗B)C is

connected. Hence, A ∗B is simply connected. 2

Let 0 ≤ s1 < s2 ≤ ∞ and 0 < α ≤ π. The set

G (s1, s2;α) :=
{
seiθ : s1 < s < s2, |θ| < α

}
is called an annular sector (with respect to s1, s2, and α). Such an annular

sector is a simply connected domain in the plane.

Let 0 < r1 ≤ r2 <∞ and 0 ≤ β < π. Then we define the sets

B (r1, r2; β) :=
{
reiθ : r1 ≤ r ≤ r2, |θ| ≤ β

}
and

Ω (r1, r2; β) := C∞ \B(r1, r2; β).

The set Ω(r1, r2; β) is called a complemented annular sector (with respect to

r1, r2, and β). A complemented annular sector is a domain in the plane.
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Figure 1.1: The domain G(1, 2;π/4)

1.3.16 Proposition:

For annular sectors and complemented annular sectors the relation

Ω (r1, r2; β) ∗G (s1, s2;α) =

=

 G (s1r2, r1s2; α− β) , if α > β and s1r2 < r1s2

∅ , else

holds.

Proof: According to Example 1.3.6, we have



Chapter 1 – Notations and preliminaries 17

Ω(r1, r2; β) ∗G(s1, s2;α) =
⋂

b∈B(r1,r2;β)

b ·G(s1, s2;α)

=
⋂

r1≤ r≤ r2
|δ| ≤β

reiδ ·G(s1, s2;α) (?)

=
⋂

r1≤ r≤ r2
|δ| ≤β

{
rsei(δ+θ) : s1 < s < s2, |θ| < α

}
.

(i) Let α > β and s1r2 < r1s2. Then the star product equals{
teiθ : s1r2 < t < r1s2, |θ| < α− β

}
= G(s1r2, r1s2; α− β).

(ii) Let s1r2 ≥ r1s2. Then we get

(r1 ·G(s1, s2;α)) ∩ (r2 ·G(s1, s2;α)) = ∅,

which implies the emptiness of the star product.

(iii) Now let s1r2 < r1s2 and α ≤ β. According to (?), the star product must be

confined to the annulus A := {z ∈ C : s1r2 < |z| < r1s2}. Let ζ = |ζ|eiϕ ∈ A.

For reasons of symmetry, we can assume that ϕ ∈ [0, π]. Moreover, since

only rotation arguments are used, we can assume |ζ| = 1 without loss of

generality. Denote by b(α) the arc {eiθ : |θ| < α}. If eiϕ 6∈ b(α), then we get

eiϕ 6∈ Ω(r1, r2; β) ∗ G(s1, s2;α). If eiϕ ∈ b(α), then we have ϕ − α ∈ [−β, 0].

Thus, we obtain eiϕ 6∈ ei(ϕ−α) · b(α), i.e. eiϕ 6∈ Ω(r1, r2; β) ∗G(s1, s2;α). These

considerations show that for each ζ ∈ A there exists a δ ∈ [−β, β] so that

ζ 6∈ {tei(δ+θ) : s1r2 < t < r1s2, |θ| < α}. Hence, the star product is the empty

set. 2

1.3.17 Example:

Consider the domains Ω
(

1
2
, 6; π

2

)
and G

(
1
4
, 4; 3

4
π
)
. According to Proposition

1.3.6, they are star-eligible, and we have

Ω

(
1

2
, 6;

π

2

)
∗G

(
1

4
, 4;

3

4
π

)
= G

(
3

2
, 2;

π

4

)
for their star product. 3
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Figure 1.2: The sets G
(

1
4
, 4; 3

4
π
)

(a), Ω
(

1
2
, 6; π

2

)
(b), and G

(
1
4
, 4; 3

4
π
)
∗

Ω
(

1
2
, 6; π

2

)
= G

(
3
2
, 2; π

4

)
(c)

At the end of this section, we want to mention another topic that will emerge

later on (see sections 4.2 and 6.5): solving equations for the star product.

1.3.18 Problem:

Let A,B ⊂ C∞ be given sets. Under what conditions does there exist a set

X ⊂ C∞ in such a way that A and X satisfy the star condition and that

A ∗X = B? 3

There are some cases that can be treated at once: a) If A = C∞ \ {1} and

B 6= ∅, then A ∗ B = B. b) If A = C \ [1,∞) and B star-like with respect to

the origin, then A ∗ B = B. c) If A = Ω
(

1
2
, 6; π

2

)
and B = G

(
3
2
, 2; π

4

)
, the set

X = G
(

1
4
, 4; 3

4
π
)

satisfies our equation (cf. Example 1.3.16).



Chapter 2

Cycles

In this chapter, we will introduce the notion of Cauchy cycles, anti-Cauchy

cycles, and Hadamard cycles. The latter type is essential for the definition of

the Hadamard product (see chapter 3), that is defined by a parameter integral.

The crucial point is to find appropriate integration curves for this parameter

integral. In a special case, viz. plane open sets both containing the origin, these

curves are Cauchy cycles (cf. [GE93]). Since we are interested in a version of

the Hadamard product that is defined for a more general setting, we have to

enlarge this class of integration curves. The Hadamard cycles will serve this

need.

In the first section, we will define the concepts of Cauchy cycles, anti-Cauchy

cycles, and Hadamard cycles. As already mentioned above, the last type will

be the one that is used to define the Hadamard product (see section 3.4).

In the second section, we will prove properties of Cauchy cycles, anti-Cauchy

cycles, and Hadamard cycles. Furthermore, we will prove an auxiliary result

that enables us to evaluate a line integral by means of another line integral

(see Lemma 2.2.6 and Remark 2.1.8)—a result that will be very helpful in

subsequent chapters

One of the most important things is the existence of Hadamard cycles: If we

could not guarantee it, we would not be able to define a Hadamard product.

In the third section, we will prove existence results for Cauchy cycles and anti-

Cauchy cycles. These results will allow us to prove an existence theorem for

Hadamard cycles.

19
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2.1 The definition of cycles

The concepts of line integrals will be adopted from [Rud2].

2.1.1 Definition:

Let [a, b] ⊂ R be an interval and γ : [a, b] → C a mapping. The set |γ| :=

γ([a, b]) is called the trace of γ. The mapping γ− : [a, b] → C that is defined

by γ−(t) := γ(a+ b− t) is called the reverse of γ. 3

2.1.2 Remark:

For a mapping γ : [a, b] → C we have (γ−)− = γ and |γ| = |γ−|. If in addition

0 6∈ |γ|, we have (1/γ)− = 1/(γ−). 3

Using this notation, we can prove the following transformation rule that will

be applied frequently.

2.1.3 Proposition:

Let γ : [a, b] → C \ {0} be a continuous and piecewise continuously differen-

tiable mapping, and let f : |γ| → C be continuous. Then

α

∫
γ

f(w)

w2
dw =

∫
α/γ−

f

(
α

ζ

)
dζ (2.1)

for every complex number α. 3

With these concepts, we now define an important class of mappings.

2.1.4 Definition:

Let N ∈ N, [aj, bj] ⊂ R intervals for 1 ≤ j ≤ N , S ⊂ C a non-empty set, and

γj : [aj, bj] → S continuous, piecewise continuously differentiable mappings

with γj(aj) = γj(bj) (1 ≤ j ≤ N). Furthermore, let ϕj :
[
j−1
N
, j
N

)
→ [aj, bj) be

the uniquely determined bijective and affine-linear mapping with the property

ϕj
(
j−1
N

)
= aj (1 ≤ j ≤ N). The mapping γ : [0, 1] → S defined by

γ(t) :=

γj(ϕj(t)) , if j−1
N

≤ t < j
N

γN(bN) , if t = 1
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is called a cycle in S and will be denoted by

γ =:
N⊕
j=1

γj.

For every κ ∈ C \ |γ| the number

ind (γ, κ) :=
N∑
j=1

1

2πi

∫
γj

1

ζ − κ
dζ

is called the index of γ with respect to κ. In addition, we define

ind (γ,∞) := 0

for each cycle γ. The number

L(γ) :=
N∑
j=1

∫ bj

aj

|γ′j(t)| dt

is called the length of γ. 3

Let γ be a cycle as in Definition 2.1.4. Its trace is given by

|γ| =
N⋃
j=1

|γj|.

For κ ∈ C∞\ |γ|, we have

ind
(
γ−, κ

)
= − ind (γ, κ) .

2.1.5 Remark:

The parametrization interval of a cycle need not be the unit interval; every

compact interval serves the same purpose.† Therefore, we will usually omit

the explicit specification of the interval in the notation of cycles and simply

speak of a cycle γ in S. 3

Some cycles that frequently appear are the standard parametrizations of cir-

cles. For this reason, we introduce a special notation: For ζ ∈ C and r > 0 we

define the mappings

τr(ζ) : [0, 2π] → C, t 7→ ζ + reit

† This can be achieved by a reparametrization.
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and

τ−r (ζ) : [0, 2π] → C, t 7→ ζ + re− it.

If ζ = 0, we simply write τr := τr(0) and τ−r := τ−r (0).

2.1.6 Definition:

Let Ω ⊂ C∞ be a non-empty open set, K ⊂ Ω a non-empty compact set, and

γ a cycle in Ω \
(
K ∪ {0,∞}

)
. If ∞ 6∈ K and

ind (γ, κ) =

{
1 , κ ∈ K
0 , κ ∈ C∞ \ Ω

,

then γ is called a Cauchy cycle for K in Ω. If ∞ ∈ Ω and

ind (γ, κ) =

{
0 , κ ∈ K
−1 , κ ∈ C∞ \ Ω

,

then γ is called an anti-Cauchy cycle for K in Ω. 3

Cauchy cycles and anti-Cauchy cycles neither contain the origin nor the point

at infinity in their traces.

Figure 2.1: A Cauchy cycle γ for K in Ω
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Figure 2.2: An anti-Cauchy cycle γ for K in Ω

2.1.7 Definition:

Let Ω1,Ω2 ⊂ C∞ be open and star-eligible sets, and let z ∈ Ω1 ∗ Ω2. Further-

more, let γ be a cycle in Ω1 \ (z · Ω∗
2) with 0 6∈ |γ|, ∞ 6∈ |γ|, and the following

property:

1. If 0 ∈ Ω1 ∩ Ω2 and z = 0, let γ be a Cauchy cycle for {0} in Ω1.

2. If ∞ ∈ Ω1 ∩ Ω2 and z = ∞, let γ be an anti-Cauchy cycle for {∞} in Ω1.

3. If z 6= 0 and z 6= ∞, let γ be

• a Cauchy cycle for z · Ω∗
2 in Ω1 with ind (γ, 0) = 1 if 0 ∈ Ω1 ∩ Ω2 and

∞ 6∈ Ω1 ∩ Ω2,

• an anti-Cauchy cycle for z ·Ω∗
2 in Ω1 with ind (γ, 0) = −1 if 0 6∈ Ω1 ∩Ω2

and ∞ ∈ Ω1 ∩ Ω2,

• a Cauchy cycle for z ·Ω∗
2 in Ω1 with ind (γ, 0) = 1 or an anti-Cauchy cycle

for z · Ω∗
2 in Ω1 with ind (γ, 0) = −1 if 0 ∈ Ω1 ∩ Ω2 and ∞ ∈ Ω1 ∩ Ω2,

• a Cauchy cycle for z · Ω∗
2 in Ω1 if 0 ∈ Ω2 \ Ω1 and ∞ ∈ Ω2 \ Ω1,

• an anti-Cauchy cycle for z · Ω∗
2 in Ω1 if 0 ∈ Ω1 \ Ω2 and ∞ ∈ Ω1 \ Ω2.

Then γ is called a Hadamard cycle for z · Ω∗
2 in Ω1. 3
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2.1.8 Remarks:

1. In the last two cases of part three the index condition ind (γ, 0) = 0 must

necessarily be satisfied.

2. The conditions ind (γ, 0) = 1 in the first case and ind (γ, 0) = −1 in the

second case of the definition seem to be quite artificial. To see why they

are maintained, compare Example 2.2.4 and Example 2.2.5. 3

The following table gives a survey of the Hadamard cycles. “cc” stands

for Cauchy cycle; “acc“ for anti-Cauchy cycle; “cc+” for Cauchy cycle with

ind (γ, 0) = 1; and “acc−” for anti-Cauchy cycle with ind (γ, 0) = −1. A “/”

means that this case cannot occur. The elements in the first row and the first

column tell us which of these elements are in Ω1 and Ω2, respectively.

HH
HHHHHΩ2

Ω1 0,∞ ∞ 0

0,∞ cc+ or acc− acc− cc+ cc

∞ acc− acc− / /

0 cc+ / cc+ /

acc / / /

Table 2.1: Hadamard cycles for z · Ω∗
2 in Ω1 (z 6∈ {0,∞})

2.1.9 Examples:

Let Ω1,Ω2 ⊂ C∞ be open and star-eligible sets, and let z ∈ (Ω1 ∗Ω2) \ {0,∞}.

1. If 0 ∈ Ω1∩Ω2 and r > 0 so that Ur[0] ⊂ Ω1, then τr is a Hadamard cycle

for {0} in Ω1.

2. If ∞ ∈ Ω1 ∩ Ω2 and R > 0 so that UR[∞] ⊂ Ω1, then τ−R is a Hadamard

cycle for {∞} in Ω1.

3. Let Ω2 = C∞ \ {1}, 0 ∈ Ω1, and ∞ 6∈ Ω1. Here we have Ω1 ∗ Ω2 = Ω1.

For r, s ∈ (0, |z|/2) with Ur[z] ⊂ Ω1 and Us[0] ⊂ Ω1 the cycle τr(z) ⊕ τs
is a Hadamard cycle for z · Ω∗

2 = {z} in Ω1.

4. Let Ω2 = C∞ \ {1}, 0 6∈ Ω1, and ∞ ∈ Ω1. Here we have Ω1 ∗ Ω2 = Ω1.

For r > 0 with Ur[z] ⊂ Ω1 and S > |z| + r with US[∞] ⊂ Ω1 the cycle

τr(z)⊕ τ−S is a Hadamard cycle for z · Ω∗
2 = {z} in Ω1.
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5. Let Let Ω2 = C∞\{1}, 0 ∈ Ω1, and ∞ ∈ Ω1. Here we have Ω1∗Ω2 = Ω1.

In this case each of the cycles of the last two examples is a Hadamard

cycle for z · Ω∗
2 = {z} in Ω1. 3

2.2 Properties of cycles

In this section, we are concerned with properties that will be used in the work

with cycles. The first proposition accentuates the interplay between Cauchy

cycles and anti-Cauchy cycles.

2.2.1 Proposition:

Let Ω1,Ω2 ⊂ C∞ be open and star-eligible with ∞ ∈ Ω1. Furthermore, let

z ∈ (Ω1 ∗ Ω2) \ {0,∞} and γ a cycle. Then the following assertions are

equivalent:

(a) γ is a Cauchy cycle for ΩC
1 in z/Ω2.

(b) γ− is an anti-Cauchy cycle for z · Ω∗
2 in Ω1.

Proof: Using (1.6), we get

Ω1 \ (z ·Ω∗
2) = Ω1 ∩ (z ·Ω∗

2)
C = Ω1 ∩

z

Ω2

=
z

Ω2

\
(
ΩC

1

)
. (?)

1. Let γ be a Cauchy cycle for ΩC
1 in z/Ω2. According to relation (?), we

obtain |γ−| = |γ| ⊂ (z/Ω2) \
(
ΩC

1

)
= Ω1 \ (z ·Ω∗

2). Moreover, we have

ind
(
γ−, κ

)
= − ind (γ, κ) =

0 , κ ∈ (z/Ω2)
C = z · Ω∗

2

−1 , κ ∈ ΩC
1

.

Hence, γ− is an anti-Cauchy cycle for z ·Ω∗
2 in Ω1.

2. Now let γ− be an anti-Cauchy cycle for z · Ω∗
2 in Ω1. Again by relation (?)

we obtain |γ| = |γ−| ⊂ Ω1 \ (z ·Ω∗
2) = (z/Ω2) \

(
ΩC

1

)
. Moreover, we have

ind (γ, κ) = − ind
(
γ−, κ

)
=

0 , κ ∈ z · Ω∗
2 = (z/Ω2)

C

1 , κ ∈ ΩC
1

.

But this just means that γ is a Cauchy cycle for ΩC
1 in z/Ω2. 2
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By applying the transformation rule of Proposition 2.1.3, the integration cycle

γ is substituted by α/γ−. Let us study the following situation: Given a Ha-

damard cycle γ for z · Ω∗
2 in Ω1; what can we say about z/γ− with respect to

z ·Ω∗
1 and Ω2? The next theorem is concerned with the answer of this question.

Before stating it, we prove a lemma that will be used throughout the proof of

the theorem.

2.2.2 Lemma:

Let Ω1,Ω2 ⊂ C∞ be open and star-eligible sets, z ∈ (Ω1 ∗Ω2) \ {0,∞}, and γ

a cycle in Ω1 \ (z ·Ω∗
2) so that 0 6∈ |γ| and ∞ 6∈ |γ|. Then z/γ− is a cycle in

Ω2 \ (z ·Ω∗
1) with

ind

(
z

γ−
, κ

)
= ind (γ, 0) − ind

(
γ,
z

κ

)
for all κ ∈ ΩC

2 ∪ (z ·Ω∗
1).

Proof: From |γ| ⊂ Ω1∩(z ·Ω∗
2)
C = Ω1∩(z/Ω2) we get z/|γ−| ⊂ Ω2∩(z/Ω1) =

Ω2 ∩ (z ·Ω∗
1)
C , i.e. z/γ− is a cycle in Ω2 \ (z ·Ω∗

1).

For κ ∈ ΩC
2 ∪ (z ·Ω∗

1), κ 6= 0, κ 6= ∞ we get

ind

(
z

γ−
, κ

)
=

1

2πi

∫
z/γ−

1

ζ − κ
dζ =

1

2πi

∫
z/γ−

1

z

1
1
z/ζ

− κ
z

dζ

(2.1)
=

1

2πi

∫
γ

z

w(z − κw)
dw =

1

2πi

∫
γ

(
1

w
− 1

w − z
κ

)
dw

= ind (γ, 0) − ind
(
γ,
z

κ

)
.

For κ = 0—if this case occurs at all—, we get

ind

(
z

γ−
, 0

)
(2.1)
=

1

2πi

∫
γ

1

w
dw = ind (γ, 0)− ind

(
γ,
z

0

)
.

For κ = ∞—if this case occurs at all—, we get

ind

(
z

γ−
,∞
)

= 0 = ind (γ, 0)− ind
(
γ,

z

∞

)
.

These prove the lemma. 2
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Next, we present the theorem mentioned above.

2.2.3 Theorem:

Let Ω1,Ω2 ⊂ C∞ be open and star-eligible sets, z ∈ (Ω1 ∗Ω2) \ {0,∞}, and γ

a cycle. Then γ is a Hadamard cycle for z · Ω∗
2 in Ω1 if and only if z/γ− is a

Hadamard cycle for z · Ω∗
1 in Ω2.

Proof: The following equivalences hold:

κ ∈ ΩC
2 if and only if z/κ ∈ z · Ω∗

2.

κ ∈ z · Ω∗
1 if and only if z/κ ∈ ΩC

1 .

(2.2)

We abbreviate Γ := z/γ− for the rest of the proof.

1. Let γ be a Hadamard cycle for z · Ω∗
2 in Ω1.

Case 1: 0 ∈ Ω1 ∩ Ω2 and ∞ 6∈ Ω1 ∩ Ω2. By the definition of Hadamard cycles

we have ind (γ, 0) = 1. Lemma 2.2.2 and (2.2) yield

ind (Γ , κ) =

{
0 , κ 6∈ Ω2

1 , κ ∈ z · Ω∗
1

.

Hence, Γ is a Cauchy cycle for z · Ω∗
1 in Ω2 with ind (Γ , 0) = 1.

Case 2: 0 6∈ Ω1 ∩ Ω2 and ∞ ∈ Ω1 ∩ Ω2. By the definition of Hadamard cycles

we have ind (γ, 0) = −1. Lemma 2.2.2 and (2.2) now show

ind (Γ , κ) =

{
−1 , κ 6∈ Ω2

0 , κ ∈ z · Ω∗
1

.

Thus, Γ is an anti-Cauchy cycle for z · Ω∗
1 in Ω2 with ind (Γ , 0) = −1.

Case 3: 0,∞ ∈ Ω1 ∩ Ω2. If γ is a Cauchy cycle for z · Ω∗
2 in Ω1 satisfying

ind (γ, 0) = 1, we get

ind (Γ , κ) =

{
0 , κ 6∈ Ω2

1 , κ ∈ z · Ω∗
1

.

If γ is an anti-Cauchy cycle for z · Ω∗
2 in Ω1 with ind (γ, 0) = −1, we get

ind (Γ , κ) =

{
−1 , κ 6∈ Ω2

0 , κ ∈ z · Ω∗
1

.
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Consequently, Γ is a Cauchy cycle for z · Ω∗
1 in Ω2 with ind (Γ , 0) = 1 or an

anti-Cauchy cycle for z · Ω∗
1 in Ω2 with ind (Γ , 0) = −1, respectively.

Case 4: 0,∞ ∈ Ω2 \Ω1. Here we get ind (γ, 0) = 0, and hence by Lemma 2.2.2

and (2.2)

ind (Γ , κ) =

{
−1 , κ 6∈ Ω2

0 , κ ∈ z · Ω∗
1

.

Thus, Γ is an anti-Cauchy cycle for z · Ω∗
1 in Ω2.

Case 5: 0,∞ ∈ Ω1 \ Ω2. In this case we have ind (γ, 0) = 0. By Lemma 2.2.2

and (2.2) we obtain

ind (Γ , κ) =

{
0 , κ 6∈ Ω2

1 , κ ∈ z · Ω∗
1

.

This shows that Γ is a Cauchy cycle for z · Ω∗
1 in Ω2.

According to Definition 2.1.7, in each of the cases listed above Γ is a Hadamard

cycle for z · Ω∗
1 in Ω2.

2. Now let Γ be a Hadamard cycle for z · Ω∗
1 in Ω2. Since z/Γ− = γ, the

reverse implication follows from the already proved part. 2

With regard to Theorem 2.2.3, the index condition ind (γ, 0) = 1 in the case

“0 ∈ Ω1 ∩ Ω2 and ∞ 6∈ Ω1 ∩ Ω2” makes sense. To see why, we present the

following example.

2.2.4 Example:

Let us consider Ω1 := D4, Ω2 := C∞\{1}, and z := 2. Here we get z ·Ω∗
1 = D1/2

and z · Ω∗
2 = {2}. Furthermore, τ1(2) is a Cauchy cycle for z · Ω∗

2 in Ω1 with

ind (τ1(2), 0) = 0. By Example 1.3.1 we get z/τ−1 (2) = τ−2/3(4/3). But this is

not a Cauchy cycle for z · Ω∗
1 in Ω2. 3

The next example shows that the index condition ind (γ, 0) = −1 in the case

“∞ ∈ Ω1 ∩ Ω2 and 0 6∈ Ω1 ∩ Ω2” should not be dropped either.

2.2.5 Example:

Let Ω1 := C∞ \ {2}, Ω2 := C∞ \D1/2, and z := 2. Here we have z · Ω∗
1 = {1}

and z ·Ω∗
2 = C∞ \D4. Moreover, τ−1 (2) is an anti-Cauchy cycle for z ·Ω∗

2 in Ω1

with ind
(
τ−1 (2), 0

)
= 0. But z/τ1(2) = τ2/3(4/3) is not an anti-Cauchy cycle

for z · Ω∗
1 in Ω2. 3
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The next lemma provides a key tool for the work with line integrals along

Cauchy cycles. If we are given an open set, a function which is holomorphic

in this set, and two homotopic cycles, then the corresponding line integrals

have the same values. For Cauchy cycles we can prove a similar result that

enables us to evaluate the function at the point at infinity by the sum of two

line integrals.

2.2.6 Lemma:

Let K,L ⊂ C be disjoint compact sets, f : C∞\ (K ∪ L) → C holomorphic,

γ a Cauchy cycle for K in C∞ \ L, and Γ a Cauchy cycle for L in C∞ \K.

Then we have

f(∞) =
1

2πi

∫
γ

f(ζ)

ζ
dζ +

1

2πi

∫
Γ

f(ζ)

ζ
dζ

if one of the following conditions holds:

(i) 0 ∈ K ∪ L;

(ii) 0 6∈ K ∪ L and ind (γ ⊕ Γ , 0) = 1;

(iii) 0 6∈ K ∪ L and f(0) = 0.

Proof: Let R > max{|z| : z ∈ K ∪ L}. In the first two cases the mapping

ζ 7→ f(ζ)/ζ defines a function that is holomorphic in C∞ \ (K ∪L∪ {0}), and

we have ind (τR, w) = ind (γ ⊕ Γ , w) for all w ∈ K ∪ L ∪ {0}. In the third

case this function is holomorphic in C∞ \ (K ∪ L), and we have ind (τR, w) =

ind (γ ⊕ Γ , w) for all w ∈ K ∪ L. Thus, we get∫
|ζ|=R

f(ζ)

ζ
dζ =

∫
γ⊕Γ

f(ζ)

ζ
dζ =

∫
γ

f(ζ)

ζ
dζ +

∫
Γ

f(ζ)

ζ
dζ.

For each such R there exists a ζR ∈ TR so that

max
ζ∈TR

|f(ζ)− f(∞)| = |f(ζR)− f(∞)|.

Therefore, we get∣∣∣∣ 1

2πi

∫
|ζ|=R

f(ζ)

ζ
dζ − f(∞)

∣∣∣∣ =

∣∣∣∣ 1

2πi

∫
|ζ|=R

f(ζ)− f(∞)

ζ
dζ

∣∣∣∣
≤ max

ζ∈TR
|f(ζ)− f(∞) | = |f(ζR)− f(∞) | R→∞−−−−−→ 0

since ζR →∞ as R→∞. 2
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2.2.7 Remarks:

1. In the first case of Lemma 2.2.6 the index condition ind (γ ⊕ Γ , 0) = 1

is automatically satisfied.

2. We would like to stress an important special case: Let, in addition, f

vanish at infinity. Moreover, let Γ− (instead of Γ ) be a Cauchy cycle.

Then we have

1

2πi

∫
γ

f(ζ)

ζ
dζ =

1

2πi

∫
Γ

f(ζ)

ζ
dζ.

We will use this relation tacitly. 3

If the origin is contained in one (and then in only one) of the compact sets,

we need no additional constraints on the cycles or the function. Otherwise,

the condition in part two or three of the above lemma is necessary for the

conclusion to be true; the next example shows why.

2.2.8 Example:

Let K := {1}, L := {−1}, and f : C∞ \ {−1, 1} → C defined by f(z) :=

1/(z2− 1). Furthermore, we regard the Cauchy cycles γ,Γ : [0, 2π] → C given

by γ(t) := 1+ 1
2
eit and Γ (t) := −1+ 1

2
eit. Here we have ind (γ ⊕ Γ , 0) 6= 1 and

f(0) 6= 0. Moreover, we have

1

2πi

∫
γ

f(ζ)

ζ
dζ +

1

2πi

∫
Γ

f(ζ)

ζ
dζ = 1 6= 0 = f(∞)

by Cauchy’s integral formula. 3

2.3 On the existence of Hadamard cycles

The existence of a Cauchy cycle under the preconditions in Definition 2.1.4 is

guaranteed by the following result.

2.3.1 Lemma:

Let Ω ⊂ C∞ be a non-empty open set and K ⊂ Ω a non-empty compact set

with ∞ 6∈ K. Then there exists a Cauchy cycle for K in Ω.
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Proof: (1) If ∞ 6∈ Ω, see [Rud2, p. 269].

(2) If ∞ ∈ Ω, then, according to (1), there exists a Cauchy cycle for K in

Ω \ {∞}. This one is also a Cauchy cycle for K in Ω because its index with

respect to the point at infinity is 0 by definition. 2

From this lemma, we immediately get an existence result for Cauchy cycles.

2.3.2 Proposition (Existence of Cauchy cycles):

Let Ω1,Ω2 ⊂ C∞ be open and star-eligible sets with 0 ∈ Ω2 and K ⊂ Ω1 ∗ Ω2

a non-empty compact set with ∞ 6∈ K. Then there exists a cycle that is a

Cauchy cycle for z · Ω∗
2 in Ω1 for every z ∈ K.

Proof: According to Proposition 1.3.10.7, K · Ω∗
2 is a compact subset of Ω1.

Since 0 ∈ Ω2, we have ∞ 6∈ Ω∗
2, and hence ∞ 6∈ K · Ω∗

2. According to Lemma

2.3.1, there exists a Cauchy cycle for K · Ω∗
2 in Ω1. This one is also a Cauchy

cycle for z · Ω∗
2 in Ω1 for every z ∈ K. 2

Moreover, we need the following existence result for anti-Cauchy cycles.

2.3.3 Proposition (Existence of anti-Cauchy cycles):

Let Ω1,Ω2 ⊂ C∞ be open and star-eligible sets with ∞ ∈ Ω1 and K ⊂ Ω1 ∗Ω2

a non-empty compact set. Then there exists a cycle that is an anti-Cauchy

cycle for z · Ω∗
2 in Ω1 for every z ∈ K.

Proof: According to Proposition 1.3.10.7, K ·Ω∗
2 is a compact subset of Ω1. By

taking complements, we obtain ΩC
1 ⊂ (K · Ω∗

2)
C . Since ΩC

1 is a plane compact

subset of (the open set) (K · Ω∗
2)
C , there exists a Cauchy cycle γ for ΩC

1 in

(K · Ω∗
2)
C according to Lemma 2.3.1. Furthermore, we have

|γ−| = |γ| ⊂ (K · Ω∗
2)
C \ (ΩC

1 ) = Ω1 ∩ (K · Ω∗
2)
C = Ω1 \ (K · Ω∗

2).

Therefore, γ− is a cycle in Ω1 \ (K · Ω∗
2). The index property of γ yields

ind (γ, κ) =

1 , κ ∈ ΩC
1

0 , κ ∈ K · Ω∗
2

,

whence we get

ind
(
γ−, κ

)
= − ind (γ, κ) =

−1 , κ ∈ ΩC
1

0 , κ ∈ K · Ω∗
2

.
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Hence, γ− is an anti-Cauchy cycle forK ·Ω∗
2 in Ω1, and thus also an anti-Cauchy

cycle for z · Ω∗
2 in Ω1 for every z ∈ K. 2

This section’s results culminate in the following existence theorem.

2.3.4 Existence theorem for Hadamard cycles:

Let Ω1,Ω2 ⊂ C∞ be open and star-eligible sets, and let K ⊂ Ω1 ∗ Ω2 be a

non-empty compact set. Then there exists a cycle that is a Hadamard cycle for

z · Ω∗
2 in Ω1 for every z ∈ K.

Proof: Case 1: 0 ∈ Ω1∩Ω2 and ∞ 6∈ Ω1∩Ω2. According to Proposition 2.3.2,

there exists a cycle that is a Cauchy cycle for z · Ω∗
2 in Ω1 for every z ∈ K.

Since 0 ∈ Ω1, we can even find such a cycle whose index with respect to 0

equals 1. (Notice that this cycle is also suitable if z = 0).

Case 2: 0 6∈ Ω1 ∩ Ω2 and ∞ ∈ Ω1 ∩ Ω2. According to Proposition 2.3.3, there

exists a cycle that is an anti-Cauchy cycle for z · Ω∗
2 in Ω1 for every z ∈ K.

Since ∞ ∈ Ω2, we can even find such a cycle whose index with respect to 0

equals −1. (Notice that this cycle is also suitable if z = ∞).

Case 3: 0,∞ ∈ Ω1 ∩ Ω2. If ∞ 6∈ K, we can argue in the same way as in the

first case. If ∞ ∈ K, we can argue in the same way as in the second case.

Case 4: 0,∞ ∈ Ω2 \ Ω1. According to Proposition 2.3.2, there exists a cycle

that is a Cauchy cycle for z · Ω∗
2 in Ω1 for every z ∈ K.

Case 5: 0,∞ ∈ Ω1 \ Ω2. According to Proposition 2.3.3, there exists a cycle

that is an anti-Cauchy cycle for z · Ω∗
2 in Ω1 for all z ∈ K.

Thus, in all possible cases there exists a cycle that is a Hadamard cycle for

z · Ω∗
2 in Ω1 for every z ∈ K. 2
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The Hadamard product

The notion of the Hadamard product is fairly old. It appeared in J. S. Hada-

mard’s 1899 paper Théorème sur les séries entières ([Ha99]). G. Pólya investi-

gated it thoroughly in his well-known paper Untersuchungen über Lücken und

Singularitäten von Potenzreihen ([Pó33]) from 1933. Two other sources are S.

Schottlaender’s Der Hadamardsche Multiplikationssatz und weitere Komposi-

tionssätze der Funktionentheorie ([Sch54]) from 1954 and the book Analytische

Fortsetzung ([Bieb]) by L. Bieberbach, that appeared one year later. E. Hille’s

textbook Analytic Function Theory ([Hille]; first edition issued in 1959) de-

votes one section to so-called composition theorems under which Hadamard’s

multiplication theorem can be subsumed. The objects studied in these works

are power series with center zero or their analytic continuation into the corre-

sponding Mittag-Leffler stars.

Approximately three decades later, J. Müller’s The Hadamard Multiplication

Theorem and Applications in Summability Theory ([Mü92]) and K.-G. Große-

Erdmann’s On the Borel-Okada Theorem and the Hadamard Multiplication

Theorem ([GE93]) were published in the consecutive years 1992 and 1993.

In contrast to the works mentioned in the first paragraph, Müller and Große-

Erdmann no longer restricted their attention to power series, they rather stud-

ied functions holomorphic in open sets containing the origin.

All of these studies on the Hadamard product have one thing in common:

the origin is involved. No matter if the factors of the Hadamard product

are power series or holomorphic functions, the open sets on which they are

examined contain the origin. In this chapter, we shall generalize this condition

in such a way that the factors need not be holomorphic at zero.

33



Chapter 3 – The Hadamard product 34

In the first three sections, we will give a brief outline of the Hadamard product

hitherto existing. We will call this product the plane version of the Hadamard

product. We will commence with power series, and then consider holomorphic

functions. In the third section we will state the Hadamard multiplication

theorem.

In the fourth section, we will define a Hadamard product for functions holo-

morphic in open and star-eligible sets (see Definition 3.4.4). We will call this

product the extended version of the Hadamard product. To this end, the Hada-

mard cycles introduced in chapter two are of great importance. The Hadamard

product will be defined by a parameter integral along Hadamard cycles. We

will show that the values of these integrals do not depend on the Hadamard cy-

cle (see Lemma 3.4.2). Furthermore, we will calculate the Hadamard product

of important functions (see examples 3.4.6, 3.4.7, 3.4.8, and 3.4.9).

In the fifth section, we will show that the Hadamard product defined in Defini-

tion 3.4.4 coincides with the old Hadamard product in the case of plane open

sets containing the origin (see Proposition 3.5.1). Closely connected with this

property is the question of how the Hadamard product behaves when the fac-

tors are restricted to subsets.

In the sixth section, we will prove algebraic and analytic properties of the

Hadamard product. These properties are already known for the plane version

of the Hadamard product, and is is expected that they hold for the extended

version as well.

In the seventh section, we consider the Hadamard product from a functional

analytic point of view. We will prove an essential continuity result (see 3.7.4).

All power series emerging in this chapter are supposed to have positive radii

of convergence (infinity is not excluded).

3.1 The Hadamard product of power series

We are concerned with two power series

∞∑
ν=0

aνz
ν and

∞∑
ν=0

bνz
ν (3.1)

whose radii of convergence are denoted by ra and rb, respectively.
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The usual fashion to multiply them is by means of the Cauchy product. An-

other possibility is to multiply them coefficient by coefficient (which resembles

the addition of power series). In this case, the power series

∞∑
ν=0

aν bν z
ν

is called the Hadamard product series of the power series in (3.1). Using the

submultiplicativity of the upper limit, it turns out that the radius of conver-

gence r of the Hadamard product series satisfies

r ≥ ra · rb.

If, in particular, one of the power series in (3.1) defines an entire function, then

the Hadamard product series defines an entire function, too.

Let f : Dra → C and g : Drb → C be the functions defined by the power series

in (3.1). For ρ ∈ (0, ra), we obtain the following integral representation—

known as the Parseval integral representation—of the Hadamard product se-

ries:
∞∑
ν=0

aν bν z
ν =

1

2πi

∫
|ζ|=ρ

f(ζ)

ζ
g

(
z

ζ

)
dζ (3.2)

which holds for all z ∈ C with |z| < ρ · rb. The integral on the right-hand

side of (3.2) is often called the Parseval integral (of f and g). To prove this

representation, write the coefficients aν by means of Cauchy’s integral formula

and notice that the second series in (3.1) converges uniformly on {z/ζ : ζ ∈ Tρ}
for each z ∈ C satisfying |z| < ρ · rb. This yields

∞∑
ν=0

aν bν z
ν =

∞∑
ν=0

{
1

2πi

∫
|ζ|=ρ

f(ζ)

ζν+1
dζ

}
bνz

ν

=
1

2πi

∫
|ζ|=ρ

{
f(ζ)

ζ

∞∑
ν=0

bν ·
(
z

ζ

)ν
︸ ︷︷ ︸

= g(z/ζ)

}
dζ =

1

2πi

∫
|ζ|=ρ

f(ζ)

ζ
g

(
z

ζ

)
dζ

for all z ∈ C with |z| < ρ · rb.
The geometric series has a specific role. Since all its coefficients equal 1, it is

a neutral element with respect to Hadamard multiplication of power series in

the following sense: If f(z) :=
∑∞

ν=0 aνz
ν has positive radius of convergence,

then the Hadamard product series of f(z) and the geometric series is f(z).
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3.2 The Hadamard product of holomorphic

functions

The right-hand side of (3.2) need not be restricted to functions defined by

power series; it works in a much more general context. Let Ω1 and Ω2 be plane

open sets both containing the origin, f in H(Ω1), and g in H(Ω2). Then the set

Ω1 ∗Ω2 is open and contains the origin (cf. Proposition 1.3.12 and Proposition

1.3.10.2), i.e. the sets Ω1 and Ω2 are star-eligible. Recall that Proposition

1.3.10.4 guarantees C \
(
(C \Ω1) · (C \Ω2)

)
= Ω1 ∗Ω2. For every z ∈ Ω1 ∗Ω2

the set z · Ω∗
2 is a compact subset of Ω1 (cf. Proposition 1.3.10.7). According

to Proposition 2.3.2 there exists a Cauchy cycle γz for z · Ω∗
2 in Ω1. Since

ind (γz, κ) = ind (γ̃z, κ)
(
κ ∈ (C \ Ω1) ∪ (z · Ω∗

2)
)

for every other Cauchy cycle γ̃z for z · Ω∗
2 in Ω1, we get∫

γz

f(ζ)

ζ
g

(
z

ζ

)
dζ =

∫
γ̃z

f(ζ)

ζ
g

(
z

ζ

)
dζ

by [Rud2, 10.35]. This implies that the value of the Parseval integral is inde-

pendent of the Cauchy cycle. (Notice that γz and γ̃z are also Hadamard cycles

for z ·Ω∗
2 in Ω1.) For a Cauchy cycle γ for z ·Ω∗

2 in Ω1, we define a new function

f ∗Ω1,Ω2
g : Ω1 ∗ Ω2 → C by

(f ∗Ω1,Ω2
g)(z) :=

1

2πi

∫
γ

f(ζ)

ζ
g

(
z

ζ

)
dζ. (3.3)

This function is called the Hadamard product of f and g.

It can be shown that f ∗Ω1,Ω2
g is holomorphic in Ω1 ∗ Ω2 (see for instance

Proposition 3.6.4).

In the previous section, we mentioned that the geometric series plays the role

of a neutral element with respect to Hadamard multiplication of power series.

Is there an analogue in this setting? The answer is yes. In the unit disk, the

geometric series represents the function Θ
∣∣
D
. By means of Cauchy’s integral

formula it can be verified that Θ
∣∣
C\{1} is a neutral element in the following

sense: If Ω ⊂ C is an open set containing the origin and if f ∈ H(Ω), then we

have f ∗Ω,C\{1} (Θ
∣∣
C\{1})) = f .
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3.3 The Hadamard multiplication theorem

The question of the connection between the Hadamard product of power series

and of holomorphic functions immediately arises. An answer to this question

is given by the Hadamard multiplication theorem which reveals that these two

concepts are intimately linked.

3.3.1 Hadamard multiplication theorem:

Let Ω1,Ω2 ⊂ C be open sets both containing the origin, f ∈ H(Ω1), and

g ∈ H(Ω2). Then

(f ∗Ω1,Ω2
g) (z) =

∞∑
ν=0

fν gν z
ν

for all z ∈ C with |z| < dist
(
0, ∂(Ω1 ∗ Ω2)

)
. 3

This theorem shows that the Hadamard product series of the functions’ power

series expansions is exactly the local power series expansion of f ∗Ω1,Ω2
g around

zero. Proofs can be found in [Mü92, Theorem H] or [GE93, Theorem 2.3].

If f and g are defined by power series, and if we denote by S[f ] the Mittag-

Leffler star of the function f , then Hille (cf. [Hille, Theorem 11.6.1]) states the

theorem in the form S[f ] ∗ S[g] ⊂ S[h], where h is the function defined by the

Hadamard product series.

At the end of this section, we provide an application of the Hadamard mul-

tiplication theorem. For k ∈ N0 we denote by Pk : C → C the monomial

defined by

Pk(z) := zk.

For η ∈ C we define the function Θη : C∞ \ {η} → C by

Θη (z) :=
1

η − z
. (3.4)

We emphasize an important special case by setting

Θ := Θ1. (3.5)

Let Ω ⊂ C∞ be a non-empty open set, k ∈ N0, f ∈ H(k)(Ω), and η ∈ C \ {0}.
If ∞ 6∈ Ω, the function Pk · f is holomorphic in Ω. Now let ∞ ∈ Ω. Since
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f ∈ H(k)(Ω), there exists an R > 1 in such a way that we have

f(z) =
∞∑

ν=k+1

fν
zν

(
z ∈ UR[∞]

)
,

which implies lim
z→∞

zk · f(z) = 0. Therefore, Pk · f : Ω → C defined by

(Pk · f)(z) :=

 zk · f(z) , z ∈ Ω \ {∞}

0 , z = ∞

is continuous. Moreover, (Pk · f)
∣∣
Ω∩C is holomorphic. Thus, Pk · f belongs to

H(Ω), and we have

(Pk · f)(z) =
∞∑
ν=1

fν+k
zν

(
z ∈ UR[∞]

)
.

This yields

(Pk · f)(p)(∞) =
p!

(k + p)!
· f (k+p)(∞)

(
p ∈ N0

)
. (3.6)

Hence, if we even have f ∈ H(k+p)(Ω) for a p ∈ N, we get Pk · f ∈ H(p)(Ω).

Based on these considerations, we have the following situation: Let Ω ⊂ C∞

be a non-empty open set, k ∈ N0, f ∈ H(k)(Ω), and η ∈ C \ {0}. If we set

η · Ω := {ηω : ω ∈ Ω}†, we associate with f a new function fη, k : η · Ω → C

defined by

fη, k (z) :=
1

k!
·
(
Pk · f

)(k)(z
η

)
. (3.7)

In particular, we have

fη, k (0) = f(0) (3.8)

and

fη, 0 (z) = f

(
z

η

) (
z ∈ η · Ω

)
. (3.9)

The function fη, k is holomorphic in η ·Ω. But in general it does not vanish at

infinity. From (3.6) we obtain

fη, k (z) =
∞∑
ν=0

f2k+ν ·
(
k + ν

k

)
· ην · z−ν

(
z ∈ U|η|R[∞]

)
. (3.10)

† We define η · ∞ := ∞.
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This shows that fη, k ∈ H(η · Ω) if in addition f ∈ H(2k)(Ω).

Example 1.2.1 shows that Θ ∈ H(C∞ \ {1}), but Θ 6∈ H(1)(C∞ \ {1}). Thus,

we have no definition for Θη, k if k ≥ 1. On the other hand, the Leibniz rule

for differentiating a product yields

1

k!
· (Pk ·Θ)(k)

(
z

η

)
=

1

k!
·

k∑
ν=0

(
k

ν

)
· P (k−ν)

k

(
z

η

)
·Θ(ν)

(
z

η

)

=
1

1− z/η
·

k∑
ν=0

(
k

ν

)
·
(

z/η

1− z/η

)ν
=

1

(1− z/η)k+1
= Θk+1

η, 0 (z)

for all z ∈ C \ {η}. Moreover, we have

Θk+1
η, 0 (z) = (η ·Θη)

k+1(z)
(
z ∈ C∞ \ {η}

)
.

Since Θk+1
η, 0 (∞) = 0, we define the function Θη, k : C∞ \ {η} → C by

Θη, k (z) := (η ·Θη)
k+1(z). (3.11)

The function Θη, k belongs toH(k)(C∞\{η}) and has the power series expansion

Θη, k = (−1)k+1 ·
∞∑

ν=k+1

(
ν − 1

k

)
· ην · z−ν

(
z ∈ U|η|(∞)

)
around the point at infinity.

3.3.2 Example:

Let D ⊂ C be a domain with 0 ∈ D, f ∈ H(D), η ∈ C \ {0}, and k ∈ N0. (In

this example we denote the restriction of Θ onto the set C \ {η} by Θ for the

sake of brevity.) We have

Θk+1(z) =
∞∑
n=0

(
k + n

k

)
· zn (z ∈ D). (3.12)

From (3.11) and (3.12) we get

Θη, k (z) =
∞∑
n=0

(
k + n

k

)
·
(
z

η

)n
(z ∈ η ·D).
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According to the Hadamard multiplication theorem, we obtain

(
f ∗D,C\{η} Θη, k

)
(z) =

∞∑
n=0

fn
ηn
·
(
k + n

k

)
· zn

for all z with small modulus. A direct calculation shows

fη, k (z) =
1

k!
· (Pk · f)(k)

(
z

η

)
=

k∑
ν=0

(
k

ν

)
1

ν!

(
z

η

)ν
f (ν)

(
z

η

)

=
k∑
ν=0

∞∑
n=ν

k!·n!

ν!·(k − ν)!·ν!·(n− ν)!

fn
ηn
zn =

k∑
ν=0

∞∑
n=0

(
n

ν

)(
k

ν

)
fn
ηn
zn

=
∞∑
n=0

{
k∑
ν=0

(
n

ν

)(
k

k − ν

)}
fn
ηn
zn =

∞∑
n=0

fn
ηn
·
(
k + n

k

)
· zn

for all z with small modulus. By comparing coefficients, we get the relation

(f ∗D,C\{η} Θη, k)(z) = fη, k (z) in a disk around the origin. Since η · D is a

domain, we get

f ∗D,C\{η} Θη, k = fη, k (3.13)

on D ∗ (C \ {η}) = η ·D by the identity theorem. 3

We shall show that (3.13) is also true if we replace the domain by an open set

that does not necessarily contain the origin (see Example 3.4.8).

3.4 The extended Hadamard product

In the first two sections of this chapter, we recalled the notions of the Hadamard

product for power series and for holomorphic functions. In both cases, it was

required that the involved functions are holomorphic at the origin.

3.4.1 Example:

Consider the polynomial P :=
∑N

ν=0 aνPν , two non-empty open sets Ω′ ⊂ C\D
and Ω := D ∪ Ω′, as well as two functions Φ ∈ H(Ω) and Ψ ∈ H(C∞ \ {1})
so that Φ(z) = P (z) on Ω′. If ψ := Ψ

∣∣
C\{1}, the Hadamard multiplication
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theorem yields

(Φ ∗Ω,C\{1} ψ)(z) =
1

2πi

∫
τ(|z|+1)/2

Φ(ζ)

ζ
ψ

(
z

ζ

)
dζ =

N∑
ν=0

Φν ψν z
ν (z ∈ D).

(Notice that (Ω ∗ (C \ {1}))0 = Ω0 = D.) But what can we say about the

Hadamard product on Ω′, the component of Ω that does not contain the origin?

Since Ψ ∈ H(C∞ \ {1}), there exists an entire function g with g(0) = 0 and

Ψ(z) = g

(
1

1− z

) (
z ∈ C∞ \ {1}

)
.

Let z ∈ Ω′ and r > 0 so that Ur[z] ⊂ Ω′. Then γz := τr(z) is no Cauchy cycle

for z ·(C\{1})∗ = {z, 0} in Ω; but it is a Cauchy cycle for z ·(C∞\{1})∗ = {z}
in Ω. Furthermore, we have

1

2πi

∫
γz

Φ(ζ)

ζ
Ψ

(
z

ζ

)
dζ =

1

2πi

∫
γz

Φ(ζ)

ζ
g

(
1

1− z/ζ

)
dζ

=
1

2πi

∫
γz

(
N∑
ν=0

aν ζ
ν−1

)
· g
(

1

1− z/ζ

)
dζ

=
N∑
ν=0

(
aν ·

1

2πi

∫
γz

ζν−1 g

(
1

1− z/ζ

)
dζ︸ ︷︷ ︸

=: bν,z

)
.

Thus, we get

bν,z =
1

2πi

∫
γz

(
ζν−1

∞∑
k=1

gk ·
(

1

1− z/ζ

)k)
dζ

=
∞∑
k=1

(
gk ·

1

2πi

∫
γz

Pk+ν−1(ζ)

(ζ − z)k
dζ

)
=

∞∑
k=1

gk ·
P

(k−1)
k+ν−1(z)

(k − 1)!

=
∞∑
k=1

gk ·
(k + ν − 1)!

ν!(k − 1)!
· zν = zν ·

∞∑
k=1

gk ·
(
k + ν − 1

ν

)
.

The Laurent series expansion of Ψ around 1 is given by
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Ψ(z) =
∞∑
k=1

bk
(z − 1)k

(z ∈ C∞ \ {1}) (3.14)

for certain complex numbers bk (k ∈ N). It follows

Ψ(ν)(z) =
∞∑
k=1

(−1)ν · bk · (k + ν − 1)!

(k − 1)!
· 1

(z − 1)k+ν

for all z ∈ C \ {1} and for all ν ∈ N0. This implies

Ψν =
Ψ(ν)(0)

ν!
=

∞∑
k=1

(−1)k · bk ·
(k + ν − 1)!

ν!(k − 1)!

=
∞∑
k=1

(−1)k · bk ·
(
k + ν − 1

ν

) (3.15)

for all ν ∈ N0. For z ∈ C∞ \ {1}, we get

Ψ(z) = g

(
1

1− z

)
=

∞∑
k=1

(−1)k · gk
(z − 1)k

. (3.16)

The uniqueness of the Laurent expansion, together with (3.14) and (3.16), now

implies

bk = (−1)k · gk (k ∈ N).

Inserting this into (3.15) yields

Ψν =
∞∑
k=1

gk ·
(
k + ν − 1

ν

)
(ν ∈ N0).

These considerations show that we have

1

2πi

∫
γz

Φ(ζ)

ζ
Ψ

(
z

ζ

)
dζ =

N∑
ν=0

aν Ψν z
ν

for all z ∈ Ω′. 3

The previous example shows that, according to the Hadamard multiplication

theorem, the local expansion of the Hadamard product is the Hadamard prod-

uct series of the local expansions of the factors. But let us examine this
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example a little more conscientiously. It also shows that the expansion holds

in the components that do not contain the origin. In this situation, it does

not matter how the function Φ is defined on the unit disk. We merely need a

definition of Φ in the unit disk to have the origin involved. But this artificial

definition of Φ around the origin is not very satisfactory. Therefore, it would

be desirable to have a Hadamard product for functions that are not necessar-

ily holomorphic at the origin. Such a definition is the aim of this section. As

Example 3.4.1 shows, we have to study the extended complex plane instead of

the complex plane (otherwise, γz would not be a Cauchy cycle).

Now, we are concerned with open subsets Ω1 and Ω2 of the extended plane that

satisfy the star condition. Furthermore, we have functions f in H(Ω1) and g

in H(Ω2). In this case, the star eligibility is not guaranteed at all! The star

product of Ω1 and Ω2 can be the empty set (see Example 1.3.9). (However,

the set Ω1 ∗ Ω2 is open according to Proposition 1.3.12.) In the plane case,

this cannot happen because the star product of two plane open sets that both

contain the origin also contains the origin (see Proposition 1.3.10.2).

The idea how to define a Hadamard product in the new situation is the same

as in the well-known case: via a Parseval integral as in (3.3). The bottleneck

is to find adequate integration cycles. If 0 6∈ Ω2, then ∞ ∈ Ω∗
2. Therefore, we

are not able to find an appropriate Cauchy cycle. At this point, anti-Cauchy

cycles come into play: Since 0 6∈ Ω2 implies ∞ ∈ Ω1, the set ΩC
1 is a plane

compact set. According to Proposition 2.2.1, for each Cauchy cycle for ΩC
1

in z/Ω2 its reverse cycle is an anti-Cauchy cycle for z · Ω∗
2 in Ω1, and vice

versa. This relation provides the key tool for the definition of the Hadamard

product. Equipped with the notion of Hadamard cycles, we would like to

define the Hadamard product by means of a Parseval integral such as in the

familiar situation.

At this juncture, several questions arise:

1. Is the value of the Parseval integral independent of the Hadamard cycle?

2. In what way is the new definition consistent with the former one?

We want to tackle the first question and will give a response to it. The other

question will be answered after the definition of the Hadamard product (see

section 3.5).
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Let us now address to the first question. We shall show that the value of

Parseval integral does not depend on the Hadamard cycle.

3.4.2 Lemma:

Let Ω1,Ω2 ⊂ C∞ be open and star-eligible sets, z ∈ Ω1 ∗ Ω2, f ∈ H(Ω1), and

g ∈ H(Ω2). If γ and Γ are Hadamard cycles for z · Ω∗
2 in Ω1, then

1

2πi

∫
γ

f(ζ)

ζ
g

(
z

ζ

)
dζ =

1

2πi

∫
Γ

f(ζ)

ζ
g

(
z

ζ

)
dζ.

Proof: 1. Let us first assume that 0,∞ ∈ Ω1 ∩Ω2, z 6∈ {0,∞}, γ is a Cauchy

cycle for z · Ω∗
2 in Ω1 with ind (γ, 0) = 1, and Γ is an anti-Cauchy cycle for

z · Ω∗
2 in Ω1 with ind (Γ , 0) = −1. Then the mapping ζ 7→ f(ζ)g(z/ζ) defines

a function that belongs to H
(
C∞ \ (ΩC

1 ∪ (z · Ω∗
2))
)

and vanishes at zero.

Moreover, γ is a Cauchy cycle for z ·Ω∗
2 in C∞ \

(
ΩC

1

)
= Ω1, and, according to

Proposition 2.2.1, Γ− is a Cauchy cycle for ΩC
1 in C∞ \ (z ·Ω∗

2) = z/Ω2. Thus,

by Lemma 2.2.6 (iii) the assertion follows.

2. In all the other cases, the index relation

ind (γ, κ) = ind (Γ , κ)
(
κ ∈ ΩC

1 ∪ (z · Ω∗
2)
)

(3.17)

holds. According to Theorem 10.35 of [Rud2], the assertion follows. 2

Part two of the proof shows that the independence of the Pareseval’s integral

value can still be guaranteed if 0 6∈ Ω1 ∩ Ω2 or ∞ 6∈ Ω1 ∩ Ω2. On the other

hand, if 0 ∈ Ω1 ∩ Ω2 and ∞ ∈ Ω1 ∩ Ω2, it is necessary that f and g vanish at

infinity. The next example shows why.

3.4.3 Example:

Let Ω1 := Ω2 := C∞\{1}, z ∈ (Ω1∗Ω2)\{0,∞} = C\{0, 1}, γ a Cauchy cycle

for z ·Ω∗
2 = {z} in Ω1 with ind (γ, 0) = 1, and Γ an anti-Cauchy cycle for z ·Ω∗

2

in Ω1 with ind (γ, 0) = −1. Furthermore, let f : Ω1 → C and g : Ω2 → C.

1. Define f(z) := g(z) := 1. Then we have

1

2πi

∫
γ

f(ζ)

ζ
g

(
z

ζ

)
dζ = ind (γ, 0) = 1,

but
1

2πi

∫
Γ

f(ζ)

ζ
g

(
z

ζ

)
dζ = ind (Γ , 0) = − 1.
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2. Define f(z) := 1 and g(z) := 1/(1− z). Then we have

1

2πi

∫
γ

f(ζ)

ζ
g

(
z

ζ

)
dζ = ind (γ, z) = 1,

but
1

2πi

∫
Γ

f(ζ)

ζ
g

(
z

ζ

)
dζ = ind (Γ , z) = 0.

3. Define f(z) := 1/(z − 1) and g(z) := 1. Then we have

1

2πi

∫
γ

f(ζ)

ζ
g

(
z

ζ

)
dζ = ind (γ, 1) − ind (γ, 0) = − 1,

but
1

2πi

∫
Γ

f(ζ)

ζ
g

(
z

ζ

)
dζ = ind (Γ , 1) − ind (Γ , 0) = 0.

The first example shows that the Parseval’s integral value depends on the

Hadamard if neither f nor g vanishes at infinity. But even if only one of them

does not vanish at infinity, the independence cannot be guaranteed any longer,

as the last two examples show. 3

We therefore answered the first question on page 43 in the affirmative. More-

over, this lemma justifies the following definition.

3.4.4 Definition:

Let Ω1,Ω2 ⊂ C∞ be open and star-eligible sets, f ∈ H(Ω1), g ∈ H(Ω2),

z ∈ Ω1 ∗ Ω2, and γ a Hadamard cycle for z ·Ω∗
2 in Ω1. Then the function

f ∗Ω1,Ω2
g : Ω1 ∗ Ω2 → C defined by

(f ∗Ω1,Ω2
g)(z) :=

1

2πi

∫
γ

f(ζ)

ζ
g

(
z

ζ

)
dζ (3.18)

is called the Hadamard product of f and g. 3

As a first property, we present how the value of the Hadamard product at the

origin and at the point at infinity can be evaluated.

3.4.5 Lemma:

Let Ω1,Ω2 ⊂ C∞ be open and star-eligible sets, f ∈ H(Ω1), and g ∈ H(Ω2).
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1. If 0 ∈ Ω1 ∗ Ω2, then (f ∗Ω1,Ω2
g)(0) = f(0) · g(0).

2. If ∞ ∈ Ω1 ∗ Ω2, then (f ∗Ω1,Ω2
g)(∞) = 0.

Proof: ad 1.: If r > 0 satisfies Ur[0] ⊂ Ω1, then τr is a Hadamard cycle for

{0} in Ω1. Hence, we get

(f ∗Ω1,Ω2
g)(0) =

1

2πi

∫
τr

f(ζ)

ζ
dζ · g(0) = f(0) · g(0).

ad 2.: If γ is a Hadamard cycle for {∞} in Ω1, then we have

(f ∗Ω1,Ω2
g)(∞) =

1

2πi

∫
γ

f(ζ)

ζ
dζ · g(∞) = 0

since g(∞) = 0. 2

At the end of this section, we would like to present some examples. We recall

that Pk(z) = zk.

3.4.6 Example:

Let Ω ( C∞ be an open set with 0 ∈ Ω, and let f ∈ H(Ω). Let r > 0 so that

Ur[0] ⊂ Ω. If z ∈ Ω ∗C = C, then τr is a Hadamard cycle for z ·C∗ = {0} in

Ω. We get

(f ∗Ω,C Pk)(z) =
1

2πi

∫
|ζ|=r

f(ζ)

ζk+1
dζ · zk =

f (k)(0)

k!
· zk.

Thus, we have

f ∗Ω,C Pk =
f (k)(0)

k!
· Pk,

i.e. f ∗Ω,C Pk is a multiple of Pk. 3

For k ∈ N we denote by Rk : C∞ \ {0} → C the rational function defined by

Rk(z) := z−k.

3.4.7 Example:

Let Ω ( C∞ be an open set with ∞ ∈ Ω, and let f ∈ H(Ω). Let R > 0 so
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that UR[∞] ⊂ Ω. If z ∈ Ω ∗ (C∞ \ {0}) = C∞ \ {0}, then τ−R is a Hadamard

cycle for z · (C∞ \ {0})∗ = {∞} in Ω. We get(
f ∗Ω,C∞\{0} Rk

)
(z) =

1

2πi

∫
τ−R

f(ζ) ζk−1 dζ · z−k = − f (k)(∞)

k!
· z−k.

Thus, we have

f ∗Ω,C∞\{0} Rk = − f (k)(∞)

k!
·Rk,

i.e. f ∗Ω,C∞\{0} Rk is a multiple of Rk. 3

3.4.8 Example:

Let Ω ( C∞ be a non-empty open set, η ∈ C\{0}, k ∈ N0, and f ∈ H(2k)(Ω).

The sets Ω and C∞ \ {η} are star-eligible with Ω ∗ (C∞ \ {η}) = η · Ω. Now

let z ∈ η · Ω and γ a Hadamard cycle for z · (C∞ \ {η})∗ = {z/η} in Ω.

(i) If z 6∈ {0,∞}, then we have(
f ∗Ω,C∞\{η} Θη, k

)
(z) =

1

2πi

∫
γ

f(ζ) · ζk

(ζ − z/η)k+1
dζ.

Case 1: 0 ∈ Ω and ∞ 6∈ Ω. Here, γ must be a Cauchy cycle for {z/η} in Ω

with ind (γ, 0) = 1. Since ind (γ, z/η) = 1, the value of the integral on the

right-hand side equals fη, k(z).

Case 2: 0 6∈ Ω and ∞ ∈ Ω. Here, γ must be an anti-Cauchy cycle for {z/η}
in Ω with ind (γ, 0) = −1. Since the function

Ω \ {z/η} = C∞ \
(
ΩC ∪ {z/η}

)
→ C, ζ 7→ f(ζ) · ζk+1

(ζ − z/η) k+1

is holomorphic and vanishes at infinity, we get, according to Lemma 2.2.6,

1

2πi

∫
γ

f(ζ) · ζk

(ζ − z/η) k+1
dζ =

1

2πi

∫
τr(z/η )

f(ζ) · ζk

(ζ − z/η) k+1
dζ

for an r > 0 small enough. The value of the second integral in the last equation

equals fη, k(z).

Case 3: 0,∞ ∈ Ω. Here, γ must be a Cauchy cycle for {z/η} in Ω with

ind (γ, 0) = 1 or an anti-Cauchy cycle for {z/η} in Ω with ind (γ, 0) = −1. In

either situation, we get the same value as in the first two cases.
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Case 4: 0,∞ 6∈ Ω. Here, γ must be a Cauchy cycle for {z/η} in Ω. Since

ind (γ, z/η) = 1, Cauchy’s formula once more establishes the same result.

(ii) If z = 0, we get, according to Lemma 3.4.5.1 and (3.8),

(f ∗Ω,C∞\{η} Θη, k)(0) = f(0) ·Θη, k(0) = f(0) = fη, k(0).

(iii) If z = ∞, we get

(f ∗Ω,C∞\{η} Θη, k)(∞) = 0 = fη, k(∞)

since f ∈ H(2k)(Ω).

Thus, in all possible cases we have

f ∗Ω,C∞\{η} Θη, k = fη, k. (3.19)

This is a generalization of the result in Example 3.3.2. Moreover, we get

f ∗Ω,C∞\{η} Θk+1
η = η−(k+1) · fη, k (3.20)

by means of (3.11). 3

3.4.9 Example:

Let p ∈ N. Denote by ξj := exp(2π(j − 1)i/p) (1 ≤ j ≤ p) the pth roots of

unity. For U := C∞ \ {ξj : 1 ≤ j ≤ p}, we define g : U → C by g(z) :=

1/(1− zp). Moreover, let Ω ⊂ C∞ be a non-empty open set so that Ω and U

are star-eligible, and let f ∈ H(Ω). According to Example 1.3.8, we get

Ω ∗ U =

p⋂
j=1

ξj · Ω.

Now let z ∈ Ω ∗ U and Aj := (p · ξp−1
j )−1 (1 ≤ j ≤ p). The partial fractions

decomposition of g is given by

1

1− zp
=

p∑
j=1

Aj
ξj − z

=

p∑
j=1

Aj ·Θξj(z) (z ∈ U).
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According to (3.11), (3.20), and (3.9), the Hadamard product of f and g is

(f ∗Ω,U g)(z) =

p∑
j=1

Aj ·
(
f ∗Ω,U

(
Θξj

∣∣
U

))
(z)

=

p∑
j=1

Aj
ξj
·
(
f ∗Ω,U

(
Θξj , 0

∣∣
U

))
(z) =

1

p
·

p∑
j=1

fξj , 0(z)

=
1

p
·

p∑
j=1

f

(
z

ξj

)
.

In particular, we have

(f ∗Ω,U g)(z) =
f(z) + f(−z)

2

(
z ∈ Ω ∩ (−Ω)

)
for the special case p = 2. 3

3.5 The Hadamard product on subsets

The second question on page 43 is concerned with the compatibility of the

plane and the extended version of the Hadamard product. To be a reasonable

definition, the extended version of the Hadamard product should coincide with

the plane one in the case of plane open sets both containing the origin. This

is indeed true, as the next proposition shows.

3.5.1 Proposition:

Let Ω1,Ω2 ⊂ C be open sets both containing the origin, f ∈ H(Ω1), and

g ∈ H(Ω2). Then the parameter integrals in (3.3) and (3.18) define the same

function.

Proof: Since Ω1 and Ω2 contain the origin, they are star-eligible. Moreover,

we have C \
[
(C \Ω1) · (C \Ω2)

]
= Ω1 ∗Ω2 according to Proposition 1.3.10.4.

For z ∈ Ω1 ∗ Ω2 we have 0 ∈ z · Ω∗
2, and every Hadamard cycle for z · Ω∗

2 in

Ω1 is a Cauchy cycle for z · Ω∗
2 in Ω1 with ind (γ, 0) = 1. This shows that the

index relation

ind (γ, κ) = ind (γ̃, κ)
(
κ ∈ ΩC

1 ∪ (z · Ω∗
2)
)

holds for all Cauchy cycles γ and γ̃ for z ·Ω∗
2 in Ω1. Thus, the integrals in (3.3)

and (3.18) define the same function. 2
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Another question is how the Hadamard product acts on subsets. Let Ω1,Ω2 ⊂
C∞ be open and star-eligible sets; D1 ⊂ Ω1 and D2 ⊂ Ω2 open and star-eligible

sets; f ∈ H(Ω1); and g ∈ H(Ω2). Is then(
f ∗Ω1,Ω2

g
)∣∣
D1∗D2

=
(
f
∣∣
D1

)
∗D1,D2

(
g
∣∣
D2

)
?

To answer this question, we consider a Hadamard cycle γ for z · D∗
2 in D1.

What we have to check is whether γ is also a Hadamard cycle for z ·Ω∗
2 in Ω1.

(This need not always be true; in such a case we will replace γ by a suitable

Hadamard cycle for z ·Ω∗
2 in Ω1 in such a way that the corresponding Parseval

integrals have the same value.) Several cases can occur, depending on which

of the sets contain the origin and the point at infinity (see Appendix B). We

can prove the following result.

3.5.2 Compatibility theorem:

Let Ω1,Ω2 ⊂ C∞ be open and star-eligible sets, let D1 ⊂ Ω1 and D2 ⊂ Ω2 be

open and star-eligible sets. Furthermore, let f ∈ H(Ω1) and g ∈ H(Ω2). Then

we have (
f ∗Ω1,Ω2

g
)∣∣
D1∗D2

=
(
f
∣∣
D1

)
∗D1,D2

(
g
∣∣
D2

)
.

Proof: 1. Let z ∈ (D1 ∗ D2) \ {0,∞} and γ a Hadamard cycle for z · D∗
2 in

D1. Since Dj ⊂ Ωj, we obtain the inclusions

ΩC
j ⊂ DC

j and z · Ω∗
j ⊂ z ·D∗

j (j = 1; 2). (3.21)

The function

ϕ : Ω1 ∩
z

Ω2

→ C, ϕ(ζ) := f(ζ) · g
(
z

ζ

)
is holomorphic. If we abbreviate f̃ := f

∣∣
D1

and g̃ := g
∣∣
D2

, we get

(
f̃ ∗D1,D2

g̃
)

(z) =
1

2πi

∫
γ

ϕ(ζ)

ζ
dζ.

Case 1: 0 ∈ D1 ∩D2 and ∞ 6∈ D1 ∩D2. Here, γ is a Cauchy cycle for z ·D∗
2

in D1 with ind (γ, 0) = 1. Since 0 ∈ D1 ∩D2, we immediately get 0 ∈ Ω1 ∩Ω2.

We have

ind (γ, κ) =

{
1, κ ∈ z · Ω∗

2

0, κ ∈ ΩC
1
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according to (3.21), i.e. γ is a Cauchy cycle for z ·Ω∗
2 in Ω1 with ind (γ, 0) = 1.

Thus, we get (f̃ ∗D1,D2
g̃)(z) = (f ∗Ω1,Ω2

g)(z).

Case 2: 0 6∈ D1 ∩D2 and ∞ ∈ D1 ∩D2. Here, γ is an anti-Cauchy cycle for

z · D∗
2 in D1 with ind (γ, 0) = −1. Since ∞ ∈ D1 ∩ D2, we immediately get

∞ ∈ Ω1 ∩ Ω2. We have

ind (γ, κ) =

{
0, κ ∈ z · Ω∗

2

−1, κ ∈ ΩC
1

according to (3.21), i.e. γ is an anti-Cauchy cycle for z·Ω∗
2 in Ω1 with ind (γ, 0) =

−1. Thus, we get (f̃ ∗D1,D2
g̃)(z) = (f ∗Ω1,Ω2

g)(z).

Case 3: 0,∞ ∈ D1∩D2. We get 0,∞ ∈ Ω1∩Ω2, so that γ is also a Hadamard

cycle for z · Ω∗
2 in Ω1. Thus, we get (f̃ ∗D1,D2

g̃)(z) = (f ∗Ω1,Ω2
g)(z).

Case 4: 0,∞ ∈ D2 \ D1. We get 0,∞ ∈ Ω2. Here, γ is a Cauchy cycle for

z ·D∗
2 in D1 with ind (γ, 0) = 0 (cf. Remark 2.1.8). According to (3.21), γ is a

Cauchy cycle for z · Ω∗
2 in Ω1 with ind (γ, 0) = 0. Now, we have to distinguish

four subcases:

4.1: 0,∞ 6∈ Ω1. Here, we need a Cauchy cycle for z · Ω∗
2 in Ω1. The cycle γ is

suitable.

4.2: 0,∞ ∈ Ω1. Here, we need a Cauchy cycle for z · Ω∗
2 in Ω1 whose index

with respect to 0 equals 1, or we need an anti-Cauchy cycle for z · Ω∗
2 in Ω1

whose index with respect to 0 equals −1. Let r > 0 sufficiently small and so

that Ur[0] ⊂ Ω1 ∩ (z/Ω2). Then Γ := γ ⊕ τr is a Cauchy cycle for z · Ω∗
2 in

Ω1 with ind (γ, 0) = 1. Since, in this case, ϕ is holomorphic at the origin and

vanishes there, we get
∫
τr
ϕ(ζ)/ζ dζ = 0, and hence∫
Γ

ϕ(ζ)

ζ
dζ =

∫
γ

ϕ(ζ)

ζ
dζ.

Thus, the cycle Γ is suitable.

4.3: 0 ∈ Ω1 and ∞ 6∈ Ω1. Here, we need a Cauchy cycle for z ·Ω∗
2 in Ω1 whose

index with respect to 0 equals 1. Let r be as in subcase 4.2. Then the same

strategy works here, too.

4.4: 0 6∈ Ω1 and ∞ ∈ Ω1. Here, we need an anti-Cauchy cycle for z · Ω∗
2 in Ω1

whose index with respect to 0 equals −1. Since γ is a Cauchy cycle for z ·Ω∗
2 in

Ω1 with ind (γ, 0) = 0, there is a Cauchy cycle Γ for ΩC
1 in C∞\(z ·Ω∗

2) = z/Ω2

in such a way that Lemma 2.2.6 (condition (i)) can be applied to ϕ, ΩC
1 , and
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z ·Ω∗
2. According to Proposition 2.2.1, Γ− is an anti-Cauchy cycle for z ·Ω∗

2 in

Ω1. Moreover, it satisfies ind (Γ−, 0) = −1. Thus, the cycle Γ− is suitable.

In all four subcases, we get (f̃ ∗D1,D2
g̃)(z) = (f ∗Ω1,Ω2

g)(z).

Case 5: 0,∞ ∈ D1 \D2. This case can be treated like case 4.

2. If z = 0, we necessarily have 0 ∈ D1 ∩ D2, and hence 0 ∈ Ω1 ∩ Ω2. Thus,

we get (f̃ ∗D1,D2
g̃)(0) = f̃(0) · g̃(0) = f(0) · g(0) = (f ∗Ω1,Ω2

g)(0) according to

Lemma 3.4.5.1.

3. If z = ∞, we necessarily have ∞ ∈ D1∩D2, and hence ∞ ∈ Ω1∩Ω2. Thus,

we get (f̃ ∗D1,D2
g̃)(∞) = 0 = (f ∗Ω1,Ω2

g)(∞) according to Lemma 3.4.5.2. 2

3.5.3 Remark:

Now that we know that the Hadamard product does not depend on the un-

derlying open sets, we could omit them in the notation and simply write f ∗ g
instead of f ∗Ω1,Ω2

g. However, we will not do this for the sake of clarity. 3

3.6 Algebraic and analytic properties of the

Hadamard product

Whenever we encounter a product, we ask if it commutes. It is already known

that the plane version of the Hadamard product has this property (cf. [GE93]).

The next theorem shows that this is also true for the extended version.

3.6.1 Proposition:

Let Ω1,Ω2 ⊂ C∞ be open and star-eligible sets, f ∈ H(Ω1), and g ∈ H(Ω2).

Then we have f ∗Ω1,Ω2
g = g ∗Ω2,Ω1

f .

Proof: Let z ∈ Ω1 ∗ Ω2 and γ a Hadamard cycle for z · Ω∗
2 in Ω1.

For z = 0—if at all—the commutativity follows from Lemma 3.4.5.1.

For z = ∞—if at all—the commutativity follows from Lemma 3.4.5.2.

Now let z 6= 0 and z 6= ∞. Proposition 2.1.3 yields

(f ∗Ω1,Ω2
g)(z) =

1

2πi

∫
z/γ−

g(ζ)

ζ
f

(
z

ζ

)
dζ.
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According to Theorem 2.2.3, the cycle z/γ− is a Hadamard cycle for z·Ω∗
1 in Ω2.

Therefore, the value of the integral on the right-hand side equals (g∗Ω2,Ω1
f)(z).

This proves the commutativity. 2

Next, we devote ourselves to neutral elements. We already know that the

geometric series serves as a type of neutral element with respect to Hadamard

multiplication of power series (see section 3.1). For the plane version of the

Hadamard product, this role is played by the function Θ
∣∣
C\{1} (see section

3.2). What can be said about the extended version of the Hadamard product?

Indeed, Θ is a neutral element in the following sense.

3.6.2 Proposition:

If Ω ⊂ C∞ is a non-empty open set and f ∈ H(Ω), then f ∗Ω,C∞\{1} Θ = f .

Proof: Example 3.4.8 can be applied with η = 1 and k = 0. According to

(3.20) and (3.9), we obtain the assertion. 2

Combining this proposition with the results of section 3.5, we can deduce the

following corollary.

3.6.3 Corollary:

Let Ω1,Ω2 ⊂ C∞ be open an star-eligible sets with 1 6∈ Ω2, and let f ∈ H(Ω1).

Then we have

f
∣∣
Ω1∗Ω2

= f ∗Ω1,Ω2

(
Θ
∣∣
Ω2

)
.

Proof: By the compatibility theorem we get

f ∗Ω1,Ω2

(
Θ
∣∣
Ω2

)
=
(
f ∗Ω1,C∞\{1} Θ

)∣∣
Ω1∗Ω2

.

The assertion then follows by means of Proposition 3.6.2. 2

At last, we shall show that the Hadamard product is a holomorphic function.

3.6.4 Proposition:

Let Ω1,Ω2 ⊂ C∞ be open and star-eligible sets, f ∈ H(Ω1), and g ∈ H(Ω2).

Then we have f ∗Ω1,Ω2
g ∈ H(Ω1 ∗ Ω2). Furthermore, its derivatives are given

by

(f ∗Ω1,Ω2
g)(k)(z) =

1

2πi

∫
γ

f(ζ)

ζk+1
g(k)

(
z

ζ

)
dζ
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for all z ∈ (Ω1 ∗ Ω2) \ {∞} and all k ∈ N0.
‡

Proof: Let z0 ∈ (Ω1 ∗ Ω2) \ {∞} and r > 0 in such a way that U2r[z0] ⊂
Ω1 ∗Ω2. According to the existence theorem for Hadamard cycles, there exists

a cycle γ that is a Hadamard cycle for z · Ω∗
2 in Ω1 for every z ∈ U2r[z0].

The holomorphy of (f ∗Ω1,Ω2
g)
∣∣
Ur(z0)

and the formula for the derivatives in z0

follow from well-known results on parameter integrals. Therefore, the function

(f ∗Ω1,Ω2
g)
∣∣
(Ω1∗Ω2)∩C is holomorphic.

Now assume that we have ∞ ∈ Ω1 ∗ Ω2 in addition. It remains to show

that f is continuous at the point at infinity. According to Lemma 3.4.5.2, we

have (f ∗Ω1,Ω2
g)(∞) = 0. Since ∞ ∈ Ω1 ∩ Ω2, there exist R,S > 0 so that

UR[∞] ⊂ Ω1 and so that τ−R is a Hadamard cycle for z · Ω∗
2 in Ω1 for every

z ∈ US(∞). For each such z we get

∣∣(f ∗Ω1,Ω2
g)(z)

∣∣ =

∣∣∣∣∣ 1

2πi

∫
τ −R

f(ζ)

ζ
g

(
z

ζ

)
dζ

∣∣∣∣∣ ≤ ‖f‖TR · ‖g‖z/TR

= ‖f‖TR · max
w∈ z/TR

|g(w)| z→∞−−−−−→ 0.

This proves the proposition. 2

The evaluation of the derivatives of the Hadamard product at the point at

infinity will be postponed (see Example 4.1.4).

3.7 The Hadamard product as an operator

between Fréchet spaces

As usual, Ω1 and Ω2 are open and star-eligible subsets of the extended complex

plane, f is in H(Ω1), and g is in H(Ω2).

In contrast to the last sections where we considered the Hadamard product as

a function of a complex variable, we now consider the Hadamard product as

an operator that maps an element of the set H(Ω1)×H(Ω2) to an element of

the set H(Ω1 ∗ Ω2). To this end, we define the operator

T : H(Ω1)×H(Ω2) → H(Ω1 ∗ Ω2), (f, g) 7→ f ∗Ω1,Ω2
g.

‡ Here, γ is a Hadamard cycle for z · Ω∗
2 in Ω1.
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The vector space H(Ω1) × H(Ω2) is supposed to carry the product topology.

For ϕ ∈ H(Ω1) and ψ ∈ H(Ω2), we define

Tψ : H(Ω1) → H(Ω1 ∗ Ω2), f 7→ f ∗Ω1,Ω2
ψ,

T ϕ : H(Ω2) → H(Ω1 ∗ Ω2), g 7→ ϕ ∗Ω1,Ω2
g.

We want to prove two essential properties of the these operators. The idea of

the proofs follows the idea of the proofs in [GE93].

3.7.1 Lemma:

The operators Tψ and T ϕ are linear and continuous.

Proof: The linearity follows immediately from the linearity of the integral.

We only show that Tψ is continuous. To this end, let K ⊂ Ω1 ∗ Ω2 be a non-

empty compact set. According to the existence theorem for Hadamard cycles,

there exists a cycle γ that is a Hadamard cycle for z ·Ω∗
2 in Ω1 for every z ∈ K.

For z ∈ K and f ∈ H(Ω1) we get

|Tψ(f)(z)| ≤ 1

2π

∫
γ

|f(ζ)|
|ζ|

∣∣∣∣ψ(zζ
)∣∣∣∣ |dζ| ≤ C · ‖f‖|γ|

with C := 1
2π
·L(γ) ·max

ζ∈|γ|
1
|ζ| · max

ζ∈K/|γ|
|ψ(ζ)|. (Notice that C is independent of z

and of f .) Hence, we get

‖Tψ(f)‖K ≤ C · ‖f‖|γ|
(
f ∈ H(Ω1)

)
.

But this proves the continuity of Tψ (see e.g. [Yos, Theorem 1]). 2

3.7.2 Example:

Let Ω ( C∞ be a non-empty open set and f ∈ H(Ω).

(a) If 0 ∈ Ω and k ∈ N0, then, according to Example 3.4.6, Pk is an

eigenfunction for T f : H(C) → H(C) with corresponding eigenvalue

f (k)(0)/k!.

(b) If ∞ ∈ Ω and k ∈ N, then, according to Example 3.4.7, Rk is an eigen-

function for T f : H(C∞\{0}) → H(C∞\{0}) with corresponding eigen-

value − f (k)(∞)/k!. 3
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Next, we prove the corresponding properties of the operator T .

3.7.3 Proposition:

The operator T is bilinear and continuous.

Proof: The bilinearity is a consequence of Lemma 3.7.1.

Again by Lemma 3.7.1 the operators Tψ and Tϕ are continuous. Since H(Ω1),

H(Ω2), and H(Ω1∗Ω2) are Fréchet spaces, the continuity of T follows by means

of [Rud1, Theorem 2.17]. 2

A universal power series is defined by a certain property of its partial sums

(see section 5.2). If we are interested in the question whether the Hadamard

product inherits this universal property, we have to know how the partial sums

behave under Hadamard multiplication. The next result answers this question

for a more general setting.

3.7.4 Continuity theorem:

Let Ω1,Ω2 ⊂ C∞ be open sets with 0 ∈ Ω1 ∩Ω2, and let G ⊂ C be an open set

that is star-eligible to Ω1. Furthermore, let f ∈ H(Ω1), g ∈ H(Ω2), h ∈ H(G)

as well as Ln : H({0}) → H(C) for n ∈ N so that Ln(g) → h compactly on G

as n→∞.

1. Then f ∗Ω1,C

(
Ln(g)

)
→ f ∗Ω1, G

h compactly on Ω1 ∗G as n→∞.

2. If in addition Ln(f ∗Ω1,Ω2
g) = f ∗Ω1,C

(
Ln(g)

)
for all n ∈ N, then we have

Ln(f ∗Ω1,Ω2
g) → f ∗Ω1,G

h compactly on Ω1 ∗G as n→∞.

Proof: Let K ⊂ Ω1 ∗ G be a compact set. Proposition 3.7.3 guarantees the

existence of two compact sets K ′ ⊂ Ω1 and K ′′ ⊂ G as well as a constant

C > 0 in such a way that we have∥∥f ∗Ω1,G

(
Ln(g)

∣∣
G

)
− f ∗Ω1,G

h
∥∥
K

=
∥∥∥f ∗Ω1,G

((
Ln(g)

∣∣
G

)
− h
)∥∥∥

K

≤ C · ‖f‖K′ · ‖Ln(g)− h‖K′′ .

Since Ω1 ∗G ⊂ Ω1 ∗C, we get(
f ∗Ω1,C

(Ln(g))
)∣∣

Ω1∗G
= f ∗Ω1, G

(
Ln(g)

∣∣
G

)
(?)

according to the compatibility theorem.
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ad 1.: Since ‖Ln(g)− h‖K′′ → 0 as n→∞, the first assertion follows.

ad 2.: From (?) and the assumption on Ln, we get(
Ln(f ∗Ω1,Ω2

g)
)∣∣

Ω1∗G
= f ∗Ω1, G

(
Ln(g)

∣∣
G

)
.

By means of part one the second assertion follows. 2

3.7.5 Remark:

The continuity theorem remains true if we replace 0 by ∞ and if we replace

C by C∞ \ {0}. 3

Notice that Ln(f ∗Ω1,Ω2
g) ∈ H(C) and, since Ω1 ∗ C = C, we also have

f ∗Ω1,C
Ln(g) ∈ H(C). Thus, the additional condition in part two of the

continuity theorem makes sense.



Chapter 4

Applications

In this chapter, we will use the Hadamard product and its properties to deduce

two classical results: the Hadamard multiplication theorem and the Borel-

Okada theorem. In both cases, the continuity of the Hadamard operator is the

decisive property.

In the first section, we will prove two versions of the Hadamard multiplication

theorem. The first one is a generalization of the Hadamard multiplication

theorem (see section 3.3). In this version the functions under consideration are

allowed to be holomorphic at the point at infinity. The second version is an

analogous result for the local expansion around the point at infinity. At the end

of the section, we will use the generalization of the Hadamard multiplication

theorem to show that the partial sum operators satisfy the condition of the

operators in part two of the continuity theorem (see Proposition 4.1.5).

In the second section, we will devote ourselves to the Borel-Okada theorem.

The classical version of this theorem considers domains containing the origin

(see [Bo96], [Ok25], [GT76]). Later, it was shown that it also works for open

sets both containing the origin (see [Mü92], [GE93]). It will turn out that this

finding can be generalized (see 4.2.3).

58
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4.1 Extended versions of the Hadamard

multiplication theorem

The first result shows that the Hadamard multiplication theorem is true for

open subsets of the extended plane that both contain the origin.

4.1.1 Hadamard multiplication theorem:

Let Ω1,Ω2 ⊂ C∞ be open sets both containing the origin, f ∈ H(Ω1), and

g ∈ H(Ω2). Then we have

(f ∗Ω1,Ω2
g)(z) =

∞∑
ν=0

fν gν z
ν

for all z ∈ C with |z| < dist
(
0, ∂((Ω1 ∗ Ω2) ∩C)

)
.

Proof: Let r, s > 0 so thatDr ⊂ Ω1 andDs ⊂ Ω2. Furthermore, let fr := f
∣∣
Dr

and gs := g
∣∣
Ds

. According to the compatibility theorem, we have

(f ∗Ω1,Ω2
g)
∣∣
Dr∗Ds

= fr ∗Dr,Ds gs.

By (3.2) we get

(fr ∗Dr,Ds gs)(z) =
∞∑
ν=0

fν gν z
ν

for all z ∈ Dr ∗ Ds = Drs. The assertion follows by means of the identity

theorem. 2

We proceed with an example.

4.1.2 Example:

Using the Hadamard multiplication theorem, we are able to express the deriva-

tives (f ∗Ω1,Ω2
g)(k)(0) by f (k)(0) and g(k)(0) (cf. Proposition 3.6.4):

(f ∗Ω1,Ω2
g)(k)(0) =

f (k)(0) · g(k)(0)

k!

for all k ∈ N0. 3

It is also possible to state a Hadamard multiplication theorem for the point at

infinity.
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4.1.3 Hadamard multiplication theorem at infinity:

Let Ω1,Ω2 ⊂ C∞ be open sets both containing the point at infinity, f ∈ H(Ω1),

and g ∈ H(Ω2). Then we have

(f ∗Ω1,Ω2
g)(z) = −

∞∑
ν=1

fν · gν
zν

for all z ∈ Ud(∞) with d := inf
{
t > 0 : Ut(∞) ⊂ Ω1 ∗ Ω2

}
.

Proof: Let R,S > 0 according to UR := UR(∞) ⊂ Ω1 and US := US(∞) ⊂ Ω2,

let fR := f
∣∣
UR

and gS := g
∣∣
US

. Then we have s∞n (gS) → gS compactly on US
as n → ∞. According to the compatibility theorem, we have the relation

(f ∗Ω1,Ω2
g)
∣∣
UR∗US

= fR ∗UR,US gS. By Remark 3.7.5, Proposition 3.7.3, and

Example 3.4.7 we obtain

(f ∗Ω1,Ω2
g)(z) = (fR ∗UR,US gS)(z) = lim

n→∞

(
fR ∗UR,C∞\{0} (s∞n (gS))

)
(z)

= lim
n→∞

(
fR ∗UR,C∞\{0}

(
n∑
ν=1

gν Rν

))
(z)

= lim
n→∞

n∑
ν=1

gν · (fR ∗UR,C∞\{0} Rν)(z) = lim
n→∞

n∑
ν=1

− fν · gν
zν

= −
∞∑
ν=1

fν · gν
zν

for all z ∈ UR ∗ US = URS(∞). The assertion follows by means of the identity

theorem. 2

4.1.4 Example:

Using the Hadamard multiplication theorem at infinity, we are able to express

the derivatives (f∗Ω1,Ω2
)(k)(∞) by f (k)(∞) and g(k)(∞):

(f ∗Ω1,Ω2
g)(k)(∞) = − f (k)(∞) · g(k)(∞)

k!

for all k ∈ N0. 3
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The negative sign in the Hadamard multiplication theorem at infinity seems a

little odd if we compare this result with the Hadamard multiplication theorem.

Recall that Θ is a neutral element for the Hadamard product (in the sense of

Proposition 3.6.2); its power series expansion around the point at infinity is

given by

Θ(z) =
∞∑
ν=1

−1

zν
(
z ∈ U1(∞)

)
.

If Ω ⊂ C∞ is an open set containing the point at infinity, and if f ∈ H(Ω),

then, according to the Hadamard multiplication theorem at infinity, we get

(f ∗Ω,C∞\{1} Θ) (z) = −
∞∑
ν=1

fν · (−1)

zν
= f(z)

(
z ∈ UR(∞)

)
for a suitable R > 0. Hence, the negative sign in the Hadamard multiplication

theorem at infinity is quite natural.

As an application of the Hadamard multiplication theorem we can prove the

following result that shows how the operators σAn act upon the Hadamard

product.

4.1.5 Proposition:

Let A be an infinite matrix, Ω1,Ω2 ⊂ C∞ open sets both containing the origin,

f ∈ H(Ω1), and g ∈ H(Ω2). Then we have

σAn (f ∗Ω1,Ω2
g) =

(
σAn (f)

)
∗C,Ω2

g = f ∗Ω1,C

(
σAn (g)

)
for all n ∈ N0.

Proof: By Proposition 3.6.4 and the definition of the A-transformation all the

functions appearing in the conclusion are entire. According to the Hadamard

multiplication theorem, there exists an r > 0 in such a way that we have

(f ∗Ω1,Ω2
g)(z) =

∞∑
ν=0

fν gν z
ν

(
z ∈ Ur(0)

)
,

whence follows

σAn (f ∗Ω1,Ω2
g) (z) =

∞∑
ν=0

anνfν gν z
ν (z ∈ C).
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Applying the Hadamard multiplication theorem again, we obtain

((
σAn (f)

)
∗C,Ω2

g
)
(z) =

∞∑
ν=0

anν fν gν z
ν

(
z ∈ C

)
and (

f ∗Ω1,C

(
σAn (g)

) )
(z) =

∞∑
ν=0

fν anν gν z
ν

(
z ∈ C

)
.

This proves the proposition. 2

4.2 The Borel-Okada theorem

The Borel-Okada theorem allows the analytic continuation of a given function

by means of summability methods. It is possible to derive the Borel-Okada

theorem from the Hadamard multiplication theorem; the decisive point is the

continuity theorem. For the plane case this was already done in [Mü92] and

[GE93]. As in the case of the Hadamard multiplication theorem, all involved

sets had to contain the origin. The question now is whether a corresponding

result also holds in a more general context. The answer is yes.

Before stating the result, we will recall the notion of a summability method.

Let A be an infinite matrix, Ω ⊂ C∞ an open set containing the origin, f ∈
H(Ω), and Ω′ ⊂ Ω∩C a non-empty and open set. We say that f is compactly

A-summable on Ω′ if σAn (f) → f compactly on Ω′ as n→∞.

4.2.1 Borel-Okada theorem:

Let Ω, G ⊂ C be open sets with 0 ∈ Ω ∩ G and 1 6∈ G. Furthermore, let

f ∈ H(Ω) and A an infinite matrix. If Θ is compactly A-summable on G, then

f is compactly A-summable on Ω ∗G. 3

Proofs can be found in [Mü92] or [GE93]. Moreover, the Borel-Okada theorem

can be deduced from from the extended Borel-Okada theorem (see 4.2.3).

4.2.2 Remark:

The Borel-Okada theorem states that if the “test function” Θ is compactly

A-summable on G, then f is compactly A-summable on Ω ∗ G. (Notice that

Ω∗G ⊂ Ω since 1 6∈ G.) This can be exploited to continue f analytically across

Ω: If f is defined by a power series with radius of convergence r ∈ (0,∞), and
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if A can be chosen in such a way that there is a subsequence (σAnk(f))k∈N0 that

converges compactly on a domain Ω̃ ⊃ Ur(0), then the limit is the analytic

continuation of f into Ω̃. 3

In the above version of the Borel-Okada theorem, the set G has to contain the

origin. The next theorem shows that this condition can be dropped.

4.2.3 Extended Borel-Okada theorem:

Let Ω ⊂ C∞ and G ⊂ C be open and star-eligible sets with 1 6∈ G. Further-

more, let f ∈ H(Ω) and A an infinite matrix. If Θ is compactly A-summable

on G, then f is compactly A-summable on Ω ∗G.

Proof: According to Proposition 4.1.5, the operators σn satisfy the condition

of the second part of the continuity theorem. Thus, by the continuity theorem

we get σn(f ∗Ω,C∞\{1} Θ) → f ∗Ω,G

(
Θ
∣∣
G

)
compactly on Ω ∗ G. Moreover,

f ∗Ω,C∞\{1} Θ = f and f ∗Ω,G

(
Θ
∣∣
G

)
= f

∣∣
Ω∗G by Proposition 3.6.2 and Corollary

3.6.3. This proves the theorem. 2

The (extended) Borel-Okada theorem states that—under the conditions given

there—compact A-summability of Θ on G implies compact A-summability of

f on Ω ∗G. Thus, the set on which f is compactly A-summable depends not

only on G but also on Ω. Sometimes, we want to sum a function f compactly

(with respect to an infinite matrix A) on a given set G. If we want to apply

the (extended) Borel-Okada theorem, we have to find a set G̃ with Ω ∗ G̃ = G.

Then we obtain that f is compactly A-summable on Ω ∗ G̃ = G. This takes

us back to Problem 1.3.18. Our question is the following.

4.2.4 Problem:

Let Ω ⊂ C∞ and G ⊂ Ω ∩C be non-empty open sets, and let f ∈ H(Ω). Can

we find an infinite matrix A in such a way that f is compactly A-summable

on the set G ? 3
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Universal power series

In the first section, we will recapitulate the notion of universality. Furthermore,

we will state the universality criterion, that gives a sufficient condition for the

existence of universal elements.

In the second section, we will introduce universal power series as a specification

of universal elements introduced in the first section.

In the third section, we will recapitulate Runge’s and Mergelyan’s approxima-

tion theorems in the language introduced in section 1.1.

In the fourth section, we will prove properties of the set of universal power

series. The main result is that they form a dense Gδ-set (see Theorem 5.4.7;

see also [MNP97, Theorem 3.2] and [CV06, Theorem 1.2]).

5.1 The universality criterion

Let X be a non-empty set, (Y,T ) a topological space, I a non-empty index

set, and (Tι)ι∈I a family of operators from X into Y . We shall now introduce

the notion of universal elements and universal families (see [GE99]).

5.1.1 Definition:

An element x ∈ X is called universal for (Tι)ι∈I if the set {Tι(x) : ι ∈ I} is

dense in Y . The family (Tι)ι∈I of operators is called universal if there exists a

universal element for this family. 3

Instantaneously, the question arises if there exist universal elements for a given

family of operators. The universality criterion (see also [GE99, Theorem 1])
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not only guarantees the existence but also a plethora† of universal elements—

provided that the topological spaces and the operators satisfy certain condi-

tions.

5.1.2 Universality criterion:

Let (X,S ) be a Baire space, (Y,T ) second-countable, and Tι continuous for

each ι ∈ I. Denote by U the set of universal elements for (Tι)ι∈I . Then the

following assertions are equivalent:

(i) U is residual in (X,S ).

(ii) U is dense in (X,S ).

(iii) If U ⊂ X and V ⊂ Y are non-empty open sets, then there exists an

index κ ∈ I so that Tκ(U) ∩ V 6= ∅.

If one of these conditions holds, then U is a dense Gδ-subset of X. 3

A proof of a slightly more general version of this theorem can be found in

[GE87, Satz 1.1.7].

5.1.3 Remark:

In a topological space a residual set is a set whose complement is of the first

category. Sometimes residuality is referred to sets that contain a dense Gδ-set.

However, in Baire spaces these two definitions are equivalent. 3

In order to apply the universality criterion, we have to specify the spaces

(X,S ) and (Y,T ) as well as the family of the operators Tι (see section 6.3).

Useful will be the following result: If Ω ⊂ C is a non-empty open set, then

H(Ω) is a second-countable Baire space.

5.2 O-universality

The concept of universal power series uses the partial sum operators (see sec-

tion 1.2). A power series converges compactly on its disk of convergence; it is

divergent in each point in the complement of this disk’s closure. But it might

† In the sense of Baire’s categories.
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happen that a subsequence converges compactly on a domain that contains

the disk of convergence. This phenomenon is called overconvergence.

The type of universality we study is called O-universality or universality with

respect to overconvergence.

In order to have a handy language, we will introduce two systems of sets in

the complex plane whose elements frequently occur in combination with the

approximation theorem of Mergelyan and universal functions. Let A ⊂ C be

a set. By M(A) we denote the set consisting of all non-empty compact sets

K ⊂ C \A so that C \K is connected. Furthermore, M(∅) is denoted by M.

By G(A) we denote the set of all non-empty, open simply connected subsets of

C \ A. Furthermore, G(∅) is denoted by G.

5.2.1 Definition:

For an open simply connected set D ( C containing the origin, we define the

following sets of universal functions:

• For G ∈ G(D) we denote by U (D,G) the set of all ϕ ∈ H(D) so that for

each f ∈ H(G) there exists a subsequence of (sn(ϕ))n∈N0
that converges

to f compactly on G.

• By U (D) we denote the set of all ϕ ∈ H(D) so that for each G ∈
G(D) and each f ∈ H(G) there exists a subsequence of (sn(ϕ))n∈N0

that

converges to f compactly on G.

• For K ∈ M(D) we denote by Ũ (D,K) the set of all ϕ ∈ H(D) so

that for each f ∈ A(K) there exists a subsequence of (sn(ϕ))n∈N0
that

converges to f uniformly on K.

• By Ũ (D) we denote the set of all ϕ ∈ H(D) so that for each K ∈
M(D) and each f ∈ A(K) there exists a subsequence of (sn(ϕ))n∈N0

that converges to f uniformly on K.

Furthermore, we define

U (D, ∅) := H(D)

and

Ũ (D, ∅) := H(D).

An element of the set U (D,G) is called an O-universal function with respect to

G or just a universal function with respect to G. An element of the set U (D)



Chapter 5 – Universal functions 67

is called an O-universal function or just a universal function. The power series

expansion around the origin of an element of U (D) is called a universal power

series. 3

5.2.2 Remark:

The above sets of universal functions can be written as

U (D,G) =

{
ϕ ∈ H(D) :

{
sn(ϕ)

∣∣
G

: n ∈ N0

}H(G)
= H(G)

}
,

Ũ (D,K) =

{
ϕ ∈ H(D) :

{
sn(ϕ)

∣∣
K

: n ∈ N0

}A(K)
= A(K)

}
,

U (D) ={
ϕ ∈ H(D) :

{
sn(ϕ)

∣∣
G

: n ∈ N0

}H(G)
= H(D) for all G ∈ G(D)

}
,

Ũ (D) ={
ϕ ∈ H(D) :

{
sn(ϕ)

∣∣
K

: n ∈ N0

}A(K)
= A(K) for all K ∈M(D)

}
.

Moreover, we get

U (D) =
⋂

G∈G(D)

U (D,G) (5.1)

and

Ũ (D) =
⋂

K ∈M(D)

Ũ (D,K) (5.2)

which will be used later on. 3

For the existence of universal functions and universal power series see for in-

stance [Luh70], [CP71], [Luh86], or [GLM00].

5.2.3 Remark:

Let D ( C be an open simply connected set containing the origin, and let G ∈
G(D). The condition that G is simply connected is necessary for the existence

of universal functions with respect to G: If G was not simply connected, then

H(C) would not be dense in H(G). Thus, the set U (D,G) is empty. 3



Chapter 5 – Universal functions 68

5.3 Approximation by polynomials

Two of the most important results concerning the approximation of holomor-

phic functions by polynomials are Runge’s and Mergelyan’s approximation

theorems (see for instance [Rud2]). In the terminology used so far, Runge’s

theorem reads as follows:

If Ω ∈ G, then P|Ω
H(Ω)

= H(Ω).

Mergelyan’s theorem can be stated as follows:

If K ∈M, then P|K
A(K)

= A(K).

We remark that the connectivity assumption is necessary in both theorems.

5.4 Properties of universal functions

Sometimes it is useful to know in which way universality is “inherited” to the

results of certain algebraic operations. If we are given two universal functions,

we can ask whether the sum, the product, or other algebraic operations per-

formed on these functions will produce a new universal function or not. For the

sum of two universal functions the answer is negative: If ϕ is in U (D), then

−ϕ also belongs to U (D) (see Lemma 5.4.1). But their sum is not universal

at all. As a consequence, the set of universal functions is not a linear space.

The situation is totally different when one (and only one) of the two functions

is entire. As the next lemma shows, universality is invariant under addition

of entire functions and under scalar multiplication with scalars different from

zero.

5.4.1 Lemma:

Let D ( C be an open simply connected set containing the origin, ϕ ∈ U (D),

g ∈ H(C), and λ ∈ C \ {0}. Then g
∣∣
D

+ ϕ and λ · ϕ also belong to U (D).

Proof: Let G ∈ G(D) and f ∈ H(G). The functions g
∣∣
D

+ ϕ and λ · ϕ are

holomorphic in D.

1. There exists a strictly monotonic increasing sequence (nk)k∈N0 in N0 so

that snk(ϕ) → f − g compactly on G as k → ∞. Since the partial sum
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operators are linear and since snk(g) → g compactly on C as k → ∞, we

obtain snk
(
g
∣∣
D

+ ϕ
)
→ g + (f − g) = f compactly on G as k →∞

2. Furthermore, there exists a strictly monotonic increasing sequence (n`)`∈N0

in N0 so that sn`(ϕ) → λ−1 · f compactly on G as ` → ∞. Once more, the

linearity yields the desired result. 2

The rest of this section is devoted to the relations between the different kinds

of universal sets. We shall show that the sets Ũ (D) and U (D) are equal for

open simply connected sets D with the property that C∞ \ D∞
is a simply

connected domain (see Proposition 5.4.5). Moreover, we shall show that the

universal functions form a dense Gδ-subset of the set of holomorphic functions

(see Theorem 5.4.7). We commence with a result on the exhaustion by simply

connected domains.

5.4.2 Lemma:

Let D ( C be a non-empty open set so that C∞\ D
∞

is a simply connected

domain. Then there exists a family (Gn)n∈N of simply connected domains in

C\D with the following property: For each K ∈M(D) there exists an N ∈ N
so that K ⊂ GN .

Proof: 1. The set A of all polygonal Jordan arcs in {1} ∪ DC
that connect 1

and the point at infinity and whose vertices have rational real and imaginary

parts is countable. For every Γ ∈ A, the set G′
Γ := C \

(
D ∪ Γ

)
is a simply

connected domain in C \D. Let (G′
n)n∈N be an enumeration of the countable

set {G′
Γ : Γ ∈ A}. If K ∈ M(D), then there exists an arc Γ ∈ A so that

Γ ∩K = ∅. Hence, we have K ⊂ G′
Γ .

2. Assume that D is bounded. Since C∞ \ D is a simply connected domain,

there exists, according to the Riemann mapping theorem, a conformal map

F : C∞ \ D → C∞ \ D with F (∞) = ∞. For n ∈ N, we set Gn := F (G′
n)

with the sets G′
n from part one of the proof. Then Gn is a simply connected

domain in C \D for all n ∈ N. Now let K be in M(D). Then the set F−1(K)

belongs to M(D). By part one of the proof there exists an N ∈ N so that

F−1(K) ⊂ G′
N , whence we get K ⊂ GN .

3. Assume now that D is unbounded. According to the Riemann mapping

theorem, there exists a conformal map F : D→ C∞ \D∞
. For n ∈ N we set

G′′
n := U1− 1

n+1
(0) and Gn := F (G′′

n). Then Gn is a simply connected domain
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in C \D for all n ∈ N. If K ∈M(D), then F−1(K) is a compact subset of D.

Hence, there exists an N ∈ N so that F−1(K) ⊂ G′′
N . From this, we obtain

K ⊂ GN . This completes the proof of the lemma. 2

5.4.3 Remark:

If D is unbounded, the proof of Lemma 5.4.2 shows that the domains can be

chosen in such a way that (Gn)n∈N is isotonic. This is in general not possible

if D is bounded. 3

The next lemma provides an auxiliary result to prove the above mentioned

equality of the universal sets.

5.4.4 Lemma:

Let D ( C be an open simply connected set containing the origin and so

that C∞ \ D
∞

is a simply connected domain. Furthermore, let G ∈ G(D),

K ∈M(D) with K ⊂ G, and (Gn)n∈N as in Lemma 5.4.2. Then the following

assertions hold:

1. U (D,G) ⊂ Ũ (D,K).

2. Ũ (D) ⊂ U (D,G).

3. Ũ (D) =
⋂
n∈N

U (D,Gn).

Proof: ad 1.: Let ϕ ∈ U (D,G), f ∈ A(K), and ε > 0 be given. By

Mergelyan’s theorem there exists a polynomial P so that

max
z∈K

|P (z)− f(z)| < ε

2
.

Since P |G is holomorphic and ϕ ∈ U (D,G), there is an N ∈ N with

max
z∈K

|sN(ϕ)(z)− P (z)| < ε

2
.

The triangle inequality now yields

max
z∈K

|sN(ϕ)(z)− f(z)| < ε.

Hence, ϕ belongs to Ũ (D,K).
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ad 2.: Let ϕ ∈ Ũ (D), (Kn(G))n∈N the exhaustion of G according to (1.1),

and f ∈ H(G). Then there exists an n1 ∈ N0 so that

max
z∈K1(G)

|sn1(ϕ)(z)− f(z)| < 1 .

Now let nj ∈ N0 (1 ≤ j ≤ k − 1) be already defined for a k ∈ N0, k ≥ 2. We

can find an nk ∈ N0 so that nk > nk−1 and

max
z∈Kk(G)

|snk(ϕ)(z)− f(z)| < 1

k
. (5.3)

Inductively, we get a strictly monotonic increasing sequence of non-negative

integers. For every compact set K ⊂ G, there exists an N ∈ N so that

K ⊂ Kk(G) (k ≥ N). (5.4)

The relations (5.3) and (5.4) yield

max
z∈K

|snk(ϕ)(z)− f(z)| ≤ max
z∈Kk(G)

|snk(ϕ)(z)− f(z)| < 1

k

for all k ≥ N . This implies the assertion.

ad 3.: For every K ∈ M(D) there exists a positive integer N = N(K) so

that U (D,GN) ⊂ Ũ (D,K) (part 1). Since
⋂
n∈N

U (D,Gn) ⊂ U (D,GN) for

all N ∈ N, we get⋂
n∈N

U (D,Gn) ⊂
⋂

K∈M(D)

Ũ (D,K)
(5.2)
= Ũ (D) .

The reverse inclusion follows from (5.1) and the second part. 2

Altogether, we get the following result.

5.4.5 Proposition:

Let D ( C be an open simply connected set containing the origin and so that

C∞\D
∞

is a simply connected domain. Then we have

Ũ (D) = U (D) .
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Proof: Let (Gn)n∈N according to Lemma 5.4.2. Applying Lemma 5.4.4.3, we

get

Ũ (D) =
⋂
n∈N

U (D,Gn) ⊃
⋂

G∈G(D)

U (D,G)
(5.1)
= U (D) .

According to Lemma 5.4.4.2, we have Ũ (D) ⊂ U (D,G) for every G ∈ G(D).

We get

Ũ (D) ⊂
⋂

G∈G(D)

U (D,G)
(5.1)
= U (D) .

This completes the proof. 2

As a last step before showing that the universal functions are dense, we prove

another lemma.

5.4.6 Lemma:

Let D ⊂ C be an open simply connected set containing the origin, and let

G ⊂ C \D be an open simply connected set. Then U (D,G) is a dense Gδ-set

in H(D).

Proof: If G = ∅, then we have U (D,G) = H(D). Now, let G 6= ∅. Since

H(D) is a Baire space and H(G) is second-countable, it suffices, according to

the universality criterion, to show that for given non-empty open sets U ⊂
H(D) and V ⊂ H(G) there exists an N ∈ N0 so that sN(U)∩V 6= ∅. Without

loss of generality, we can assume that U and V are of the form U = g+Vj, V =

h+Wj with g ∈ H(D), h ∈ H(G), and

Vj =

{
f ∈ H(D) : ‖f‖Kj(D) <

1

j

}
, Wj =

{
f ∈ H(G) : ‖f‖Kj(G) <

1

j

}
.

Since Kj(D) ∪ Kj(G) is a compactum with connected complement, Runge’s

approximation theorem guarantees the existence of a polynomial P so that

max
z∈Kj(D)

|P (z)− g(z)| < 1

j
and max

z∈Kj(G)
|P (z)− h(z)| < 1

j
.

For N > deg(P ) we obtain sN(P ) = P . Therefore, we get P
∣∣
D
∈ g + Vj and

P
∣∣
G
∈ h+Wj. This shows that P

∣∣
G

= sN(P
∣∣
D
)
∣∣
G
∈ sN(U) ∩ V . 2

Combining Lemma 5.4.4, Proposition 5.4.5, and Lemma 5.4.6, we gain the

following result.
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5.4.7 Theorem:

Let D ⊂ C be an open simply connected set containing the origin and so that

C∞\ D
∞

is a simply connected domain. Then Ũ (D) and U (D) are dense

Gδ-sets in H(D).

Proof: Let (Gn)n∈N be as in Lemma 5.4.2. By Lemma 5.4.6 U (D,Gn) is

a dense Gδ-set in H(D) for all n ∈ N. Since H(D) is a Baire space, the

intersection of all these universal sets must be a dense Gδ-set in H(D), too.

According to Proposition 5.4.4, Ũ (D) equals this intersection. Consequently,

Ũ (D) is a dense Gδ-set in H(D). The other claim follows with the help of

Proposition 5.4.5. 2
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Derived universality

What is derived universality? Let be given a universal element and a mapping.

If the image of the universal element under this mapping is also universal, we

speak about derived universality. Our main interest focuses on Hadamard

multiplication. Is the Hadamard product of a universal function with a given

function universal again? To answer this question, it must be specified which

functions are apt to be multiplied with the universal function, on which set

the product is holomorphic, and with respect to which set it is universal (if

universal at all).

In the first section, we will specify the notion of derived universality. Further-

more, we will give a sufficient condition for derived universality (see Proposition

6.1.2) and a partial converse (see Proposition 6.1.4).

In the second section, we will link universality with lacunary polynomials.

In the third section, we will study universal Hadamard products. We will

present a theorem that links derived universality for the Hadamard product

with the density of the range of the corresponding Hadamard operator (see

6.3.5), and we will present a theorem that gives a necessary and sufficient

condition for the Hadamard operator having dense range (see Theorem 6.3.7).

Moreover, we will prove a theorem that provides a necessary and sufficient

condition for the universality of the Hadamard product (see Theorem 6.3.10).

In the fourth section, we will use the condition of Theorem 6.3.7 to present

functions that serve as universality preserving factors (see Theorem 6.4.3).

In the fifth section, we will give some examples.

In the whole chapter, let D ( C be an open simply connected set containing
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the origin, Ω ( C∞ a non-empty open set, and ψ ∈ H(Ω).

6.1 The general setting

In this section, we adopt the following notation: Let X1 and X2 be non-empty

sets; (Y1,T1) and (Y2,T2) topological spaces; Φ : X1 → X2 and Ψ : Y1 → Y2

mappings; I a non-empty index set; T
(1)
ι : X1 → Y1 and T

(2)
ι : X2 → Y2

mappings for each ι ∈ I. For each ι ∈ I, these objects are supposed to be

linked by the following diagram.

X1
T

(1)
ι //

Φ

��

Y1

Ψ

��
X2

T
(2)
ι // Y2

Diagram 6.1: The general setting

We are interested in the following question.

6.1.1 Problem:

Let x ∈ X1 be a universal element for (T
(1)
ι )ι∈I . Under what conditions is Φ(x)

a universal element for (T
(2)
ι )ι∈I? 3

The next proposition gives a sufficient condition.

6.1.2 Proposition:

Assume that the following conditions hold:

(i) T
(2)
ι ◦ Φ = Ψ ◦ T (1)

ι for every ι ∈ I;

(ii) Ψ is continuous;

(iii) Ψ has dense range.

Then the following assertion holds: If x ∈ X1 is universal for (T
(1)
ι )ι∈I , then

Φ(x) is universal for (T
(2)
ι )ι∈I .
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Proof: Let Ω ⊂ Y2 be a non-empty open set. Since Ψ has dense range and

is continuous, the set U := Ψ−1(Ω) is a non-empty open subset of Y1. By the

universality of x the set {T (1)
ι (x) : ι ∈ I} ∩ U is not the empty set. Let y

be an element of this intersection. Then there exists an index κ ∈ I so that

T
(1)
κ (x) = y. Using condition (i), we get

Ψ(y) ∈ Ψ
(
{T (1)

ι (x) : ι ∈ I} ∩ U
)
⊂ Ψ(U) ∩Ψ

(
{T (1)

ι (x) : ι ∈ I}
)

⊂ Ω ∩
{
T (2)
ι (Φ(x)) : ι ∈ I

}
.

But this means that
{
T

(2)
ι (Φ(x)) : ι ∈ I

}
is dense in Y2, and hence Φ(x) is

universal for (T
(2)
ι )ι∈I . 2

6.1.3 Remark:

The first condition in Proposition 6.1.2 states that for every ι ∈ I the corre-

sponding diagram commutes. 3

Proposition 6.1.2 admits a partial converse concerning the density of the range

of Ψ.

6.1.4 Proposition:

Assume that the first condition of Proposition 6.1.2 is satisfied. If there exists

an x ∈ X1 so that Φ(x) is universal for (T
(2)
ι )ι∈I , then Ψ has dense range.

Proof: Let Ω ⊂ Y2 be a non-empty open set. By the universality of Φ(x)

there exists an index κ ∈ I with T
(2)
κ (Φ(x)) ∈ Ω. Since all diagrams commute,

we have T
(2)
κ (Φ(x)) = Ψ(T

(1)
κ (x)). This implies T

(2)
κ (Φ(x)) ∈ Ω∩Ψ(Y1). Thus,

the mapping Ψ has dense range. 2

6.2 Universality and lacunary polynomials

In this section, we will provide an auxiliary result concerning the connection

between lacunary polynomials and universal functions.

Let M be a non-empty subset of the complex plane. By P we denote the set

of all complex polynomials; and by P|M the set consisting of the restrictions

of the functions in P onto the set M .
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For a non-empty set Λ ⊂ N0 we denote by PΛ the set of all complex polyno-

mials that are linear combinations of monomials whose exponents belong to

Λ. Moreover, we denote by PΛ
|M the set consisting of the restrictions of the

functions in PΛ onto the set M .

Let f be holomorphic in a non-empty open set, and let a be an element of this

set. We define

Λa(f) :=
{
ν ∈ N0 : f (ν)(a) 6= 0

}
.

If a = 0, we simply write Λ(f). The elements of N0 \Λa(f) are called the gaps

of f (with respect to a).

6.2.1 Remark:

Under the assumptions of the Hadamard multiplication theorem, we get the

relation Λ(f ∗Ω1,Ω2
g) = Λ(f) ∩ Λ(g). 3

6.2.2 Proposition:

Let G ∈ G(D). If ϕ ∈ U (D,G), then PΛ(ϕ)
|G is dense in H(G).

Proof: Since ϕ is universal with respect to G, the set {sn(ϕ)
∣∣
G

: n ∈ N0} is

dense in H(G). Since {
sn(ϕ)

∣∣
G

: n ∈ N0

}
⊂ PΛ(ϕ)

|G ,

the proposition is proved. 2

6.2.3 Remark:

The converse of Proposition 6.2.2 is false in general: Let ϕ := Θ
∣∣
D

and G ∈
U (D, G). Then PΛ(ϕ)

|G is dense in H(G) according to Runge’s theorem. But

ϕ is not universal with respect to G. 3

6.3 Derived universality with respect to

simply connected sets

In this section, we study the question whether universality is preserved un-

der Hadamard multiplication. This cannot be true for all functions ψ (the
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zero function, for instance, serves as a counterexample). Therefore, derived

universality must be linked to a certain condition on ψ.

At first, we will specify the spaces and mappings of the diagram in Diagram

6.1. For a non-empty, plane open set M we define the restriction map rM :

H(C) → H(M) by rM(f) := f
∣∣
M

.

6.3.1 Remark:

If G ∈ G(D) in such a way that Ω and G are star-eligible, then Ω and D are

star-eligible, too. 3

The specification of the diagram in Diagram 6.1 is the following one.

H(D)
rG ◦ sn //

ψ ∗Ω, D •

��

H(G)

ψ ∗Ω, G •

��
H(Ω ∗D)

rΩ ∗G ◦ sn // H(Ω ∗G)

Diagram 6.2: The specified setting

The Hadamard product ψ∗Ω,Dϕ is defined on Ω∗D. If it is universal, we expect

the universality with respect to Ω ∗ G. Therefore, Ω ∗ G must be a subset of

C \ (Ω ∗ D); this is indeed the case. Moreover, we would like to notice that,

according to Lemma 1.3.15, the sets Ω ∗D and Ω ∗G are simply connected.

The specification of Problem 6.1.1 is the following question.

6.3.2 Problem:

Let ϕ ∈ U (D,G). Under what conditions is ψ ∗Ω, D ϕ ∈ U (Ω ∗D,Ω ∗G) ? 3

What can we say about the conditions in Proposition 6.1.2 so far?

6.3.3 Lemma:

Let G ∈ G(D) so that Ω and G are star-eligible. Then the diagram in Diagram

6.2 commutes for every n ∈ N0.
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Proof: Let n ∈ N0 and f ∈ H(D). By Proposition 4.1.5 we get(
ψ ∗Ω,C (sn(f))

)∣∣
Ω ∗G =

(
sn(ψ ∗Ω,D f)

)∣∣
Ω ∗G =

(
rΩ ∗G ◦ sn ◦ (ψ ∗Ω,D ·)

)
(f).

By the compatibility theorem we get(
ψ ∗Ω,C (sn(f))

)∣∣
Ω ∗G = ψ ∗Ω,G

(
sn(f)

∣∣
G

)
=
(
(ψ ∗Ω,G ·) ◦ rG ◦ sn

)
(f).

From these two identities, the commutativity follows. 2

6.3.4 Remarks:

1. The above lemma shows that the first condition in Proposition 6.1.2 is

satisfied.

2. The continuity of ψ ∗Ω,G · (i.e. the second condition in Proposition 6.1.2)

is guaranteed by Lemma 3.7.1. 3

According to Remark 6.3.4, the first two conditions of Proposition 6.1.2 are

satisfied. If we can verify that the operator ψ ∗Ω,G · : H(G) → H(Ω ∗ G) has

dense range, then universality is inherited under Hadamard multiplication,

i.e. ψ ∗Ω,Gϕ is universal with respect to Ω∗G for every ϕ that is universal with

respect to G.

The next theorem is a central result concerning derived universality.

6.3.5 Universality preservation theorem:

Let G ∈ G(D) so that Ω and G are star-eligible. Then the following assertions

hold:

1. If the operator ψ ∗Ω, G · : H(G) → H(Ω ∗ G) has dense range, then

ψ ∗Ω,D ϕ ∈ U (Ω ∗D,Ω ∗G) for every ϕ ∈ U (D,G).

2. If ψ ∗Ω, D f ∈ U (Ω ∗ D,Ω ∗ G) for an f ∈ H(D), then the operator

ψ ∗Ω, G · : H(G) → H(Ω ∗G) has dense range.

Proof: ad 1.: Let ψ ∗Ω, G · : H(G) → H(Ω ∗ G) have dense range. Since the

conditions of Proposition 6.1.2 are satisfied, we get ψ∗Ω,Dϕ ∈ U (Ω∗D,Ω∗G)

for every ϕ ∈ U (D,G).

ad 2.: Let ψ ∗Ω, D f ∈ U (Ω ∗D,Ω ∗G) for an f ∈ H(D). Since the conditions

of Proposition 6.1.4 are satisfied, the operator ψ ∗Ω, G · : H(G) → H(Ω∗G) has

dense range. 2
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6.3.6 Remark:

Let G ∈ G(D) so that Ω and G are star-eligible, and let ϕ ∈ U (D,G). By

the universality preservation theorem we get the following characterization:

The operator ψ ∗Ω, G · : H(G) → H(Ω ∗ G) has dense range if and only if

ψ ∗Ω, D ϕ ∈ U (Ω ∗D,Ω ∗G). 3

The next theorem links the lacunary structure of ψ with the range of the

Hadamard operator.

6.3.7 Theorem:

Let G ∈ G(D) so that Ω and G are star-eligible. Then the set PΛ(ψ)
|Ω∗G is dense

in H(Ω ∗G) if and only if ψ ∗Ω, G · : H(G) → H(Ω ∗G) has dense range.

Proof: 1. Let PΛ(ψ)
|Ω∗G be dense in H(Ω ∗G). Since ψ ∗Ω,G · is linear, it suffices

to show that the image of ψ ∗Ω,G · contains the monomials in PΛ(ψ)
|Ω∗G. To this

end, let k ∈ Λ(ψ). We define a polynomial P by

P (z) := ψ−1
k · zk (z ∈ C).

By the compatibility theorem we have (ψ ∗Ω,C P )
∣∣
Ω∗G = ψ ∗Ω,G

(
P
∣∣
G

)
. By the

Hadamard multiplication theorem we get

ψ ∗Ω,C P = ψk · ψ−1
k · Pk = Pk ,

and thus

Pk
∣∣
Ω ∗G = ψ ∗Ω,G

(
P
∣∣
G

)
.

2. Let ψ ∗Ω, G · : H(G) → H(Ω ∗ G) have dense range. By the universality

preservation theorem the set
{
sn(ψ ∗Ω, D ϕ)

∣∣
Ω∗G : n ∈ N0

}
is dense in H(Ω∗G)

for every ϕ ∈ U (D,G). Since sn(ψ ∗Ω,D ϕ) ∈ PΛ(ψ) for every n ∈ N0 (and

every ϕ ∈ U (D,G)), the assertion follows. 2

We get the following corollary.

6.3.8 Corollary:

Let G ∈ G(D) so that Ω and G are star-eligible. Then the following assertions

hold:

1. If PΛ(ψ)
|Ω∗G is dense in H(Ω ∗ G), then ψ ∗Ω,D ϕ ∈ U (Ω ∗ D,Ω ∗ G) for

every ϕ ∈ U (D,G).



Chapter 6 – Derived universality 81

2. If ψ ∗Ω,D f ∈ U (Ω ∗D,Ω ∗G) for an f ∈ H(D), then PΛ(ψ)
|Ω∗G is dense in

H(Ω ∗G).

Proof: The assertions follow by Theorem 6.3.7 and the universality preserva-

tion theorem. 2

6.3.9 Remark:

Corollary 6.3.8 states that an alternative approach to derived universality is to

study under what conditions the set PΛ(ψ)
|Ω ∗G of lacunary polynomials is dense

in H(Ω∗G). For the latter property, there is an extensive amount of sufficient

conditions in the literature (see e.g. [DK77], [Mar84], [LMM98a], [LMM98b],

[LMM02]). 3

It is possible to state a modification of Theorem 6.3.7 if we replace the set

Λ(ψ) by Λ(ψ ∗Ω, D ϕ).

6.3.10 Theorem:

Let G ∈ G(D) so that Ω and G are star-eligible, and let ϕ ∈ U (D,G). Then

P
Λ(ψ ∗Ω, D ϕ)

|Ω∗G is dense in H(Ω ∗G) if and only if ψ ∗Ω,D ϕ ∈ U (Ω ∗D,Ω ∗G).

Proof: (i) Assume that P
Λ(ψ ∗Ω, D ϕ)

|Ω∗G is dense in H(Ω ∗ G). The Hadamard

multiplication theorem yields Λ(ψ ∗Ω,D ϕ) = Λ(ψ) ∩ Λ(ϕ). Thus, we get

P
Λ(ψ ∗Ω, D ϕ)

|Ω∗G ⊂ PΛ(ψ)
|Ω∗G .

By Corollary 6.3.8 we get ψ ∗Ω,D ϕ ∈ U (Ω ∗D,Ω ∗G).

(ii) Now assume that ψ ∗Ω,D ϕ ∈ U (Ω ∗ D,Ω ∗ G). By Proposition 6.2.2 the

set P
Λ(ψ ∗Ω, D ϕ)

|Ω ∗G is dense in H(Ω ∗G). 2

At the end of this section, we would like to recapitulate the universality preser-

vation theorem. Let us recall the setting. We are given an element G of G(D),

an open set Ω star-eligible to G—thus, Ω must contain the origin and the point

at infinity—, a function ϕ in U (D,G), and a function ψ in H(Ω). There are

two objects of interest:

1. The gaps of the power series expansion of ψ around the origin.
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2. The geometry of Ω.

The first item deals with the set N0 \Λ(ψ); it has an intimate connection with

the set PΛ(ψ)
|Ω∗G whose density in H(Ω∗G) is necessary and sufficient for derived

universality. For further studies we refer to section 6.4.

The second item is concerned with the star eligibility of the sets Ω and G. In

section 6.6, we will discuss this item for special sets.

6.4 Lacuna conditions

At the beginning of this section, we briefly recall the notion of Pólya density

for subsets of the set of non-negative integers. For detailed information and

proofs, we refer to [Pó29] and [Pó33]. Let Λ ⊂ N0.
† Then the numbers

∆(Λ) := lim
n→∞

∣∣Λ ∩ [0, n]
∣∣

n
and ∆(Λ) := lim

n→∞

∣∣Λ ∩ [0, n]
∣∣

n

are called the lower and upper density of Λ, respectively. If both numbers are

the same, we say that Λ is measurable and call the limit the density of Λ; in

this case we write ∆(Λ).

Let us summarize some properties.

0 ≤ ∆(Λ) ≤ ∆(Λ) ≤ 1;

∆(Λ) + ∆(N0 \ Λ) = 1;

∆(Λ) + ∆(N0 \ Λ) = 1, if Λ is measurable.

The first item on the list on page 81 deals with the set N0 \ Λ(ψ), that is to

say with the lacunary structure of the local Taylor expansion of ψ. According

to Corollary 6.3.8, a sufficient condition for derived universality is that PΛ(ψ)
|Ω∗G

is dense in H(Ω ∗ G). This requires the application of lacunary versions of

Runge-type approximation theorems.

The next challenge is to find necessary and sufficient conditions under which

the set PΛ(ψ)
|Ω∗G is dense in H(Ω ∗ G). The following lemma gives a sufficient

one.

† This time, the empty set is not excluded from considerations.
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6.4.1 Lemma:

Let Λ ⊂ N0 and G ∈ G({0}). If ∆(Λ) = 1, then P Λ
|G is dense in H(G).

Proof: Let K ⊂ G be a compactum with connected complement, f ∈ H(G),

and ε > 0. For a given real number δ satisfying 0 < δ < dist(0, K), the set

L := Uδ[0] ∪K is a compactum with connected complement and L0 = Uδ[0].

The function F : L→ C with

F (z) :=

{
f(z) , z ∈ K
0 , z ∈ Uδ[0]

is holomorphic on L. According to the Lemma in [LMM02, p. 203], there

exists a lacunary polynomial P ∈ PΛ
|G so that ‖F − P‖L < ε, whence we get

‖f − P‖K < ε. Since G can be exhausted by compact sets having connected

complements, the assertion follows. 2

Next, we present a class of holomorphic functions whose local expansions

around the origin satisfy the density condition of Lemma 6.4.1.

6.4.2 Lemma:

If f ∈ H(C∞ \ {1}) and f 6= 0, then ∆(Λ(f)) = 1.

Proof: By Wigert’s theorem (see e.g. [Hille, Theorems 11.2.1 and 11.2.2])

there exists an entire function g of exponential type zero so that

f(z) =
∞∑
ν=0

g(ν) zν

holds for all z ∈ D. According to Theorems 2.5.12 and 2.5.13 of [Boas], the

set Λ(f) has unit density. 2

If Ω = C∞ \ {1}, we are able to prove the following important result.

6.4.3 Theorem:

Let G ∈ G(D). If ψ ∈ H(C∞ \ {1}) and ψ 6= 0, then ψ ∗C∞\{1},D ϕ ∈ U (D,G)

for all ϕ ∈ U (D,G).

Proof: Notice that C∞ \ {1} and G are star-eligible and (C∞ \ {1}) ∗G = G.

According to Lemma 6.4.2, we have ∆(Λ(ψ)) = 1. By Lemma 6.4.1 the set

PΛ(ψ)
|G is dense in H(G). The conclusion follows from Corollary 6.3.8. 2
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6.5 Derived universality without further

restrictions

In section 6.3, we considered functions universal with respect to some open

simply connected set G and asked if their Hadamard products were universal

with respect to Ω ∗ G. In this section, we study functions in U (D). We are

interested in the following question.

6.5.1 Problem:

Let ϕ ∈ U (D). Under what conditions is ψ ∗Ω,D ϕ ∈ U (Ω ∗D) ? 3

In special situations, we have the following result.

6.5.2 Proposition:

Let for every α ∈ (0, π) there exist a ξ ∈ C \ {0} with(
ξ ·G

(
e−π, eπ;α

))
∩ D = ∅. (6.1)

If ϕ ∈ U (D), then ∆(Λ(ϕ)) = 1.

Proof: The proof is a slight modification of the proof of Theorem 2.4 in

[MM06]. Assume that d := ∆(Λ(ϕ)) < 1. Choose α ∈
(
πd, π

)
. Then we

have

G := G
(
e−π, eπ;α

)
⊃ B

(
e−πd, eπd; πd

)
.

According to our precondition, there exists a z0 ∈ C \ {0} in such a way that

(z0 · G) ∩ D = ∅, and hence z0 · G ∈ G(D). Since ϕ ∈ U (D), there exists

a strictly monotonic increasing sequence (nk)k∈N0 in N0 so that snk(ϕ) → 0

compactly on z0 · G as k → ∞. By Theorem 1.1 and Remark 1.2 of [MM06]

we obtain ϕν = 0 for all ν ∈ N0. But this is a contraction. 2

6.5.3 Remarks:

1. If D is bounded, then condition (6.1) is satisfied.

2. If ∆(Λ(ϕ)) = 1, then ϕ need not belong to U (D): Consider for instance

ϕ := Θ
∣∣
D
. Then (6.1) is satisfied, and we have Λ(ϕ) = N0. But ϕ is not

universal.
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3. If we want to solve Problem 6.5.1 for Ω∗D satisfying (6.1), we necessarily

have ∆(Λ(ψ ∗Ω,D ϕ)) = 1, and hence ∆(Λ(ψ)) = 1. 3

Under a certain condition on the sets in G(Ω ∗D), we can prove the following

result.

6.5.4 Strong universality preservation theorem:

Let Ω contain the origin and the point at infinity. Furthermore, assume that

for every G ∈ G(Ω ∗ D) there exists a G̃ ∈ G(D) so that Ω ∗ G̃ = G. Then

the following assertions hold:

1. If for every G′ ∈ G(D) the operator ψ ∗Ω, G′ · : H(G′) → H(Ω ∗ G′) has

dense range, then ψ ∗Ω,D ϕ ∈ U (Ω ∗D) for every ϕ ∈ U (D).

2. If ψ ∗Ω,D f ∈ U (Ω ∗D) for an f ∈ H(D), then for every G′ ∈ G(D)

star-eligible to Ω the operator ψ ∗Ω,G′ · : H(G′) → H(Ω ∗ G′) has dense

range.

Proof: ad 1.: Let ϕ ∈ U (D) and G ∈ G(Ω ∗D). Then there is a G̃ ∈ G(D)

with Ω∗G̃ = G. Since ϕ ∈ U (D, G̃) and ψ∗Ω,G̃ · : H(G̃) → H(Ω∗G̃) has dense

range, we get ψ ∗Ω,D ϕ ∈ U (Ω ∗D,Ω ∗ G̃) = U (Ω ∗D,G) by the universality

preservation theorem. Thus, ψ ∗Ω,D ϕ ∈ U (Ω ∗D).

ad 2.: Let ψ ∗Ω,D f ∈ U (Ω ∗D) for an f ∈ H(D), and let G′ ∈ G(D) be star-

eligible to Ω. Since Ω∗G ∈ G(Ω∗D), we get ψ∗Ω,D f ∈ U (Ω∗D,Ω∗G). Thus,

the operator ψ ∗Ω,G′ · : H(G′) → H(Ω ∗G′) has dense range by the universality

preservation theorem. 2

6.5.5 Remark:

If Ω = C∞ \ {1}, then we have Ω ∗G = G, and we can choose G̃ = G. Thus,

the condition on the sets G in the strong universality preservation theorem is

satisfied. 3

What can we say if Ω 6= C∞ \ {1}? In this case, we are faced with Problem

1.3.18. It is not clear at all if for every G ∈ G(Ω ∗D) there exists a G̃ ∈ G(D)

in such a way that Ω ∗ G̃ = G. But even if this was not true, the two parts of

the strong universality preservation theorem could be valid anyway. Our proof

uses the universality preservation theorem. There could be an alternative proof

that does not need the universality preservation theorem.



Chapter 6 – Derived universality 86

6.6 Examples

At first, we are concerned with annular sectors (see section 1.3). To this end,

let 0 < r1 ≤ r2 < ∞, 0 ≤ β < π, 0 ≤ s1 < s2 ≤ ∞, and 0 < α ≤ π so that

G(s1, s2;α) ∈ G(D). According to Proposition 1.3.16, the sets G(s1, s2;α) and

Ω(r1, r2; β) are star-eligible if and only if α > β and s1r2 < s2r1. Assume that

these inequalities hold.

6.6.1 Example:

If PΛ(ψ)
|G(s1r2, s2r1;α−β) is dense in H(G(s1r2, s2r1; α− β)), then

ψ ∗Ω(r1, r2; β),D ϕ ∈ U (Ω(r1, r2; β) ∗D,G(s1r2, s2r1; α− β))

for each ϕ ∈ U (D,G(s1, s2; α)) according to Corollary 6.3.8. 3

We remark the following: If in addition r1 ≤ 1 ≤ r2, i.e. 1 6∈ Ω(r1, r2; β), then

G(s1r2, s2r1; α − β) ⊂ G(s1, s2;α). This means that the set with respect to

which the Hadamard product ψ ∗Ω,D ϕ is universal is “smaller” than the set

with respect to which ϕ is universal.

Let now Ω := C∞ \ {1,−1}. Next, we study the rational function

ψ : Ω → C, ψ(z) :=
1

1− z2
.

If there is a θ ∈ [0, π) in such a way that GC contains a half plane induced by

the line {teiϕ : t ≥ 0, ϕ − θ ∈ {0, π}}, then Ω ∗ G = ∅, i.e. Ω and G are not

star-eligible (cf. Example 1.3.9.2).

6.6.2 Example:

If G ∈ G(D) is star-eligible to Ω we have (see Example 1.3.8)

Ω ∗G = G ∩ (−G)

and (see Example 3.4.9)

(ψ ∗Ω,D ϕ)(z) =
ϕ(z) + ϕ(−z)

2

(
z ∈ D ∩ (−D)

)
,

i.e. Ω ∗ G is radial symmetric to the origin, and ψ ∗Ω,D ϕ is an even function.

If G lies in a half plane, then G∩ (−G) = ∅, i.e. Ω and G are not star-eligible.

If G∩ (−G) 6= ∅, we can only approximate even functions by the partial sums

sn (ψ ∗Ω,D ϕ). Thus, the Hadamard product cannot be universal with respect

to G ∩ (−G). 3



Chapter 7

The Hadamard product and

Euler differential operators

In this chapter, we will expose the connection between the Hadamard product

and Euler differential operators. We will use our customary notation. The

results already appeared in chapter eleven of [Hille]. The purpose of this

chapter is to link these two topics.

In the first section, we will introduce a differential operator whose iterates are

used to define the Euler differential operators.

In the second section, we will introduce the Euler differential operators (see

Definition 7.2.1).

In the third section, we will prove the already mentioned connection between

the Hadamard product and the Euler differential operators (see Proposition

7.3.2).

7.1 A lacuna preserving derivative operator

The derivative operator on the set of functions holomorphic in a given open

set is a linear self map. Thus, the operator we shall now define is well defined,

too.
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7.1.1 Definition:

Let Ω ⊂ C be a non-empty open set. Then we define ϑΩ : H(Ω) → H(Ω) by

ϑΩ(f)(z) := z · f ′ (z) (z ∈ Ω).

By

ϑ0
Ω := id

∣∣
H(Ω)

and ϑk+1
Ω := ϑΩ ◦ ϑkΩ (k ∈ N0).

we define the iterates of this operator. 3

7.1.2 Remarks:
1. The operator ϑΩ—and hence each ϑkΩ—is linear and continuous.

2. How does ϑΩ act upon subsets? Let D ⊂ Ω be a non-empty open set and

r : H(Ω) → H(D) the restriction map defined by r(f) := f
∣∣
D
. Then we

have ϑD ◦ r = r ◦ ϑΩ. 3

The next example shows the connection between the power series expansion

of a holomorphic function and the image under the differential operator.

7.1.3 Example:

Let Ω ⊂ C be a non-empty open set with 0 ∈ Ω, and let f ∈ H(Ω). For each

k ∈ N0 we have

ϑkΩ(f)(z) =
∞∑
ν=0

νk · f
(ν)(0)

ν!
· zν

compactly on {z ∈ C : |z| < dist(0, ∂Ω)}. 3

7.1.4 Remark:

Example 7.1.3 shows that Λ(ϑkΩ(f)) = Λ(f)\{0} for all k ∈ N, i.e. ϑkΩ preserves

gaps (possibly 0 is added to the gaps). 3

For the iterates of ϑΩ we have the following representation.

7.1.5 Lemma:

Let k ∈ N. Then there exist αµ,k ∈ N (1 ≤ µ ≤ k) with α1,k = αk,k = 1 and so

that for each non-empty open set Ω ⊂ C and for each f ∈ H(Ω) we have

ϑkΩ(f)(z) =
k∑

µ=1

αµ,k · f (µ)(z) · zµ

for all z ∈ Ω.
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Proof: (i) Let k = 1. If we define α1,1 := 1, we have ϑΩ(f)(z) = zf ′(z) for

each non-empty open set Ω ⊂ C, each f ∈ H(Ω), and each z ∈ Ω.

(ii) Now let the identity hold for a k ∈ N. Define α1,k+1 := αk+1,k+1 := 1

and αµ,k+1 := µαµ,k + αµ−1,k (2 ≤ µ ≤ k). Then for each non-empty open set

Ω ⊂ C, each f ∈ H(Ω), and each z ∈ Ω we have

ϑk+1
Ω (f)(z) = z ·

(
ϑkΩ(f)

)′
(z)

=
k∑

µ=1

(
µαµ,k z

µ f (µ)(z) + αµ,k z
µ+1 f (µ+1)(z)

)

= α1,k z f
′(z) + αk,k z

k+1 f (k+1)(z) +
k∑

µ=2

(µαµ,k + αµ−1,k) z
µ f (µ)(z)

=
k+1∑
µ=1

αµ,k+1 f
(µ)(z) zµ.

Thus, the identity also holds for k + 1. 2

7.1.6 Remark:

We would like to stress that the numbers αµ,k in Lemma 7.1.5 neither depend

on Ω nor on f . 3

7.2 Euler differential operators

In order to introduce Euler differential operators, we need entire functions of

exponential type zero. We denote by EXP(0) the vector space of all entire

functions of exponential type zero. For f ∈ EXP(0) and n ∈ N we define

pn(f) := sup
z ∈C

|f(z)| · e−
1
n
·|z|.

Each pn is a norm on EXP(0). Thus, the family (pn)n∈N induces a locally

convex vector space topology on EXP(0).

Let g be an entire function of exponential type zero. According to Wigert’s

theorem, the power series
∑∞

ν=0 g(ν) z
ν can be analytically continued to a
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function ψ in H(C∞ \ {1}) so that

ψ(z) =


∞∑
ν=0

g(ν)zν , z ∈ D

−
∞∑
ν=1

g(−ν)z−ν , z ∈ C∞ \D
(7.1)

holds. Thus, M−1 : EXP(0) → H(C∞ \ {1}) defined by M−1(g) := ψ is well

defined. It can be shown that M−1 is a linear, bijective continuous operator

whose inverse is also continuous. (The inverse M is called Mellin transforma-

tion.)

Let Ω ⊂ C be a non-empty open set, ψ in H(C∞ \ {1}), and g an entire

function of exponential type zero. If f is in H(Ω), the series
∑∞

k=0 gkϑ
k
Ω(f)

converges compactly on Ω (cf. [Hille, Theorem 11.2.3]). (Actually, the result

is shown for domains instead of open sets; but since only local arguments are

used, it also works for open sets.) Hence, it defines a function holomorphic in

Ω. Moreover, ψ ∗C∞\{1},Ω f is in H(Ω) according to Proposition 3.6.4. These

properties justify the following definition.

7.2.1 Definition:

Let Ω ⊂ C be a non-empty open set, ψ ∈ H(C∞ \ {1}), and g ∈ EXP(0). We

define g(ϑΩ) : H(Ω) → H(Ω) and Hψ,Ω : H(Ω) → H(Ω) by

g(ϑΩ)(f) :=
∞∑
k=0

gk · ϑkΩ(f)

and

Hψ,Ω(f) := ψ ∗C∞\{1},Ω f,

The operator g(ϑΩ) is called Euler differential operator or hyper-differential

operator. 3

The operators defined in Definition 7.2.1 have the following properties.

7.2.2 Lemma:

Let Ω ⊂ C be a non-empty open set, ψ ∈ H(C∞ \ {1}), and g ∈ EXP(0).

Then g(ϑΩ) and Hψ,Ω are linear and continuous.

Proof: The linearity and continuity of Hψ,Ω were proved in Lemma 3.7.1. The

linearity of g(ϑΩ) follows from the linearity of all the operators ϑkΩ (k ∈ N0).

The continuity of g(ϑΩ) is proved in [Hille, Theorem 11.2.3]. 2
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7.3 The connection with the Hadamard

product

Let g be an entire function of exponential type zero and ψ according to (7.1).

In [Fr97, Proposition 8] it was shown that Hψ,D = g(ϑD) holds for every simply

connected domain D ⊂ C with 0 ∈ D (see also [Hille, Theorem 11.2.3]). The

Hadamard product enables us to generalize this result (see Corollary 7.3.3).

At first, we shall show the connection between the iterates of the lacuna pre-

serving operator and the Hadamard product. To this end, we have to define

the operator ϑ for the function Θ. According to Lemma 7.1.5, we have for

each z ∈ C \ {1} and each k ∈ N0:

ϑk
C\{1}

(
Θ
∣∣
C\{1}

)
(z) =

k∑
µ=1

αµ,k · k! · zµ

(1− z)µ+1

z→∞−−−−−→ 0.

Therefore, we set

ϑk
C∞\{1}(Θ)(∞) :=


ϑk
C\{1}

(
Θ
∣∣
C\{1}

)
(z) , z 6= ∞

0 , z = ∞

for each k ∈ N0. We have ϑk
C∞\{1}(Θ) ∈ H

(
C∞ \ {1}

)
for each k ∈ N0.

7.3.1 Lemma:

Let Ω ⊂ C be a non-empty open set and k ∈ N0. Then for each f ∈ H(Ω) we

have

ϑkΩ(f) =
(
ϑk
C∞\{1}(Θ)

)
∗C∞\{1},Ω f,

or in other words

ϑkΩ = Hϑk
C∞\{1}(Θ),Ω.

Proof: 1. For k = 0, we have

ϑ0
Ω = idH(Ω) = HΘ,Ω = Hϑ0

C∞\{1}(Θ),Ω.

2. Now let k ≥ 1, f ∈ H(Ω), z ∈ Ω∗ (C∞ \{1}) = Ω, and γ a Hadamard cycle
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for z · (C∞ \ {1})∗ = {z} in Ω. By applying Lemma 7.1.5, we obtain

ϑkΩ(f)(z) =
k∑

µ=1

αµ,k f
(µ)(z) zµ =

k∑
µ=1

αµ,k ·

 µ!

2πi
·
∫
γ

f(ζ)

(ζ − z)µ+1
dζ

 · zµ

=
k∑

µ=1

αµ,k ·

 1

2πi
·
∫
γ

f(ζ)

ζ
·
(
z

ζ

)µ
· µ!

(1− z/ζ)µ+1
dζ



=

(
f ∗Ω,C∞\{1}

(
k∑

µ=1

αµ,k · idµC∞\{1} ·Θ(µ)

))
(z)

=
(
f ∗Ω,C∞\{1}

(
ϑk
C∞\{1}(Θ)

))
(z) =

((
ϑk
C∞\{1}(Θ)

)
∗C∞\{1},Ω f

)
(z).

This proves the lemma. 2

After these preparations, we are able to state and prove the connection between

the Hadamard product and the Euler differential operators.

7.3.2 Proposition:

Let Ω ⊂ C be a non-empty open set. Then for each f ∈ H(Ω) we have

g(ϑΩ)(f) =
(
g(ϑC∞\{1}(Θ)

)
∗C∞\{1},Ω f,

or in other words

g(ϑΩ) = Hg(ϑC∞\{1}(Θ)),Ω.

Proof: Let f ∈ H(Ω). By applying Lemma 7.3.1 and the continuity theorem,

we obtain

g(ϑΩ)(f) =
∞∑
k=0

gk ·
((
ϑk
C∞\{1}(Θ)

)
∗C∞\{1},Ω f

)

=

(
∞∑
k=0

gk · ϑkC∞\{1}(Θ)

)
∗C∞\{1},Ω f =

(
g (ϑC∞\{1}) (Θ)

)
∗C∞\{1},Ω f.

This proves the proposition. 2
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A consequence of this proposition is the following result.

7.3.3 Corollary:

Let Ω ⊂ C be a non-empty open set, ψ ∈ H(C∞ \{1}), and g ∈ EXP(0)

according to (7.1 ). Then we have Hψ,Ω = g(ϑΩ).

Proof: According to Example 7.1.3, we have

ϑk
C∞\{1}(Θ)(z) =

∞∑
ν=0

νk zν (z ∈ D).

Thus, for z ∈ D we obtain

g
(
ϑC∞\{1}(Θ)

)
(z) =

∞∑
k=0

gk · ϑkC∞\{1}(Θ)(z)

=
∞∑
ν=0

(
∞∑
k=0

gk ν
k

)
zν =

∞∑
ν=0

g(ν) zν = ψ(z).

By the identity theorem we get g
(
ϑC∞\{1}(Θ)

)
= ψ. For f ∈ H(Ω), we finally

get by Proposition 7.3.2:

g(ϑΩ)(f) = g (ϑC∞\{1}(Θ)) ∗C∞\{1},Ω f = ψ ∗C∞\{1},Ω f = Hψ,Ω(f).

This proves the assertion. 2



Chapter 8

Open problems

In this chapter, we will state some problems that have arisen in the thesis.

8.1 Derived universality without further

restrictions

In section 6.5, we posed Problem 6.5.1. An answer to this was the strong

universality preservation theorem. But this required the condition that for

every G ∈ G(Ω ∗D) there exists a G̃ ∈ G(D) with Ω ∗ G̃ = G. It is not known

whether this condition is also necessary to solve Problem 6.5.1. This gives rise

to the following question.

Open problem no. 1:

Let D ( C be an open simply connected set with 0 ∈ D. Moreover, let

Ω ⊂ C∞ be an open set with 0 ∈ Ω and ∞ ∈ Ω, ψ ∈ H(Ω), and ϕ ∈ U (D).

Under what conditions is ψ ∗Ω,D ϕ ∈ U (Ω ∗D) ? 3

8.2 Boundary behavior of universal functions

In chapter 6, we considered for an open simply connected setD ( C containing

the origin the set U (D,G) of universal functions with respect to G ∈ G(D). In

particular, this set G is open; and open sets are convenient for the Hadamard

product. If we are given a compact exhaustion (with connected complements)
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of G, each of the compact sets is disjoint to the closure of D. In Proposition

5.4.5, we showed that Ũ (D) = U (D) for all open simply connected sets so

that C∞ \ D
∞

is a simply connected domain. Therefore, for considerations

merely concerning universality it does not matter whether we have the univer-

sal property on open simply connected sets outside D or whether we have it

on compact sets with connected complements outside D—at least for those D

having the above property. But what happens if we allow the compact sets to

meet the boundary? Let us introduce the following sets of universal functions

(cf. [Nes96] and [MN01]):

• For K ∈ M(D), we denote by U∂(D,K) the set of all functions ϕ ∈
H(D) so that for each f ∈ A(K) there exists a subsequence of (sn(ϕ))n∈N0

that converges to f uniformly on K.

• By U∂(D) we denote the set of all functions ϕ ∈ H(D) so that for each

K ∈M(D) and each f ∈ A(K) there exists a subsequence of (sn(ϕ))n∈N0

that converges to f uniformly on K.

The only difference to the sets Ũ (D,K) and Ũ (D) is that the compact sets

are now allowed to intersect the boundary of D.

We are interested in the following question.

Open problem no. 2:

Let D ( C be an open simply connected set with 0 ∈ D. Moreover, let

K ∈ M(D), Ω ⊂ C∞ an open set with 0 ∈ Ω and ∞ ∈ Ω, ψ ∈ H(Ω), and

ϕ ∈ U∂(D,K). Under what conditions is ψ ∗Ω,D ϕ ∈ U∂(Ω ∗D,Ω ∗K) ? 3

We remark that Ω ∗K ∈M(Ω ∗D) if K ∈M(D).

Intimately connected with this question is the following one.

Open problem no. 3:

Let D ( C be an open simply connected set with 0 ∈ D. Moreover, let

Ω ⊂ C∞ be an open set with 0 ∈ Ω and ∞ ∈ Ω, ψ ∈ H(Ω), and ϕ ∈ U∂(D).

Under what conditions is ψ ∗Ω,D ϕ ∈ U∂(Ω ∗D) ? 3



Appendix A

On Hadamard cycles

The following table gives an overview of the possible Hadamard cycles (see

also Table 2.1). Let Ω1,Ω2 ⊂ C∞ be open and star-eligible sets, and let

z ∈ (Ω1 ∗Ω2) \ {0,∞}. The first row shows whether the origin or the point at

infinity are contained in Ω1. If the corresponding cell is empty, none of these

points is contained in Ω1. The first column has to be understood in the same

way. The symbol “cc” stands for Cauchy cycle for z ·Ω∗
2 in Ω1; “cc+” stands for

Cauchy cycle for z ·Ω∗
2 in Ω1 with ind (γ, 0) = 1; “acc” stands for anti-Cauchy

cycle for z ·Ω∗
2 in Ω1; and “acc−” stands for anti-Cauchy cycle for z ·Ω∗

2 in Ω1

with ind (γ, 0) = −1. A “/” means that this case cannot occur.

@
@

@
@

@@
Ω2

Ω1 0,∞ ∞ 0

0,∞ cc+ or acc− acc− cc+ cc

∞ acc− acc− / /

0 cc+ / cc+ /

acc / / /
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On the compatibility theorem

We want to give an overview of the cases that can occur in the compatibility

theorem. Let Ω1,Ω2 ⊂ C∞ as well as D1 ⊂ Ω1 and D2 ⊂ Ω2 be open and

star-eligible sets. Furthermore, let z ∈ (D1 ∗D2) \ {0,∞} and γ a Hadamard

cycle for z · D∗
2 in D1. We are interested in the question whether γ is also

a Hadamard cycle for z · Ω∗
2 in Ω1. In the following sections, we will list the

possible cases.

B.1 The case 0 ∈ D1 ∩D2 and ∞ 6∈ D1 ∩D2

In this case, we get 0 ∈ Ω1∩Ω2. Moreover, γ is a Cauchy cycle for z ·D∗
2 in D1

with ind (γ, 0) = 1. The first row of the following table shows in which of the

sets the point at infinity is contained. The columns show what kind of cycle γ

has to be to be a Hadamard cycle for z · Ω∗
2 in Ω1.

∞ Ω1 ∩ Ω2 (Ω1 ∪ Ω2)
C Ω1 \ Ω2 Ω2 \ Ω1

cc+ or acc– cc+ cc+ cc+

B.2 The case 0 6∈ D1 ∩D2 and ∞ ∈ D1 ∩D2

In this case, we get ∞ ∈ Ω1 ∩ Ω2. Moreover, γ is an anti-Cauchy cycle for

z ·D∗
2 in D1 with ind (γ, 0) = −1. The following table has to be understood in

the same way as the one in section B.1.
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0 Ω1 ∩ Ω2 (Ω1 ∪ Ω2)
C Ω1 \ Ω2 Ω2 \ Ω1

cc+ or acc– acc– acc– acc–

B.3 The case 0 ∈ D1 ∩D2 and ∞ ∈ D1 ∩D2

In this case, we have 0 ∈ Ω1 ∩Ω2 and ∞ ∈ Ω1 ∩Ω2, and thus γ is a Hadamard

cycle for z · Ω∗
2 in Ω1.

B.4 The case 0 ∈ D2 \D1 and ∞ ∈ D2 \D1

In this case, we have 0 ∈ Ω2 and ∞ ∈ Ω2. Moreover, γ is a Cauchy cycle for

z · D∗
2 in D1. The first row and column show which of the sets contain the

origin and the point at infinity, respectively. The columns show what kind of

cycle γ has to be to be a Hadamard cycle for z · Ω∗
2 in Ω1.

HHHH
HHHH

∞
0

Ω1 ΩC
1

Ω1 cc+ or acc– acc–

ΩC
1 cc+ cc

B.5 The case 0 ∈ D1 \D2 and ∞ ∈ D1 \D2

In this case, we have 0 ∈ Ω1 and ∞ ∈ Ω1. Moreover, γ is an anti-Cauchy cycle

for z ·D∗
2 in D1. The following table has to be understood in the same way as

the one in section B.4.

HHHH
HHHH

∞
0

Ω2 ΩC
2

Ω2 cc+ or acc– acc–

ΩC
2 cc+ acc
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