
Adaptive Trust-Region POD Methods
and their Application in Finance

Dissertation

zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften (Dr. rer. nat.)

Dem Fachbereich IV der Universität Trier
vorgelegt von

Matthias Schu

Trier, 2012

Eingereicht am 13.8.2012

Gutachter: Prof. Dr. Ekkehard Sachs
Prof. Dr. Stefan Volkwein

Tag der mündlichen Prüfung: 30.11.2012

Contents

German Summary V

Acknowledgements VII

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 3

2 Calibration Problems in Option Pricing 7
2.1 Option Pricing . 7

2.1.1 Introduction . 7
2.1.2 Option Pricing Models . 9
2.1.3 Option Pricing with Partial Differential Equations 16

2.2 Calibration of Model Parameters . 20

3 Numerical Solution of the Calibration Problem 23
3.1 Weak Formulation of the PIDE . 24
3.2 Discretization of the PIDE . 32

3.2.1 Spatial Discretization . 32
3.2.2 Time Discretization . 35
3.2.3 Efficient Solution of the Fully Discretized PIDE 36
3.2.4 Numerical Results . 39

3.3 Solving the Optimization Problem . 42
3.3.1 First Discretize, then Optimize or vice versa? 44
3.3.2 Optimization Methods . 48
3.3.3 Numerical Results . 49

4 Model Order Reduction via POD 57
4.1 Proper Orthogonal Decomposition . 59
4.2 POD Error Estimates . 64

4.2.1 A Priori Error Estimates for Parabolic Differential Equations 64
4.2.2 Error Estimates in Optimal Control Problems 73

4.3 Numerical Results . 82
4.3.1 Partial Integro-Differential Equation 82
4.3.2 Optimal Control Problem . 88

III

Contents

5 Trust-Region POD 95
5.1 Trust-Region Methods . 95

5.1.1 Quadratic Model Functions . 96
5.1.2 Generalizations . 98

5.2 Trust-Region POD Algorithms . 103
5.2.1 Derivation . 103
5.2.2 Convergence Proof . 104
5.2.3 Managing the POD Error . 107
5.2.4 Multi-level Strategies . 107

5.3 Numerical Results . 108

6 Conclusions 113

List of Tables 115

List of Figures 119

Bibliography 121

IV

German Summary
(Zusammenfassung)

Bei der Preisberechnung von Finanzderivaten bieten sogenannte Jump-diffusion-Modelle mit
lokaler Volatilität viele Vorteile. Aus mathematischer Sicht jedoch sind sie sehr aufwendig,
da die zugehörigen Modellpreise mittels einer partiellen Integro-Differentialgleichung (PIDG)
berechnet werden. Wir beschäftigen uns mit der Kalibrierung der Parameter eines solchen
Modells. In einem kleinste-Quadrate-Ansatz werden hierzu Marktpreise von europäischen
Standardoptionen mit den Modellpreisen verglichen, was zu einem Problem optimaler Steue-
rung führt.
Ein wesentlicher Teil dieser Arbeit beschäftigt sich mit der Lösung der PIDG aus theore-

tischer und vor allem aus numerischer Sicht. Die durch ein implizites Zeitdiskretisierungs-
verfahren entstandenen, dicht besetzten Gleichungssysteme werden mit einem präkonditio-
nierten GMRES-Verfahren gelöst, was zu beinahe linearem Aufwand bezüglich Orts- und
Zeitdiskretisierung führt.
Trotz dieser effizienten Lösungsmethode sind Funktionsauswertungen der kleinste-Qua-

drate-Zielfunktion immer noch teuer, so dass im Hauptteil der Arbeit Modelle reduzierter
Ordnung basierend auf Proper Orthogonal Decomposition Anwendung finden. Lokale a priori
Fehlerabschätzungen für die reduzierte Differentialgleichung sowie für die reduzierte Zielfunk-
tion, kombiniert mit einem Trust-Region-Ansatz zur Globalisierung liefern einen effizienten
Algorithmus, der die Rechenzeit deutlich verkürzt. Das Hauptresultat der Arbeit ist ein Kon-
vergenzbeweis für diesen Algorithmus für eine weite Klasse von Optimierungsproblemen, in
die auch das betrachtete Kalibrierungsproblem fällt.

V

Acknowledgements

First of all, I would like to express my gratitude to Prof. Ekkehard W. Sachs, my adviser,
for his constant support and the many suggestions during my research and for giving me the
opportunity to write this thesis. I am also thankful to Prof. Stefan Volkwein not only for
serving as examiner but also for his former research that provides a basis for several results
shown here.
This work was funded by the Deutsche Forschungsgemeinschaft within the priority pro-

gram SPP 1253 ‘optimization with partial differential equations’ and in parts by the research
center FoRUmstat at the University of Trier, whom I also thank.
Moreover, I would like to thank my colleagues at the Department of Mathematics for many

fruitful discussions and the great atmosphere they provided. Particular mention deserve the
coworkers in the research group of Prof. Sachs Bastian Groß, Dr. Timo Hylla, Dr. Christoph
Käbe, Andre Lörx, Marina Schneider, Matthias Wagner and Xuancan Ye as well as my
colleagues Ulf Friedrich, Benjamin Rosenbaum, Dr. Claudia Schillings, Dr. Stephan Schmidt,
Martin Siebenborn, Roland Stoffel, Dirk Thomas and Christian Wagner.
Further, I am deeply indebted to Christine and my family, especially my parents Gertrud

and Hermann, without whom this would not have been possible.

Matthias Schu
Trier, 2012

VII

Chapter 1

Introduction

So-called jump-diffusion models with local volatility provide many advantages concerning the
pricing of financial derivatives. However, from a mathematical point of view they are quite
complex since the corresponding model prices have to be calculated via a partial integro-
differential equation (PIDE). Here, we are dealing with the calibration of the parameters
of such a model. We compare market prices of standard European options with the model
prices in a least-squares approach yielding an optimal control problem.
A substantial part of this thesis is the solution of the PIDE where the focus is on the

numerical part. The dense linear systems of equations arising from an implicit time dis-
cretization scheme are solved with a preconditioned GMRES method leading to an almost
linear complexity regarding time and space discretization.
Despite this efficient solution, evaluations of the least-squares objective function are still

expensive such that in the main part of this thesis reduced order models based on proper
orthogonal decomposition (POD) are used. Local a priori error estimates for the reduced
differential equations as well as for the corresponding reduced objective function combined
with a globalizing trust-region framework yield an efficient algorithm that clearly reduces the
computing time. The main result of this thesis is a convergence proof for this algorithm for
a wide class of optimization problems to which the considered calibration problems belong
to as well.
We start by giving a short motivation for reduced order models including an example from

image compression, and afterwards describe the outline of the thesis.

1.1 Motivation
We first want to motivate the main topic of this thesis namely the application of reduced
order models. In the field of partial differential equations, the use of reduced order models
is well-known. The idea is to replace the common finite element basis functions of a space
discretization by only a few problem-dependent basis functions in a Galerkin approach.
The finite element basis is usually a discretization of the underlying function space, for
instance the space H1

0 . However, the solutions of a specific partial differential equation for
different control parameters mostly evolve in a lower-dimensional subspace of this function
space. Thus, we use more complex, problem-dependent basis functions which only span
this subspace and not the whole function space. The concept can be illustrated by the
compression of an image similar to an idea in Antoulas et al. (2001).
Figure 1.1(a) shows a black and white image with a resolution of 1536×2048 pixels. Math-

ematically, we are dealing with a matrix in [0, 1]1536×2048 since the grey values are stored as

1

Chapter 1 Introduction

(a) Image with resolution 1536 ×
2048

(b) First five ad-
vanced basis
functions

Figure 1.1: Extracting significant information from an image

numbers between 0 (black) and 1 (white), leading to a total of 3.1 million numbers.

We can now interpret each column vector of this matrix as a linear combination of simple
unit vectors. The question now is whether we can find some better vectors to represent the
columns of the image. The next figure 1.1(b) shows how such basis functions could look like.
For instance, the most important information about the image is the light top and the dark
bottom what is obviously stored in the first of the five vectors. The information about the
hut is given in the second one. Those basis functions, which contain the most significant
information, are extracted from the image using a singular value decomposition.

However, they can now be used to reconstruct the image with much less information by
representing each column as a linear combination of this new basis. If we use only the first
basis function in figure 1.1(b), we have to store this basis function (1536×1 numbers) and
the weighting coefficients for each column (2048×1 numbers), what is 0.1% of the original
memory requirements. The corresponding compressed image is shown in figure 1.2(a). In-
creasing the number of basis functions used to recalculate the image leads to the results
shown in the next figures (b)-(f). The last one with 100 complex basis functions shows a
pretty good approximation to the original image, but it still needs only a fraction of the
original memory (11%).

The idea presented above even leads to significantly better approximations when we apply
it to a parabolic differential equation, e.g. the heat equation or the option pricing problem
that we consider further below. The solution in one time step then corresponds to one column
in the motivating example and the unit vectors correspond to the simple finite element basis
functions of the spatial discretization. Usually, a very small basis is sufficient to represent
all time steps since these solutions are quite smooth, in particular compared to the image
above.

2

1.2 Outline

(a) l = 1 (b) l = 2 (c) l = 3

(d) l = 10 (e) l = 20 (f) l = 100

Figure 1.2: Reconstruction of the image in figure 1.1(a) using different numbers, l, of
basis functions

1.2 Outline

The thesis is mainly divided into four parts. The problem description, the numerical solution
of the problem, the introduction of reduced order models with fixed control parameter and
the use of these reduced order models in optimization where the control changes permanently.
We briefly describe the four parts.

Chapter 2
This chapter is dedicated to option pricing models and their calibration. As a financial
derivative, the value of an option depends on the value of some underlying. Beside the
formal definition of the options in focus, European calls, the first section 2.1.1 describes
different approaches to model this underlying value. Starting with the famous Black-Scholes
model, we name its weaknesses and introduce more advanced models. As our model of choice
we use a jump-diffusion process with an additional local volatility function and the following
dynamics written as a stochastic differential equation:

dSt = µSt−dt+ σ(t, St−)St−dWt + St−d
(Nt∑
j=1

(eYj − 1)
)
.

The corresponding option prices can be computed by solving a partial integro-differential
equation (cf. section 2.1.3). In view of the calibration problem that is discussed below, we
focus on the Dupire-like version of the PIDE where the constants maturity T and strike price

3

Chapter 1 Introduction

K appear as variables:

D̃T (T,K)− 1
2σ

2(T,K)K2D̃KK(T,K) + r(T)KD̃K(T,K)

−λ
+∞∫
−∞

(
ey(D̃(T,Ke−y)− D̃(T,K)) +K(ey − 1)D̃K(T,K)

)
f(y) dy = 0 (1.1)

(T,K) ∈ [t0, Tmax)× (0,∞)

D̃(t0,K) = max{S0 −K, 0}, K ∈ (0,∞).

Taking a closer look at this equation, it contains several parameters and parameter functions,
respectively. These are in first place the local volatility function σ(T,K), the jump intensity
λ and the jump size distribution function f(y).

Section 2.2 then states the corresponding calibration problem in a least-squares formula-
tion as

min
D̃,σ,λ,f

J(D̃, σ, λ, f) := 1
2

M∑
i=1

(
D̃(Ti,Ki)−DM

i

)2

s.t. PIDE (1.1),

i.e. we adjust the parameters in such a way that the model prices fit some given market
prices DM

i at M couples (Ti,Ki). We further briefly discuss some mathematical challenges
arising in the calibration process.

Chapter 3
We have introduced the calibration problem in chapter 2, and the following chapter deals
with its numerical solution. After having proven existence and uniqueness of weak solutions
to the partial integro-differential equation in weighted function spaces, the main focus of the
chapter is the introduction of a numerical method for its solution. The discretization of the
space variable via a finite element approach leads to a dense stiffness matrix what is due
to the non-local integral term in the PIDE. For the time discretization, an implicit method
would be desirable since the problem is known to be very stiff and explicit methods are
restricted by strong CFL conditions. A Crank-Nicolson scheme is used with an additional
smoothing of the non-smooth initial condition yielding a second-order convergence in time.
However, the linear systems of equations for such implicit methods are dense such that we
propose to use a preconditioned GMRES method for their solution. This approach works
quite well in numerical tests (section 3.2.4) and, thus, is an alternative to the few existing
solvers for implicitly discretized PIDEs.

In section 3.3, we then focus on the numerical solution of the calibration problem that can
be written in an abstract vectorial form with state variable y and control u as:

min
y∈W,u∈U

J(y, u) := 1
2

D∑
i=1
||Cy(t̂i)− di||2H + α

2 ||u||
2 (1.2)

4

1.2 Outline

s.t. ẏ(t) +A(u; t)y(t)− l(u; t) = 0 , t ∈ (0, T]
y(0) = y0.

We discuss the implications of both the ‘first optimize’ and ‘first discretize’ approach with
focus on the time discretization. As the least-squares objective function involves pointwise
observations of the PIDE solution, the corresponding adjoint equations contain delta Dirac
functions (or at least approximations) leading to oscillations in the numerical solution if we
do not apply a smoothed time discretization scheme.

Concerning the optimization of the objective function, a brief comparison of the quasi-
Newton and Gauss-Newton approach to calculate first- and second-order information is given
in section 3.3.2.

The chapter ends in section 3.3.3 with further numerical results on the adjoint solution,
and we address a typical calibration problem with real-world market data.

Chapter 4
Chapter 4 provides an introduction to reduced order models based on proper orthogonal
decomposition. In section 4.1, POD is defined as a way of extracting the most significant
information from a set of given functions or vectors (called ‘snapshots’ in the following). To
be precise, we want to find those basis functions which represent the set of snapshots better
than any other basis. Mathematically, this can be written as a constrained optimization
problem, and we also recall the methods of solving it, which are well-known in literature. It
turns out that the POD basis functions are given by eigenfunctions of a specific eigenvalue
problem. And if we only use a part of this POD basis, the average approximation error for
the snapshots can be expressed by a sum over those eigenvalues λj whose eigenfunctions are
not used.

Section 4.2 now shows how POD can be used in the context of parabolic differential
equations. Here, the snapshots are given by the solution of this differential equation at
different time instances. We present a priori error estimates for time-dependent elliptic
operators what is an extension of the results in Kunisch and Volkwein (2001). Since our
main aim is the use of POD in our optimal control problem (1.2), the error between a
discretized objective function based on a finite element space, f(u) = J(yFE(u), u), and an
objective function based on a POD approximation with rank l, fl(u) = J(yl(u), u), has to
be estimated. Section 4.2.2 establishes a relation between this error and the sum over the
remaining eigenvalues using the previous results. For fixed but arbitrary u and a k1 > 0, we
obtain

|f(u)− fl(u)|2 ≤ k1

r∑
j=l+1

λj

if the POD basis contains the snapshots from the state solution at u. A similar result is
then obtained for the gradient of f . However, we need to include snapshots from the adjoint

5

Chapter 1 Introduction

solution as well to get for a k2 > 0:

||∇f(u)−∇fl(u)||2 ≤ k2

r∑
j=l+1

λj .

The k2 has several dependencies, mainly a proper weighting of adjoint and state snapshots
has to be guaranteed. Numerical results supporting the previous theoretical statements are
shown in the last section 4.3.
Note that all results presented in this chapter are local in the sense that they only hold

true if the control u is fixed.

Chapter 5
A globalization of the POD model is then achieved in chapter 5 by embedding the reduced
order model into a trust-region framework. We begin by recalling the idea of a basic trust-
region approach with a quadratic model function. Several generalizations of this concept
based on the work of Fahl (2000) complete the first section ending with a global convergence
proof for non-quadratic model functions under the main assumption of a sufficient gradient
approximation of the model function at the trust region centerpoint.
The main result of this thesis is given in section 5.2 where the error estimates of section

4.2.2 are combined with the generalized trust-region approach of section 5.1.2, leading to a
convergence proof for the trust-region POD algorithm. Here it is vital that the POD model
function can fulfill the assumptions on the gradient accuracy in the sense of Carter (1991):

||∇f(uk)−∇ml
k(uk)|| ≤

(
k2

r∑
j=l+1

λj
) 1

2 ≤ ζ||∇ml
k(uk)||.

The size of the POD basis can be managed adaptively by comparing reduced and exact
gradient until the condition above is satisfied. Numerical results in which the adaptive trust-
region POD algorithm is used to solve the calibration problem discussed earlier show the
efficiency of the algorithm.

All numerical results in this thesis have been produced by a MATLAB code on a desktop
PC with Intel R©CoreTM2 Duo (3.00 GHz) processor and 4GB RAM.

6

Chapter 2

Calibration Problems in Option Pricing

This chapter will provide basic information about options, option pricing models and the
calibration of parameters arising therein.
After having dealt with the concept of options as a special kind of financial derivative

(section 2.1.1), we focus on how we can calculate their value, i.e. the fair price that one has
to pay for them. The first step here is the stochastic modeling of the uncertain underlying
value by a stochastic differential equation (section 2.1.2). By now, there exist a lot of
models which are mainly extensions of the famous Black-Scholes model (cf. Black and
Scholes (1973), Merton (1973)). Our focus lays on a special kind of extension called ‘jump-
diffusion models’. The stochastic differential equations can further be transformed to partial
differential equations or – depending on the model – even to partial integro-differential
equations (section 2.1.3).
The above mentioned models include several parameters which strongly influence the

option prices. Hence, the calibration of these parameters is an important issue and therefore
subject of section 2.2.

2.1 Option Pricing
An ‘option’ is a financial derivative, i.e. its value is derived from the value of some underlying.
The usage of such derivatives has increased significantly in practice, where the two main
purposes are hedging, i.e. the mitigation of risks in the underlying, and speculation, i.e. they
are used to make leveraged profits by betting on a certain behavior of the underlying.

2.1.1 Introduction

As it is implied by the name, the owner of such a financial product has the right to do
something but not the obligation. We start by giving a formal definition of a special kind of
option that is considered in this thesis.

Definition 2.1.1. (European call option)
A European call option is a contract that gives its owner the right but not the obligation
to buy an underlying at a prescribed time in the future T (maturity) for a certain price K
(strike price).

According to this definition, it is clear what happens at maturity. Let ST be the value of
the underlying, e.g. a stock, at the expiration date T . If ST > K, then the option holder
exercises the option and purchases the underlying for K. Since the market price is ST , he

7

Chapter 2 Calibration Problems in Option Pricing

immediately can sell it and obtains the payoff ST −K. On the other hand, if ST < K, then
he would not exercise, because he could buy the underlying for only ST at the market. Then
the payoff is zero. This leads to the so-called hockey stick function C(ST) = max{ST −K, 0}
illustrated in figure 2.1.

 50 75 100 125 150
0

25

50

S
T

Payoff

Figure 2.1: Payoff of a European call option with strike K = 100 at maturity depending
on the underlying price ST

There are several ways to classify options. The two main classifications are implied by
definition 2.1.1. The first one is to distinguish between the above mentioned ‘call’ and so-
called ‘put options’. As already specified, the owner of a call option has the right to buy the
underlying. In contrast, the owner of a put option has the right to sell. The payoff function
in this case would be P (ST) = max{K − ST , 0}.
Another way to categorize options is the time at which they can be exercised. European

style options can only be exercised at the maturity date, ‘Bermudian’ can be exercised at
several specified dates before maturity and ‘American’ options at every date before expira-
tion.
For the sake of completeness, we have to mention the class of ‘exotic’ options. Here, the

payoff functions are usually more complex, for example depending on an average underlying
price (Asian option) or including bounds (barrier, knock-out options).
Due to its relevance especially in the world of finance, there is a vast literature on options.

References for an introduction to options are, e.g., Wilmott et al. (1993), Chriss (1997) and
Hull (2008).
Taking a closer look at figure 2.1, we see that the owner of a European call option has a

nonnegative payoff at maturity. Hence, it is clear that one has to pay a certain price for the
derivative at the purchase date. Otherwise, there would be the chance for arbitrage, i.e. the
possibility of a riskless profit. So, the important question arises, what is the fair price for an
option?
To answer this question, option pricing models make assumptions on the behavior of

the uncertain underlying price. For example, Cox et al. (1979) have proposed a discrete-
time model where the stock price follows a multiplicative binomial process over discrete time
instances. When the time discretization is refined, this model converges to the Black-Scholes
model that has been introduced by Black and Scholes (1973) and Merton (1973). Here, the
uncertainty of the underlying process is modeled by a geometric Brownian motion, what
can be written in terms of a stochastic differential equation. This model, its strengths, its

8

2.1 Option Pricing

weaknesses and especially some improvements known as Lévy models are covered by the
next section.

2.1.2 Option Pricing Models

This section deals with the modeling of the uncertain underlying process. Although we use
some notations borrowed from stochastics, we do not introduce and explain every detail here
since this would go beyond the scope of this thesis. On the other hand, it is necessary to
mention some stochastical concepts to understand the features of different option pricing
models.
For example, Chung and Williams (1990), Karatzas and Shreve (2000) Øksendal (2003),

provide fundamentals in stochastic processes that are used here in parts. For an introduction
to the stochastic ideas used in the context of option pricing, we refer to Lamberton and
Lapeyre (1996), Elliott and Kopp (2005) and especially Schoutens (2003) and Cont and
Tankov (2004a).

The most famous option pricing model has been introduced by Black and Scholes (1973)
and Merton (1973). Here, the uncertain stock price is modeled by a geometric Brownian
motion.

Definition 2.1.2. (Standard Brownian motion)
A stochastic process W = {Wt, t ≥ 0} adapted to a filtration F = {Ft, t ≥ 0} is called
standard Brownian motion on a probability space (Ω,F , P) if

a) W0 = 0 almost sure,

b) W has independent increments, i.e. Wt −Ws and Fs are independent for 0 ≤ s < t,

c) W has stationary and normally distributed increments, i.e. Wt−Ws ∼ N(0, t− s) for
0 ≤ s < t, 1

d) the mapping t→Wt is continuous almost sure.

The second item in its definition implies the so-called Markov property of the Brownian
motion. Simplified, the behavior of the stochastic process after time t is only affected by the
present value Wt and not by the past history. In fact, an attribute linked to stock prices
as well. The last point will also be of interest later on. It says that almost all realizations
of the stochastic process – which are usually called ‘paths’ – are continuous. So, jumps or
discontinuities do not occur.
Black and Scholes (1973) and Merton (1973) do not use the Brownian motion to model

the uncertainty of the stock price itself, but they propose to model the uncertainty of the
return of a stock. Given a stock price St, the change of the price ∆St = St+∆t − St in a
small interval ∆t is given by an expected increase Stµ∆t – here µ is the expected rate of
return – added by a random part Stσ∆Wt where σ, the volatility, describes how much the
stock price fluctuates. In total, we get

∆St = St(µ∆t+ σ∆Wt), S0 > 0. (2.1)
1N(µ, σ) is the normal distribution with mean µ and variance σ

9

Chapter 2 Calibration Problems in Option Pricing

In the limit, as ∆t→ 0, this leads to the following stochastic differential equation (SDE)

dSt = µStdt+ σStdWt, S0 > 0. (2.2)

The unique solution of this SDE is called ‘geometric Brownian motion’ (cf. Øksendal (2003)):

St = S0e
(µ−σ

2
2)t+σWt .

Since we know from definition 2.1.2 that the increments of Wt are normally distributed, it
is clear that the increments of St are log-normally distributed.

11/1990 11/2001 12/2011

(a) DAX history (b) geometric Brownian motion

Figure 2.2: Comparison between DAX history (1990–2011) and a sample path of a ge-
ometric Brownian motion

Figure 2.2 provides a motivation for the use of a geometric Brownian motion. It shows
on the left-hand side a chart of the German stock index DAX from 1990 to 2011 (source:
www.finance.yahoo.com) and on the right-hand side a sample path of a geometric Brownian
motion. For the untrained eye, it would be hard to say which is the original DAX. Thus,
the model seems to be well suited at first sight.

To make some statements regarding the option price, when the asset price is driven, e.g.,
by a geometric Brownian motion, one needs to have an additional riskless asset, called bond
Bt, which exhibits the following behavior:

dBt = rBtdt. (2.3)

Given a B0, the solution to this ordinary differential equation is Bt = B0e
rt, i.e. the money

is continuously compounded with a constant interest rate r.

Further, we make some simplifying assumptions on the market:

10

www.finance.yahoo.com

2.1 Option Pricing

Assumption 2.1. (Market assumptions)

a) No market friction,

b) no default risk,

c) short selling is permitted,

d) market participants act rational,

e) no arbitrage,

f) no dividends.

This means that we assume an idealized market, where we, e.g., can deposit and borrow
money without transaction costs and taxes. Further details can be found in Schoutens (2003)
for instance.
Given this market, the price of a European call option can be expressed in terms of an

expected value with respect to a certain measure Q, called equivalent martingale measure.

Definition 2.1.3. (Pricing formula)
Let St be modeled by a geometric Brownian motion as in (2.2). Then the current price of a
European call option C(t, St) with payoff function h(ST) := max{ST −K, 0} is given by

C(0, S0) = e−rTEQ[h(ST)]. (2.4)

In other words, the price of a call option today is the discounted expected value of the
payoff at maturity under a certain risk-neutral measure Q. Further details can be found in
Föllmer and Schied (2004, pp. 223ff).
In case of the Black-Scholes model, there even exists a closed-form solution for the call

price.

Remark 2.1.4. (Black-Scholes closed-form solution)
For given maturity T , strike price K, interest rate r and volatility σ the price of a European
call option with asset price S at time t in a Black-Scholes model is given by

CBS(t, S) = SN (d1)−Ke−r(T−t)N (d2), (2.5)

where N (x) = 1√
2π
∫ x
−∞ e

− ξ
2
2 dξ is the cumulative probability distribution for the standardized

normal distribution, and d1 = 1
σ
√
T−t

(
ln(SK) + (r + σ2

2)(T − t)
)
and d2 = d1 − σ

√
T − t.

Proof. See, e.g., Black and Scholes (1973) or Hull (2008). �

This closed-form solution is one of the reasons for the success of the Black-Scholes model
in practice. Note that µ, the expected rate of return of our stock (see (2.2)), does not occur
in the solution formula above because under the risk-neutral measure Q, it is replaced by
the riskless interest rate r implying risk neutrality.
The formula for the current call price CBS(0, S0) rather uses the constants strike K and

maturity T , which are defined when the contract is concluded. The interest rate r as well as

11

Chapter 2 Calibration Problems in Option Pricing

the spot price S0 are also known a priori from market data. The only parameter that cannot
be observed directly is the volatility σ. So its influence on the call price is very interesting. It
is easy to see that there is a strictly monotone increasing correlation between σ and the call
price. Thus, the term ‘implied volatility’ introduced in the following remark makes sense.

Remark 2.1.5. (Implied volatility)
Let maturity T , strike price K, interest rate r and current asset price S0 be given and let
C∗ ∈](S0−Ke−rT)+, S0[be the price of a European call. Then there exists a unique volatility
σ∗ with

C∗ = CBS(0, S0; σ∗), (2.6)

where CBS(t, S;σ) is the corresponding Black-Scholes price with constant volatility σ.
σ∗ is called ‘implied volatility’.

Proof. See, e.g., Cont and Tankov (2004a). Just note that if C∗ /∈](S0−Ke−rT)+, S0[, then
there is a chance for arbitrage. �

Note that there exists no closed-form solution, so the implied volatility has to be calculated
via numerical methods. However, this implied volatility can now be used to illustrate one
of the main weaknesses of the Black-Scholes model: the constancy of the parameters. Since
the shortcomings of the model are well-known, there is a vast literature regarding this topic.
Derman and Kani (1994), Andersen and Andreasen (2000), Schoutens (2003) and Cont and
Tankov (2004a) could be mentioned here.
Empirical studies show that given one asset and several options an this asset with differing

strike prices K and maturities T , the corresponding implied volatilities σ∗(T,K) are not flat
as suggested by the Black-Scholes model. Hence, the appearance of this so-called ‘implied
volatility surface’ σ∗(T,K) is of interest The dependence on the strike price is known as
volatility smile or skew. Typically, ‘at-the-money’ calls (K ≈ S0) have a lower implied
volatility as calls that are ‘in-the-money’ (K < S0) or ‘out-of-money’ (K > S0). In this case,
the curve σ∗(K) looks like a smile. If the dependence is decreasing, it is a skew. There is also
a strong dependence of σ on the maturity of the call. It has been observed that the smile or
skew effect flattens out as maturity increases. An example of such a surface is displayed in
figure 3.8 in the next chapter.
These observations give rise to new, more advanced models, which can be grouped into

three main ideas (cf. Andersen and Andreasen (2000)).
Dupire (1994) and Derman and Kani (1994) propose the so-called ‘local volatility mod-

els’. Here, the constant volatility of the Black-Scholes model is replaced by a deterministic
function of stock price S and time t:

dSt = µStdt+ σ(t, St)StdWt.

Although there is no closed-form solution available as in the Black-Scholes case, the model
is easy to handle from a numerical point of view. Since σ(t, S) is a function, we can fit the
model precisely to many quoted call prices. Beside these advantages, there are also some
drawbacks (cf. Andersen and Andreasen (2000) and the references cited therein). Especially

12

2.1 Option Pricing

the fitting to typical skews for short-term calls requires an unrealistic heavily twisting of the
local volatility surface.
The second one to mention is the ‘stochastic volatility model’. There are different specific

approaches by, e.g., Hull and White (1987), Stein and Stein (1991) and the most famous by
Heston (1993). The latter models the dynamics of the stock price by a Brownian motion as
well as the Black-Scholes model, but in addition, the volatility as the driving force of the
call price is modeled by a stochastic process, namely an Ornstein-Uhlenbeck process, too.
Written as a stochastic differential equation, we have

dSt = µStdt+
√
vtStdW

1
t

dvt = κ(θ − vt)dt+ α
√
vtdW

2
t ,

where the increments of the two Brownian motionsW 1 andW 2 are correlated with coefficient
ρ (cf. Heston (1993)). There are parameter combinations where the implied volatilities of the
corresponding Heston prices show the typical skew or smile that is observed in market data.
But often the correlation ρ between stock price and volatility has to be chosen unrealistically
high to get the desired result. On the other hand, an important advantage of the Heston
model is the existence of a closed-form solution.
The third approach requires the introduction of a new stochastic process since the uncer-

tainty is no longer modeled solely by a continuous Brownian motion. Merton (1976) suggests
to add random jumps as an additional source of uncertainty that mainly model rare large
market movements. The more general process compared to the Brownian motion is called
Lévy process:

Definition 2.1.6. (Lévy process)
A stochastic cadlag 2 process X = {Xt, t ≥ 0} adapted to a filtration F = {Ft, t ≥ 0} is
called Lévy process on a probability space (Ω,F , P) if

a) X0 = 0 almost sure,

b) X has independent increments, i.e. Xt −Xs and Fs are independent for 0 ≤ s < t,

c) X has stationary increments, i.e. the distribution of Xt+h −Xt is independent of t,

d) X is stochastic continuous, i.e. ∀ ε > 0, lim
h→0

P (|Xt+h −Xt| ≥ ε) = 0 for t ≥ 0.

There are mainly two differences compared to the Brownian motion. First, the distribution
of the increments does not need to be the normal distribution. And second, the continuity
of the paths of X is generalized to stochastic continuity, i.e. jumps in a path can occur, but
only at random times t which are not predefined. It can be easily shown that the following
examples fit in the Lévy process framework.

2cadlag: right-continuous and with left limits

13

Chapter 2 Calibration Problems in Option Pricing

Example 2.1.7. (Lévy processes)

a) Brownian motion: Xt = Wt, so Lévy process is a generalization of this concept.

b) Compounded Poisson process: Xt =
∑Nt
i=1 Yi. Here, Nt is a Poisson process with

intensity λ > 0 – i.e. it is a counting process, where Nt is the number of random
events that occurred up to time t with expected value E(Nt) = λt – and the Yi’s are
independent and identically distributed. This means, Nt describes the occurrence of
jumps and the Yi’s determine the jump size (figure 2.3(c) provides an illustration).

The option pricing models based on general exponential Lévy processes can be divided into
two categories. One is called ‘jump-diffusion models’. Here, as proposed by Merton (1976)
jumps are added to the Brownian motion to model large movements of the asset. The second
type are so-called ‘infinite activity models’, where the Brownian motion is omitted and more
or less replaced by an infinite number of small jumps. Barndorff-Nielsen (1997), Carr et al.
(2002) can be named as references for models of the last-mentioned type. In this thesis we
will focus on jump-diffusion models driven by the following dynamics:

dSt = µSt−dt+ σSt−dWt + St−d
(Nt∑
j=1

(eYj − 1)
)

(2.7)

with σ > 0. The first two parts on the right-hand side are equal to the Black-Scholes model.

(a) Drift (b) Brownian motion (c) Compounded
Poisson process

(d) = (a) + (b) + (c)

Figure 2.3: Xt = µt+σWt +
∑∑∑Nt

j=1 Yj: Composition of a typical path of a jump-diffusion
process used to model the log-price

A drift and a Brownian motion. What is new, though, is the third term, where jumps
are added to the process by a compounded Poisson process (independent of the Brownian
motion) that has already been introduced in example 2.1.7. As an illustration, figure 2.3
shows a typical path of a jump-diffusion process and how it is composed of the three parts
described above. Due to the discontinuities, the notation St− = lims↗t Ss is required. Let
τ j be a point in time, where a jump occurs. Then S

τ j−
is the value right before the jump

and the following holds

Sτ j = S
τ j−
eYj ,

this means eYj is the ratio of the asset price before and after the jump, or in other words Yj
is the jump in the rate of return of the stock price (Glasserman (2004)).

14

2.1 Option Pricing

Jump-diffusion models differ in the distribution of the jump sizes Yj . There are two
popular examples.
Example 2.1.8. (Jump-diffusion models)

a) Merton (1976): Yi are normally distributed with well-known density function fM (y) =
1√

2πσJ
exp

{
− (y−µJ)2

2σ2
J

}
(with µJ ∈ R, σJ > 0).

b) Kou (2002): Yi has an asymmetric double exponential distribution with density
fK(y) = pλ+e−λ

+y1{y≥0} + (1− p)λ−eλ−y1{y<0} (with p ∈ [0, 1], λ+ > 1, λ− > 0).
The main advantage of these new models for the stock price dynamics is that a skew in the

implied volatility, especially for short-term options, can be produced quite easily by setting
the mean jump size to be negative. This has been the main weakness of the approaches
mentioned up to now. On the other hand, the models by Merton and Kou as well as the
stochastic volatility models mentioned above only involve few parameters that are to be
calibrated to market prices. Thus, given many market prices, the calibration problem is
underdetermined and errors between market and model prices can be too large. Further,
jump-diffusion models are known to be difficult to handle from a numerical point of view,
although at least for the Merton model (see Example 2.1.8), there exists a semi-analytical
solution in terms of a series of Black-Scholes solutions.
Remark 2.1.9. (Merton model)
Given the Merton jump-diffusion model (see (2.7) and example 2.1.8) with volatility σ > 0,
jump intensity λ, mean jump size µJ and volatility of the jump size σJ . Then, for given
maturity T , strike price K, interest rate r and current stock price S0, today’s price of a
European call option is given by

CM =
∞∑
n=0

e−λ̄T (λ̄T)n

n! CBS(0, S0; r̄, σ̄),

where λ̄ = λ(1 + µJ), r̄ = r − λµJ + n ln(1+µJ)
T , σ̄2 = σ2 + nσ2

J
T and CBS(0, S0; r̄, σ̄) is the

today’s Black-Scholes price with interest rate r̄ and volatility σ̄ (see remark 2.1.4).
Proof. See, e.g., Merton (1976). �

Since all three generalization of the Black-Scholes model described above still have weak-
nesses, there is a vast literature on combinations of the different approaches. Bates (1996)
combines stochastic volatility with jump-diffusion. Said (1999) and Lipton (2002) propose
a stochastic local volatility model, where Lipton (2002) also includes jumps, i.e. a combina-
tion of all three approaches. A jump-diffusion model with local volatility was suggested by
Andersen and Andreasen (2000). In the further course of this thesis this model will be used
since it is suitable to produce typical volatility skews with its jump part and fit prices pre-
cisely with the local volatility function. Hence, our stock price is modeled by the following
stochastic differential equation:

dSt = µSt−dt+ σ(t, St−)St−dWt + St−d
(Nt∑
j=1

(eYj − 1)
)
. (2.8)

15

Chapter 2 Calibration Problems in Option Pricing

Due to the fact that especially in case of local volatility functions, there is no analytical
solution available, we have to worry about a numerical solution of the problem. There are
two main approaches. Monte Carlo simulation of the stochastic differential equation or the
transformation of the SDE into a partial differential equation that can be solved numerically.
This will be discussed in the next section.

2.1.3 Option Pricing with Partial Differential Equations

There are several methods to compute option prices based on the different models introduced
in the last section. As already mentioned there are closed-form (remark 2.1.4) or at least
semi-analytical solutions (remark 2.1.9) available for a few of them. If the characteristic
function of the stochastic process is known analytically one may use fast Fourier Transfor-
mation as described in, e.g., Carr and Madan (1999). These approaches are known to be
fast, but they are only feasible for certain models. On the other hand, Monte Carlo methods,
which discretize the stochastic differential equation of the underlying process, as described,
e.g., in Glasserman (2004), can be used for most of the models and many types of options,
but they are known to be slow since the rate of convergence is poor.
Thus, we concentrate on another approach. The pricing formula for a European call option

in definition 2.1.3 with an underlying price modeled by a stochastic differential equation can
be transformed to a partial differential equation. Without entering into details, this is done
using stochastic arguments. For the jump-diffusion model in (2.8), there is the following
result for European call options.

Theorem 2.1.10. (Backward PIDE)
Given a jump-diffusion model as in (2.8), the price of a European call option, C(t, S),
with asset price S, maturity T , strike K at time t can be calculated via the partial integro-
differential equation (PIDE)

Ct(t, S) + 1
2σ

2(t, S)S2CSS(t, S) + r(t)SCS(t, S)− r(t)C(t, S)

+λ
+∞∫
−∞

(
C(t, Sey)− C(t, S)− S(ey − 1)CS(t, S)

)
f(y) dy = 0 (2.9)

(t, S) ∈ [0, T)× (0,∞)

C(T, S) = max{S −K, 0}, S ∈ (0,∞),

where λ is the jump intensity and f(y) is the density function of the jump size distribution.

Proof. This result can be found in Andersen and Andreasen (2000) and Achdou and Piron-
neau (2005). �

So, to calculate the call prices, a partial differential equation with an additional integral
term has to be solved. Note that the price we are usually interested in is C(t0, S0) with
t0 = 0, the price today with current stock price S0. If the jump intensity λ is set to zero –
i.e. there are no jumps in the underlying price –, equation (2.9) reduces to the well-known

16

2.1 Option Pricing

parabolic Black-Scholes PDE:

Ct(t, S) + 1
2σ

2(t, S)S2CSS(t, S) + r(t)SCS(t, S)− r(t)C(t, S) = 0

(t, S) ∈ [0, T)× (0,∞)

C(T, S) = max{S −K, 0}, S ∈ (0,∞).

Remark 2.1.11. (Boundary condition)
Since the spatial domain of the PIDE is restricted to (0,∞), especially from a numerical
point of view, a boundary condition for C(t, 0), t ∈ [0, T] would be preferable. It is easy to
show by, e.g., economical arguments that

C(t, 0) = 0, t ∈ [0, T]

is the right choice. However, from a analytical point of view this condition is redundant
since it is implied by the differential equation and the final condition. See Cont and Tankov
(2004a, p.387) for a more detailed discussion on this.

Note that the assumption of a constant interest rate r in the Black-Scholes model (cf.
(2.3)) has been generalized to a time-dependent interest rate r(t), what is closer to market
behavior. This interest rate curve is usually not related to the specific underlying and is
given as a market value. Further, the strike price K and the maturity T are defined by the
call option contract. Hence, the parameters that are not known in (2.9) are the volatility
function σ(t, S), the jump intensity λ and the density function of the jump size distribution
f(y). The proper calibration of these parameters is essential if we want to use this option
pricing model for the calculation of new option prices. To calibrate the option pricing model
for a certain underlying, we compare model prices with given market prices and adjust the
parameters such that the error is minimized (details in section 2.2). Market prices are usually
given for call options with different maturities Ti and different strike pricesKi (i = 1, . . . ,M).
Thus, the PIDE above has to be solved newly for each pair (Ti,Ki) to get today’s call price
C(0, S0; Ti,Ki). In a least-squares formulation, a function evaluation itself would require a
tremendous amount in computing time to solve a whole family of the type (2.9).
A similar problem already occurs when we consider the extension of the volatility in the

original Black-Scholes equation from a constant to a function in Dupire (1994). Here, the
problem is solved by formulating a PDE where T and K occur as variables and the current
time t and stock price S show up in the initial condition of the PDE. Therefore, only one
PDE has to be solved for a function evaluation in a least-square formulation.
For the PIDE case, there is a similar variant of Dupire’s equation by Andersen and An-

dreasen (2000).

Theorem 2.1.12. (Forward PIDE)
Given the solution D̃(T,K) of the PIDE

D̃T (T,K)− 1
2σ

2(T,K)K2D̃KK(T,K) + r(T)KD̃K(T,K)

17

Chapter 2 Calibration Problems in Option Pricing

−λ
+∞∫
−∞

(
ey(D̃(T,Ke−y)− D̃(T,K)) +K(ey − 1)D̃K(T,K)

)
f(y) dy = 0 (2.10)

(T,K) ∈ [t0, Tmax)× (0,∞)

D̃(t0,K) = max{S0 −K, 0}, K ∈ (0,∞)

the following holds true:

D̃(T,K) = C(t0, S0), (2.11)

where C(t, S) is the solution of (2.9) with maturity T and strike price K.

Proof. See Andersen and Andreasen (2000) or Pironneau (2007). �

It is noticeable that, in contrast to the former PIDE, this new equation is of forward type.
Usually we are only interested in the call price today, so in the following – without loss of

generality – we assume t0 = 0. Further can the integral part in the PIDE above be simplified
in the following way.

Remark 2.1.13. Setting ζ = ζ(f) :=
∫+∞
−∞ (ey − 1)f(y) dy, (2.10) is equivalent to

D̃T −
1
2σ

2(T,K)K2D̃KK + (r(T)− λζ)KD̃K + λ(1 + ζ)D̃ (2.12)

−λ
+∞∫
−∞

D̃(T,Ke−y)eyf(y) dy = 0,

(T,K) ∈ [0, Tmax)× (0,∞)

D̃(0,K) = max{S0 −K, 0}, K ∈ (0,∞).

Proof. Crucial are the following identities∫ +∞

−∞
(ey − 1)KD̃K(T,K)f(y) dy = ζKD̃K(T,K)∫ +∞

−∞
eyD̃(T,K)f(y) dy = ζD̃(T,K) + D̃(T,K) = (1 + ζ)D̃(T,K)

and that
∫+∞
−∞ f(y) dy = 1 since f is a density function of a probability measure. �

Now, a variable transformation is used to eliminate the K’s in the coefficients of the
equation above to have a nicer PIDE from a numerical point of view.

18

2.1 Option Pricing

Remark 2.1.14. Let D(T, x) be the solution of

DT −
1
2 σ̄

2(T, x)Dxx +
(
r(T) + 1

2 σ̄
2(T, x)− λζ

)
Dx + λ(1 + ζ)D (2.13)

−λ
+∞∫
−∞

D(T, x− y)eyf(y) dy = 0,

(T, x) ∈ [0, Tmax)× (−∞,∞)

D(0, x) = max{1− ex, 0} =: D0(x), x ∈ (−∞,∞).

Then, with σ(T,K) = σ̄
(
T, ln

(
K
S0

))
,

D̃(T,K) = S0D
(
T, ln

(K
S0

))
solves (2.12).

Proof. Here, the variable transformation x = ln
(
K
S0

)
leads to

D̃T = S0DT , D̃K = S0K
−1Dx , D̃KK = S0K

−2Dxx − S0K
−2Dx

and K = S0e
x. Together with a scaling of the PIDE and the initial condition by S−1

0 we get
the desired result. �

In the following, for the sake of simplicity the bar on the log-transformed volatility function
will be omitted if the domain of definition is clear.
Note that in literature, the quotient K

S0
is called the ‘moneyness’ of the option and conse-

quential ln
(
K
S0

)
is called ‘log-moneyness’.

The last-mentioned PIDE will be the one that we solve numerically in chapter 3. However,
we mention another transformation of (2.13) that includes a reduction of the convection
term. Since the convection term includes the space dependent volatility function, it can not
be eliminated totally. But we will see in section 4.3 that a reduction can lead to significant
changes in the numerical results.

Remark 2.1.15. Let D̂(T, x̂) be the solution of

D̂T −
1
2 σ̂

2(T, x̂)D̂x̂x̂ +
(
r(T) + 1

2 σ̂
2(T, x̂)− λζ − c

)
D̂x̂ + λ(1 + ζ)D̂ (2.14)

−λ
+∞∫
−∞

D̂(T, x̂− y)eyf(y) dy = 0,

(T, x̂) ∈ [0, Tmax)× (−∞,∞)

D̂(0, x̂) = max{1− ex̂, 0}, x̂ ∈ (−∞,∞)

19

Chapter 2 Calibration Problems in Option Pricing

for c ∈ R. Then, with σ̄(T, x) = σ̂(T, x− cT)

D(T, x) = D̂(T, x− cT)

solves (2.13).

Proof. The variable transformation x̂ = x− cT leads to

DT = D̂T − cD̂x̂, Dx = D̂x̂ , Dxx = D̂x̂x̂,

what, taking into account that the initial condition does not change for T = 0, directly yields
the proposition. �

Note that the existence and uniqueness of strong solutions to the problems above is not
discussed here. Results on this can be found in Cont and Voltchkova (2005) and the references
cited therein. Instead, section 3.1 deals with weak solutions. Prior to that, the next section
provides some fundamentals about the calibration of the model parameters.

2.2 Calibration of Model Parameters

We have seen in the previous section that option pricing models involve several parameters
which have to be set in a meaningful manner. As already mentioned, r(T) is given at
the market independent of the certain underlying. However, considering the jump-diffusion
model, the volatility function σ(T, x), the jump intensity λ and the density function of the
jump sizes f(y) are not known a priori.
These parameters shall contain the latest market information. Thus, in practice, the

parameters are chosen such that the corresponding model prices fit to frequently traded
standard derivatives, e.g. European call and put options. Afterwards, the fitted model can
be used to price new options, even exotic ones via Monte Carlo simulation.
To be more precise, what is known today are market prices DM

i for calls on the specific
underlying with certain maturities Ti and certain strike prices Ki, i = 1, . . . ,M .
Today – i.e. at t0 = 0 – the price of the underlying S0 is given, thus, the forward equation

introduced in remark 2.1.13 can be used to calculate all model prices corresponding to the
different market prices in one sweep.
Dupire (1994) proposes in his local volatility model without jumps to solve the forward

equation (2.12) (with λ = 0) for the volatility function, i.e.

σ2(T,K) = 2D̃T (T,K) + 2r(T)KD̃K(T,K)
K2D̃KK(T,K)

.

Assuming that market prices for every strike and every maturity are given, the volatility
function could be identified easily with the formula above. If jumps are included in the
model, and again market prices for every strike and a certain maturity are known, Cont and
Tankov (2004b) propose a technique to deduce the (here constant) volatility and the Lévy
measure from the characteristic function of the underlying price. However, both approaches
use market prices and their derivatives with respect to K and/or T to obtain the parameters.

20

2.2 Calibration of Model Parameters

In practice, the number of given market prices is usually limited to only a few combinations
(Ti,Ki). This leads to the necessity of extra- and interpolation, what – in connection with
observation errors – can lead to even increased mismatches in the derivatives.
So, usually the identification of the model parameters is done in a least-squares formulation

(see Andersen and Andreasen (2000) or Cont and Tankov (2004b) for instance), where we
compare the given market prices with the corresponding model prices.
The mathematical formulation of this approach is given in the following definition.

Definition 2.2.1. (Calibration problem)
The calibration problem consists of finding parameters σ(·, ·), λ and f(·) that solve the fol-
lowing constrained minimization problem

min
D̃,σ,λ,f

J(D̃, σ, λ, f) := 1
2

M∑
i=1

(
D̃(Ti,Ki)−DM

i

)2
(2.15)

s.t. D̃T −
1
2σ

2(T,K)K2D̃KK + (r(T)− λζ)KD̃K + λ(1 + ζ)D̃

− λ
+∞∫
−∞

D̃(T,Ke−y)eyf(y) dy = 0,

(T,K) ∈ [0, Tmax)× (0,∞)

D̃(0,K) = max{S0 −K, 0}, K ∈ (0,∞),

where DM
i are market prices for European call options with strike Ki and maturity Ti,

i = 1, . . . ,M .

Thus, the calibration problem is a PIDE constrained optimization problem. Note that for
one function evaluation of J , the PIDE constraint has to be solved only once, what is due
to the existence of the forward equation.
Since only a finite number of observations, M , is given at the market, and the volatility

σ(·, ·) and the density f(·) are functions, the problem above is clearly underdetermined. This
can be eased by parameterizing the local volatility and the density function. One can assume
a certain distribution of the jump sizes, for instance the approaches by Merton (1976) or
Kou (2002), with two or three parameters, respectively (cf. example 2.1.8). It is similar
concerning the local volatility function. In the case of an implied volatility smile, the local
volatility function may be parameterized by a quadratic function in space direction. We
mention also linear and cubic spline interpolations with a limited number of grid points. In
time direction, piecewise linear and also piecewise constant functions are used. For a survey
on this methods, we refer to Lörx (2012).
But even in a parametric approach with only few variables, the optimization problem is

still ill-conditioned. Cont and Tankov (2004b) provide a good example regarding Merton’s
jump diffusion model with constant volatility, i.e. four parameters in total. They observed
a tradeoff between jump intensity λ and volatility σ. Given a certain optimization error, a
higher volatility σ combined with a lower jump intensity λ – and vice versa – leads to similar
results, i.e. a comparable error level. Hence, it is necessary to take care of this problem.

21

Chapter 2 Calibration Problems in Option Pricing

Otherwise two calibration runs with slightly different market data may lead to the same
error but totally different parameters.
They propose to add a regularization term that compares the Lévy measure that is to

be calibrated with a predetermined Lévy measure. For instance, this can be a result from
a statistical analysis or from a former calibration run to guarantee that the values do not
oscillate.
Andersen and Andreasen (2000) have split the calibration of the jump-diffusion model into

two stages. They first keep the volatility fixed and constant, wherein they use an average
value of the given implied volatility surface, and then, after having calculated the jump
parameters, these are kept fixed and the volatility function is fitted to further reduced the
least-square error. Using an appropriate regularization term, this procedure can also be
merged to one stage.
Although a proper regularization and parameterization is very important to get a reliable

model, this topic exceeds the scope of this thesis, and in the numerical results in section
3.3.3 where a real-world example is studied, these issues are not the main focus.

22

Chapter 3

Numerical Solution of the Calibration
Problem

This chapter is devoted to the numerical solution of the calibration problem that has been
introduced in the previous chapter. As partial integro-differential equations (PIDE) are often
hard to solve, their efficient solution will play the most important role.
PIDEs arise in several fields of research. We mention for example biological applications

discussed in Armstrong et al. (2006) or Gerisch (2010). However, the occurrence in finance
is also a field of recent research, e.g. in Andersen and Andreasen (2000), Matache et al.
(2004) Cont and Voltchkova (2005) Briani et al. (2007), Sachs and Strauss (2008). The
most challenging part here is the nonlocal integral term since it yields dense matrices when
applying a spatial discretization like finite elements or finite differences. Thus, a fully implicit
time discretization – which is preferable in terms of numerical stability – is rather challenging.
Using the special structure of the integral term, we are able to solve implicit methods like
the Crank-Nicolson scheme by a preconditioned GMRES algorithm with a complexity of
O(nx log2 nx) per time step, an approach that is – to the knowledge of the author – quite
new in this context and also competitive compared to other known approaches as is shown
in the numerical results.
Given an efficient numerical method for the solution of the PIDE constraint, we turn to

the numerical solution of the corresponding calibration problem (2.15). The calibration from
a numerical point of view is topic of several articles and books. We refer to Achdou and
Pironneau (2005), Düring et al. (2008) and especially Andersen and Andreasen (2000) where
jump-diffusion models are addressed. There are many interesting issues, e.g. a proper pa-
rameterization of the parameter functions that are to be calibrated or proper regularization
terms. However, we focus on two different aspects. Firstly, we are interested in the difference
of the two approaches that are frequently discussed: ‘first discretize, then optimize’ or vice
versa. The influence on the time discretization scheme and the gradient accuracy are of spe-
cial interest. Secondly, taking the constrained optimization problem (2.15) as an ‘reduced’
unconstrained optimization problem, we are interested in the efficiency of two different op-
timization algorithms, namely a Gauß-Newton and a quasi-Newton algorithm. Both issues
are analyzed by means of numerical results.
The outline is as follows. In the first section 3.1 we discuss in detail the existence and

uniqueness of weak solutions for the partial integro-differential equation described in (2.13).
We also introduce artificial boundary conditions to localize the problem to a bounded do-
main. Section 3.2 deals with the numerical solution of the PIDE by the method of lines.
Since a weak formulation has been derived, the spatial variable is discretized by a finite

23

Chapter 3 Numerical Solution of the Calibration Problem

element approach and afterwards, the time is discretized by implicit θ-schemes. The integral
part in the PIDE combined with an implicit time discretization leads to dense linear sys-
tems of equations, thus, we take care of this problem in section 3.2.3 using a preconditioned
GMRES algorithm and present numerical results subsequently. In section 3.3 we study the
calibration problem, a constrained optimization problem. We discuss the difference between
‘first discretize, then optimize’ or vice versa, and quasi-Newton or Gauß-Newton method,
respectively.

3.1 Weak Formulation of the PIDE
The first section of this chapter deals with the variational formulation and the existence and
uniqueness of weak solutions to the option pricing PIDE introduced in section 2.1.3:

DT −
1
2 σ̄

2(T, x)Dxx +
(
r(T) + 1

2 σ̄
2(T, x)− λζ

)
Dx + λ(1 + ζ)D (3.1)

−λ
+∞∫
−∞

D(T, x− y)eyf(y) dy = 0,

(T, x) ∈ [0, Tmax)× (−∞,∞)

D(0, x) = max{1− ex, 0} =: D0(x), x ∈ (−∞,∞).

To be able to discretize the spatial variable by a finite element approach, the first step
is a variational formulation of the problem. There is a vast literature on this topic. For
instance, Dautray and Lions (1992) provide some fundamental results that are used here
in parts. Regarding partial integro-differential equations arising in finance Matache et al.
(2004) derive a weak formulation of a slightly different problem.
First, one makes the observation that the initial condition of (2.13) is not L2(R)-integrable

as D0(x) = max{1 − ex, 0} x→−∞−→ 1. So, we need to work with weighted function spaces.
Matache et al. (2004) have derived a variational formulation for the case of time-independent
coefficients for the backward PIDE, i.e. in the variables S and t, not K and T . This concept
will be extended to suit the Dupire-like forward PIDE with time- and space-dependent
coefficient functions.

Definition 3.1.1. (Weighted function spaces)

a) L2
−µ(R) := {v ∈ L1

loc(R) : v(·)e−µ|·| ∈ L2(R)}
with inner product 〈v, w〉L2

−µ
:=
∫
R v(x)w(x)e−2µ|x|dx,

b) H1
−µ(R) := {v ∈ L1

loc(R) : v(·)e−µ|·|, v′(·)e−µ|·| ∈ L2(R)}
with inner product 〈v, w〉H1

−µ
:= 〈v, w〉L2

−µ
+ 〈v′, w′〉L2

−µ
.

Remark 3.1.2. Together with their induced norms (|| · || :=
√
〈·, ·〉) the spaces in definition

3.1.1 are Hilbert spaces.

It is clear thatD0(·) ∈ H1
−µ(R) for all µ > 0. Now, we motivate the variational formulation

of (3.1) in the following lines. First we multiply the PIDE by w(x)e−2µ|x| and integrate over

24

3.1 Weak Formulation of the PIDE

R, where µ > 0 and w is an arbitrary function in C∞0 (R).∫
R

DT (T, x)w(x)e−2µ|x|dx−
∫
R

σ2(T, x)
2 Dxx(T, x)w(x)e−2µ|x|dx

+
∫
R

(
r(T) + σ2(T, x)

2 − λζ
)
Dx(T, x)w(x)e−2µ|x|dx

+
∫
R

λ(1 + ζ)D(T, x)w(x)e−2µ|x|dx− λ
∫
R

∫
R

D(T, x− y)w(x)e−2µ|x|eyf(y)dy dx = 0.

If the second term of this equation is integrated by parts, we obtain the following equation∫
R

DT (T, x)w(x)e−2µ|x|dx+ a−µ(T ;D(T, ·), w(·)) = 0,

where the bilinear form a−µ is defined as:

Definition 3.1.3. (Bilinear form a−µ)
Let λ, ζ be given constants and assume that r(T), σ(T, ·), σ(T, ·)x are continuous and bounded
functions on R. For each constant µ > 0 and T > 0 the bilinear form

a−µ(T ; ·, ·) : H1
−µ(R)×H1

−µ(R)→ R

is defined as

a−µ(T ; v, w) :=
∫
R

σ2(T, x)
2 v′(x)w′(x)e−2µ|x|dx (3.2)

+
∫
R

(
r(T) + σ2(T, x)

2 − λζ + (σ2(T, x))x
2 + σ2(T, x)µ sgn(x)

)
v′(x)w(x)e−2µ|x|dx

+
∫
R

λ(1 + ζ)v(x)w(x)e−2µ|x|dx− λ

∫
R

∫
R

v(x− y)w(x)e−2µ|x|eyf(y)dy dx,

where sgn(x) denotes the sign-function.

Regarding the initial condition we proceed analogously:∫
R

D(0, x)w(x)e−2µ|x| dx =
∫
R

D0(x)w(x)e−2µ|x| dx.

We further introduce a space that is of interest in terms of existence and uniqueness of
solutions to the variational formulation:

Definition 3.1.4. (Solution space)
W ([a, b], V) :=

{
u : u ∈ L2((a, b), V), u′ ∈ L2((a, b), V ∗)

}
a, b ∈ R, where V is a Hilbert

space with its dual V ∗.

25

Chapter 3 Numerical Solution of the Calibration Problem

Hence the variational formulation of the PIDE (3.1) can be expressed in the following
form:

Definition 3.1.5. (Weak formulation of the PIDE)
The variational formulation of the PIDE (3.1) consists of finding D ∈W ([0, Tmax], H1

−µ(R))
such that for all T ∈ (0, Tmax]

d

dT
〈D(T, ·), w(·)〉L2

−µ
+ a−µ(T ;D(T, ·), w(·)) = 0 ∀ w ∈ H1

−µ(R) (3.3)

holds with initial condition

〈D(0, ·), w(·)〉L2
−µ

= 〈D0(·), w(·)〉L2
−µ
∀ w ∈ H1

−µ(R). (3.4)

Next we take care of the solvability of the problem above. For this purpose, we need to
introduce some assumptions on the coefficient functions.

Assumption 3.1. For each T ∈ [0, Tmax], let σ(T, ·) be continuously differentiable on R.
Furthermore, let r(·), σ(·, x) and σx(·, x) be uniformly Lipschitz-continuous functions in
the variable T with Lipschitz constants rlip, σlip, σx,lip. We assume that there are constants
rmax, σmin, σmax, σder satisfying

0 ≤ r(T) ≤ rmax ∀ T ∈ [0, Tmax],
0 < σmin ≤ σ(T, x) ≤ σmax ∀ (T, x) ∈ [0, Tmax]×R,

|σx(T, x)| ≤ σder ∀ (T, x) ∈ [0, Tmax]×R.

In the following theorem we prove that the bilinear form defined in definition 3.1.3 is
bounded and that Gårding’s inequality holds. For this to hold, we further need an assumption
on the asymptotic decay of the function f .

Assumption 3.2. For some µ > 0 assume that
∫
R

ey+µ|y|yf(y) dy <∞.

Later we will show that this condition is usually satisfied for common choices of f in
finance.

Theorem 3.1.6. (Properties of a−µ)
If assumptions 3.1 and 3.2 hold, then there exist constants c1, c2 > 0 and c3 ∈ R independent
of T ∈ [0, Tmax], such that the following inequalities hold for the bilinear form (3.2):

a) Continuity: |a−µ(T ; v, w)| ≤ c1 ||v||H1
−µ
||w||H1

−µ
∀ T ∈ [0, Tmax]

b) Gårding inequality: a−µ(T ; v, v) + c3 ||v||2L2
−µ
≥ c2 ||v||2H1

−µ
∀ T ∈ [0, Tmax]

c) Lipschitz continuity in time:

|a−µ(T1; v, w)− a−µ(T2; v, w)| ≤ clip |T1 − T2| ||v||H1
−µ
||w||H1

−µ

∀ v, w ∈ H1
−µ, T1, T2 ∈ [0, Tmax]

26

3.1 Weak Formulation of the PIDE

Proof. In order to prove the continuity of the bilinear form, we estimate the terms in a−µ
separately. First,

∣∣∣ ∫
R

σ2(T, x)
2 v′(x)w′(x)e−2µ|x| dx

∣∣∣ ≤ σ2
max

2 ||v||H1
−µ
||w||H1

−µ
. (3.5)

If we set k1 = |rmax + σ2
max
2 + λζ + σmaxσder + µσ2

max|, we obtain for the next term of the
bilinear form:∣∣∣ ∫

R

(
r(T) + σ2(T, x)

2 − λζ + (σ
2(T, x)

2)x + σ2(T, x)µ sgn(x)
)
v′(x)w(x)e−2µ|x| dx

∣∣∣
≤ k1〈v′(x), w(x)〉L2

−µ
≤ k1||v′||L2

−µ
||w||L2

−µ
≤ k1||v||H1

−µ
||w||H1

−µ
. (3.6)

The two remaining terms are merged using 1 + ζ =
∫
R e

yf(y)dy (see remark 2.1.13)

g(v, w) :=λ
∣∣∣ ∫
R

(
(1 + ζ)v(x)w(x) −

∫
R

v(x− y)eyf(y) dy w(x)
)
e−2µ|x|dx

∣∣∣
= λ

∣∣∣ ∫
R

∫
R

(v(x)− v(x− y))eyf(y) dy w(x)e−2µ|x| dx
∣∣∣

= λ
∣∣∣ ∫
R

∫
R

1∫
0

v′(x− ξy) y dξ eyf(y) dy w(x)e−2µ|x| dx
∣∣∣.

We rearrange the order of integration, use the Cauchy-Schwarz inequality and a variable
transformation by introducing z = x− ξy

g(v, w) = λ
∣∣∣ 1∫

0

∫
R

∫
R

v′(x− ξy)w(x)e−2µ|x| dx y eyf(y) dy dξ
∣∣∣

≤ λ
∣∣∣ 1∫

0

∫
R

(∫
R

v′2(x− ξy)e−2µ|x| dx
)1/2
||w||L2

−µ
y eyf(y) dy dξ

∣∣∣
≤ λ

∣∣∣ ∫
R

(∫
R

v′2(z)e−2µ|z|e2µ|y| dz
)1/2
||w||L2

−µ
y eyf(y) dy

∣∣∣
≤ λ

∣∣∣ ∫
R

y eµ|y|+yf(y) dy||v′||L2
−µ
||w||L2

−µ

∣∣∣. (3.7)

By assumption 3.2 we can define a constant k2 =
∫
R e

y+µ|y|yf(y) dy and finally obtain

g(v, w) ≤ λk2||v′||L2
−µ
||w||L2

−µ
≤ λk2||v||H1

−µ
||w||H1

−µ
. (3.8)

Collecting the estimates from (3.5), (3.6) and (3.8) the continuity of the bilinear form is

27

Chapter 3 Numerical Solution of the Calibration Problem

proven

|a−µ(T ; v, w)| ≤
(σ2

max

2 + k1 + λk2
)
||v||H1

−µ
||w||H1

−µ
.

Next we prove Gårding’s inequality for the bilinear form. We estimate the first term by∫
R

σ2(T, x)
2 v′2(x)e−2µ|x| dx ≥ σ2

min

2

∫
R

v′2(x)e−2µ|x| dx

= σ2
min

2 ||v′||2L2
−µ

= σ2
min

2 ||v||2H1
−µ
− σ2

min

2 ||v||2L2
−µ
. (3.9)

Due to (3.6), (3.7) we obtain for the remaining terms∫
R

(
r(T) + σ2(T, x)

2 − λζ + (σ
2(T, x)

2)x + σ2(T, x)µ sgn(x)
)
v′(x)v(x)e−2µ|x| dx+

λ

∫
R

(
(1 + ζ)v(x)w(x) −

∫
R

v(x− y)eyf(y) dy v(x)
)
e−2µ|x|dx

≥ −(k1 + k2λ)||v′||L2
−µ
||v||L2

−µ
≥ −k

2
arb

4 ||v
′||2L2

−µ
− (k1 + k2λ)2

k2
arb

||v||2L2
−µ

≥ −k
2
arb

4 ||v||
2
H1
−µ
− (k1 + k2λ)2

k2
arb

||v||2L2
−µ

(3.10)

for an arbitrary constant karb > 0. If we choose karb = σmin, then the estimates (3.9) and
(3.10) lead to

a−µ(T ; v, v) ≥ σ2
min

4 ||v||2H1
−µ
−
((k1 + k2λ)2

σ2
min

+ σ2
min

2
)
||v||2L2

−µ
.

Finally, we address the Lipschitz continuity of the bilinear form. Similar to the proof of the
continuity we divide the bilinear form into three different parts. Since the term g(v, w) is
independent of time, it can be ignored. For the next term we obtain

∣∣∣ ∫
R

σ2(T1, x)− σ2(T2, x)
2 v′(x)w′(x)e−2µ|x| dx

∣∣∣ ≤ |T1 − T2|
σlipσmax

2 ||v||H1
−µ
||w||H1

−µ
, (3.11)

where σlip is the Lipschitz constant of σ(·, x). The remaining term can be treated analo-
gously:

∣∣∣ ∫
R

((
r(T1) + σ2(T1, x)

2 − λζ + (σ
2(T1, x)

2)x + σ2(T1, x)µ sgn(x)
)

−
(
r(T2) + σ2(T2, x)

2 − λζ + (σ
2(T2, x)

2)x + σ2(T2, x)µ sgn(x)
))
v′(x)w(x)e−2µ|x| dx

∣∣∣

28

3.1 Weak Formulation of the PIDE

≤ |T1 − T2|(rlip + σlipσmax + σlipσder + σx,lipσmax + 2σlipσmaxµ) ||v||H1
−µ
||w||H1

−µ
, (3.12)

which completes the proof. �

It is well-known that the boundedness of a−µ together with the weak coercivity yields the
existence of a unique solution of the variational equality.

Theorem 3.1.7. (Existence and Uniqueness of a weak solution)
If assumptions 3.1 and 3.2 hold, then there exists a unique solution D ∈W ([0, Tmax], H1

−µ(R))
of the problem specified in definition 3.1.5.

Proof. Under the given assumptions, we can define a new bilinear form on L2
−µ

ã−µ(T ; v, w) = a−µ(T ; v, w) + c3〈v, w〉L2
−µ
,

which satisfies all the assumptions on the boundedness, the coercivity and Lipschitz conti-
nuity as spelled out previously.
According to theorem 3.1.6 this bilinear form is uniformly bounded and coercive on the

Hilbert space H1
−µ. Further notice that the function spaces V = H1

−µ and H = L2
−µ form a

Gelfand triple with dense embeddings (V ↪→ H = H∗ ↪→ V ∗). By Dautray and Lions (1992,
pp. 509 ff.) there exists a unique solution D̃ ∈ W ([0, Tmax], H1

−µ(R)) of the variational
equality for all T ∈ (0, Tmax]

d

dT
〈D̃(T, ·), w(·)〉L2

−µ
+ ã−µ(T ; D̃(T, ·), w(·)) = 0 ∀ w ∈ H1

−µ(R) (3.13)

with initial condition

〈D̃(0, ·), w(·)〉L2
−µ

= 〈D0(·), w(·)〉L2
−µ
∀ w ∈ H1

−µ(R). (3.14)

Then it is easy to verify that
D(T, x) = e−c3T D̃(T, x)

satisfies the desired variational equality (3.3) with initial condition (3.4). �

Note that the coefficient functions σ(T, x) and r(T) (assumption 3.1) or the bilinear form
(theorem 3.1.6 c)), respectively, do not need to be Lipschitz continuous in time to show the
result above. The Lipschitz continuity will be of importance later on.
After the existence and uniqueness of a weak solution of the PIDE has been shown, we

return to assumption 3.2 and show that this requirement is not too restrictive since it is
fulfilled by several popular models (see example 2.1.8).

Remark 3.1.8. The following models specified by the functions f(y) defined below satisfy
the requirement

∫
R e

y+µ|y|yf(y) dy <∞.

a) Merton (1976): f(y) = 1√
2πσM

exp
{
− (y − µM)2

2σ2
M

}
,

b) Kou (2002): f(y) = p λ+ e−λ
+y 1{y≥0} + (1− p) λ− eλ−y 1{y<0}

with λ+ > 1, λ− > 0 and p ∈ [0, 1].

29

Chapter 3 Numerical Solution of the Calibration Problem

Proof. Regarding the Merton model, the finiteness of the integral term is clear since we have
a (shifted) −y2-term in the density function.
For the proof in the case of the Kou model, we divide the integral into two terms. First,

for a given λ+ > 1 there is a µ > 0 sufficiently small, such that −λ+ + µ+ 1 < 0. Hence, we
obtain ∫ +∞

0
p λ+ e−λ

+yeµy+yy dy

∫ +∞

0
p λ+e(−λ++µ+1)yy dy <∞.

For the other half of the integration interval, let µ > 0 be small enough such that λ−−µ+1 >
0, which can be achieved since λ− > 0 by assumption. Then∫ 0

−∞
(1− p) λ− eλ−ye−µy+yy dy =

∫ 0

−∞
(1− p) λ−e(λ−−µ+1)yy dy <∞.

�

Note that infinite activity models like Variance Gamma or CGMY with σ = 0 do not fit
the theory presented here and need to be analyzed differently.

Localization

For a numerical solution, the infinite space domain has to be restricted. For this process,
which is often called ‘localization’ in literature, the behavior of the solution at the boundaries
has to be studied. We do this from an economical point of view. When we want to know,
how the transformed call price D(T, x) acts for x very small or very large, respectively, we
better think about the behavior of D̃(T,K) before the variable transformation, where K is
close to zero or K is large. Since there is a no-arbitrage assumption in our model, the price
of a call is equal to the value of a perfect hedge. So, if the strike K is close to zero and in
particular much smaller than the current underlying price, then the probability for the call
holder to exercise the call option is close to one. Therefore, the call issuer will most likely
have to deliver the underlying. To hedge his risk when the contract is concluded at t0 = 0,
he needs to buy an underlying for the price S0. When the call option is exercised at maturity
T , the issuer receives the (small) strike price K, which is worth Ke−

∫ T
0 r(τ)dτ – discounted

with the given interest rate r – today. Thus, the value of the hedge or the price of the call
option, respectively, is D̃(T,K) K→0−→ S0 −Ke−

∫ T
0 r(τ)dτ .

On the other hand, if the strike price K is very large compared to the current underlying
price, the probability for the underlying to reach the strike tends to zero. So, the probable
payoff of our call as well as the corresponding price is zero or – written mathematically –
D̃(T,K) K→+∞−→ 0. Given a small lower bound x, a large upper bound x and the variable
transformation x = ln

(
K
S0

)
, we get

D(T, x) ≈ 1− exe−
∫ T

0 r(τ)dτ , D(T, x) ≈ 0. (3.15)

In the case of a PDE, these values would be used as Dirichlet boundary conditions for [x, x]
and error estimates could be derived using the maximum principle. Due to the additional

30

3.1 Weak Formulation of the PIDE

integral term, which is nonlocal, we need information on the domain {z = x − y : x ∈
[x, x], y ∈ supp(f)}, where f is the density function of the jump sizes that typically has
support supp(f) = R. Hence, the boundaries have to be defined not only for the points x
and x but on the intervals (−∞, x] and [x,∞). Also error estimates get more complicated.
If Db(T, x) ∈ W ([0, Tmax], H1

−µ) denotes a function fulfilling the boundary conditions
(3.15) on (−∞, x] and [x,∞), respectively, it is easy to verify that the weak formulation
(3.3), (3.4) can be transformed in the following way.

Lemma 3.1.9. Let Db(T, x) ∈ W ([0, Tmax], H1
−µ) be given as described above. Further, let

Dh ∈W ([0, Tmax], H1
−µ(R)) be the solution of

d

dT
〈Dh(T, ·), w(·)〉L2

−µ
+ a−µ(T ;Dh(T, ·), w(·)) = L−µ(T ; w(·)) ∀ w ∈ H1

−µ(R) (3.16)

with initial condition

〈Dh(0, ·), w(·)〉L2
−µ

= 〈Dh
0 (·), w(·)〉L2

−µ
∀ w ∈ H1

−µ(R), (3.17)

where L−µ(T ; ·) := − d
dT 〈D

b(T, x), ·〉L2
−µ
− a−µ(T ;Db(T, x), ·) ∈ (H1

−µ(R))∗ ∀ T ∈ (0, Tmax]
and Dh

0 (·) := D0(·)−Db(0, ·).
Then D(T, x) := Dh(T, x) +Db(T, x) solves (3.3), (3.4).

The superscript h indicates homogeneous boundary conditions, i.e. that Dh tends to zero
for x→ ±∞. Hence, a localized approximation to the problem above can be defined on the
Sobolev space H1

0 (x, x) as follows.

Definition 3.1.10. (Localized problem)
A localized variational formulation of the PIDE (3.1) consists of finding a function D̄ ∈
W ([0, Tmax], H1

0 (x, x)) such that for all T ∈ (0, Tmax]

d

dT
〈D̄(T, ·), w(·)〉L2 + a(T ; D̄(T, ·), w(·)) = L(T ; w(·)) ∀ w ∈ H1

0 (x, x) (3.18)

holds with initial condition

〈D̄(0, ·), w(·)〉L2 = 〈Dh
0 (·), w(·)〉L2 ∀ w ∈ H1

0 (x, x), (3.19)

where a(T ; ·, ·) : H1
0 (x, x)×H1

0 (x, x)→ R denotes the restriction of a0(T ; v, w) for functions
v, w with v(x) = w(x) = 0 ∀ x ∈ R\(x, x). Analogously L(T ; ·) : H1

0 (x, x) → R is defined
via L0(T, ·).

Note that (D0(·)−Db(0, ·))
∣∣
(x,x) ∈ H

1
0 (x, x) by definition of Db. At this point, it further

has to be stressed that the linear operator L−µ is well-defined for µ = 0, what is not so
obvious at first sight. But due to the specific definition of the function Db at the boundary,
the time and the spatial derivatives as well as the application of the integral term lead to
exponentially decreasing functions for x→ ±∞, which are L2(R)-integrable.

Remark 3.1.11. (Localization error)
It is clear that the localization leads to an approximation error. Noting that the artificial

31

Chapter 3 Numerical Solution of the Calibration Problem

boundaries above are identical to the initial condition D0(x) if r = 0 in our case, we at least
can give a reference for a proof of an exponentially decreasing localization error. Namely,
for the backward PIDE case, Matache et al. (2004) assume r = 0, use the initial condition
to restrict the spatial domain and show an exponential rate of convergence for increasing
boundaries.

The problem defined in (3.18) and (3.19) is discretized in the next section.
Prior to this we notice that (3.18) and (3.19) can be rewritten in vectorial form providing

some advantages in terms of a simpler notation.

Remark 3.1.12. (Vectorial problem formulation)
Defining V := H1

0 (x, x), there exist unique operators A(T) ∈ L(V, V ∗) and l(T) ∈ V ∗

(T ∈ (0, Tmax]) such that (3.18) and (3.19) can be rewritten as

ẏ(T) +A(T)y(T) = l(T) ∀ T ∈ (0, Tmax]
y(0) = Dh

0

in the sense of L2(V ∗).

3.2 Discretization of the PIDE

The discretization of the system described in definition 3.1.10 is the focus of this section.
For this purpose we use the method of lines. To be more precise, the spatial variable or the
function space H1

0 (x, x), respectively, is discretized by a finite dimensional function space
and the resulting system of ordinary differential equations is discretized by implicit finite
difference methods. The dense linear systems of equations of the fully discretized system are
solved via a preconditioned GMRES algorithm with an overall complexity of O(ntnx log2 nx),
an approach not used in this context so far.

3.2.1 Spatial Discretization

The separable Hilbert space H1
0 (x, x) is to be approximated by a finite element space. This

approach is well-known in literature, Brenner and Scott (2008), Larsson and Thomée (2003)
or Dautray and Lions (1992) can be mentioned here for fundamentals.

Definition 3.2.1. (Space of piecewise linear functions)
Let x =: x0 < x1 < . . . < xnx+1 := x be an equidistant partition of (x, x) with ∆x = xi+1−xi
(i = 0, . . . , nx). Then Hnx := span{Φ1, . . . ,Φnx} with

Φi(x) =


∆x−1(x− xi−1) , xi−1 ≤ x ≤ xi
∆x−1(xi+1 − x) , xi < x ≤ xi+1

0 , else,

i = 1, . . . , nx, is called the space of piecewise linear functions.

32

3.2 Discretization of the PIDE

Now the Φi are used as trial and test functions in (3.18), (3.19), i.e.

D̄(T, x) ≈
nx∑
i=1

αi(T)Φi(x).

The coefficient functions αi(·) are to be determined. The semi-discretized problem can then
be described as follows:

Definition 3.2.2. (Semi-discretized problem)
Given the Galerkin approximation Hnx to H1

0 (x, x) as described above, the semi-discretized
solution to (3.18) and (3.19) consists of finding αi(·) ∈ H1([0, Tmax]) (i = 1, . . . , nx) such
that for all T ∈ (0, Tmax]

nx∑
i=1

α̇i(T)〈Φi,Φj〉L2 +
nx∑
i=1

αi(T)a(T ; Φi,Φj) = L(T ; Φj) ∀ j = 1, . . . , nx (3.20)

holds with initial condition
nx∑
i=1

αi(0)〈Φi,Φj〉L2 = 〈Dh
0 ,Φj〉L2 ∀ j = 1, . . . , nx. (3.21)

Remark 3.2.3. (3.20), (3.21) can be written in equivalent matrix form as

Mα̇(T) +A(T)α(T) = L(T) , T ∈ (0, Tmax] (3.22)
Mα(0) = B,

where M ∈ Rnx×nx with Mji = 〈Φi,Φj〉L2, A ∈ Rnx×nx with Aji(T) = a(T ; Φi,Φj),
L(T), B, α(T) ∈ Rnx with L(T) = L(T ; Φj) and Bj = 〈Dh

0 ,Φj〉L2, resp. (i, j = 1, . . . , nx).

After the spatial discretization, the problem to solve, (3.22), is a linear system of differ-
ential equations of first order. Before these ODEs are discretized in time, we take a closer
look at the matrices occurring in remark 3.2.3 since their structure is determining for the
computational effort.
Using an equidistant grid with step size ∆x in definition 3.2.1, the mass matrix M is a

symmetric, tridiagonal matrix with

Mii = 2
3∆x, Mi,i+1 = Mi+1,i = 1

6∆x,

which has nice numerical properties. For instance, matrix-vector products with general
tridiagonal matrices and their memory capacity are of complexity O(nx). The tridiagonal
structure is due to the local support of the basis functions Φi.
The time-dependent stiffness matrix A(T) turns out to be more complicated. For a better

analysis we split A(T) into two parts. The time-independent part AI containing the terms
resulting from the double integral in the bilinear form and the rest called ANI(T):

A(T) = ANI(T) +AI . (3.23)

33

Chapter 3 Numerical Solution of the Calibration Problem

It is well-known that the matrix ANI(T) is of tridiagonal structure, too, since it is the
discretization of the convection-diffusion term. For σ(T, x) depending on x an appropriate
numerical integration has to be used.
In order to get an idea of how the entries of ANI(T) look like, you find below the result

for the simplest Gaussian integration on intervals [xi, xi+1]:

ANIii (T) = (1
2∆x + 1

2)(σ2
i−1(T) + σ2

i (T)) + 1
2(σ2

x,i−1(T) + σ2
x,i(T)) + 2

3λ(1 + ζ),
ANIi,i+1(T) = − 1

2∆xσ
2
i (T) + 1

2(r(T) + 1
2σ

2
i (T)− λζ + 1

2σ
2
x,i(T)) + 1

6∆xλ(1 + ζ), (3.24)
ANIi+1,i(T) = − 1

2∆xσ
2
i (T)− 1

2(r(T) + 1
2σ

2
i (T)− λζ + 1

2σ
2
x,i(T)) + 1

6∆xλ(1 + ζ),

where σ2
i−1(T) := σ2(T, xi−1 + ∆x

2) and σ2
x,i−1(T) := (σ2(T, xi−1 + ∆x

2))x.
Unfortunately, the matrix AI is not of sparse type, at least not in the sense that most

entries are equal to zero. But it has a special structure called ‘Toeplitz’.

Definition 3.2.4. (Toeplitz matrix)
A matrix T ∈ Rn×n is called Toeplitz matrix if Tij = tj−i (i, j = 1, . . . , n) and t−n+1, . . . , tn−1 ∈
R, thus:

T =


t0 t1 · · · tn−1

t−1
.

... t1
t−n+1 · · · t−1 t0

.

Remark 3.2.5. The computational effort of a matrix-vector multiplication with a Toeplitz
matrix is of complexity O(n log2 n) using fast Fourier transformation (FFT) (cf. Golub and
van Loan (1996)). The memory capacity is O(n) since only the first column and the first
row have to be stored. This can be interpreted as a different kind of sparsity.

Regarding matrix AI , there is the following result:

Remark 3.2.6. For equidistantly distributed grid points, the matrix AI with its entries

AIij = −λ
xi+1∫
xi−1

x−xj−1∫
x−xj+1

Φj(x− y)Φi(x)eyf(y)dy dx. (3.25)

has Toeplitz structure.

Proof. Using the variable transformation x̄ = x −∆x in (3.25) and the fact that Φi+1(z +
∆x) = Φi(z) for equidistantly distributed grid points, it is easy to show that AIij = AIi+1,j+1.
�

SinceAI has Toeplitz structure, a matrix-vector product can be calculated withO(nx log2 nx)
flops (remark 3.2.5). However, the matrix usually has no zero entries. This is due to the
translation in Φj(x − y) and the inner integral, and the fact that the density function f(·)
in general has supp(f) = R. Therefore the equidistant grid, which leads to the Toeplitz
structure, is essential to keep the computational cost manageable.

34

3.2 Discretization of the PIDE

The double integrals in (3.25) have to be approximated via numerical integration. The
two-dimensional area can be divided into four different squares of size ∆x ×∆x, where we
again use Gaussian quadrature of order one. For example, denoting g(y) := eyf(y) we get∫ xi
xi−1

∫ x−xj
x−xj+1 Φj(x− y)Φi(x)eyf(y)dy dx ≈ 1

4g((i− j − 1)∆x) and thus:

AIij = −λ∆x2

4

(
g
(
(i− j − 1)∆x

)
+ 2g

(
(i− j)∆x

)
+ g

(
(i− j + 1)∆x

))
.

Numerical results have shown that a higher order integration does not lead to an improve-
ment of the results.
Although AI has Toeplitz structure and ANI(T) is sparse, the matrix A(T) = ANI(T)+AI

has neither of the two properties since the space-dependent volatility function destroys the
constancy on the diagonals in ANI(T). Thus A(T) is a dense matrix, what has to be taken
into account in the further numerical solution. However, using the splitting above a matrix-
vector-product can be realized in O(nx log2 nx) flops as will be discussed further below.
At this point, the work of Matache et al. (2004) has to be mentioned. In their numerical

solution of the backward PIDE, they propose a different spatial discretization using special
wavelet basis functions instead of the finite element basis functions, which are used above.
That way, they are able to reduce the number of nonzero elements in their stiffness matrix
to O(nx log2 nx) by ignoring very small values, leading to the same complexity regarding
matrix-vector multiplications as the approach using Toeplitz matrices.
Before proceeding with the time discretization of (3.22), just note that the inhomogeneous

term F (T) := F (T ; Φj) involves integrals that are not restricted to a bounded interval:

−λ
xi+1∫
xi−1

+∞∫
x−x

Db(x− y)Φj(x)eyf(y) dy dx.

and therefore need a special treatment by, e.g., a variable transformation.

3.2.2 Time Discretization

For the discretization of the initial value problem, (3.22), in time, schemes of the θ-method
are used. Given an ordinary differential equation ẏ(t) = f(t, y(t)) with initial condition
y(0) = y0 and θ ∈ [0, 1], the discretization via a θ-method is given by:

yk+1 − yk
∆t = θf(tk+1, yk+1) + (1− θ)f(tk, yk), (3.26)

where ∆t is the step size, tk := k∆t and yk ≈ y(tk). Special cases are the forward Euler
(θ = 0), the backward Euler (θ = 1) and the Crank-Nicolson method (θ = 0.5), where all
methods with θ 6= 0 are implicit. In general, we use the Crank-Nicolson method, the implicit
Euler scheme or – as we will see – a combination of both. After the time discretization is
introduced, the fully discretized system can be specified:

Definition 3.2.7. (Fully discretized problem)
Given θ ∈ [0, 1], Tk := k∆T (k = 0, . . . , nT) and TnT = Tmax. Then the fully discretized

35

Chapter 3 Numerical Solution of the Calibration Problem

solution to (3.22) consists of finding αk ∈ Rnx (k = 0, . . . , nT) such that(
M + ∆TθA(Tk+1)

)
αk+1 =

=
(
M −∆T (1− θ)A(Tk)

)
αk + ∆T

(
θF (Tk+1) + (1− θ)F (tk)

)
(3.27)

Mα0 = B. (3.28)

It is well-known that problem (3.22) is very stiff, so an unstable forward Euler method
would be restricted by a strong CFL condition. Among the stable schemes Crank-Nicolson
would be the method of choice regarding the error of the time discretization since the central
difference quotient is of order O(∆t2). But although it is A-stable, non-smooth initial
conditions often lead to oscillations. Rannacher (1984) proposes to use two half-time steps
of the strongly A-stable backward Euler scheme to smooth the initial condition and proceed
with Crank-Nicolson to preserve second order convergence. In Giles and Carter (2006), four
backward Euler full- or four quarter time steps are named as an alternative to the original
approach.
This Rannacher approach will be of special interest when we solve the adjoint equation,

which is introduced in section 3.3.
Regardless of whether (3.27) is solved for θ = 0.5 or θ = 1, the corresponding linear systems

of equations Ãx = b involve a dense matrix Ã. A direct solver would be of complexity O(n3
x).

Thus, in PIDE literature, there are primarily two sophisticated time discretization meth-
ods available that avoid the dense linear systems of equations in the context of financial
applications. Andersen and Andreasen (2000) use an alternating directions implicit (ADI)
method. Here, one time step is divided into two half-time steps. In the first half-time step
the sparse part is treated with an implicit Euler and the dense part with an explicit Euler.
In the second half-time step it is vice versa, i.e. explicit Euler is applied to the sparse part
and the implicit Euler to the dense part. In total, this leads to a computational cost of
O(nx lognx) if fast Fourier transformation is used to handle the dense part.
The second approach by Cont and Voltchkova (2005) or Briani et al. (2007) uses an

implicit-explicit (IMEX) splitting scheme, where the stiffness matrix is split into a sparse
and a dense part analog to (3.23). As already mentioned, a fully explicit method would be
restricted by a strong CFL condition, so the sparse part is treated implicitly and only the
dense part explicitly by a higher-order Runge-Kutta method. This weakens the restriction
on the time steps ∆T versus ∆x. An example would be the so-called Midpoint-122 rule
(cf. Briani et al. (2007)), which applies an explicit midpoint scheme to the integral and
convection terms and an implicit midpoint scheme to the sparse diffusion part. Stability
is guaranteed for ∆T = O(∆x4/3), but the CFL condition is not eliminated totally. The
Midpoint-122 and the ADI method lead to a second order convergence in time.
Despite these approaches to avoid the dense system, we will solve the discretization (3.27)

even for fully implicit methods. Of course, this can only be done by an iterative method and
will be topic of the next section.

3.2.3 Efficient Solution of the Fully Discretized PIDE

In (3.27), we need to solve a linear system of equations, Ãx = b, in each time step. In
general, the matrix Ã is not sparse because of the integral part in the stiffness matrix, and,

36

3.2 Discretization of the PIDE

as a consequence of the space-dependent volatility function, it is not Toeplitz and furthermore
not symmetric. At first sight, using an iterative method is not practicable, since matrix-
vector multiplications with Ã seem to be very expensive. But given the splitting of the
stiffness matrix A(T) (cf. (3.23)) a matrix vector product can be realized in O(nx log2 nx):

Ãx =
(
M + ∆TθA(Tk+1)

)
x = M x︸ ︷︷ ︸

O(nx)

+ ∆tθ
(
ANI(Tk+1) x︸ ︷︷ ︸

O(nx)

+ AI x︸ ︷︷ ︸
O(nx log2 nx)

)
.

Beside the references mentioned above, where the integral part is mostly treated explicitly,
Almendral and Oosterlee (2005) and Toivanen (2008) also work with fully implicit schemes.
They both use splitting techniques, e.g. the Jacobi-method or a tridiagonal splitting to solve
the systems iteratively.
In contrast, Sachs and Strauss (2008) use the conjugate gradient method to solve their

dense systems. However, this is not applicable here because the matrix Ã is not symmetric.
The main reason is the generally non-symmetric density function f(y). But even in the
special case of the Merton model, when µJ = 0 and therefore f(y) is symmetric, our Dupire-
like PIDE involves an additional factor ey destroying the symmetry.
For the solution of non-symmetric linear systems of equations Saad and Schultz (1986) pro-

posed the generalized minimum residual (GMRES) algorithm. Like the conjugate gradient
method for symmetric linear systems of equations, GMRES is an iterative Krylov subspace
method and only needs matrix-vector products Ãx. For details, we refer to the books of
Kelley (1995) and Saad (2003).
We will show some numerical results for the Merton jump-diffusion model using the fol-

lowing model constants and parameters:

x = −5, x = 5, Tmax = 2 y, r ≡ 3%, ∆T = 0.02, (3.29)
σ ≡ 30%, λ = 100%, µJ = 0%, σJ = 50%.

The condition number and the eigenvalue distribution of the system play an important role
with regard to the convergence speed. The second column of table 3.1 shows the condition
number of the matrix Ã for the setting above. κ2(Ã) grows quadratically to the inverse of
∆x, i.e. when the space step is halved, then the condition is quadruplicated. Figure 3.1(a)

∆x κ2(Ã) κ2(P−1Ã)

0.04 1.47 1.01
0.02 4.85 1.01
0.01 18.37 1.01
0.005 72.39 1.01
0.0025 288.42 1.01

Table 3.1: Condition number of the unpreconditioned (κ2(Ã)) and preconditioned sys-
tem (κ2(P−1Ã)) for different step sizes ∆x

shows the eigenvalue distribution of Ã for the cases nx = 500 and nx = 1000 (i.e. ∆x = 0.02
and ∆x = 0.01, resp.). Since Ã in general is not symmetric, complex eigenvalues may occur.

37

Chapter 3 Numerical Solution of the Calibration Problem

0 0.1 0.2

n
x
 = 1000

n
x
 = 500

(a) Unpreconditioned matrix Ã (top: nx = 1000, bottom: nx = 500)

0.99 0.995 1

n
x
 = 1000

n
x
 = 500

(b) Preconditioned matrix P−1Ã (top: nx = 1000, bottom: nx = 500)

Figure 3.1: Eigenvalue distribution of the preconditioned and unpreconditioned matrix
P−1Ã and Ã, resp., for different ∆x

In the examples shown here, the complex part is insignificantly small (< 10−13), thus, it
is omitted. We can see that the eigenvalues are distributed uniformly over an interval in
the unpreconditioned case. Increasing the number of discretization points, nx, leads to an
expansion of the interval and a reduction of the distance to the origin.
Having made these observations, it is clear that a preconditioner is needed. There are two

requirements for a preconditioner P . First, it has to approximate Ã in some sense, e.g. to
get ||I − P−1Ã|| < ρ < 1 for a left preconditioner. And second, the linear system Px = c
should be easy to solve. A matrix fulfilling these properties is P := M + ∆TθANI(Tk+1).
As mentioned above M and ANI(T) are tridiagonal matrices, thus, linear systems can be
solved in O(nx). It further is a good approximation to Ã as we can see in the numerical
results. Table 3.1 shows in the third column the condition number of the preconditioned
system P−1Ã. Note that it is close to one and seems to be mesh-independent. Regarding
the eigenvalues in figure 3.1(b), one makes the observation that they are clustering around
one and that their location is not influenced by a mesh refinement. Notice here the different
scalings in figure 3.1(a) and 3.1(b).
Beside these technical observations, the efficiency of the preconditioner is illustrated by

the numerical results in the next section.
There is one more thing to mention at this point, showing that it seems to be a good idea

to use an iterative method. Since we solve a parabolic problem, the solution in time step
Tk will not differ much from the solution in the last time step Tk−1. So this solution can be
taken as an excellent initial guess for the new linear system of equations.

38

3.2 Discretization of the PIDE

Figure 3.2: FE solution of the Merton model (highlighted in red: non-smooth initial
condition)

3.2.4 Numerical Results

This section presents some numerical results on the solution of the PIDE. For the conve-
nience of the reader, let us first sum up the numerical solution that has been presented in
the previous section. It can be divided into three parts:

a) Space discretization: finite element method with equidistantly distributed basis func-
tions.
b) Time discretization: Crank-Nicolson method with Rannacher smoothing (the first

Crank-Nicolson step is replaced by four implicit Euler quarter steps).
c) The dense linear systems of equations Ãx = b in each time step are solved with the

GMRES method; the sparse part of Ã is used as a preconditioner.

Figure 3.2 shows a typical solution of the PIDE (3.1), where the parameter setting is the
same as specified in (3.29) in the last section with nx = 2000 and nT = 200. At T = 0, the
non-smooth initial condition D0(x) = max{1−ex, 0} is highlighted in red. Since we consider
a parabolic problem, the non-differentiable point at x = 0 is smoothed out in time. In the
parameter setting we use a constant volatility σ(·, ·) ≡ 30%, so we are able to compare the
numerical results of the Merton model with the closed-form solution introduced in remark
2.1.9 in this particular case.
Figure 3.3(a) shows the corresponding error of the finite element solution with an ordinary

Crank-Nicolson time discretization. As expected, there are oscillations due to the non-
smooth initial condition. If we replace the first Crank-Nicolson step by four implicit Euler
quarter steps, i.e. applying the Rannacher smoothing, the result illustrated in figure 3.3(b)
produce a far better approximation, especially at x = 0, a region of great importance in
practical applications. Note that the additional computational effort is negligible. Tables
3.2 and 3.3 support the observations of figure 3.3. They show the error between a numerical
solution with Crank-Nicolson and Rannacher time-stepping, respectively, and the closed-
form solution for Merton’s model. The L∞- and L2-error is evaluated at the time instances

39

Chapter 3 Numerical Solution of the Calibration Problem

(a) Error of Crank-Nicolson method (b) Error with Rannacher smoothing (four
quarter steps)

Figure 3.3: Error between FE solution and closed-form solution for the Merton model
(∆x = 0.005, ∆T = 0.01)

discretization L∞(Ω)-error L2(Ω)-error
∆x ∆T T = 1 ratio T = 2 ratio T = 1 ratio T = 2 ratio

0.00125 0.08 2.20e-3 1.51e-3 1.73e-4 1.06e-4
0.04 1.01e-3 2.2 6.51e-4 2.3 6.26e-5 2.8 3.73e-5 2.8

0.02 4.13e-4 2.4 2.50e-4 2.6 2.21e-5 2.8 1.31e-5 2.8

0.01 1.41e-4 2.9 8.45e-5 3.0 7.63e-6 2.9 4.24e-6 3.1

Table 3.2: L2(Ω)- and L∞(Ω)-error (for T = 1 and T = 2) between finite element solution
with Crank-Nicolson and closed-form solution for different time step sizes ∆T
and fixed ∆x

T = 1 and T = 2 on the spatial domain Ω = [−3, 3]. The columns captioned by ‘ratio’
show the factor of decrease in the error when the number of discretization steps in time
is doubled. It is observable that the Crank-Nicolson method does not show a quadratic
convergence what would be indicated by a ratio of four. However, this ratio can be found in
table 3.3 for the Rannacher smoothing.
Since we want to know whether the method proposed above is competitive, the Midpoint-

122-scheme (cf. Briani et al. (2007)) has been implemented and table 3.4 contains the
according results. The spatial step size ∆x is kept fixed at a fine level to achieve that the
errors are mainly caused by the time discretization. The first two columns show the step
sizes in space and in time. The next four columns focus on different errors. Again, we
set Ω = [−3, 3] and take a look at the L2(Ω)- and the L∞(Ω)-error at the time instances
T = 1 and T = 2. The last column shows the computational time required for solving one
PIDE. The first thing to mention is the divergence for large time steps ∆T , because the CFL
condition ∆T = O(∆x4/3) is violated. If the step size is refined, the method converges up to
sufficiently small errors. Table 3.5 is designed in the same way, but now the Crank-Nicolson
method with Rannacher smoothing is used instead of the IMEX-scheme. Note that the error
tolerance of the GMRES method is set to 10−8. As expected, the numerical results show

40

3.2 Discretization of the PIDE

discretization L∞(Ω)-error L2(Ω)-error
∆x ∆T T = 1 ratio T = 2 ratio T = 1 ratio T = 2 ratio

0.00125 0.08 2.39e-5 1.11e-5 2.48e-5 1.37e-5
0.04 6.41e-6 3.7 2.77e-6 4.0 6.41e-6 3.9 3.42e-6 4.0

0.02 1.63e-6 3.9 6.79e-7 4.1 1.61e-6 4.0 8.58e-7 4.0

0.01 4.24e-7 3.8 1.59e-7 4.3 4.14e-7 3.9 2.21e-7 3.9

Table 3.3: L2(Ω)- and L∞(Ω)-error (for T = 1 and T = 2) between finite element solution
with Rannacher smoothing and closed-form solution for different time step
sizes ∆T and fixed ∆x

discretization L∞(Ω)-error L2(Ω)-error effort
∆x ∆T T = 1 T = 2 T = 1 T = 2 Time (sec.)

0.0025 0.02 2.05e+1 2.94e+6 1.95e+0 3.53e+5 0.26
0.01 6.27e-2 3.04e+1 6.95e-3 4.41e+0 0.48
0.005 1.27e-4 1.94e-4 1.62e-5 2.99e-5 0.95
0.0025 7.44e-8 1.89e-7 6.10e-8 2.22e-7 1.86

Table 3.4: Computing times and L2(Ω)- and L∞(Ω)-error (for T = 1 and T = 2) between
finite element solution with Midpoint-122 rule and closed-form solution for
different time step sizes ∆T and fixed ∆x

the quadratic convergence O(∆T 2) in time.
The next to last column shows the computational time and we observe that the method

is competitive compared to the Midpoint-122-scheme and, in contrast to the IMEX-scheme,
there is convergence even for a coarse time grid.
The last column of the table shows the average number of GMRES iterations per time

step. The algorithm needs about four iterations on a coarse time grid. When the time grid
is refined, the initial guess of the GMRES method gets better, and the number of iterations
can be reduced to an average of three although the linear systems of equations in each time
step have size 4000× 4000 for ∆x = 0.0025.
After having studied the time discretization, we now turn to the spatial variable. Table

3.6 shows the corresponding results. Now, the step size in time, ∆T , is kept fixed at a fine

discretization L∞(Ω)-error L2(Ω)-error effort
∆x ∆T T = 1 T = 2 T = 1 T = 2 Time(sec.) Øiter

0.0025 0.04 6.47e-6 2.70e-6 6.46e-6 3.43e-6 0.48 4.2
0.02 1.69e-6 6.35e-7 1.66e-6 8.89e-7 0.87 3.8
0.01 4.88e-7 2.37e-7 4.62e-7 3.08e-7 1.61 3.0
0.005 1.86e-7 1.89e-7 1.69e-7 2.25e-7 3.16 3.0

Table 3.5: Computing times, Ø-GMRES iterations per time step and L2(Ω)- and L∞(Ω)-
error (for T = 1 and T = 2) between finite element solution with Rannacher
smoothing and closed-form solution for different time step sizes ∆T and fixed
∆x

41

Chapter 3 Numerical Solution of the Calibration Problem

discretization L∞(Ω)-error L2(Ω)-error effort
∆x ∆T T = 1 T = 2 T = 1 T = 2 Time(sec.) Øiter

0.04 0.005 2.18e-5 4.60e-5 2.05e-5 5.46e-5 0.38 2.3
0.02 5.54e-6 1.18e-5 5.23e-6 1.38e-5 0.55 2.7
0.01 1.46e-6 2.99e-6 1.37e-6 3.46e-6 0.88 3.0
0.005 4.42e-7 7.53e-7 4.03e-7 8.70e-7 1.52 3.0
0.0025 1.86e-7 1.89e-7 1.69e-7 2.25e-7 3.16 3.0

Table 3.6: Computing times, Ø-GMRES iterations per time step and L2(Ω)- and L∞(Ω)-
error (for T = 1 and T = 2) between finite element with Rannacher smoothing
and closed-form solution for different spatial step sizes ∆x and fixed ∆T

level and ∆x is varied. Taking a look at the errors in columns three to six, the quadratic
convergence in space, O(∆x2), is observable. The number of average GMRES iterations in
the last column imply the mesh-independence of the preconditioned linear systems resulting
in a linear growth of the computing times for refined meshes.
Hence, after the numerical solution of the PIDE has been derived and the numerical results

have shown the efficiency of the implementation, we now study the optimization problem.

3.3 Solving the Optimization Problem
The proper calibration of the parameters occuring in the PIDE discussed in the last section is
of great importance in practice. We recall the optimization problem under a PIDE constraint
introduced in definition 2.2.1:

min
D̃,σ,λ,f

J(D̃, σ, λ, f) := 1
2

M∑
i=1

(
D̃(Ti,Ki)−DM

i

)2
(3.30)

s.t. D̃T −
1
2σ

2(T,K)K2D̃KK + (r(T)− λζ)KD̃K + λ(1 + ζ)D̃

− λ
+∞∫
−∞

D̃(T,Ke−y)eyf(y) dy = 0,

(T,K) ∈ [0, Tmax)× (0,∞)

D̃(0,K) = max{S0 −K, 0}, K ∈ (0,∞).

The problem is a so-called optimal control problem. There is a vast literature on this topic
– for a basic introduction we refer to, e.g., Lions (1971), Hinze et al. (2009) or Tröltzsch
(2010) – and there are also several ways to handle the problem from a numerical point
of view. In the context of option pricing models, we mention Düring et al. (2008), where
sequential quadratic programming is used to solve the constrained optimization problem.
A different way of handling it is to transform it into an unconstrained problem, what can
be done because the PIDE constraint is uniquely solvable. This unconstrained problem can
then be minimized by a gradient-based method. Achdou and Pironneau (2005) provide an

42

3.3 Solving the Optimization Problem

introduction to this topic and further references.
In this thesis, we follow the latter approach, but before we solve the calibration problem

numerically, we rewrite it in a more abstract way, in which the PIDE is replaced by its weak
formulation according to remark 3.1.12. For instance, the spaces L2 and H1

0 are replaced
by general Hilbert spaces H and V and so on, such that the following results may also
be applied to other optimal control problems with parabolic constraints. Further, this has
some advantages in terms of a more simple notation. For this purpose, we first define some
operators.
We denote by V and H two real, separable Hilbert spaces with V ↪→ H = H∗ ↪→ V ∗, and

by U , a suitable closed, convex subset of a Hilbert space U , the space of control variables.
For a fixed but arbitrary control u ∈ U and time t ∈ [0, T], A(u; t) ∈ L(V, V ∗) is a time-
and control-dependent elliptic operator, which is Fréchet-differentiable with respect to the
control variable u. The Fréchet derivative is denoted by A′(u; t). Analog, we write for the
right-hand side of the equation l(u; t) ∈ V ∗ for all u ∈ U and t ∈ [0, T] with corresponding
Fréchet derivative l′(u; t).
Market data di ∈ H are available at certain maturities t̂i, i = 1, . . . , D, where H is a

Hilbert space with H∗ = H. For instance, H = R5 if we have data available for five strike
prices at maturity t̂i. We assume t̂i < t̂j for i < j and define t̂0 = 0 and t̂D = T . C ∈ L(H,H)
denotes the observation operator.
Given this setting we can define an abstract optimal control problem.

Definition 3.3.1. (Constrained optimization problem)
For given market data di at t̂i (i = 1, . . . , D), find solutions y ∈ W ([0, T], V) and u ∈ U ,
which satisfy

min
y∈W,u∈U

J(y, u) := 1
2

D∑
i=1
||Cy(t̂i)− di||2H + α

2 ||u||
2
U (3.31)

s.t. ẏ(t) +A(u; t)y(t)− l(u; t) = 0 , t ∈ (0, T]
y(0) = y0.

Although this is not the main topic of this thesis, we add a simple regularization term
to the objective function in the problem formulation above, just to make clear that such a
term – in this form or probably a more complicated one – usually can not be neglected in
applications.
We briefly want to discuss how the problem (3.30) fits in this abstract setting. As it has

been already discussed in section 3.1, the PIDE in its weak formulation can be transformed
as desired (cf. remark 3.1.12). Setting the function spaces H = L2(x, x) and V = H1

0 (x, x),
then the pointwise observations in (3.30) turn out to be a challenge as C is assumed to be in
L(L2,H). To stress that our problem (3.30) can, however, be written in this abstract form
above, we need to take care of this issue.

Remark 3.3.2. (Pointwise observations)
In (3.30), the objective function involves pointwise observations. Assuming H = R1 – i.e.
market data is given for only one strike price x̂ at maturity t̂i –, then the observation operator
C would include a Dirac delta function, which is known to be not L2-integrable. To avoid the

43

Chapter 3 Numerical Solution of the Calibration Problem

involvement of distribution theory, we address the numerical approximation of C already at
this stage and interpret C as an L2-approximation, δ∆x

x̂ , of the Dirac delta function. Scott
(1973) proposed and analyzed a concrete representation that is equivalent to δx̂ for a finite
element space Hnx in the sense that 〈δ∆x

x̂ , v〉L2 = δx̂(v), v ∈ Hnx. We have in this special
case

Cv = 〈δ∆x
x̂ , v〉L2 , v ∈ L2,

C∗z = δ∆x
x̂ z, z ∈ R.

Note that – although it is not indicated in the following – C depends on ∆x in this case.

Since the bilinear form A(u; t) is assumed to be coercive and continuous, it is clear that for
every u ∈ U , the parabolic constraint admits a unique solution y(u; ·) ∈W ([0, T], V). Hence,
the problem specified in definition 3.3.1 can be written as an unconstrained optimization
problem, in literature also known as ‘reduced problem’ 1.

Remark 3.3.3. (Unconstrained optimization problem)
The problem specified in definition 3.3.1 can be written as

min
u∈U

f(u) := J(y(u), u). (3.32)

We describe the problem as unconstrained since the PIDE constraint is only involved
implicitly. But to be precise, the space of controls U may be bounded, e.g. if the volatility
function is bounded away from zero or has bounded derivatives in our application. Thus,
we would again have a constrained optimization problem. Especially in a parameterized
finite-dimensional space of controls, those constraints are usually given by box constraints.

3.3.1 First Discretize, then Optimize or vice versa?

Considering the discretization of the optimal control problem, there are mainly two ap-
proaches common in literature: ‘Optimize-then-discretize’ or ‘discretize-then-optimize’.
In remark 3.3.2, we have explained that pointwise observations occurring in the calibration

problem lead to Dirac delta functions, which we would like to avoid. So we first discretize
the spatial variable. However, the further calculations in this section include only operators
that might be interpreted either as discretized matrices or infinite-dimensional operators.
It remains the question whether to discretize in time or to optimize first. We briefly discuss

both approaches and show some numerical results subsequently.

First Optimize

In order to derive a gradient representation, ∇f(u), for the unconstrained problem, which
is needed in an optimization algorithm, we first define the Lagrange function for problem
(3.31).

1Not to be confused with the reduced order models described later in this thesis.

44

3.3 Solving the Optimization Problem

Given appropriate Lagrange multipliers pi, i = 1, . . . , D, we define

L(y, u, p1, . . . , pD) := J(y, u) +
D∑
i=1

t̂i∫
t̂i−1

〈pi(t), ẏ(t) +A(u; t)y(t)− l(u; t)〉V,V ∗dt (3.33)

and are now able to derive heuristically the corresponding optimality conditions. They
consist of the state equation

ẏ(t) +A(u; t)y(t)− l(u; t) = 0 , t ∈ (0, T] (3.34)
y(0) = y0,

where the initial condition y(0) = y0 is given explicitly since we have not introduced an
additional Lagrange multiplier in (3.33).
For i = D, the adjoint equation can be specified as

ṗD(t)−A∗(u; t)pD(t) = 0 , t ∈ [t̂D−1, T) (3.35)
pD(T) = −C∗(Cy(T)− dD) (3.36)

and for i = 1, . . . , D − 1

ṗi(t)−A∗(u; t)pi(t) = 0 , t ∈ [t̂i−1, t̂i) (3.37)
pi(t̂i) = −C∗(Cy(t̂i)− di) + pi+1(t̂i) (3.38)

Note that in (3.38) pi+1(t̂i) is known since we start solving the adjoint equations backwards
at t = T , i.e. we first solve equation (3.35) backwards with end condition (3.36). It can be
shown easily that pi ∈W ([t̂i−1, t̂i], V), i = 1, . . . , D.
The last partial derivative of the Lagrange function with respect to the control u along a

feasible direction δu leads to:

α〈u, δu〉U +
D∑
i=1

∫ t̂i

t̂i−1
〈pi(t), A′(u; t)δu y(t)− l′(u; t)δu 〉V,V ∗dt ≥ 0 (3.39)

To show formally that (3.39) is the gradient of the unconstrained optimization problem, we
introduce the sensitivity z(t) = ∂y(u;t)

∂u δu. It holds the following result:

Lemma 3.3.4. (Sensitivity equation)
Given a fixed but arbitrary u ∈ U , the corresponding solution y(u; ·) ∈ W ([0, T], V) and a
feasible direction δu. Further let z be the unique solution of

ż(t) +A(u; t)z(t) +A′(u; t)δu y(u; t)− l′(u; t)δu = 0 , t ∈ (0, T] (3.40)
z(0) = 0.

Then z ∈ W ([0, T], V) is the Fréchet derivative of y(u; ·) with respect to u along direction
δu.

Proof. Existence and uniqueness of a solution to (3.40) is guaranteed since A′ and l′ are

45

Chapter 3 Numerical Solution of the Calibration Problem

bounded linear operators. Setting w(t) := y(u+ δu; t)−y(u; t)− z(t), the following equation
holds:

ẇ(t) +A(u; t)w(t) +
(
A(u+ δu; t)−A(u; t)−A′(u; t)δu

)
y(u+ δu; t)

+A′(u; t)δu
(
y(u+ δu; t)− y(u; t)

)
−
(
l(u+ δu; t)− l(u; t)− l′(u; t)δu

)
= 0

w(0) = 0.

Using the Fréchet-differentiability of A and l, it is easy to show that for every ε > 0, there
exists a finite c > 0 and ∆ > 0 with ||δu||U < ∆ such that ||w(t)||2H ≤ cε||δu||2U . Thus, the
definition of a Fréchet derivative is fulfilled. �

Theorem 3.3.5. (Directional derivative of f(u))
The derivative of f(u) (defined in (3.32)) along a feasible direction δu is given by

f ′(u)δu = α〈u, δu〉U +
D∑
i=1

∫ t̂i

t̂i−1
〈pi(t), A′(u; t)δu y(t)− l′(u; t)δu 〉V,V ∗dt, (3.41)

where y solves (3.34) and the pi solve (3.35), (3.36) and (3.37), (3.38), respectively.

Proof. Differentiating f(u) with respect to u in direction δu leads to

f ′(u)δu = α〈u, δu〉U +
D∑
i=1
〈C∗(Cy(u; t̂i)− di), z(t̂i)〉H .

For the second summand we get by using (3.36), (3.38) and z(0) = 0:

D∑
i=1
〈C∗(Cy(u; t̂i)− di), z(t̂i)〉H =

=〈−pD(t̂D), z(t̂D)〉H +
D−1∑
i=1
〈−pi(t̂i) + pi+1(t̂i), z(t̂i)〉H + 〈p1(0), z(0)〉H

=−
D∑
i=1

(
〈pi(t̂i), z(t̂i)〉H − 〈pi(t̂i−1), z(t̂i−1)〉H

)
. (3.42)

Because pi ∈ W ([t̂i−1, t̂i], V) (i = 1, . . . , D) integration by parts can be applied to every
summand in (3.42). If further (3.35), (3.37) and (3.40) are used, we get for i = 1, . . . , D:

〈pi(t̂i), z(t̂i)〉H − 〈pi(t̂i−1), z(t̂i−1)〉H =
∫ t̂i

t̂i−1

(
〈z(t), ṗi(t)〉V,V ∗ + 〈pi(t), ż(t)〉V,V ∗

)
dt

=
∫ t̂i

t̂i−1

(
〈z(t), A∗(u; t)pi(t)〉V,V ∗ + 〈pi(t), ż(t)〉V,V ∗

)
dt

=
∫ t̂i

t̂i−1
〈pi(t), A(u; t)z(t) + ż(t)〉V,V ∗dt = −

∫ t̂i

t̂i−1
〈pi(t), A′(u; t)δu y(u; t)− l′(u; t)δu〉V,V ∗dt,

what directly shows the proposition. �

46

3.3 Solving the Optimization Problem

In order to solve the optimization problem numerically, the next step is the discretization.
Section 3.2 describes the solution of the state equation in detail. This procedure can be
applied analogously to the adjoint equations (3.35), (3.36) and (3.37),(3.38), respectively.
So we might assume that we know approximate solutions of the state and adjoint equations

at certain time steps. For this let ∆t = T/nt be the step size of a time discretization and
tk = k ∆t (k = 0, . . . , nt) the corresponding grid points. We denote by yk ≈ y(tk) and pik ≈
pi(tk) (of course pi and pik only exist on [t̂i−1, t̂i]). For simplicity, we set {t̂i}Di=0 ⊂ {ti}

nt
i=0,

i.e. we assume that the time instances where market data is available are a subset of the
grid, and there exist subindices ki such that t̂i = tki .

Definition 3.3.6. (Derivative approximation (FO))
For given weights ωik (k = ki−1, . . . , ki, i = 1, . . . , D) we define the gradient approximation

f ′FO(u)δu = ∆t
D∑
i=1

ki∑
k=ki−1

ωik〈pik, A′(u; tk)δu yk − l′(u, tk)δu〉V,V ∗ + α〈u, δu〉U . (3.43)

Remark 3.3.7. Note that the weights ωik determine the numerical integration rule. We here
mention, e.g., the ‘composite trapezoidal rule’, where ωiki−1

= ωiki = 0.5 and ωik = 1 for all
other k.

For any given gradient approximation in the form of (3.43), the approximation error can
be divided into an integral approximation error depending on the method chosen to set the
weights ωik, and the error of the state solution, yk, and the errors of the adjoint variables,
pik, compared to the continuous solutions, y(tk), pi(tk), respectively.

First Discretize

We now want to discretize first and use the θ-scheme for the time discretization. For this,
we define a time grid tk = k ∆t (k = 0, . . . , nt) with t̂i = tki as above. As an abbreviation,
we set for the finite difference quotient

∂̄yi := yi − yi−1
∆t . (3.44)

Definition 3.3.8. For given market data di at t̂i (i = 1, . . . , D), find {yk}ntk=0 ⊂ V and
u ∈ U , solving the optimization problem

min
{yk}

nt
k=0⊂V,u∈U

J̃(y, u) := 1
2

D∑
i=1
||Cyki − di||

2
H + α

2 ||u||
2
U (3.45)

s.t. ∂̄yk+1 + θA(u; tk+1)yk+1 + (1− θ)A(u; tk)yk
− θl(u; tk+1)− (1− θ)l(u; tk) = 0 , k = 0, . . . , nt − 1, (3.46)

y0 = ŷ.

A reduced cost function fFD(u) = J̃(y(u), u) can be defined as in the previous section.

47

Chapter 3 Numerical Solution of the Calibration Problem

Together with the corresponding adjoint equation,

− ∂̄pk+1 + θA∗(u, tk)pk + (1− θ)A∗(u, tk)pk+1

+
D−1∑
i=1

C∗(Cyki − di)1k=ki = 0 , k = nt − 1, . . . , 1 (3.47)

pnt + ∆tθA∗(u, tnt)pnt = −∆tC∗(Cynt − dD),

which again can be derived via the Lagrangian approach, a gradient representation for the
discrete reduced problem can be verified via a discrete sensitivity equation.

Theorem 3.3.9. (Derivative approximation (FD))
The derivative of fFD(u) (as defined above) along a feasible direction δu is given by

f ′FD(u)δu =
nt−1∑
k=0
〈pk+1, θA

′(u; tk+1)δu yk+1 + (1− θ)A′(u; tk)δu yk (3.48)

− θl′(u; tk+1)δu− (1− θ)l′(u; tk)δu
〉
V,V ∗

dt+ α〈u, δu〉U ,

where y solves (3.46) and the p solves (3.47).

We discuss the difference between both approaches by means of numerical results in section
3.3.3.

3.3.2 Optimization Methods

Regardless of whether we discretize or optimize first, we solve the optimization problem,

min
u
f(u) ,

by a gradient-based method. The gradient of the problem can be calculated efficiently by
means of the adjoint equation (3.41). However, second-order information is more complicated
and the calculation of the exact Hessian is usually not reasonable.
Quasi-Newton methods use gradient information of the iterations that have already been

carried out to approximate the Hessian matrix. Update formulas as ‘symmetric-rank-one’
or ‘BFGS’ and some further convergence results can be found in, e.g., Nocedal and Wright
(1999).
Beside these methods, the special structure of our optimal control problem with its least-

squares formulation as in (3.31) meets the requirements for the application of a ‘Gauß-
Newton’ approach. The objective function f can be written as

f(u) := 1
2 ||R(u)||2 with R : Rnp → Rnm ,

where Rj(u), j = 1, . . . , nm, is the difference between market value j and the corresponding

48

3.3 Solving the Optimization Problem

model value. Defining by J : Rnm×np → Rnm the Jacobian of R, we get

∇f(u) = J(u)TR(u)

∇2f(u) = J(u)TJ(u) +
nm∑
j=1

Rj(u) ∇2Rj(u) ≈ J(u)TJ(u)

because Rj(u) is hopefully a very small value.
Assuming that the functions, which are to be calibrated, are parameterized, i.e. the number

of parameters, np, is small, the Gauß-Newton method often yields a faster convergence.
Regarding calibration problems in finance, a detailed comparison between quasi-Newton and
Gauß-Newton method can, e.g., be found in Lörx (2012). In the numerical results below,
we will compare the Gauß-Newton and quasi-Newton method applied to the calibration of
a jump-diffusion model.

3.3.3 Numerical Results

Adjoint Equation and Gradients

In this section we discuss the numerical calculation of the gradient of our problem. Here,
the focus is on numerical challenges in the time discretization arising in the solution of the
adjoint equation. The numerical results presented below are based on the Merton model (cf.
example 2.1.8) and the following setting:

x = −5, x = 5, Tmax = 2y, r ≡ 3%, α = 0.
Market data given at: (Ti,Ki) ∈

{
{1, 2} × {40%, 80%, 100%, 120%, 200%}

}
. (3.49)

Four parameters for Merton’s model: u = (λ, µJ , σJ , σ2) ∈ R4.

The market data call prices are produced with ũ = (50%, 0%, 50%, 30%2) and we choose as
a sample parameter u = (60%,−80%, 40%, 30%2) to calculate gradients and adjoints.
We have already noticed that the pointwise observations in the objective function of the

calibration problem (2.15) lead to high-frequency end conditions in the backward adjoint
equations.
If we first optimize, we are free in the choice of an appropriate discretization method. As

has been shown in section 3.2, a Crank-Nicolson method loses its quadratic convergence in
case of non-smooth initial conditions. Regarding the adjoint equation, the problem is far
more extreme. Given the setting above, (3.49), a standard Crank-Nicolson method applied to
the adjoint equation (3.35), (3.36) and (3.37), (3.38) leads to the result illustrated in Figure
3.4(a) (∆x = 0.0025, ∆T = 0.02). According to the notation of section 3.3.1, the adjoint
is formally divided into two parts, p1, p2, with end conditions at T = 1 and T = 2, where
market data is available. The peaks occurring in these end conditions are not smoothed out,
but oscillate strongly over the whole time domain. Analog to the state equation, Rannacher
smoothing can be applied to the adjoint at each end condition. The corresponding figure
3.4(b) now shows functions p1, p2 that are smooth in time. Please note the different scaling
of figure 3.4(a) and 3.4(b), causing a cut of the peaks at T = 1 and T = 2 in (b).
We now turn to the first discretize approach, where we use a Rannacher time stepping

49

Chapter 3 Numerical Solution of the Calibration Problem

(a) Crank-Nicolson (b) Rannacher time stepping

Figure 3.4: First optimize: solutions of the adjoint equation (∆T = 0.02, ∆x = 0.0025)

Figure 3.5: First discretize: solution of the adjoint equation (∆T = 0.02, ∆x = 0.0025)

scheme for the state equation as proposed in section 3.3.1. Figure 3.5 shows the numerical
solution of the corresponding adjoint in the sense of (3.47). Note here that the Rannacher
method in the state equation yields a Crank-Nicolson method for the the adjoint except for
the last time step before T = 0, where four implicit Euler quarter steps are used. Two points
are remarkable here. First we note that the peaks at T = 1 and T = 2 are not as pronounced
as in the first optimize approach. This is due to the fact that the end condition,

pnt + ∆tθA∗(u, tnt)pnt = −∆tC∗(Cynt − dD),

contains a kind of built-in smoothing through the elliptic operator weighted with step size
∆t. Hence, the greater the step size, i.e. the more instable the Crank-Nicolson scheme for
non-smooth end conditions, the more pronounced is the smoothing. However, - and this
is the second point - there are still small oscillations observable through the whole time
domain, avoiding a quadratic convergence of the scheme.

50

3.3 Solving the Optimization Problem

discretization L2(Ω)-error at T = 0
∆x ∆T FO (Rann.) ratio FO (C.-N.) ratio FD ratio

0.0025 0.04 4.69e-5 1.61e+0 2.55e-3
0.02 1.19e-5 3.9 1.05e+0 1.5 1.29e-3 2.0

0.01 2.99e-6 4.0 3.91e-1 2.7 6.47e-4 2.0

0.005 7.47e-7 4.0 1.22e-1 3.2 3.24e-4 2.0

0.0025 1.85e-7 4.0 1.21e-1 1.0 1.62e-4 2.0

Table 3.7: L2(Ω)-error at T = 0 of the adjoint solution for the three approaches in figure
3.4 and 3.5, resp., for different time step sizes ∆T and fixed ∆x (Reference
solution calculated with FO (Rann.) and ∆T = 3.125e-4, ∆x = 0.0025)

This is shown in table 3.7, where we compare the numerical solution of the adjoint equation
at the last time instance T = 0 with a reference solution calculated with first optimize
Rannacher on a very fine time grid (∆T = 3.125e-4, ∆x = 0.0025). This is done for the
three methods shown in figure 3.4 and 3.5, and for different step sizes ∆T (∆x fixed).
The term ‘ratio’ again shows the factor of decrease in the L2(Ω)-error when the number

of discretization steps in time is doubled (Ω = [−3, 3]). In the last column of the table,
the ratio implies only a linear convergence with respect to the step size ∆T . However, the
first optimize approach using Crank-Nicolson shows nearly no improvement of the error for a
refined time grid. As expected, the Rannacher smoothing steps in the first optimize approach
preserve the quadratic convergence, where the difference in the order of magnitude of the
error compared to the first discretize approach is significant.
In addition, the error results of table 3.7 are visualized in figure 3.6. We omit the result

for first optimizing with Crank-Nicolson since this is not competitive. Again we calculate
the reference solution for the adjoint on a fine grid (∆T = 3.125e-4, ∆x = 0.0025). Figure
3.6(a) then shows the pointwise error of the adjoint on a coarse time grid (∆T = 0.02,
∆x = 0.0025), where we first discretize the state equation with Rannacher time stepping
and the adjoint equation is then solved by a Crank-Nicolson scheme with four implicit Euler
quarter steps in the last time step. The oscillations that are visible in figure 3.5 are now
observable more clearly. However, figure 3.6(b) shows the error when we first optimize and
then use the Rannacher smoothing for the adjoint, which is remarkably smaller.
We further want to point out the effect of the four implicit quarter steps when we dis-

cretize first. Figure 3.7 shows the error at time T = 0.02, i.e. the last time step before the
implicit steps are applied. Where the first discretize approach (continuous line) shows strong
oscillations, the first optimize approach (dotted line) is quite smooth. But the oscillations
are then smoothed out in the the last time step, observable in 3.7(b).
This observation also motivates a different approach that can be found in Goll et al. (2011).

They propose to change the discretization scheme for the state equation in such way that the
resulting scheme for the adjoint equation in the first discretize approach automatically leads
to a stabilized version. To be precise, one would discretize the state equation by Rannacher
time stepping and additionally apply four implicit Euler quarter time steps before (!) each
time step where market data is available.
Lastly, we are of course interested in the gradient of our problem. Given the parameter

vector u ∈ R4 for the Merton model, a reference gradient, ∇fref , is calculated on a fine grid

51

Chapter 3 Numerical Solution of the Calibration Problem

(a) Error adjoint: first discretize (Ran-
nacher), then optimize

(b) Error adjoint: first optimize, then dis-
cretize (Rannacher time stepping)

Figure 3.6: Difference between reference adjoint and the adjoints on coarser grids for
first discretize (a) and first optimize (b), resp.

−5 0 5
−0.1

−0.05

0

0.05

Log−moneyness

E
rr

or

(a) Error at T = 0.02

−5 0 5
−2

−1

0

1x 10
−3

Log−moneyness

E
rr

or

(b) Error at T = 0

Figure 3.7: Difference between reference adjoint and the adjoints on coarser grids for
first discretize and first optimize (dotted line), resp., at time T = 0 and at
time T = 0.02

discretization ||∇fref −∇fdisc||2/||∇fref ||2
∆x ∆T FO (Rann.) ratio FO (C.-N.) ratio FD ratio

0.0025 0.04 3.50e-5 6.53e-1 6.72e-4
0.02 8.48e-6 4.1 1.96e-1 3.3 1.83e-3 0.4

0.01 2.12e-6 4.0 2.78e-1 0.7 3.23e-4 5.7

0.005 5.27e-7 4.0 2.95e-1 0.9 1.22e-5 26.5

0.0025 1.38e-7 3.8 2.94e-1 1.0 5.43e-7 22.5

Table 3.8: Relative gradient errors for the three approaches of figure 3.4 and 3.5, resp.,
and different time step sizes ∆T and fixed ∆x with control u ∈ R4

52

3.3 Solving the Optimization Problem

strike K maturity T
.175 .425 .7 .95 1.0 1.5 2.0 3.0 4.0 5.0

85% .190 .177 .172 .171 .171 .169 .169 .168 .168 .168
90% .168 .155 .157 .159 .159 .160 .161 .161 .162 .164
95% .133 .138 .144 .149 .150 .151 .153 .155 .157 .159
100% .113 .125 .133 .137 .138 .142 .145 .149 .152 .154
105% .102 .109 .118 .127 .128 .133 .137 .143 .148 .151
110% .097 .103 .104 .113 .115 .124 .130 .137 .143 .148
115% .120 .100 .100 .106 .107 .119 .126 .133 .139 .144
120% .142 .114 .101 .103 .103 .113 .119 .128 .135 .140
130% .169 .130 .108 .100 .099 .107 .115 .124 .130 .136
140% .200 .150 .124 .110 .108 .102 .111 .123 .128 .132

Table 3.9: Implied volatility table with interest rate r = 5% and no dividends (a
slightly modified test example on S&P 500 options according to Andersen
and Brotherton-Ratcliffe (1998))

via the first optimize approach with Rannacher smoothing (∆T = 3.125e-4, ∆x = 0.0025).
Note that the relative difference between the reference gradient based on first optimize-
Rannacher and first discretize-Rannacher is 7.47e-009, i.e it is negligible. Table 3.8 shows
the relative errors between this reference gradient and the gradient for the three approaches
on several coarser time grids. It is observable that, especially for very coarse time steps
∆T , the first optimize approach with Rannacher smoothing is by far the best one. However,
discretizing first also leads to acceptable results, especially for finer grids. In fortunate
circumstances, the oscillations that are observable in the adjoint equation seem to sum up
to zero.

Calibration Example

We now turn to a concrete calibration problem. We use the MATLAB solver ‘fmincon’ for
its solution and provide gradient and second-order information either via a Gauß-Newton or
a quasi-Newton approach, respectively, as it has been proposed in section 3.3.2. Let us first
specify the example that is to be solved.
We have given market data in terms of implied volatilities for ten different strike prices

and ten different maturities on S&P 500 options. We follow an academic example presented
in Andersen and Brotherton-Ratcliffe (1998) that is only slightly modified. The implied
volatility table is shown in table 3.9. In addition to this table 3.9, the corresponding surface
is illustrated in figure 3.8. It is observable that this example provides the typical smile curve
known from many empirical studies especially for the short-term options.
We now want to calibrate the Merton model with three jump parameters, λ, µJ , σJ , and

a constant or parameterized volatility, respectively. To be precise, we do not calibrate the
volatility but the squared volatility because the bilinear form defined in (3.2) only involves
the squared function or its derivative, respectively. This also means that we parameterize
the squared volatility function further below.
For completeness, we specify the remaining constants of the discretization that have been

53

Chapter 3 Numerical Solution of the Calibration Problem

0

2

4

0.80.911.11.21.31.4
0.05

0.1

0.15

0.2

0.25

Maturity

Strike

Impl. Vol.

Figure 3.8: Visualization of the implied volatility surface of table 3.9

set as follows:

x = −5, x = 5, Tmax = 5 y, r ≡ 5%, ∆T = 0.0125, ∆x = 0.0025,
starting vector: u = (λ, µJ , σJ , σ2) = (40%, 0%, 40%, 40%2).

(3.50)

Due to the ill-posedness of the problem, we further introduce a regularization term where
we penalize the difference between the squared volatility and a predefined mean squared
volatility σ2

mid. Thus, we replace the simple regularization term α
2 ||u||

2 that has been added
to the objective function previously by α

2 ||σ
2 − σ2

mid||2, where σmid = 13% is chosen as an
average of the implied volatilities between the strikes 95% and 120%. The weighting factor
α is set to 0.01.
Table 3.10 shows the corresponding results for both algorithms where the volatility func-

tion is assumed to be constant. Stopping at a comparable error level, both algorithms need
approximately the same computing time. Although the number of iterations is higher for the
quasi-Newton method, one iteration is cheaper since the gradient is calculated via adjoints
which is a computational effort of about two and a half PIDEs (state plus adjoint plus the
summation in the gradient). On the other hand, one Gauß-Newton iteration requires the
computation of five PIDEs but also provides second order information.
Since we calibrate four parameters to fit 100 market prices, the problem is clearly un-

derdetermined. However, taking a look at the implied volatilities corresponding to the
model prices in the optimal point of the Gauß-Newton algorithm in figure 3.9(a), we observe
that the smile is already approximated quite well. This effect of jump-diffusion models has
been discussed earlier in section 2.1.2 and is due to a negative mean jump size. For in-
stance, the approximate solution using the Gauß-Newton approach yields an optimal control
uopt = (λ, µJ , σJ , σ2) = (15.9%,−22.1%, 21.0%, 8.9%2).
But, on the other hand, the error between market and model prices in 3.9(b) is still too

big.
To further reduce this error, we use a parameterized volatility function. For this, the

squared volatility is parameterized using linear splines in space with five degrees of freedom

54

3.3 Solving the Optimization Problem

algorithm time (sec.) #iter #PIDE-eval fopt ||∇fopt||2
Gauß-Newton 573 39 201 6.07e-5 1.46e-4
quasi-Newton 554 54 184 6.35e-5 1.84e-4

Table 3.10: Computing times, number of iterations, function evaluations and gradient
evaluations for the quasi-Newton and Gauß-Newton method; optimization
with constant volatility (four parameters)

0

2

4

0.80.911.11.21.31.4
0.05

0.1

0.15

0.2

0.25

Maturity
Strike

Impl. Vol.

(a) Implied volatility surface at the optimal so-
lution

.175 .425 .7 .95 1 1.5 2 3 4 5

.85
.9

.95
1.0

1.05
1.1

1.15
1.2

1.3
1.4

1

2

3

4

5

x 10
−3

MaturityStrike

Error

(b) Error between market data and
model data at the optimal solu-
tion

Figure 3.9: Optimal solution of the Gauß-Newton method for Merton’s model with con-
stant volatility (four parameters)

(grid points at 90%, 100%, 110%, 120%, 130%), and parameterized with four piecewise
constant parts in time (grid points: 0y, 0.425y, 0.95y, 3y, 5y). On the left-hand side of the
leftmost grid point of the spatial parameterization (90%), the squared volatility is assumed
to be constant. The same holds true for the rightmost grid point (130%). Thus, instead of
one constant volatility, we now have 20 degrees of freedom. Together with jump insensity λ,
mean jump size µJ and volatility of the jump size σJ , we have 23 parameters in total.
Let us first take a look at the consequences regarding the computational effort. Table

3.11 shows the corresponding results. In both algorithms, the quasi-Newton and the Gauß-
Newton approach, the time increases. But it is clearly observable that the quasi-Newton
algorithm is less sensitive to the number of parameters than the Gauß-Newton. This is due
to the fact that one gradient evaluation grows linearly with the number of parameters in the
latter case, but it does not increase significantly when using the adjoint approach.
Taking again a look at the optimal values of the Gauß-Newton algorithm, we see that the

implied volatility surface in its optimal point is quite similar to the target surface in figure
3.8. And even more clearly, the error between market and model prices has decreased.
Thus, we have learned that the quasi-Newton approach is the method of choice when

we have many parameters to calibrate. A Gauß-newton method providing second-order
information would be more reasonable if the function evaluations – this means the solution

55

Chapter 3 Numerical Solution of the Calibration Problem

algorithm time (sec.) #iter #PIDE-eval fopt ||∇fopt||2
Gauß-Newton 2983 43 1057 1.06e-5 1.08e-4
quasi-Newton 888 82 274 9.62e-6 8.29e-4

Table 3.11: Computing times, number of iterations, function evaluations and gradient
evaluations for the quasi-Newton and Gauß-Newton method; optimization
with local volatility (23 parameters)

0

2

4

0.80.911.11.21.31.4
0.05

0.1

0.15

0.2

0.25

Maturity
Strike

Impl. Vol.

(a) Implied volatility surface at the optimal so-
lution

.175 .425 .7 .95 1 1.5 2 3 4 5

.85
.9

.95
1.0

1.05
1.1

1.15
1.2

1.3
1.4

1

2

3

4

5

x 10
−3

MaturityStrike

Error

(b) Error between market data and
model data at the optimal solu-
tion

Figure 3.10: Optimal solution of the Gauß-Newton method for Merton’s model with
local volatility (23 parameters)

of a PIDE – are less expensive. To reduce the cost of one PIDE evaluation is now the
objective of the next chapter where we introduce reduced order models.

56

Chapter 4

Model Order Reduction via POD

The general idea of model order reduction (MOR) is to replace a large mathematical problem
– in our case a discretized partial differential equation – by a small one. The error between
the original model and the reduced model should be small, however, the computational effort
is supposed to be reduced significantly.
The so-called ‘reduced basis’ method (cf. Grepl (2005) or Grepl and Patera (2005) and the

references cited therein) is based on the observation that solutions of parameter-dependent
differential equations are not arbitrary functions of the solution space. Usually they are
all contained in a lower-dimensional subspace. In a finite element approach (cf. chapter
3) the space of basis functions is an approximation of the whole solution space (e.g. the
space H1

0 (Ω)). The reduced basis approach proposes to use basis functions that only span
the aforementioned lower-dimensional subspace which is related to the characteristics of the
problem.
Antoulas et al. (2001) or Antoulas (2005) provide a survey of several model reduction

techniques for linear dynamical systems in state space form. The most famous ones are
‘balanced truncation’ and ‘proper orthogonal decomposition’ (POD). Both methods have
a close connection to ‘singular value decomposition’ (SVD). Balanced truncation is only
applicable to linear time-invariant systems and therefore cannot be used for the option
pricing problem analyzed in the previous chapter. However, POD is even used for nonlinear
systems and will be our method of choice.
To be precise, POD is used to find basis functions approximating an ensemble of obser-

vations in a certain optimal sense. So, when we say ‘Model Order Reduction via POD’ in
the title of the chapter, we mean that we use proper orthogonal decomposition to extract
certain basis functions from a given set of information. These basis functions are then used
in a Galerkin approach as a reduced basis in the above-mentioned sense.
Hence, one of the main tasks in the construction of a reduced order model is to get

appropriate information concerning our problem in terms of functions or vectors – we will
call them ‘snapshots’ in the following –, where POD can be applied to. These can either
be determined from experimental data or – and this will be done here – from numerical
experiments.
In Kahlbacher and Volkwein (2007, 2012), POD is used to derive a low-order model of

a parameter-dependent elliptic problem. Here, one needs to calculate high-order solutions
for several parameters and these solutions are then used as snapshots. In time-dependent
differential equations, the time variable is treated as a parameter. For instance, Kunisch and
Volkwein (1999) study POD applied to the unsteady Burgers equation and in Kunisch and
Volkwein (2001) general parabolic problems are addressed.

57

Chapter 4 Model Order Reduction via POD

There is a vast literature on further applications, where POD is used. Lumley (1967),
Sirovich (1987) and Holmes et al. (1997) can be named as the early references for POD
with application in fluid flow, coherent structures and turbulences,. It is also used in signal
processing, data compression and pattern recognition (cf. Holmes et al. (1996)).
The application of reduced order models in financial applications, e.g. the solution of

partial integro-differential equations resulting from jump-diffusion option pricing models,
is a quite new issue first described in Sachs and Schu (2008) where POD is used, and by
Pironneau (2009) using a reduced basis approach with basis functions based on Black-Scholes
solutions. It has been further investigated in Sachs and Schu (2010) and Cont et al. (2011).
Since usually global, control-independent a priori error estimates are lacking, the use of

POD in optimal control is a quite difficult task. However, it has already been done in
several articles. Afanasiev and Hinze (2001) build a POD model based on a certain control
and then calculate a suboptimal reduced control. For the suboptimal control, new snapshots
are computed and added to the former ones to get a better POD basis. In Ravindran
(2002), a POD model is updated in each SQP iteration with application to an optimal
control of the Navier-Stokes equation. The so-called optimality system-POD (OS-POD) has
been introduced by Kunisch and Volkwein (2008). They include the optimality of the POD
basis in the optimality system and split the optimization procedure in optimizing the control
under a reduced model and optimizing the POD model under a given control.
In this chapter, the adjoint equation of the optimal control problem turns out to be of

great importance. Its influence on POD has already been investigated in Hinze and Volkwein
(2008) and Tröltzsch and Volkwein (2009) where error estimates for the suboptimal control
are presented in terms of the POD error for the state and for the adjoint equation. However,
the POD basis is not updated during the optimization procedure but only extended.
This chapter is now organized as follows. Section 4.1 presents an introduction to proper

orthogonal decomposition in general. It is shown how we can extract significant information
– that is then stored in a POD basis – from a given set of information. Here, eigenvalue
problems play an important role and the POD basis consists of certain eigenfunctions. The
corresponding projection errors are given in terms of a sum over those eigenvalues whose
eigenfunctions are not part of the POD basis.
In section 4.2, we are interested in further error estimates of POD reduced order models.

First, POD is applied to an abstract parabolic differential equation with time-dependent
bilinear form in section 4.2.1, where the set of information is a given solution of the parabolic
problem for a fixed control variable. Again, error estimates can be derived in terms of a
sum over the remaining eigenvalues. We then turn to the application of POD in optimal
control problems in section 4.2.2. We can use the results of section 4.2.1 to estimate the
error between the ‘true’ objective function value and the objective function value based on
a POD model. However, to make statements on the corresponding gradient error, we have
to include information of the adjoint equation. 4.3 shows numerical experiments confirming
the theoretical results.
Note that all theoretical results of this section only hold true for a fixed control variable.

But numerical results show also the positive effect of one combined basis for state and adjoint
equation when we veer away from the initial control. A globalization of the POD technique
is then achieved through embedding into a trust-region method in chapter 5.

58

4.1 Proper Orthogonal Decomposition

4.1 Proper Orthogonal Decomposition

According to Sirovich (1987), proper orthogonal decomposition has been mentioned first by
Lumley (1967) in the context of turbulent flows. In other fields of research, e.g. statistics,
it is also known as ‘Karhunen-Loève transformation’ or ‘principal component analysis’. The
idea is to build an orthonormal basis for a given set of information. This orthonormal basis
must be optimal in the sense that there does not exist another basis of the same size that
represents the set of information better. In this context, Sirovich (1987) has established the
expression ‘method of snapshots’.
There is a vast literature on POD. However, the following introduction is mainly based

on Volkwein (2001).
Let H be a real, separable Hilbert space with inner product 〈·, ·〉H and the induced norm
|| · ||H :=

√
〈·, ·〉H . Further, let elements ui ∈ H, i = 1, . . . , n, be given. The space spanned

by these ‘snapshots’ has dimension r > 0, i.e. dim(span(u1, . . . , un)) = r. Thus, at least
one snapshot is assumed to be nonzero. Proper orthogonal decomposition consists of finding
elements Ψj ∈ H, j = 1, . . . , r, that build an orthonormal basis of span(u1, . . . , un) and have
the following additional property: Considering the partial basis Ψ1, . . . ,Ψl for an arbitrary
l ∈ {1, . . . , r}, there are no other orthonormal basis functions Φ1, . . . ,Φl, which approximate
an ‘average’ element of span(u1, . . . , un) in a better way.
The projection of a v ∈ span(u1, . . . , un) on the space spanned by arbitrary orthonormal

functions {Ψj}lj=1 can be computed from its Fourier expansion:

ṽ =
l∑

j=1
〈v,Ψj〉HΨj .

Hence, the mathematical definition for the POD basis functions is formulated as follows.

Definition 4.1.1. (POD basis)
Given snapshots u1, ..., un ∈ H, find orthonormal functions Ψ1, . . . ,Ψr ∈ span(u1, . . . , un)
by solving the minimization problem

min
Ψ1,...,Ψl

n∑
i=1

γi
∣∣∣∣∣∣ui − l∑

j=1
〈ui,Ψj〉HΨj

∣∣∣∣∣∣2
H

(4.1)

s.t. 〈Ψj ,Ψk〉H = δjk ∀j, k = 1, . . . , l

for all l ∈ {1, . . . , r} with weights γi > 0, i = 1, . . . , n. The first l vectors Ψ1, ...,Ψl are called
a POD basis of rank l. The spanning subspace is denoted by V l = span(Ψ1, ...,Ψl). Here, δij
denotes the Kronecker delta with δij = 1 for i = j, δij = 0, else.

Choosing the weights in (4.1) as γi = 1
n for all n yields the arithmetic average. However,

the weights might be chosen differently depending on the particular problem.

Remark 4.1.2. Note that the POD basis functions can also be defined in an infinite-
dimensional setting, where – given a continuum of snapshots – the sum

∑n
i=1 in (4.1) is

replaced by an integral (cf. Kunisch and Volkwein (2002)). The finite sum above may then

59

Chapter 4 Model Order Reduction via POD

be interpreted as a numerical integration where the γi’s gain importance as the corresponding
weights of each function value.

In (4.1) the POD basis functions minimize the projection error, however, the minimization
problem can also be written equivalently as a maximization problem. Here, the basis can be
interpreted as those functions that capture most of the system energy.

Lemma 4.1.3. Given snapshots u1, ..., un ∈ H, find orthonormal vectors Ψ1, . . . ,Ψr ∈
span(u1, . . . , un) by solving the minimization problem:

max
Ψ1,...,Ψl

n∑
i=1

γi

l∑
j=1
〈ui,Ψj〉2H (4.2)

s.t. 〈Ψj ,Ψk〉H = δjk ∀j, k = 1, . . . , l

for all l ∈ {1, . . . , r} with weights γi > 0, i = 1, . . . , n. Then, Ψ1, . . . ,Ψr is a solution of
(4.1) and vice versa.

Proof. For every summand of (4.1), we have

∣∣∣∣∣∣ui − l∑
j=1
〈ui,Ψj〉HΨj

∣∣∣∣∣∣2
H

=
〈
ui −

l∑
j=1
〈ui,Ψj〉HΨj , ui −

l∑
j=1
〈ui,Ψj〉HΨj

〉
H

= 〈ui, ui〉H − 2
〈
ui,

l∑
j=1
〈ui,Ψj〉HΨj

〉
H

+
〈 l∑
j=1
〈ui,Ψj〉HΨj ,

l∑
k=1
〈ui,Ψk〉HΨr

〉
H

= 〈ui, ui〉H − 2
l∑

j=1
〈ui,Ψj〉H〈ui,Ψj〉H +

l∑
j=1
〈ui,Ψj〉H

l∑
k=1
〈ui,Ψk〉H 〈Ψj ,Ψk〉H︸ ︷︷ ︸

δjk

= 〈ui, ui〉H − 2
l∑

j=1
〈ui,Ψj〉2H +

l∑
j=1
〈ui,Ψj〉2H = 〈ui, ui〉H −

l∑
j=1
〈ui,Ψj〉2H ,

which immediately yields the proposition. �

Thus, the POD basis can be determined either via the solution of (4.1) or (4.2). The next
task is to find optimality conditions for these optimization problems. For this, we need to
define some operators and a weighted scalar product for vectors v, w ∈ Rn:

〈v, w〉γ :=
n∑
i=1

γiviwi ,

where the γi > 0, i = 1, . . . , n, are the weights as in (4.1).

Definition 4.1.4. Based on the snapshot set u1, . . . , un ∈ H, the bounded linear operator
Y ∈ L(Rn, H) is defined as

Yv :=
n∑
i=1

γiviui , v ∈ Rn. (4.3)

60

4.1 Proper Orthogonal Decomposition

Remark 4.1.5. Thus, the adjoint operator Y∗ ∈ L(H,Rn) is given by

Y∗z =
(
〈z, u1〉H , . . . , 〈z, un〉H

)T
, z ∈ H.

Proof. 〈v,Y∗z〉γ =
n∑
i=1

γivi〈z, ui〉H = 〈
n∑
i=1

γiviui, z〉H = 〈Yv, z〉H . �

Definition 4.1.6. Based on the snapshot set u1, . . . , un ∈ H, the bounded linear operator
R ∈ L(H,H) is defined as

Rz := YY∗z =
n∑
i=1

γi〈z, ui〉Hui , z ∈ H. (4.4)

It is easy to verify that the autocorrelation operator R has the following properties (cf.
Volkwein (2001)):

Remark 4.1.7. The operator R ∈ L(H,H) as defined in (4.4) is compact, self-adjoint and
non-negative.

These properties allow us to apply the following theorem that can be found, e.g., in Reed
and Simon (1980, p. 203) to the operator R.

Theorem 4.1.8. (Hilbert-Schmidt theorem)
Let D : H → H be a bounded, self-adjoint, compact operator on a real, separable Hilbert
space H. Then there exists a complete orthonormal basis {Φk}∞k=1 for H, such that

DΦk = λkΦk with λk
k→∞−→ 0.

It turns out that the application of theorem 4.1.8 to the operator R provides a way of
determining the POD basis functions. Via the formulation of the Lagrange functional for the
constrained optimization problem (4.2), the following optimality conditions can be derived.

Theorem 4.1.9. (Construction of the POD basis)
Given the setting above, there exists a complete orthonormal basis {Ψk}∞k=1 of H and corre-
sponding non-negative numbers {λk}∞k=1, such that

RΨk = λkΨk with λ1 ≥ λ2 ≥ . . . (4.5)

Then {Ψk}lk=1, l ≤ r, is the solution to (4.1), i.e. the POD basis of rank l.

Proof. A detailed proof is provided in Volkwein (2001). �

Thus, to get the POD basis of rank l for a given set of snapshots u1, . . . , un ∈ H, we have
to solve the eigenvalue problem (4.5), where the POD basis functions are identical to the
eigenfunctions Ψk corresponding to the largest eigenvalues λk.
The size of the eigenvalue problem is equal to the dimension of H that might be infinite-

dimensional or at least very high. In this case, we are able to define another operator of
dimension n, which is significantly smaller in many applications.

61

Chapter 4 Model Order Reduction via POD

Definition 4.1.10. Based on the snapshot set u1, . . . , un ∈ H, the bounded linear operator
K ∈ L(Rn,Rn) is defined as

Kz := Y∗Yv , v ∈ Rn, (4.6)

i.e. K ∈ Rn×n with Kij = γi〈uj , ui〉H .

Analog to remark 4.1.7, K has the following properties:

Remark 4.1.11. The operator K ∈ L(Rn,Rn) as defined in (4.6) is compact, self-adjoint
and non-negative with rank(K) = r.

Proof. Clearly, the matrix K is a weighted Gramian matrix. Thus, the properties above
can be deduced easily. Just notice that due to the weights γi the matrix K, in general,
is non-symmetric, but it is self-adjoint with respect to the weighted scalar product 〈·, ·〉γ :
〈Kw, v〉γ = 〈Yw,Yv〉H = 〈w,Kv〉γ . �

The connection between the operators K and R is pointed out in the next lemma.

Lemma 4.1.12. Given the setting above, there exists a complete orthonormal basis 1 {vk}nk=1
of Rn and corresponding non-negative numbers {λk}nk=1, such that

Kvk = λkvk with λ1 ≥ . . . ≥ λr > 0 and λk = 0 ∀ k = r + 1, . . . , n. (4.7)

Then all λk > 0, k = 1, . . . , r, are eigenvalues of R, too, and the corresponding orthonormal
eigenfunctions are given by

Ψk = 1√
λk
Yvk , k = 1, . . . , r. (4.8)

Proof. The proof naturally falls into two parts. Firstly, using remark 4.1.11, the existence
of {vk}nk=1 and {λk}nk=1 satisfying (4.7) is evident (e.g. by applying theorem 4.1.8).
Secondly, for k ≤ r, we apply the operator 1√

λk
Y to (4.7) and get YY∗ 1√

λk
Yvk =

λk
1√
λk
Yvk, i.e. (4.8). 〈Ψk,Ψj〉H = 1√

λkλj
〈Y∗Yvk, vj〉γ = λk√

λkλj
〈vk, vj〉γ = δkj gives the

orthonormality of the Ψk’s. �

So instead of solving the eigenvalue problem (4.5), which has the same dimension as H,
we can now solve problem (4.7) with dimension n, typically much smaller than dim(H).
Afterwards, one would apply 1√

λk
Y to the eigenvectors vk to get the POD basis functions

Ψk.
It is clear that, given a POD basis of rank l < r, the projection of an arbitrary element

u ∈ span(u1, . . . , un) on the space spanned by {Ψk}lk=1 may lead to an approximation error.
It turns out that this error strongly depends on the eigenvalues of (4.5) or their decay rate,
respectively.

1Orthonormal with respect to the weighted scalar product 〈·, ·〉γ

62

4.1 Proper Orthogonal Decomposition

l 1 2 3 10 20 100

El 0.9428 0.9745 0.9795 0.9911 0.9952 0.9992

Table 4.1: Energy El for different l corresponding to the picture example (figure 1.2) in
chapter 1

Corollary 4.1.13. (Truncation error)
Given snapshots u1, ..., un ∈ H, and the corresponding POD basis Ψ1, . . . ,Ψr ∈ span(u1, . . . , un)
that solves (4.1). Then, for l ≤ r, the optimal function value is

min
Ψ1,...,Ψl

n∑
i=1

γi
∣∣∣∣∣∣ui − l∑

j=1
〈ui,Ψj〉HΨj

∣∣∣∣∣∣2
H

=
r∑

k=l+1
λk. (4.9)

Proof. First, the orthonormality of {Ψk}lk=1 yields

λk = λk〈Ψk,Ψk〉H = 〈λkΨk,Ψk〉H = 〈RΨk,Ψk〉H =
〈 n∑
i=1

γi〈Ψk, ui〉Hui,Ψk

〉
H

=
n∑
i=1

γi〈Ψk, ui〉H〈ui,Ψk〉H =
n∑
i=1

γi〈Ψk, ui〉2H .

Using the ideas of the proof to lemma 4.1.3 and the basis property of {Ψk}rk=1, we get:

n∑
i=1

γi
∣∣∣∣∣∣ui − l∑

k=1
〈ui,Ψk〉HΨk

∣∣∣∣∣∣2
H

=
n∑
i=1

γi
(
〈ui, ui〉H −

l∑
k=1
〈ui,Ψk〉2H

)

=
n∑
i=1

γi
(〈 r∑

k=1
〈ui,Ψk〉HΨk, ui

〉
H
−

l∑
k=1
〈ui,Ψk〉2H

)
=

n∑
i=1

γi
(r∑
k=1
〈ui,Ψk〉2H −

l∑
k=1
〈ui,Ψk〉2H

)
=

n∑
i=1

r∑
k=l+1

γi〈ui,Ψk〉2H =
r∑

k=l+1
λk,

which establishes formula (4.9). �

In literature (cf. Sirovich (1987)) the sum
∑r
k=1 λk is often referred to as ‘energy’ of the

system (or of the set of snapshots, resp.). Thus, the quotient

El :=
∑l
k=1 λk∑r
k=1 λk

(4.10)

is of interest as a criterion to choose l such that the first l POD basis functions capture a
specific percentage, e.g. El ≥ 99%, of the total system energy.
Table 4.1 shows exemplarily the system energy for different numbers of POD basis func-

tions for the motivating example in figure 1.2 in chapter 1.
However, in practice, the value corresponding to the denominator of (4.10), in general, is

not available because the eigenvalue problems (4.7) are often not solved completely but only

63

Chapter 4 Model Order Reduction via POD

iteratively for the largest eigenvalues.

4.2 POD Error Estimates

This section deals with error estimates of POD reduced systems in the context of parabolic
differential equations and, furthermore, in optimal control problems governed by such PDEs.

4.2.1 A Priori Error Estimates for Parabolic Differential Equations

If we want to apply the POD technique outlined above to a parabolic differential equation –
like the pricing PIDE of chapter 3 – we have to specify the set of snapshots. Here, we choose
the solution of the problem at fixed time steps t0, . . . , tn. We then obtain some orthonormal
basis functions containing specific information about the solution of the PIDE in the above-
mentioned sense. Approximating the PIDE problem via a POD approach then means that
we replace the finite element basis functions by the POD basis functions calculated from
the given solution. Since we only need a few basis functions – numerical tests show that 10
is already a sufficient quantity – compared to, e.g., 1000 finite element basis functions, the
systems of equations that have to be solved in each time step are considerably smaller.
Since the original problem, the PIDE, is replaced by a smaller one, the POD approxima-

tion, we want to estimate the corresponding error. We make the following assumptions on
the parabolic problem following Dautray and Lions (1992, pp. 509 ff):

Assumption 4.1. a) Let V and H be two real, separable Hilbert spaces with the inner
products 〈·, ·〉V and 〈·, ·〉H and the induced norms || · ||V and || · ||H , respectively. With the
dual spaces V ∗ and H∗ they form a Gelfand triple:

V ↪→ H = H∗ ↪→ V ∗ (4.11)

with dense embeddings. Furthermore, assume an α > 0 with ||v||2H ≤ α||v||2V for all v ∈ V .
b) Let a : [0, T] × (V × V) → R for all t ∈ [0, T] be a uniformly continuous and coercive
bilinear form, i.e. there exist constants β, κ > 0 independent of t with

|a(t; v, w)| ≤ β||v||V ||w||V ∀ v, w ∈ V ∀ t ∈ [0, T], (4.12)
a(t; v, v) ≥ κ||v||2V ∀ v ∈ V ∀ t ∈ [0, T]. (4.13)

In addition let a(·; ·, ·) be Lipschitz continuous with respect to t, i.e.

|a(t1; v, w)− a(t2; v, w)| ≤ clip|t1 − t2| ||v||V ||w||V ∀ v, w ∈ V. (4.14)

c) Let L : [0, T]× V → R be a linear form with L ∈ L2(V ∗) and cL > 0 such that

|L(t; v)| ≤ cL||v||V ∀ t ∈ [0, T], v ∈ V. (4.15)

With the notation fixed and the assumptions stated, we can formulate the weak form of
an abstract parabolic initial value problem.

64

4.2 POD Error Estimates

Definition 4.2.1. (Continuous problem)
For given initial value y0 ∈ H find a solution y ∈W ([0, T], V) which satisfies

d

dt
〈y(t), v〉H + a(t; y(t), v) = L(t; v) ∀ v ∈ V, t ∈ (0, T) (4.16)

and initial condition

〈y(0), v〉H = 〈y0, v〉H ∀ v ∈ V. (4.17)

Again ∂̄ is used as an abbreviation for the finite difference quotients as already defined
in (3.44). Thus, problem (4.16) discretized in time on a subspace V l of V with equidistant
time steps t0, . . . , tm (i.e. ∆t = ti − ti−1 ∀i = 1, . . . ,m) looks as follows:

Definition 4.2.2. (Discretized problem)
For given initial value y0 ∈ H and some θ ∈ [0, 1] find {yli}ni=0 ⊂ V l with

〈∂̄yli, v〉H + θ · a(ti; yli, v) + (1− θ) · a(ti−1; yli−1, v) = (4.18)
θ · L(ti; v) + (1− θ) · L(ti−1, v) ∀ v ∈ V l, i = 1, . . . , n

and initial condition

〈yl0, v〉H = 〈y0, v〉H ∀ v ∈ V l. (4.19)

Using the stated assumptions, we can invoke an existence and uniqueness theorem in
Dautray and Lions (1992, pp. 512 ff) to conclude that there exists a unique solution for both
problems.
Since there are different possibilities to create a POD basis, we want to clarify which ones

we use and which errors we address.

Error 1: Average error between the solution y(t) of problem (4.16) and the solution on
the POD subspace, discretized in time via the θ-method (this is problem (4.18)). The POD
basis functions are calculated in the sense of (4.1) from the snapshots of the solution y(t) and
the corresponding difference quotients, i.e. the snapshots are ȳi = y(ti−1), i = 1, . . . , n + 1
and ȳi+n+1 = y(ti)−y(ti−1)

∆t , i = 1, . . . , n. To avoid confusion we call the POD solution yl,1

and define

ERR1 = 1
n

n∑
i=1
||yl,1i − y(ti)||2H . (4.20)

Error 2: Average error between the finite element approximation yFE discretized in time
and space (this is the solution of problem (4.18) in which we replace the POD space V l
by the finite element subspace Hnx) and the POD approximation, yl,2, discretized in time
(problem (4.18)), where the POD basis functions are calculated in the sense of (4.1) from
the snapshots of the finite element solution and the corresponding difference quotients. We

65

Chapter 4 Model Order Reduction via POD

define

ERR2 = 1
n

n∑
i=1
||yl,2i − y

FE
i ||2H . (4.21)

The fact that the difference quotients are included in the calculation of the POD basis is
often reported to yield numerically better approximation results. Here, we note that it also
facilitates the proof for the error estimates. We further notice that we restrict ourselves to
the case where we use the weaker topology H in (4.1). The case using V instead of H is
also studied in literature, cf. Kunisch and Volkwein (2001) and leads to slightly different
estimates.
In the proof we use two different projections and in the next lemma we show some char-

acteristic properties of these projections.

Definition 4.2.3. (Projection operators)
Let V l be a subspace of V . We define the H-projection Πl

H

Πl
H : V → V l ⇔ 〈Πl

Hu− u, v〉H = 0 ∀ v ∈ V l

and the Ritz-projection Πl
a,t

Πl
a,t : V → V l ⇔ a(t; Πl

a,tu− u, v) = 0 ∀ v ∈ V l, t ∈ [0, T].

We show a relationship of the Ritz-projection to the H-projection and the Lipschitz con-
tinuity for the Ritz-projection with respect to the time variable.

Lemma 4.2.4. For the projections we have for u ∈ V

||Πl
a,tu− u||2V ≤

β

κ
||v − u||2V v ∈ V l, in particular v = Πl

Hu (4.22)

||(Πl
a,t −Πl

a,s)u||V ≤ |t− s|
clip
κ
||Πl

a,su− u||V . (4.23)

Proof. Using (4.12) and (4.13) one easily verifies the following inequalities:

κ||Πl
a,tu− u||2V ≤ a(t; Πl

a,tu− u,Πl
a,tu− u) ≤ a(t; v − u, v − u) ≤ β||v − u||2V

for all t ∈ [0, T] and v ∈ V l. The coercivity (4.13) yields

κ||(Πl
a,t −Πl

a,s)u||2V ≤ a(t; (Πl
a,t −Πl

a,s)u, (Πl
a,t −Πl

a,s)u)

and using the Ritz-projection property as well as the Lipschitz continuity (4.14) we get

a(t; (Πl
a,t −Πl

a,s)u, (Πl
a,t −Πl

a,s)u) =
= a(s; Πl

a,su− u, (Πl
a,t −Πl

a,s)u)− a(t; Πl
a,su− u, (Πl

a,t −Πl
a,s)u)

≤ clip|t− s| ||Πl
a,su− u||V ||(Πl

a,t −Πl
a,s)u||V .

66

4.2 POD Error Estimates

Combining these two results yields the second statement. �

By assumption 4.1 we have ||v||2H ≤ α||v||2V for all v ∈ V . A reverse inequality holds if we
consider the finite-dimensional subspace Vr:

||u||V ≤
√
||S||2||u||H ∀u ∈ Vr with S ∈ Rr×r, Sij = 〈Ψj ,Ψi〉V , (4.24)

see e.g. Kunisch and Volkwein (2001, lemma 2).
For the POD error compared to the Ritz-projection we have the following error estimate.

Note that we assume y0 ∈ V from now on.

Lemma 4.2.5. For the implicit Euler method (θ = 1) we have

||yl,1i −Πl
a,tiy(ti)||H ≤ ||yl,1i−1 −Πl

a,ti−1y(ti−1)||H + ∆t||vi||H (4.25)

and for the Crank-Nicolson scheme (θ = 1/2)

||yl,1i −Πl
a,tiy(ti)||H ≤ (1 + 4ξ∆t3)||yl,1i−1 −Πl

a,ti−1y(ti−1)||H + 2∆t||vi||H (4.26)

provided ξ∆t3 < 1/2 with ξ = c2
lipα||S||22/(32κ). Here, vi is defined as

vi = θ · yt(ti) + (1− θ) · yt(ti−1)− ∂̄Πl
a,tiy(ti). (4.27)

Proof. Set
wi = yl,1i −Πl

a,tiy(ti).

In the equalities below, for the first equation we use the definition of wi, for the second
equation recall (4.18) for the first part and definition 4.2.3 for the second part (note that
wi ∈ V l). Thus, we have for an arbitrary Ψ ∈ V l:

〈∂̄wi,Ψ〉H + θ · a(ti; wi,Ψ) + (1− θ) · a(ti−1; wi−1,Ψ)

= 〈∂̄yl,1i ,Ψ〉H + θ · a(ti; yl,1i ,Ψ) + (1− θ) · a(ti−1; yl,1i−1,Ψ)
− 〈∂̄Πl

a,tiy(ti),Ψ〉H − θ · a(ti; Πl
a,tiy(ti),Ψ)− (1− θ) · a(ti−1; Πl

a,tiy(ti−1),Ψ)
= θ · L(ti; Ψ) + (1− θ) · L(ti−1; Ψ)
− 〈∂̄Πl

a,tiy(ti),Ψ〉H − θ · a(ti; y(ti),Ψ)− (1− θ) · a(ti−1; y(ti−1),Ψ).

Since y(t) is the solution of (4.16) we obtain

〈∂̄wi,Ψ〉H + θ · a(ti; wi,Ψ) + (1− θ) · a(ti−1; wi−1,Ψ)
= θ · 〈yt(ti),Ψ〉H + (1− θ) · 〈yt(ti−1),Ψ〉H − 〈∂̄Πl

a,tiy(ti),Ψ〉H = 〈vi,Ψ〉H (4.28)

with vi defined in (4.27).

67

Chapter 4 Model Order Reduction via POD

If we set Ψ = wi we obtain for the implicit Euler method (θ = 1)

||wi||2H = 〈wi, wi−1〉H −∆t a(ti; wi, wi) + ∆t〈vi, wi〉H
≤ ||wi||H ||wi−1||H −∆t κ

α
||wi||2H + ∆t||vi||H ||wi||H

and hence

||wi||H ≤
1

1 + ∆t κα
(||wi−1||H + ∆t||vi||H) ≤ ||wi−1||H + ∆t||vi||H . (4.29)

Before we derive the estimate for the Crank-Nicolson scheme, we show that

a(ti; wi, wi + wi−1) + a(ti−1; wi−1, wi + wi−1) ≥ −
c2
lipα||S||22

16κ ∆t2(||wi||H + ||wi−1||H)2.

We use the assumptions on the bilinear form to derive

a(ti; wi, wi + wi−1) + a(ti−1; wi−1, wi + wi−1)
= a(ti; wi + wi−1, wi + wi−1) + (a(ti−1; wi−1, wi + wi−1)− a(ti; wi−1, wi + wi−1))
≥ κ||wi + wi−1||2V − clip|ti − ti−1| ||wi−1||V ||wi + wi−1||V

and similarly

a(ti; wi, wi + wi−1) + a(ti−1; wi−1, wi + wi−1)
≥ κ||wi + wi−1||2V − clip|ti − ti−1| ||wi||V ||wi + wi−1||V .

First, we add the last two inequalities and divide by two, then use wi ∈ V l to estimate with
(4.24), and finally complete the squares to obtain

a(ti; wi, wi + wi−1) + a(ti−1; wi−1, wi + wi−1)

≥ κ||wi + wi−1||2V −
1
2clip∆t(||wi||V + ||wi−1||V)||wi + wi−1||V

≥ κ

α

(
||wi + wi−1||2H −

clipα||S||2
2κ ∆t(||wi||H + ||wi−1||H)||wi + wi−1||H

)
= κ

α

((
||wi + wi−1||H −

clipα||S||2
4κ ∆t(||wi||H + ||wi−1||H)

)2
−
c2
lipα

2||S||22
16κ2 ∆t2(||wi||H + ||wi−1||H)2

)
≥ −2ξ∆t2(||wi||H + ||wi−1||H)2

with ξ := c2
lipα||S||22/(32κ), which was claimed to be shown above.

We return to formula (4.28) and use Ψ = wi + wi−1 ∈ V l in the Crank-Nicolson case
(θ = 1/2)

||wi||2H = ||wi−1||2H −
∆t
2 (a(ti; wi, wi + wi−1) + a(ti−1; wi−1, wi + wi−1))

68

4.2 POD Error Estimates

+ ∆t〈vi, wi + wi−1〉H
≤ ||wi−1||2H + ξ∆t3(||wi||H + ||wi−1||H)2 + ∆t||vi||H(||wi||H + ||wi−1||H)

and therefore

||wi||H − ||wi−1||H = ||wi||
2
H − ||wi−1||2H

||wi||H + ||wi−1||H
≤ ξ∆t3(||wi||H + ||wi−1||H) + ∆t||vi||H .

If we assume that ∆t is chosen so small that ξ∆t3 < 1/2 we obtain

||wi||H ≤
1 + ξ∆t3

1− ξ∆t3 ||wi−1||H + 1
1− ξ∆t3 ∆t||vi||H ≤ (1 + 4ξ∆t3)||wi−1||H + 2∆t||vi||H .

(4.30)

�

After proving these lemmas, we can state and show the main error estimate. First, we
consider error 1 as defined in (4.20).

Theorem 4.2.6. (POD error 1)
Let y(t) be the solution of (4.16), {yl,1i }ni=0 the solution of (4.18). Then with appropriate
constants Ci (i = 0, 1, 2), independent of n, we have

1
n

n∑
i=1

∣∣∣∣y(ti)− yl,1i
∣∣∣∣2
H
≤ C0||y(t0)−Πl

Hy(t0)||2H + C1∆tj + C2||S||2
r∑

j=l+1
λj (4.31)

with j = 2 for the implicit Euler method assuming ytt ∈ L2([0, T];H)
and j = 4 for the Crank-Nicolson method, assuming yttt ∈ L2([0, T];H) and ∆t sufficiently
small.
Furthermore, for some constant C we have

||y(t0)−Πl
Hy(t0)||2H ≤ n C

r∑
j=l+1

λj .

Proof. Define the snapshots ȳi:

ȳi = y(ti−1) i = 1, . . . , n+ 1

ȳi+n+1 = ∂̄y(ti) = y(ti)− y(ti−1)
∆t i = 1, . . . , n.

Let dim(span(ȳ1, . . . , ȳ2n+1)) = r. We compute the POD basis Ψ1, . . . ,Ψr with the corre-
sponding eigenvalues λ1, . . . , λr using the norm || · ||H . For simplicity, the weighting factors
are set constant, i.e. γi = 1

2n+1 ∀ i. However, a different choice with γi 6= γj , for i 6= j, would
only cause slight modifications. Denote by V l the space spanned by {Ψi}li=1. Then (4.9)

69

Chapter 4 Model Order Reduction via POD

yields:

1
2n+ 1

n∑
i=0

∣∣∣∣∣∣y(ti)−Πl
Hy(ti)

∣∣∣∣∣∣2
H

+ 1
2n+ 1

n∑
i=1

∣∣∣∣∣∣∂̄y(ti)−Πl
H ∂̄y(ti)

∣∣∣∣∣∣2
H

=
r∑

k=l+1
λk. (4.32)

Let us define
w1
i = yl,1i −Πl

a,tiy(ti) and w2
i = Πl

a,tiy(ti)− y(ti)

so that the triangle inequality yields:

1
n

n∑
i=1
||yl,1i − y(ti)||2H ≤

2
n

n∑
i=1
||w1

i ||2H + 2
n

n∑
i=1
||w2

i ||2H . (4.33)

Let us first give an estimate for w2
i . Using the assumption on the norms of the Hilbert spaces

in assumption 4.1a), lemma 4.2.4 (4.22), (4.24) and (4.32):

1
n

n∑
i=1
||w2

i ||2H ≤
1
n

αβ||S||2
κ

n∑
i=1

∣∣∣∣∣∣y(ti)−Πl
Hy(ti)

∣∣∣∣∣∣2
H
≤ 3αβ||S||2

κ

r∑
j=l+1

λj . (4.34)

Since we included the difference quotients in the set of snapshots we obtain analogously:

1
n

n∑
i=1
||∂̄y(ti)−Πl

a,ti ∂̄y(ti)||2H ≤
3αβ||S||2

κ

r∑
j=l+1

λj , (4.35)

a result that will be needed later.

Estimates for w1
i are provided in lemma 4.2.5: For the implicit Euler we have

||w1
i ||H ≤ ||w1

i−1||H + ∆t||vi||H (4.36)

and for Crank-Nicolson

||w1
i ||H ≤ (1 + 4ξ∆t3)||w1

i−1||H + 2∆t||vi||H (4.37)

with vi = ri + zi from (4.27), where

ri := θ · yt(ti) + (1− θ) · yt(ti−1)− ∂̄y(ti) and zi := ∂̄y(ti)− ∂̄Πl
a,tiy(ti).

If we apply lemma 4.2.7 formulated below to (4.36) and (4.37) this leads to

θ = 1 : 1
n

n∑
i=1
||w1

i ||2H ≤ max
1≤i≤n

||w1
i ||2H ≤ 2||w1

0||2H + 2n
n∑
k=1

∆t2||vk||2H

≤ 2||w1
0||2H + 4T∆t

n∑
k=1

(||rk||2H + ||zk||2H) (4.38)

θ = 1
2 : 1

n

n∑
i=1
||w1

i ||2H ≤ 2e8∆t3ξn
(
||w1

0||2H + 1− e−8∆t3ξn

8∆t3ξ

n∑
k=1

4∆t2||vk||2H
)

70

4.2 POD Error Estimates

= 2e8∆t2ξT
(
||w1

0||2H + 1− e−8∆t2ξT

2∆tξ

n∑
k=1
||vk||2H

)
≤ C̃CN ||w1

0||2H + CCN∆t
n∑
k=1

(||rk||2H + ||zk||2H). (4.39)

We split zi as follows and use the results of lemma 4.2.4, i.e. (4.23) and (4.22), to estimate
the second summand:

||zi||2H ≤ 2||∂̄y(ti)−Πl
a,ti ∂̄y(ti))||2H + 2||Πl

a,ti ∂̄y(ti)− ∂̄Πl
a,tiy(ti)||2H

= 2||∂̄y(ti)−Πl
a,ti ∂̄y(ti)||2H + 2

∆t2 ||Π
l
a,tiy(ti−1)−Πl

a,ti−1y(ti−1)||2H

≤ 2||∂̄y(ti)−Πl
a,ti ∂̄y(ti)||2H + 2α

c2
lip

κ2 ||Π
l
a,ti−1y(ti−1)− y(ti−1)||2V

≤ 2||∂̄y(ti)−Πl
a,ti ∂̄y(ti)||2H + 2α

c2
lip

κ2
β||S||2
κ
||Πl

Hy(ti−1)− y(ti−1)||2H .

We use (4.35) for the first part and (4.32) for the second to get

1
n

n∑
i=1
||zi||2H ≤

6αβ||S||2
κ

r∑
j=l+1

λj +
c2
lip

κ2
6αβ||S||2

κ

r∑
j=l+1

λj . (4.40)

With regard to ri one can easily show the following results:

θ = 1 :
n∑
i=1
||yt(ti)− ∂̄y(ti)||2H ≤ ∆t

T∫
0

||ytt(s)||2H ds = C̄∆t, (4.41)

θ = 1
2 :

n∑
i=1

∣∣∣∣∣∣12yt(ti) + 1
2yt(ti−1)− ∂̄y(ti)

∣∣∣∣∣∣2
H
≤ ∆t3

16

T∫
0

||yttt(s)||2H ds = C̃∆t3 (4.42)

under the assumption that ytt ∈ L2([0, T];H) for θ = 1 and yttt(t) ∈ L2([0, T];H) for θ = 1
2 .

Altogether, we obtain for ERR1 = 1
n

n∑
i=1
||yl,1i − y(ti)||2H combining (4.33) and (4.34)

ERR1 ≤
2
n

n∑
i=1
||w1

i ||2H + 2
n

n∑
i=1
||w2

i ||2H ≤
2
n

n∑
i=1
||w1

i ||2H + 6αβ||S||2
κ

r∑
j=l+1

λj .

With appropriate constants d1, ..., d4 we estimate further using (4.38), (4.40), (4.41) or (4.39),
(4.40), (4.42) and j = 2 for implicit Euler and j = 4 for Crank-Nicolson

ERR1 ≤ d1||w1
0||2H + d2∆t

n∑
k=1

(||rk||2H + ||zk||2H) + 6αβ||S||2
κ

r∑
j=l+1

λj

≤ d1||w1
0||2H + d3∆tj + d4

r∑
j=l+1

λj

71

Chapter 4 Model Order Reduction via POD

which yields to the proposition. �

The following lemma gives a useful estimate which is being used in the proof of the previous
theorem.

Lemma 4.2.7. Assume that ri ≤ (1+δ)ri−1 +bi, i = 1, . . . , n, holds for some given sequence
bi and some r0. Then

max
1≤i≤n

|ri|2 ≤ 2e2δn
(
r2

0 + 1− e−2δn

2δ

n∑
k=1

b2k

)
if δ > 0, (4.43)

max
1≤i≤n

|ri|2 ≤ 2r2
0 + 2n

n∑
k=1

b2k if δ = 0. (4.44)

Proof. We only prove the proposition for δ > 0 since the special case δ = 0 can easily be
obtained from this. From the assumption we infer that ri ≤ eδir0 +

∑i
k=1 e

δ(i−k)bk. Since
δ > 0 an application of the binomial formula as well as the Cauchy-Schwarz inequality and
a geometric series argument we obtain that

max
1≤i≤n

|ri|2 ≤ 2e2δnr2
0 + 2

(n∑
k=1

eδ(n−k)bk
)2
≤ 2e2δnr2

0 + 2
(n∑
k=1

e2δ(n−k)
n∑
k=1

b2k

)
≤ 2e2δn

(
r2

0 + 21− e−2δn

e2δ − 1

n∑
k=1

b2k

)
≤ 2e2δn

(
r2

0 + 21− e−2δn

2δ

n∑
k=1

b2k

)
.

�

Thus, the error can be divided into two different parts. On the one hand, the error
resulting from the time discretization via the Euler and Crank-Nicolson method (this is the
first summand). As expected the latter yields to a better order (∆t4 vs. ∆t2). On the other
hand, we got the error const ·

∑r
j=l+1 λj , resulting from the projection on the POD space.

Using the maximum number of POD basis functions this error drops out.
In the next theorem, we take a look at error 2 (cf. (4.21)). Here, we estimate the difference

between the POD solution compared to a discretized FE solution.

Theorem 4.2.8. (POD error 2)
Let {yFEi }ni=0 be the finite element solution using the finite element space Hnx in the Galerkin
approximation. Let {yl,2i }ni=0 be the solution of problem (4.18) based on the FEM snapshots.
Then with appropriate constants C̃0, C̃1 independent of n, we have for the implicit Euler
method and, for sufficiently small ∆t, also for the Crank-Nicolson method

1
n

n∑
i=1

∣∣∣∣yFEi − yl,2i
∣∣∣∣2
H
≤ C̃0 ||yFE0 −Πl

Hy
FE
0 ||2H + C̃1||S||2

r∑
j=l+1

λj

where ||yFE0 −Πl
Hy

FE
0 ||2H ≤ 3n

∑r
j=l+1 λj.

72

4.2 POD Error Estimates

Proof. The proof is analogous to theorem 4.2.6. Instead of y(ti) we use the snapshots yFEi .
Defining w1

i = yl,2i −Πl
a,tiy

FE
i the main difference is:

〈∂̄w1
i ,Ψ〉H + θ · a(ti; w1

i ,Ψ) + (1− θ) · a(ti−1; w1
i−1,Ψ) =

= 〈∂̄yl,2i ,Ψ〉H + θ · a(ti; yl,2i ,Ψ) + (1− θ) · a(ti−1; yl,2i−1,Ψ)
− 〈∂̄Πl

a,tiy
FE
i ,Ψ〉H − θ · a(ti; Πl

a,tiy
FE
i ,Ψ)− (1− θ) · a(ti−1; Πl

a,tiy
FE
i−1,Ψ) =

= θ · L(ti; Ψ) + (1− θ) · L(ti−1; Ψ)
− θ · a(ti; yFEi ,Ψ)− (1− θ) · a(ti−1; yFEi−1,Ψ)− 〈∂̄P ptiy

FE
i ,Ψ〉H

= 〈∂̄yFEi − ∂̄Πl
a,tiy

FE
i ,Ψ〉H =: 〈vi,Ψ〉H .

Compared to theorem 4.2.6 the ri’s drop out, which leads immediately to the statement of
the theorem. �

If we use the maximal number of POD basis functions, the whole error is equal to zero
because the error resulting from the time discretization is present in both solutions.
Note that the norm ||S||2, which occurs in the estimates in theorem 4.2.6 and 4.2.8, in

general depends on n. However, this factor can be avoided by using the stronger topology
V in (4.1) (cf. Kunisch and Volkwein (2001)).
Error 2 seems to be more interesting because in practice we do not have the exact solution

y(t) of our PIDE, but only an approximation, e.g. from a finite element method, available.
The Crank-Nicolson method and the implicit Euler scheme may also be combined to

achieve a smoothing as proposed by Rannacher (cf. section 3.2.2). We do not show a
corresponding theoretical result, but theorem 4.2.8 should still hold true. Actually, numerical
results in section 3.2.4 have already shown that the Rannacher smoothing provides a much
smoother solution in time direction and therefore the singular values in general decay faster
leading to a better convergence with respect to the number of POD basis functions l. Section
4.3.1 will provide numerical results supporting this considerations.
We have learned that we need to compute a full solution of the parabolic equation to be

able to build a POD model. Thus, to make this model reasonable in terms of computational
efficiency, we have to use it in optimization, where the problem has to be solved repeatedly.

4.2.2 Error Estimates in Optimal Control Problems

We now want to use the model order reduction technique in the context of an optimal control
problem as it has been described in section 3.3.1. Thus, we formulate the optimization
problem for a reduced order model space V l ⊂ V that will be specified further below.
The reduced objective function is given by

fl(u) = 1
2

D∑
i=1
||Cylki(u)− di||2H + α

2 ||u||
2
U . (4.45)

Here, {ylk}
nt
k=0 ⊂ V l is the POD approximation to the state equation discretized with the

73

Chapter 4 Model Order Reduction via POD

θ-method, i.e

∂̄ylk + θA(u; tk)ylk + (1− θ)A(u; tk−1)ylk−1 =
θl(u; tk) + (1− θ)l(u; tk−1), k = 1, . . . , nt (4.46)

yl0 = y0

in the sense of V l.

The corresponding discretized derivative has also been derived in section 3.3.1, where, for
given weights ωik (k = ki−1, . . . , ki, i = 1, . . . , D), we have

f ′l (u)δu = ∆t
D∑
i=1

ki∑
k=ki−1

ωik〈p
i,l
k , A

′(u; tk)δu ylk − l′(u, tk)δu〉V,V ∗ + α〈u, δu〉U . (4.47)

{ylk}
nt
k=0 ⊂ V l solve (4.46) and the discrete adjoint variables {pi,lk }

ki
k=ki−1

⊂ V l are solutions
to

− ∂̄pD,lk + θA∗(u; tk−1)pD,lk−1 + (1− θ)A∗(u; tk)pD,lk = 0, k = nt − 1, . . . , kD−1 (4.48)
pD,lnt = −C∗(CylkD − dD),

and, for i = D − 1, . . . , 1,

− ∂̄pi,lk + θA∗(u; tk−1)pi,lk−1 + (1− θ)A∗(u; tk)pi,lk = 0, k = ki − 1, . . . , ki−1 (4.49)

pi,lki = −C∗(Cylki − di) + pi+1,l
ki

in the sense of V l.

As in the previous section, we want to estimate the error between the reduced objective
function, (4.45), and a reference objective function, and the reduced derivative, (4.47), and
a reference derivative, respectively. As reference, we might take the infinite-dimensional
solution (as in theorem 4.2.6) or a numerical approximation (as in theorem 4.2.8). In the
following, we will restrict ourselves to the latter case where we assume to know finite element
solutions {yFEk }

nt
k=0 ⊂ Hnx ⊂ V and {pi,FEk }kik=ki−1

⊂ Hnx for the problems (4.46) and (4.48),
(4.49), respectively. The main reason is that in most applications – and this also includes the
calibration of option pricing models that is considered in this thesis – continuous solutions
are not available, and furthermore, we are mainly interested in the error resulting from the
reduced order model and not the time discretization errors.

The following two lemmas provide first estimates for the error of the objective function
and the derivative. Note that we assume the control u to be fixed but arbitrary.

Lemma 4.2.9. For fixed but arbitrary u ∈ U , let {ylk}
nt
k=0 ⊂ V l be a solution to (4.46) and

{yFEk }
nt
k=0 ⊂ Hnx a solution to (4.46) where we replace V l by Hnx. Writing fFE(u) and fl(u)

as the corresponding objective functions in the sense of (4.45), then there exists a constant

74

4.2 POD Error Estimates

c > 0 independent of nt but dependent of u, such that the following estimate holds:

∣∣fFE(u)− fl(u)
∣∣2 ≤ cD D∑

i=1
||yFEki (u)− ylki(u)||2H . (4.50)

Proof. By definition, the left-hand side of (4.50) yields

∣∣fFE(u)− fl(u)
∣∣2 = 1

4
(D∑
i=1

(
||CyFEki (u)− di||2H − ||Cylki(u)− di||2H

))2
. (4.51)

Using the inequality ||x||2 − ||y||2 = 〈x, x − y〉 + 〈x − y, y〉 ≤ ||x − y||(||x|| + ||y||), the fact
that C ∈ L(H,H) and that the solutions {ylk}

nt
k=0 ⊂ V l and {yFEk }

nt
k=0 ⊂ Hnx are bounded

in H for fixed u, we can estimate the summands as follows:

||CyFEki (u)− di||2H − ||Cylki(u)− di||2H
≤ ||C(yFEki (u)− ylki(u))||H

(
||CyFEki (u)− di||H + ||Cylki(u)− di||H

)
≤ c1||yFEki (u)− ylki(u)||H ,

where i ∈ {1, . . . , D} is arbitrary. Thus, applying the Cauchy-Schwartz inequality, (4.51)

yields
∣∣fFE(u)− fl(u)

∣∣2 ≤ c2
1
4 D

D∑
i=1
||yFEki (u)− ylki(u)||2H . �

Assuming that the operator C ∈ L(H,H) contains an approximation of a Dirac delta
function, the constant c1 used in the lemma above depends on the spatial discretization (cf.
remark 3.3.2).
However, we see that the error between the objective function based on a finite element

discretization and on a POD discretization, respectively, can be estimated by the difference
between the state solutions. This will be used later to establish a connection between the
error of the function values and the eigenvalues of a POD model as in the previous section.
A similar result as above can be stated for the derivative error.

Lemma 4.2.10. For fixed but arbitrary u ∈ U , let {ylk}
nt
k=0 ⊂ V l be a solution to (4.46)

and {yFEk }
nt
k=0 ⊂ Hnx a solution to (4.46) where we replace V l by Hnx. Analogously,

{pi,lk }
ki
k=ki−1

⊂ V l and {pi,FEk }kik=ki−1
⊂ Hnx (i = D, . . . , 1) are the corresponding adjoint solu-

tions to (4.48) and (4.49), respectively. Writing f ′FE(u)δu and f ′l (u)δu as the corresponding
derivatives in the sense of (4.47), then there exist constants c̄, cA′ , cl′ > 0 independent of nt
but dependent of u, such that the following estimate holds for feasible directions δu:

∣∣f ′FE(u)δu− f ′l (u)δu
∣∣2 ≤ c 1

nt

(D∑
i=1

ki∑
k=ki−1

c2
A′ ||p

i,FE
k ||2V ||yFEk − ylk||2V (4.52)

+
D∑
i=1

ki∑
k=ki−1

(
cA′ ||ylk||V + cl′

)2||pi,FEk − pi,lk ||
2
V

)
||δu||2U .

75

Chapter 4 Model Order Reduction via POD

Proof. By definition, the left-hand side of (4.52) yields

∣∣f ′FE(u)δu− f ′l (u)δu
∣∣2 =

∣∣∣∆t D∑
i=1

ki∑
k=ki−1

ωik

(
〈pi,FEk , A′(u; tk)δu yFEk − l′(u, tk)δu〉V,V ∗

− 〈pi,lk , A
′(u; tk)δu ylk − l′(u, tk)δu〉V,V ∗

)∣∣∣2. (4.53)

For an arbitrary k = ki−1, . . . , ki (i = 1, . . . , D), we can estimate the summands as follows:

〈pi,FEk , A′(u; tk)δu yFEk − l′(u, tk)δu〉V,V ∗ − 〈pi,lk , A
′(u; tk)δu ylk − l′(u, tk)δu〉V,V ∗

= 〈pi,FEk , A′(u; tk)δu yFEk − l′(u, tk)δu〉V,V ∗ − 〈pi,FEk , A′(u; tk)δu ylk − l′(u, tk)δu〉V,V ∗

+ 〈pi,FEk , A′(u; tk)δu ylk − l′(u, tk)δu〉V,V ∗ − 〈p
i,l
k , A

′(u; tk)δu ylk − l′(u, tk)δu〉V,V ∗

= 〈pi,FEk , A′(u; tk)δu
(
yFEk − ylk

)
〉V,V ∗ + 〈pi,FEk − pi,lk , A

′(u; tk)δu ylk − l′(u, tk)δu〉V,V ∗

≤
(
cA′ ||pi,FEk ||V ||yFEk − ylk||V + ||pi,FEk − pi,lk ||V

(
cA′ ||ylk||V + cl′

))
||δu||U .

Thus, setting ω̄ = max{ωik : ∀ i, k} and further using nt +D ≤ 2nt, (4.53) yields

∣∣f ′FE(u)δu− f ′l (u)δu
∣∣2 ≤ 2(nt +D)∆t2

D∑
i=1

ki∑
k=ki−1

ω̄2
(
c2
A′ ||p

i,FE
k ||2V ||yFEk − ylk||2V + ||pi,FEk − pi,lk ||

2
V

(
cA′ ||ylk||V + cl′

)2)||δu||2U
≤ 4T T

nt
ω̄2
(D∑
i=1

ki∑
k=ki−1

c2
A′ ||p

i,FE
k ||2V ||yFEk − ylk||2V

+
D∑
i=1

ki∑
k=ki−1

(
cA′ ||ylk||V + cl′

)2||pi,FEk − pi,lk ||
2
V

)
||δu||2U ,

which proves the lemma. �

What is striking concerning the two lemmas above is the fact that both errors, the function
as well as the gradient error, mainly depend on the difference of the state solutions, yFEk (u),
ylk(u), and, concerning the gradient, also on the difference of the adjoint solutions pi,FEk (u),
pi,lk (u) (for the sake of readability we omit the dependence of the state and the adjoint on
the fixed control u in the following).
The results of the previous section now tell us how to estimate these differences. On the

one hand, to estimate the difference between yFEk and ylk in the sense of theorem 4.2.8, the
POD subspace V l needs to include information of the state equation {yFEk }

nt
k=0. But it is,

on the other hand, also important that the POD basis contains information of the adjoint
solutions {pi,FEk }kik=ki−1

to be able to estimate the error between pi,FEk and pi,lk (i = 1, . . . , D).
Thus, for a fixed but arbitrary control u, we define the set of snapshots

yFEk , k = 0, . . . , nt,

76

4.2 POD Error Estimates

pi,FEk , k = ki−1, . . . , ki, i = 1, . . . , D,

where we also include the corresponding difference quotients for yFE and pi,FE (i = 1, . . . , D).
Denoting by r the rank of all snapshots, we write Vr for the space spanned by them and
V l, l ≤ r, for the corresponding l-dimensional subspace. We further denote by ηS , ηA >
0 two weighting factors that manage the importance of the state and adjoint snapshots,
respectively, for the computation of the POD basis. This weighting leads to the following
POD projection error:

ηS
4nt +D + 1

(nt∑
i=0

∣∣∣∣∣∣yFEk −Πl
Hy

FE
k

∣∣∣∣∣∣2
H

+
nt∑
i=1

∣∣∣∣∣∣∂̄yFEk −Πl
H ∂̄y

FE
k

∣∣∣∣∣∣2
H

)
+ (4.54)

ηA
4nt +D + 1

(D∑
i=1

ki∑
k=ki−1

∣∣∣∣∣∣pi,FEk −Πl
Hp

i,FE
k

∣∣∣∣∣∣2
H

+
D∑
i=1

ki−1∑
k=ki−1

∣∣∣∣∣∣∂̄pi,FEk −Πl
H ∂̄p

i,FE
k

∣∣∣∣∣∣2
H

)
=

r∑
j=l+1

λj .

Of course, the λj ’s strongly depend on the weighting factors, whose choice will be discussed
further below. Just note that only the relationship between ηS and ηA is important and not
the absolute values. Given the POD space corresponding to the snapshot setting above, we
can now estimate the error of the objective function and the derivative in terms of the sum∑r
j=l+1 λj .
When we use an extended POD basis including the adjoint snapshots, this has some

impacts on the error estimates that have been derived in the previous section. Further, we
have to stress that an POD error of the state solution affects the error of the reduced adjoint
solution since the state appears in the end conditions. We mention some issues that arise in
this context in the following remark.
Remark 4.2.11. (POD for state and adjoint)
For fixed but arbitrary u ∈ U , let {ylk}

nt
k=0 ⊂ V l be a solution to (4.46) and {yFEk }

nt
k=0 ⊂

Hnx a solution to (4.46) where we replace V l by Hnx. Analogously, {pi,lk }
ki
k=ki−1

⊂ V l and
{pi,FEk }kik=ki−1

⊂ Hnx (i = D, . . . , 1) are the corresponding adjoint solutions to (4.48) and
(4.49), respectively. Given the assumptions of theorem 4.2.8 and the space V l as described
above, we can state the following results:
a) The POD error for the state equation can now be estimated by

1
nt

nt∑
k=1
||yFEk − ylk||2H ≤ Ĉ0 ||yFE0 −Πl

Hy
FE
0 ||2H + Ĉ1||S||2

1
ηS

r∑
j=l+1

λj

≤ 1
ηS

(
5Ĉ0nt + Ĉ1||S||2

) r∑
j=l+1

λj ,

(4.55)

and an error at the initial condition ||yFE0 − yl0||2H ≤ 1
ηS

5nt
r∑

j=l+1
λj.

b) The adjoint equations are backward. A simple change of variables leads to a forward
equation in the sense of theorem 4.2.8. However, in the further notation, we keep the back-
ward formulation.
c) Writing ki − ki−1 = $int ($i ∈ (0, 1]), the adjoint error can be estimated recursively

77

Chapter 4 Model Order Reduction via POD

(i = D, . . . , 1) by the adjoint projection error, εproj, plus the error due to a disturbed end
condition, εend:

1
nt$i

ki−1∑
k=ki−1

||pi,FEk − pi,lk ||
2
H ≤ εproj(i) + εend(i) (4.56)

with

εproj(i) = 1
ηA

(
5C0nt + C1||S||2

1
$i

) r∑
j=l+1

λj (4.57)

and

εend(i) = nt
ηS
C̃0(5Ĉ0nt + Ĉ1||S||2)

r∑
j=l+1

λj + 2c||pi+1,FE
ki

− pi+1,l
ki
||2H , (4.58)

where ||pi+1,FE
ki

− pi+1,l
ki
||2H = nt$i+1(εproj(i + 1) + εend(i + 1)) can be estimated recursively

via (4.56) for i < D (we set εproj(D + 1) = εend(D + 1) = 0).

We can further estimate the error at the end condition of the backward adjoints for i =
D, . . . , 1 as follows:

||pi,FEki
− pi,lki ||

2
H ≤

nt
ηA

10
r∑

j=l+1
λj + nt

ηS
C1(5Ĉ0nt + Ĉ1||S||2)

r∑
j=l+1

λj + ||pi+1,FE
ki

− pi+1,l
ki
||2H .

(4.59)

Proof. a) The changes in the constants are due to the inclusion of the adjoint snapshots in
the sense of (4.54).

c) We begin by introducing a further solution {p̃i,lk }
ki
k=ki−1

⊂ V l to (4.48) and (4.49),
respectively, with a new end condition given by p̃i,lki = Πl

H [−C∗(CyFEki − di) + pi+1,FE
ki

]. Note
that in the notation of (4.48) and (4.49), the projection operator Πl

H is omitted, although it
is meant in the sense of V l. Here, it is not omitted to stress the fact that we are dealing with
a solution in V l. Further note that pD+1,FE

kD
:= 0. We easily derive the following inequality:

1
nt$i

ki−1∑
k=ki−1

||pi,FEk − pi,lk ||
2
H ≤

2
nt$i

ki−1∑
k=ki−1

||pi,FEk − p̃i,lk ||
2
H + 2

nt$i

ki−1∑
k=ki−1

||p̃i,lk − p
i,l
k ||

2
H .

(4.60)

The first summand on the right-hand side, denoted by εproj(i) in the following, can be
estimated by theorem 4.2.8:

εproj(i) ≤ C0||pi,FEki
−Πl

Hp
i,FE
ki
||2H + C1||S||2

1
ηA$i

r∑
j=l+1

λj (4.61)

78

4.2 POD Error Estimates

≤ 1
ηA

(
5C0nt + C1||S||2

1
$i

) r∑
j=l+1

λj . (4.62)

Using parts of the proofs for theorem 4.2.6 and 4.2.8, especially (4.38) and (4.39), the second
summand in (4.60), εend(i), i.e. the average error between p̃i,lk and pi,lk , can be estimated by
its inital error:

εend(i) ≤ c||p̃i,lki − p
i,l
ki
||2H ≤ c||Πl

H [−C∗(CyFEki − di) + pi+1,FE
ki

]−Πl
H [−C∗(Cylki − di) + pi+1,l

ki
]||2H

≤ c|| − C∗(CyFEki − di) + pi+1,FE
ki

+ C∗(Cylki − di)− p
i+1,l
ki
||2H

≤ 2cc2
c ||yFEki − y

l
ki ||

2
H + 2c||pi+1,FE

ki
− pi+1,l

ki
||2H

≤ nt
ηS
C̃0(5Ĉ0nt + Ĉ1||S||2)

r∑
j=l+1

λj + 2c||pi+1,FE
ki

− pi+1,l
ki
||2H ,

where the last estimate uses (4.55). The term ||pi+1,FE
ki

− pi+1,l
ki
||2H has to be estimated

recursively. (4.59) can be easily estimated using the same techniques as above. �

The partition of the adjoint equation – which has been necessary from a theoretical point
of view –, where the end condition of one adjoint, pi,FEki

, involves the solution of the previous
adjoint in the same time slice, pi+1,FE

ki
, leads to this recursive representation of the adjoint

error as seen above. In case of D = 1, we get:

1
nt

nt−1∑
k=0
||pFEk − plk||2H

≤
(1
ηA

(5C0nt + C1||S||2) + nt
ηS
C̃0(5Ĉ0nt + Ĉ1||S||2)

) r∑
j=l+1

λj (4.63)

with an error of the end condition

||pFEnt − p
l
nt ||

2
H ≤

(nt
ηA

10 + nt
ηS
C1(5Ĉ0nt + Ĉ1||S||2)

) r∑
j=l+1

λj . (4.64)

The highest degree for the factor nt is two in (4.64) and (4.63). However, the recursive
structure yields a factor nD+1

t for arbitrary D ≥ 1. This is due to the fact that the POD
error is given as an average error, and thus, the error for an adjoint in the last time step
involves a factor of nt. The factor nD+1

t seems to be a strong drawback at first sight, however,
the numerical results below will show small errors even for small POD bases. Furthermore,
nD+1
t occurs with an additional factor

∏D
i=1$i, typically very small if D is high.

We are also able to eliminate the factor nD+1
t by considering the adjoint equation based

on the first discretize approach. Discontinuities in the right-hand side terms can be ignored,
and thus, according to (3.47), we have – instead of D parts – only one adjoint equation:

− ∂̄plk+1 + θA∗(u, tk)plk + (1− θ)A∗(u, tk)plk+1

79

Chapter 4 Model Order Reduction via POD

+
D∑
i=1

C∗(Cylki − di)1k=ki = 0 , k = nt, . . . , 1

plnt+1 = 0.

If we want to estimate the corresponding POD adjoint error, we can again split the error
into the adjoint projection error and the error due to a disturbed state solution. We just
need to rewrite the right-hand side – instead of the disturbed initial condition as above – as
C∗(Cylki − di) = C∗(CyFEki − di) + C∗(C(ylki − y

FE
ki

)).
We now use the previous results to estimate the error for the reduced function value and

the reduced derivative in terms of a sum over the remaining eigenvalues.

Theorem 4.2.12. (POD function error)
For fixed but arbitrary u ∈ U , let {ylk}

nt
k=0 ⊂ V l be a solution to (4.46) and {yFEk }

nt
k=0 ⊂ Hnx a

solution to (4.46) where we replace V l by Hnx. Writing fFE(u) and fl(u) as the corresponding
objective functions in the sense of (4.45) and given the assumptions of remark 4.2.11, then
there exist constants C̄0, C̄1 > 0 independent of nt but dependent of u, such that the following
estimate holds:

∣∣fFE(u)− fl(u)
∣∣2 ≤ D 1

ηS
nt
(
C̄0 ||yFE0 −Πl

Hy
FE
0 ||2H + C̄1||S||2

r∑
j=l+1

λj
)

(4.65)

≤ D 1
ηS
nt
(
5C̄0nt + C̄1||S||2

) r∑
j=l+1

λj ,

where the λj’s also depend on ηS and ηA.

Proof. Applying lemma 4.2.9, we have to estimate the term
D∑
i=1
||yFEki (u)− ylki(u)||2H :

∣∣fFE(u)− fl(u)
∣∣2 ≤ cD D∑

i=1
||yFEki (u)− ylki(u)||2H ≤ cD

nt∑
k=1
||yFEk (u)− ylk(u)||2H .

Equation (4.55) then yields the desired conclusion. �

The first estimate in (4.65) shows a dependence on the number of steps in time direction,
nt, which is due to the fact that the objective function compares values at D certain time
instances. If we use an objective function that compares values over the whole time domain,
i.e. an integral over the time, this dependence should drop out.
A similar result can be derived for the reduced derivative.

Theorem 4.2.13. (POD derivative error)
For fixed but arbitrary u ∈ U , let {ylk}

nt
k=0 ⊂ V l be a solution to (4.46) and {yFEk }

nt
k=0 ⊂

Hnx a solution to (4.46) where we replace V l by Hnx. Analogously, {pi,lk }
ki
k=ki−1

⊂ V l and
{pi,FEk }kik=ki−1

⊂ Hnx (i = D, . . . , 1) are the corresponding adjoint solutions to (4.48) and
(4.49), respectively. Writing f ′FE(u)δu and f ′l (u)δu as the corresponding derivatives in the

80

4.2 POD Error Estimates

sense of (4.47) and given the assumptions of remark 4.2.11, there exist constants kS, kA ≥ 0,
such that the following estimate holds:∣∣f ′FE(u)δu− f ′l (u)δu

∣∣2
||δu||2U

≤
(
kS
(1
ηS
, cp, ||S||2, nt

)
+ kA

(1
ηA
,

1
ηS
, cy, ||S||2, nt

)) r∑
j=l+1

λj . (4.66)

Here, kS, kA depend on ||S||2, nt and bounds, cp ≥ ||pi,FEk ||V , cy ≥ ||ylk||V (∀ i, k), for the
adjoint and state solution, respectively, as well as on the weighting factors ηS, ηA.
Proof. Let us first apply lemma 4.2.10 to the left-hand side of (4.66). Using the estimate
(4.24) and the boundedness of the adjoint solution, ||pi,FEk ||V ≤ cp, we can estimate the first
sum of (4.52) as follows:

D∑
i=1

ki∑
k=ki−1

c2
A′ ||p

i,FE
k ||2V ||yFEk − ylk||2V ≤ c2

A′ ||S||2
D∑
i=1

ki∑
k=ki−1

||pi,FEk ||2V ||yFEk − ylk||2H

≤ 2c2
A′ ||S||2c2

p

(nt∑
k=1
||yFEk − ylk||2H + ||yFE0 − yl0||2H

)
. (4.67)

Similarly, we can estimate the second sum in (4.52), using ||ylk||V ≤ cy:

D∑
i=1

ki∑
k=ki−1

(
cA′ ||ylk||V + cl′

)2||pi,FEk − pi,lk ||
2
V ≤ ||S||2

(
cA′cy + cl′

)2 D∑
i=1

ki∑
k=ki−1

||pi,FEk − pi,lk ||
2
H

= ||S||2
(
cA′cy + cl′

)2 D∑
i=1

(ki−1∑
k=ki−1

||pi,FEk − pi,lk ||
2
H + ||pi,FEki

− pi,lki ||
2
H

)
. (4.68)

Combining (4.67) with (4.55), we get:

c

nt

D∑
i=1

ki∑
k=ki−1

c2
A′ ||p

i,FE
k ||2V ||yFEk − ylk||2V ≤ c2c2

A′ ||S||2c2
p

(1
ηS

(
5nt + 5Ĉ0nt + Ĉ1||S||2

)) r∑
j=l+1

λj

=: kS
(1
ηS
, cp, ||S||2, nt

) r∑
j=l+1

λj .

And analogously, (4.68) together with (4.56)-(4.59) yields:

c

nt

D∑
i=1

ki∑
k=ki−1

(
cA′ ||ylk||V + cl′

)2||pi,FEk − pi,lk ||
2
V ≤ kA

(1
ηA
,

1
ηS
, cy, ||S||2, nt

) r∑
j=l+1

λj

with appropriate constants kS , kA, amongst others depending on the weightings ηS , ηA, on
||S||22, nt and the bounds cp, cy for the adjoint and state solution, respectively. Thus,∣∣f ′FE(u)δu− f ′l (u)δu

∣∣2
||δu||2U

≤
(
kS
(1
ηS
, cp, ||S||2, nt

)
+ kA

(1
ηA
,

1
ηS
, cy, ||S||2, nt

)) r∑
j=l+1

λj ,

81

Chapter 4 Model Order Reduction via POD

which completes the proof. �

Let us comment on some issues concerning the constants, kS , kA, arising in (4.66). The
dependence on cp and cy is stressed here because – at least in our application – the order of
magnitude of these two values influences the order of magnitude of the two constants, kS ,
kA, in (4.66). Thus, – as a rule of thumb – if cp is large compared to cy, we may choose ηS
larger than ηA in a similar way, and vice versa. However, changing the ratio of ηS to ηA also
affects the eigenvalues λj .
We further point out that the adjoint error is strongly influenced by the state error, and

the constant kA for the adjoint part also involves the weighting factor ηS .

4.3 Numerical Results

This section shows some numerical results confirming the theoretical statements we have
seen previously. It is divided into two subsections. Firstly, we study reduced order models
for our partial integro-differential equation (cf. chapter 3) including a brief description of
how to get the reduced order model. And secondly, we show numerical results concerning
the optimal control problem defined in section 3.3.

4.3.1 Partial Integro-Differential Equation

We denote by {Φj}nxj=1 the finite element basis, i.e. Hnx := span(Φ1, . . . ,Φnx), and by M ∈
Rnx×nx the corresponding mass matrix. On our way to a POD basis, we have snapshots
s1, . . . , sn ∈ Hnx given, e.g. from a finite element solution of our PIDE. Hence, we can write

sj(x) =
nx∑
k=1

SkjΦk(x)

with a coefficient matrix S ∈ Rnx×n.
We define the matrix Y = M

1
2SD

1
2 ∈ Rnx×n with weighting matrix D = diag(γ1, . . . , γn),

and can now calculate the matrix-vector product Y TY ∈ Rn×n in the sense of lemma
4.1.12. Using a solver for eigenvalue problems, we find the l largest eigenvalues λ1, . . . , λl
and corresponding orthonormal 2 eigenvectors v1, . . . , vl ∈ Rnx to this matrix, i.e.

Y TY vj = λjvj , j = 1, . . . , l. (4.69)

Using (4.8), we now compute the coefficient matrix P ∈ Rnx×l with

P·,j = 1√
λj
SD

1
2 vj

2Orthonormal in the sense of Rnx with the common Euclidean scalar product

82

4.3 Numerical Results

such that the POD basis functions are given by

Ψj(x) =
nx∑
k=1

PkjΦk(x). (4.70)

The eigenvalue problem (4.69) is equivalent to a singular value decomposition, for which
reason POD belongs to the SVD based model reduction techniques. Since we are only
interested in the l largest eigenvalues, the problem can be solved by an iterative method.
In Matlab, the function ‘eigs’ uses an Arnoldi-Lanczos method where l can be passed as an
additional input parameter. For further details on the POD eigenvalue problem we refer to,
e.g., Fahl (2000).

Given the POD basis functions, (4.70), they can be used as test and trial functions in a
Galerkin ansatz as described in section 4.2.1. To get a numerical solution for the correspond-
ing reduced order problem, we need to compute the system matrices, Ml, Al(T) ∈ Rl×l, and
vectors, Bl, Fl ∈ Rl. It is easy to show that they can be deduced from the finite element
matrices and vectors:

Ml = P TMP, Al(u;T) = P TA(u;T)P, Fl(u;T) = P TF (u;T), Bl = P TB. (4.71)

In the notation above, we stressed the time- and parameter-dependence of the matrices and
vectors. This implies a great challenge for the reduced order models since it seems to be not
very efficient to calculate, for instance, the matrix Al(u;T) in each time step. In literature, a
so-called affine time- and parameter-dependence would be desirable as discussed in Grepl and
Patera (2005). Here, the matrices and vectors or bilinear and linear operators, respectively,
can be written as an affine combination of time- and parameter-independent operators. If
this structure is not available, an empirical interpolation method can be used (cf. Barrault
et al. (2004), Chaturantabut and Sorensen (2011)), where nonlinear terms are approximated
by affine combinations of time- and parameter-independent operators.

We will see later that the POD basis changes during an optimization. Thus, we cannot
split the computational effort in ‘online’- and ‘offline’-stages as in a typical reduced basis
method, and this affine parameter dependence gains importance.

Let us take a look at the stiffness matrix A(u;T). According to (3.23), the stiffness matrix
can be split in a sparse and a Toeplitz part, A(u;T) = ANI(u;T)+AI(u). The dependence of
AI(u) on the parameters is usually highly nonlinear, however, we have to calculate P TAI(u)P
only once for each parameter setting. This is not possible for the sparse part, ANI(u;T),
because the volatility is space-dependent and thus destroys the affine time-dependence except
for the case of a separable volatility function, i.e. σ2(T, x) = χ(T)ξ(x).

Local volatility functions that are piecewise constant in time unfortunately do not satisfy
the theoretical assumption of Lipschitz continuity in time, however, they are very popular
in practice. Given I different time buckets, the time-dependent part of the reduced stiffness
matrix has to be computed only I times. We will see that this approach leads to acceptable
computing times at the end of this section.

Again, the following numerical results are based on the Merton jump-diffusion model with

83

Chapter 4 Model Order Reduction via POD

#POD incl. diff.-quot. excl. diff.-quot.
l ERR1

∑r
k=l+1 λk ERR1

∑r
k=l+1 λk

5 1.03e-3 5.93e-3 5.13e-5 4.01e-5
6 2.31e-4 1.55e-3 1.09e-5 7.22e-6
7 5.00e-5 3.85e-4 3.62e-6 1.57e-6
8 1.08e-5 9.22e-5 2.52e-6 3.61e-7
9 3.10e-6 2.14e-5 3.52e-6 8.03e-8
10 2.55e-6 4.81e-6 5.61e-6 1.71e-8
11 4.04e-6 1.06e-6 8.41e-6 3.51e-9
12 6.57e-6 2.28e-7 1.13e-5 7.03e-10
13 9.66e-6 4.78e-8 1.36e-5 1.38e-10
14 1.25e-5 9.84e-9 1.47e-5 2.64e-11
15 1.44e-5 1.98e-9 1.45e-5 5.07e-12

Table 4.2: Error ERR1 = 1
n

∑∑∑n
i=1

∣∣∣∣y(ti)−yl,1
i

∣∣∣∣2
H
between closed-form- and POD solution

of the PIDE (using Crank-Nicolson) and the corresponding sum of remaining
eigenvalues for different numbers of POD basis functions, l, including and
excluding the difference quotients, resp.

the following parameter setting:

x = −5, x = 5, Tmax = 5 y, r ≡ 3%, ∆T = 0.0125, ∆x = 0.0025, (4.72)
σ ≡ 30%, λ = 50%, µJ = 0%, σJ = 50%.

Table 4.2 shows results corresponding to theorem 4.2.6. We used the closed-form solution
given in terms of an infinite series to compute snapshots y(t0), . . . , y(tnt) ∈ Hnx 3 . According
to theorem 4.2.6, these are now used to find a POD basis, on the one hand, including the
difference quotients (columns 2-3) and, on the other hand, without the difference quotients
(columns 4-5). The reduced order solution is then calculated with a Crank-Nicolson time
discretization. The table shows the error ERR1 = 1

n

∑n
i=1

∣∣∣∣y(ti) − yl,1i
∣∣∣∣2
H

and the corre-
sponding sum of remaining eigenvalues

∑r
k=l+1 λk for an increasing number of POD basis

functions l. First note that in our application the inclusion of difference quotients has min-
imal influence on the results. We further observe a fast decay of the eigenvalues and also
a fast decay of the error. However, the error decay stops at a value of about 1.0e-5. This
effect can easily be explained with the summand C1∆t4 occurring in (4.31) that can not be
reduced by using more POD basis functions.
This latter effect drops out in the next table 4.3. Here, we take a look at error ERR2 =

1
n

∑n
i=1

∣∣∣∣yFEi − yl,2i
∣∣∣∣2
H

(cf. theorem 4.2.8). The snaphsots, yFEi , are now based on a dis-
cretized solution in which we use Crank-Nicolson for the time discretization. The corre-
sponding reduced differential equation is solved with a Crank-Nicolson scheme, too. As
expected, ERR2 decays for all l. We further observe that including difference quotients even
leads to slightly worse results.

3Note that we make two errors in the closed-form solution, though they are insignificant in the total error.
First, the infinite sum is truncated, and second, the snapshots are calculated for a finite number of space
steps

84

4.3 Numerical Results

#POD incl. diff.-quot. excl. diff.-quot.
l ERR2

∑r
k=l+1 λk ERR2

∑r
k=l+1 λk

5 1.87e-3 1.16e-2 5.13e-5 4.04e-5
6 7.81e-4 5.24e-3 1.07e-5 7.56e-6
7 3.44e-4 2.48e-3 3.03e-6 1.90e-6
8 1.54e-4 1.19e-3 1.13e-6 6.31e-7
9 6.88e-5 5.66e-4 5.21e-7 2.57e-7
10 3.05e-5 2.67e-4 2.47e-7 1.15e-7
11 1.34e-5 1.25e-4 1.11e-7 5.26e-8
12 5.85e-6 5.81e-5 5.08e-8 2.40e-8
13 2.52e-6 2.68e-5 2.31e-8 1.09e-8
14 1.08e-6 1.23e-5 1.03e-8 4.90e-9
15 4.55e-7 5.54e-6 4.61e-9 2.19e-9

Table 4.3: Error ERR2 = 1
n

∑∑∑n
i=1

∣∣∣∣yF E
i − yl,2

i

∣∣∣∣2
H

between FE- and POD solution of the
PIDE (using Crank-Nicolson) and the corresponding sum of remaining eigen-
values for different numbers of POD basis functions, l, including and exclud-
ing the difference quotients, resp.

We have seen in section 3.2.4 that the Rannacher smoothing – i.e. a Crank-Nicolson
method where non-smooth initial conditions are smoothed by a few implicit Euler steps –
leads to a smoother solution. This finding also influences a POD model as it can be seen
in table 4.4. The table has the same structure as the preceding one, however, the finite
element solution is not calculated with a Crank-Nicolson time discretization but we applied
Rannacher smoothing. We stress that the same technique is then also used for the time
discretization of the reduced problem.
The most significant observation is a faster decay of the eigenvalues (for both, including

or excluding the difference quotients) what is due to the smoother solution in time direction.
This immediately leads to a faster decay of the error.
An important point that has not been mentioned until now is the strong influence of a

convection term on the decay rate of the eigenvalues. For this reason, we have introduced
the PIDE (2.14) in addition to (2.13). To illustrate the behavior of the eigenvalues and the
POD approximation in case of strong convection, we change the variable setting (4.72) to a
more extreme case and set

σ ≡ 30%, λ = 100%, µJ = 50%, σJ = 100%.

Thus, we define c := r+ σ2

2 − λζ ≈ 1.6433 in the sense of (2.14) to eliminate the convection,
and present the numerical results in table 4.5. We restrict ourselves to the case of not
including the difference quotients into the POD basis since this in general has led to better
results. Obviously, if the convection is strong, then the eigenvalues decay much slower (see
column 3) and, accordingly, the error ERR2 decays slower (column 2) as in the transformed
case (columns 4 - 5). For instance, we need to take 15 POD basis functions instead of only
7 to get a similar error.
Figure 4.1 now shows the first ten POD basis functions for the PIDE with strong con-

85

Chapter 4 Model Order Reduction via POD

#POD incl. diff.-quot. excl. diff.-quot.
l ERR2

∑r
k=l+1 λk ERR2

∑r
k=l+1 λk

5 9.85e-04 5.66e-03 5.19e-05 4.02e-05
6 2.27e-04 1.51e-03 1.09e-05 7.25e-06
7 5.27e-05 4.00e-04 2.82e-06 1.56e-06
8 1.24e-05 1.06e-04 7.23e-07 3.56e-07
9 2.93e-06 2.84e-05 1.73e-07 8.11e-08
10 7.01e-07 7.68e-06 4.12e-08 1.85e-08
11 1.71e-07 2.11e-06 1.05e-08 4.29e-09
12 4.24e-08 5.85e-07 2.99e-09 1.02e-09
13 1.07e-08 1.65e-07 9.97e-10 2.47e-10
14 2.78e-09 4.70e-08 3.96e-10 6.13e-11
15 7.46e-10 1.36e-08 1.84e-10 1.57e-11

Table 4.4: Error ERR2 = 1
n

∑∑∑n
i=1

∣∣∣∣yF E
i − yl,2

i

∣∣∣∣2
H

between FE- and POD solution of the
PIDE (using Rannacher time stepping) and the corresponding sum of remain-
ing eigenvalues for different numbers of POD basis functions, l, including and
excluding the difference quotients, resp.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

Log−moneyness

BF 1
BF 2
BF 3
BF 4
BF 5

BF 6
BF 7
BF 8
BF 9
BF 10

(a) Basis functions with convection

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

Log−moneyness

BF 1
BF 2
BF 3
BF 4
BF 5

BF 6
BF 7
BF 8
BF 9
BF 10

(b) Basis functions without convection

Figure 4.1: Ten sample POD basis functions for the PIDE with and without convection,
resp.

vection, 4.1(a), and with removed convection, 4.1(b). Here, single functions do not provide
much information. However, it is more interesting to take a look at all functions at a glance.
We observe that in case (b), the main activity of the basis functions concentrates on the
origin, where the kink in the initial condition is smoothed out. But given a strong convec-
tion, the activity seems to drift to the left providing less information in the region of interest
around zero.
Beside the results concerning the accuracy of the POD method for the partial integro-

differential equation that we have shown above, we are of course interested in the benefit of
a reduced computing time. Table 4.6 shows a first result.
Let us first describe the structure of the table. The first two columns show the discretiza-

tion of the finite element solution. For instance, to show the effect of a refined space mesh,
we keep ∆T = 0.025 fixed in the first three lines and divide the step size in space, ∆x, in
half. The next three lines then show the same results, however, now the step size ∆T is

86

4.3 Numerical Results

#POD with convection no convection
l ERR2

∑r
k=l+1 λk ERR2

∑r
k=l+1 λk

5 3.67e-03 3.15e-03 2.34e-05 2.00e-05
6 1.31e-03 1.02e-03 3.69e-06 2.26e-06
7 4.54e-04 3.47e-04 9.43e-07 3.61e-07
8 1.68e-04 1.29e-04 3.10e-07 6.58e-08
9 7.11e-05 5.08e-05 1.18e-07 1.50e-08
10 2.98e-05 2.06e-05 2.37e-08 4.61e-09
11 1.43e-05 8.71e-06 3.84e-09 1.29e-09
12 7.33e-06 3.76e-06 1.01e-09 2.84e-10
13 4.15e-06 1.67e-06 3.43e-10 6.19e-11
14 2.53e-06 7.57e-07 1.44e-10 1.39e-11
15 1.65e-06 3.58e-07 1.44e-10 3.28e-12

Table 4.5: Error ERR2 between FE- and POD solution and the corresponding sum of
remaining eigenvalues for different numbers of POD basis functions, l, for the
PIDE (2.13) with convection term and the transformed PIDE (2.14) without
convection

divided by two, and so on.
Changing the discretization, we are interested in the corresponding computing times.

The table contains two blocks. The columns three to six show the computing time using
constant parameters r, λ, µJ , σJ , σ. We see the time for the solution of one finite element
problem in column three, and column six shows the time needed for the calculation of the
appropriate POD basis of rank l = 10. After having calculated the basis, the computation
of the corresponding reduced PIDE can be split in the construction of the reduced system
matrices and vectors (column 5) and the solution of the reduced linear systems of equations
(column 4). The second block (column 7-10) contains the same timings except that we now
assume the volatility to be only piecewise constant in time with ten time buckets. Thus, we
have to set up the volatility dependent part of the stiffness matrix ten times instead of only
once.
Concentrating on the first block of timings, we again observe a linear time dependence of

the finite element solution on the discretization in time and space, respectively (cf. also sec-
tion 3.2.4). However, the solution of the reduced linear systems of equations is independent
of the space discretization since the linear systems of equations have a fixed size of 10× 10
in each time step. Since POD only reduces the space dimension, a refinement of the time
grid linearly increases the computing time (e.g. 0.008 → 0.015 → 0.031). With regard to
the construction of the reduced system matrices and vectors, the timings show a dependence
on space and time grid as expected from (4.71). Since we assume the parameters to be
constant, the mass matrix and the stiffness matrix have to be calculated only once, but the
right-hand side vector is time-dependent due to (3.15). However, we can make use of an
affine time-dependence for this vector and thus, the dependence on the time discretization
is clearly less than linear.
On the other hand, the time needed for the solution of the eigenvalue problem to get the

POD basis from the finite element snapshots (column 6) implies a linear dependence on time

87

Chapter 4 Model Order Reduction via POD

constant parameters 10 time buckets
discretization FEM (sec.) POD (sec.) FEM (sec.) POD (sec.)

∆T ∆x total LSE system basis total LSE system basis

0.025 0.005 0.749 0.008 0.017 0.033 0.835 0.008 0.051 0.030
0.0025 1.683 0.008 0.021 0.040 1.633 0.009 0.087 0.040
0.00125 3.387 0.008 0.043 0.113 3.531 0.009 0.173 0.080

0.0125 0.005 1.485 0.015 0.021 0.063 1.583 0.016 0.057 0.060
0.0025 2.985 0.015 0.030 0.120 3.142 0.016 0.094 0.123
0.00125 6.472 0.015 0.045 0.211 6.707 0.016 0.182 0.237

0.00625 0.005 2.907 0.031 0.033 0.197 2.916 0.032 0.070 0.195
0.0025 5.992 0.031 0.042 0.355 6.082 0.032 0.108 0.359
0.00125 12.685 0.031 0.060 0.724 13.319 0.035 0.232 0.700

Table 4.6: Computing times (in sec.) of the FE- and POD solution for several discretiza-
tions: overall time for FEM, solving the POD linear systems of equations
(LSE), building the POD system matrices and vectors, computation of the
POD basis for constant and piecewise constant parameters

and space discretization as well and is the most striking factor within the solution of the
reduced order problem. Though the eigenvalue problem itself has dimension nT , the matrix
is constructed via matrix-matrix products with size nT × nx.
The second block of the table (columns 7-10) shows slightly increasing finite element

timings since the stiffness matrix has to be calculated ten times now. However, relatively,
this increase is insignificant compared to the increase of the construction of the reduced
system matrices. We stress that the time does not increase by a factor of ten since we again
can make use of a partly affine parameter dependence. Because the Toeplitz part of the
stiffness matrix is independent of time, this time-consuming task has to be done only once.
This clearly shows that an efficient implementation is needed to get a competitive reduced
order model. For the sake of completeness, we mention that the timings for solving the LSEs
and for constructing the POD basis do almost not change compared to the first block.
We have seen that POD is well-suited for the solution of the PIDE in terms of accuracy

and computing time, thus, we turn to the use of model order reduction in optimal control
problems.

4.3.2 Optimal Control Problem

We now want to illustrate the statements of section 4.2.2. As a numerical example, we again
use Merton’s jump-diffusion model with market data as defined in table 3.9. The general
setting is as follows:

x = −5, x = 5, Tmax = 5 y, r ≡ 5%, α = 0, (4.73)
u = (λ, µJ , σJ , σ2) = (50%, 0%, 50%, 30%2) ∈ R4.

Until further notice, the parameter vector u is fixed, i.e. it is used for calculating snapshots,
POD basis functions and POD approximations.

88

4.3 Numerical Results

#POD basis BS basis BSA basis BSwA

l εrel
f (u)

∑r
k=l+1 λk εrel

f (u)
∑r

k=l+1 λk εrel
f (u)

∑r
k=l+1 λk

5 3.90e-5 4.60e-5 1.49e-2 7.05e+0 2.41e-3 3.37e-2
6 3.66e-5 8.20e-6 2.86e-3 4.35e+0 6.08e-4 1.20e-2
7 8.62e-6 1.76e-6 3.00e-3 2.48e+0 3.15e-4 7.30e-3
8 4.64e-6 4.04e-7 7.46e-3 1.45e+0 2.18e-4 4.33e-3
9 4.72e-6 9.27e-8 8.16e-4 8.25e-1 4.30e-5 2.14e-3
10 2.73e-7 2.13e-8 2.70e-4 3.57e-1 9.39e-5 1.08e-3
11 5.70e-7 4.95e-9 3.48e-4 2.49e-1 4.62e-5 5.27e-4
12 9.27e-9 1.18e-9 2.37e-4 1.15e-1 1.61e-5 3.74e-4
13 2.39e-7 2.87e-10 4.18e-5 6.53e-2 3.55e-5 2.50e-4
14 6.87e-8 7.16e-11 1.65e-6 4.32e-2 1.41e-5 1.60e-4
15 6.39e-8 1.82e-11 6.69e-5 3.00e-2 2.52e-6 1.07e-4

Table 4.7: Relative error εrel
f (u) between the objective function based on FE- and POD

solution, resp., and the corresponding sum of remaining eigenvalues for dif-
ferent numbers of POD basis functions l, where we use three different POD
bases

Of course, including adjoint snapshots into the POD basis as proposed above has a re-
markable effect on the approximation quality. To show this, we define three different POD
bases depending on different choices of the weights ηS and ηA for a fixed parameter vector
u:

BS : ηS = 1, ηA = 0 (only state snapshots),
BSA : ηS = 1, ηA = 1 (state and adjoint snapshots), (4.74)
BSwA : ηS = 1, ηA = 0.001 (state and weighted adjoint snapshots).

We expect a negative effect on the function values for unchanged parameter vector u if ηA is
increased. And this is clearly observable in table 4.7. More precisely, the smaller the weight
ηA (0, 0.001, 1), the smaller the relative function error

εrelf (u) = |fFE(u)− fl(u)|
|fFE(u)| .

The table also shows the decreasing error for an increasing number of POD basis functions
l and the corresponding decreasing sum over the remaining eigenvalues.

We observe that including the adjoint snapshots leads to a significant slower decrease of
the eigenvalues. This effect is explainable with regard to a typical adjoint solution (cf. figure
4.3(b)), which is – at least in our application – not as smooth as the state solution (cf. figure
4.3(a)) due to the point-wise observations at different time instances. However, using a few
more basis functions, the inclusion of adjoint snapshots still leads to an acceptable error,
especially when they have only a minor weighting. Anyhow, the real advantage of using
adjoint snapshots gets clear regarding the gradient approximation via POD.

89

Chapter 4 Model Order Reduction via POD

#POD basis BS basis BSA basis BSwA

l εrel
g (u) εrel

g (u) εrel
g (u)

5 3.76e-2 5.22e-2 2.57e-2
6 3.68e-2 1.32e-2 1.62e-2
7 3.61e-2 1.57e-2 6.50e-3
8 3.60e-2 1.20e-2 3.45e-3
9 3.58e-2 2.41e-2 1.88e-3
10 3.59e-2 2.25e-3 1.79e-3
11 3.60e-2 1.66e-3 1.27e-3
12 3.60e-2 9.89e-4 2.66e-4
13 3.59e-2 4.83e-4 8.84e-5
14 3.60e-2 5.39e-4 1.61e-4
15 3.60e-2 1.90e-4 1.42e-4

Table 4.8: Relative error εrel
g (u) between the gradient (via adjoints) based on FE- and

POD solution, resp., for different numbers of POD basis functions l, where
we use three different POD bases

Table 4.8 now shows the relative gradient error,

εrelg (u) = ||∇fFE(u)−∇fl(u)||2
||∇fFE(u)||2

,

where we use the adjoint approach to calculate the gradient. To be precise, we first calculate
the finite element state and adjoint solution and the corresponding gradient, ∇fFE(u), ac-
cording to (3.43). Using this state and adjoint solution, we calculate three POD bases with
the weightings as defined in (4.74) and can then compute the reduced order POD solutions
for the state and the adjoint equations based on these three bases. The gradient, ∇fl(u), is
given by (4.47).
We omit the sum of remaining eigenvalues since they are already given in table 4.7. In

the second column of table 4.8 we observe a relative gradient error of about 3.6%, which
cannot be improved by adding more basis functions. One may have expected an even worse
result since we use a POD basis, BS , including only information of the state solution, to
approximate the adjoint equation. Including adjoint snapshots leads to significantly better
results. In particular, we see a generally decreasing relative error for increasing l. It is also
observable that in our application a lower weighting of the adjoint snapshots leads to slightly
better results.
In numerical mathematics, another way to approximate a gradient – avoiding the use of

adjoints – are finite differences. Here, we only use solutions of the state equation to compute
the objective function value at u and u + ∆ei, i = 1, . . . , 4, with unit vectors ei ∈ R4. We
choose ∆ = 1.0e-7 and stress that the POD bases, which are based on the parameter vector
u, are not changed. Table 4.9 again shows the relative gradient error as in the table above
except that we use finite differences instead of adjoints to compute the gradients. The table
looks quite similar to table 4.8. Although we do not compute reduced adjoint equations, the
inclusion of adjoint snapshots leads to significantly better results. And again, by omitting
adjoint snapshots in the second column, the accuracy can not be improved by adding basis

90

4.3 Numerical Results

#POD basis BS basis BSA basis BSwA

l εrel
g (u) εrel

g (u) εrel
g (u)

5 3.02e-2 4.96e-2 2.03e-2
6 2.93e-2 1.24e-2 1.12e-2
7 2.85e-2 1.49e-2 6.63e-3
8 2.84e-2 1.11e-2 3.27e-3
9 2.83e-2 2.19e-3 1.83e-3
10 2.84e-2 1.85e-3 1.43e-3
11 2.84e-2 1.61e-3 6.45e-4
12 2.84e-2 9.48e-4 1.94e-4
13 2.84e-2 4.10e-4 9.97e-5
14 2.84e-2 4.43e-4 9.97e-5
15 2.84e-2 1.79e-4 1.72e-4

Table 4.9: Relative error εrel
g (u) between the gradient (via finite differences) based on

FE- and POD solution, resp., for different numbers of POD basis functions
l, where we use three different POD bases

step size basis BS basis BSA basis BSwA

∆ εrel
f (u∆) εrel

f (u∆) εrel
f (u∆)

1.0e-5 1.90e-6 6.69e-5 2.54e-6
1.0e-4 1.96e-5 6.69e-5 2.65e-6
1.0e-3 1.96e-4 6.74e-5 3.77e-6
1.0e-2 1.92e-3 6.26e-5 1.33e-5
1.0e-1 1.35e-2 4.36e-3 7.75e-4

Table 4.10: Relative error εrel
f (u∆) between the objective function based on FE- and

POD solution, resp., for varying step size ∆ and corresponding control u∆ =

u− ∆ ∇f(u)
||∇f(u)||2

; for three different POD bases with l = 15 fixed

functions.
Except for the difference quotients in the last table, we have studied the errors for a fixed

control u, where the POD bases are also based on this control. We now want to show that
adjoint snapshots also have a positive effect on the function values when we veer away from
the start control u without changing the POD model.
The results are shown in table 4.10 and further illustrated in figure 4.2. The idea here is

as follows. During a numerical optimization we are usually interested in taking steps in a
descent direction. Thus, after having built the bases of fixed rank l = 15 according to (4.74)
for the control u, we calculate the corresponding gradient and make a step with step size ∆
in steepest descent direction,

u∆ = u−∆ ∇f(u)
||∇f(u)||2

. (4.75)

Then, we compute the relative function value error εrelf (u∆), where the POD models are still
based on the control u and not u∆. What we observe is a better approximation of the basis

91

Chapter 4 Model Order Reduction via POD

10
−5

10
−4

10
−3

10
−2

10
−110

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Stepsize

E
rr

or

Basis B
S

Basis B
SA

Basis B
SwA

Figure 4.2: Relative error εrel
f (u∆) between the objective function based on FE- and

POD solution, resp., for varying step size ∆ and corresponding control u∆ =

u− ∆ ∇f(u)
||∇f(u)||2

; for three different POD bases with l = 15 fixed

BS for very small step sizes ∆ = 1.0e-5. However, including adjoint snaphots – especially
with a suitable weighting – leads to significantly better results for larger step sizes. For
example, setting ∆ = 1.0e-2, the error for BSwA is smaller by a factor of 100.
It is clear that the accuracy of the state solution is mainly responsible for the accuracy of

the objective function value. Thus, we try to give an explanation for the findings above on
the basis of a graphical analysis of the errors of the state solution in figure 4.3.
First, 4.3(a) and (b) show the finite element state and adjoint solution of the PIDE for

the control u. Those solutions are used as snapshots for the basis computation where we
keep l = 15 fixed. The adjoint solution clearly shows peaks at each point where market
data is available to which we want to calibrate our option pricing model. Note that we are
especially interested in the values of our state solution at these points.
The pointwise difference between the full finite element state solution for the control u,

y, and the corresponding reduced state solution based on the basis BS , yl,S is illustrated in
figure 4.3(c). Given the scaling of the graph – that is fixed for the remaining ones –, the error
is negligible. (d) shows the same result, but now we use the basis BSwA including adjoint
snapshots to compute the POD approximation, yl,SwA. As expected, this leads to a larger,
observable error especially at the beginning for T close to zero.
However, if we now make a step in steepest descent direction with step size ∆ = 1.0e-2 (in

the sense of (4.75)), and do not update the POD model, the results are quite different. On the
one hand, (e) illustrates a strongly increasing pointwise error compared to (c), unfortunately
in a region of great interest. On the other hand, the basis BSwA provides further information
in this region, where market data are available and model values have to be fitted, leading
to an error that is clearly smaller in figure (f) (cf. also table 4.10).
Summarizing the previous results, we have seen that the inclusion of adjoint snapshots

in one combined basis with state snaphsots leads to a far better approximation of gradients
even when finite differences are used. It further has a positive effect on the otherwise strong
locality of a fixed POD basis. The following chapter will now make the next step on the

92

4.3 Numerical Results

(a) State solution y(u; T,x) (b) Adjoint solution p(u; T,x)

(c) Error y(u; T,x) − yl,S(u; T,x) (d) Error y(u; T,x) − yl,SwA(u; T,x)

(e) Error y(u∆; T,x) − yl,S(u∆; T,x) (f) Error y(u∆; T,x)− yl,SwA(u∆; T,x)

Figure 4.3: Influence of adjoint snapshots on the POD state error when the control u
is changed and the basis not updated. Figure (c), (d): pointwise error at u;
(e), (f): pointwise error at u∆ (∆ = 1.0e− 2)

93

Chapter 4 Model Order Reduction via POD

way to a global optimization technique by embedding the POD approach into a trust-region
framework.

94

Chapter 5

Trust-Region POD

We have learned in the previous chapter that POD is only a local model. This means, if
we base our POD model on a certain control, then error estimates only hold true for this
control. However, in literature, there are several approaches known where POD is used in
optimization, i.e. also for varying controls. In this context, we have already mentioned the
work of Afanasiev and Hinze (2001), Ravindran (2002), Kunisch and Volkwein (2008), Hinze
and Volkwein (2008) and Tröltzsch and Volkwein (2009) in the introduction to chapter 4.
A different approach has been proposed by Arian et al. (2000) where the local reduced

order model is embedded into a trust-region framework. Using this intuitive setting, descent
steps of the reduced model are only accepted if they provide an acceptable decrease of the
true objective function, too. Further, we are able to review the reduced model in each
iteration and adjust the trust region of controls accordingly. Convergence has been proven,
but here strong assumptions – that are totally not clear a priori – have to be made. This is
exactly the point where this thesis provides an improvement of the present state of research.
The chapter is organized as follows. We start by recalling the idea of trust-region methods

in section 5.1. Thus, we first present the standard approach with a quadratic approximation
of the objective function. Afterwards, we are interested in several generalizations of this
common approach with the most important issue of inexact gradient information. To be
able to still show a global convergence result, the inexact model gradient has to satisfy a
certain error tolerance introduced by Carter (1991). In section 5.2, we define the adaptive
trust-region POD algorithm and then show how the assumptions of the preceding section
are fulfilled by a model function based on POD for a class of optimal control problems. The
chapter closes with some numerical results confirming the efficiency of reduced order models
in finance and the convergence of the proposed algorithm.

5.1 Trust-Region Methods

Let us first specify the problem to be considered. For this, let U be a real Hilbert space.
Then we want to find the solution to

min
u∈U

f(u) (5.1)

with f : U → R.
Given a current iterate uk ∈ U , the idea of a ‘trust-region algorithm’ is to build a simple

‘model function’, mk, that approximates the objective function, f , in a small region around

95

Chapter 5 Trust-Region POD

uk. We refer to this region as ‘trust region’ Bk ⊂ U with

Bk := {u ∈ U : ||uk − u|| ≤ ∆k}, (5.2)

where ∆k > 0 is the ‘trust radius’ . Then, the functionmk is minimized approximately in this
trust region by finding an appropriate descent direction. Mathematically, the trust-region
‘subproblem’ in iteration k can be formulated in the following way:

min
||s||≤∆k

mk(uk + s).

In some sense, the concept is contrary to ‘line-search methods’ where we first determine a
descent direction and then find an appropriate step size.
The next section will explain the basic concept of the standard trust-region approach.

Here, the model function is a quadratic approximation of the objective function.

5.1.1 Quadratic Model Functions

Let us assume a sufficiently smooth objective function f . The best-known model function is
a quadratic approximation, mquad

k , of f :

mquad
k (uk + s) := f(uk) + 〈gk, s〉+ 1

2〈s,Hks〉. (5.3)

Here, gk denotes the gradient of the objective function, ∇f(uk), and the self-adjoint operator
Hk is an approximation (or equal) to the Hessian ∇2f(uk).
Then, according to, e.g., Conn et al. (2000) or Fahl (2000), a basic trust-region algorithm

can be defined as in algorithm 5.1.
Taking a closer look at this algorithm, it can be divided into four parts.
After the initialization, line 1 can be captioned by ‘model definition’. In the case of a

quadratic model function, this step consists of calculating the gradient and the Hessian
approximation.
Line 2-3 is the ‘step calculation’. This part is crucial since a sufficient decrease of the model

function needs to be shown to get convergence results.
The ‘quality of the trial step’ is calculated in line 4-5 by comparing the predicted reduction,

predk(sk) := mquad
k (uk)−mquad

k (uk + sk),

of the model function with the actual reduction,

aredk(sk) := f(uk)− f(uk + sk),

of the objective function. Note that it is necessary to compute the value f(uk + sk) which
might be an expensive task in many applications. However, the quotient ρk provides a very
good measure for the capability of the model function.
This measure is now used in the lines 6 to 12 to decide whether the point uk + sk is

accepted as a new iterate or not. If ρk is greater than η1 > 0, we see a decrease in the
objective function that is at least a fraction of the predicted decrease. In those cases, the

96

5.1 Trust-Region Methods

Algorithm 5.1 Basic trust-region algorithm

Input: ∆0 > 0, k = 0, an initial control u0 ∈ U and constants η1, η2, γ1, γ2, γ3 satisfying

0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1 ≤ γ3.

1: compute the model function mquad
k (uk + s)

2: compute an approximate solution sk ∈ U to

3: min
||s||≤∆k

mquad
k (uk + s)

4: compute f(uk + sk) and
5: ρk = f(uk)−f(uk+sk)

mquad
k

(uk)−mquad
k

(uk+sk)
6: if ρk ≥ η2 then
7: set uk+1 = uk + sk and ∆k+1 ∈ [∆k, γ3∆k]

8: else if η1 ≤ ρk < η2 then
9: set uk+1 = uk + sk and ∆k+1 ∈ [γ2∆k,∆k]

10: else if ρk < η1 then
11: set uk+1 = uk and ∆k+1 ∈ [γ1∆k, γ2∆k]

12: end if
13: set k ← k + 1 and go to line 1

step sk is accepted. If further ρk > η2, a value typically chosen to be close to one, then the
model seems to be a good approximation on the trust region and the trust radius may be
increased (by the factor γ3). Otherwise, the radius should be decreased (by the factor γ2).
A step sk is rejected if ρk < η1. In that case the model seems to be poor on the trust region
and the radius, ∆k, has to be decreased. This part of the algorithm may be captioned with
‘acceptance of the trial step and update of the trust radius’.

The last line 13 implies the iterative structure of the algorithm. Of course, in practice, a
stopping criterion that is not specified here would be implemented. A natural choice would
be a sufficiently small norm of the gradient, ||∇f(uk)||, indicating a first-order critical point.

We return to the step calculation for a moment. To find an approximate minimizer, a step
along the steepest descent direction seems to be promising. For quadratic model functions,
the ‘Cauchy point’ provides the optimal step size within a given trust region. The following
result can, e.g., be found in Conn et al. (2000).

Remark 5.1.1. (Cauchy point)
Given a trust radius ∆k and a quadratic model function, (5.3), with bounded second derivative
such that βk := 1 + ||Hk||. Then the Cauchy step sCk = −λCk gk, that is the unique minimizer

97

Chapter 5 Trust-Region POD

along the steepest descent direction, is determined by

λCk =


||gk||2
〈gk,Hkgk〉 , if λCk ||gk|| ≤ ∆k and 〈gk, Hkgk〉 > 0
∆k
||gk|| , else,

(5.4)

and the decrease can be estimated by

mquad
k (uk)−mquad

k (uk + sCk) ≥ 1
2 ||gk||min

{ ||gk||
βk

,∆k

}
. (5.5)

The steepest descent method is known to perform poorly in many applications, thus, there
are many improvements known in literature, e.g. the ‘Dogleg’ or ‘Double-Dogleg’ paths (cf.
Conn et al. (2000)). However, as we will see below, it is sufficient from a theoretical point
of view.
If the model function is not of quadratic type – and we will consider this case below –, an

alternative approach is necessary to guarantee a sufficient decrease in the sense of (5.5).
We now make some assumptions on the objective function f to be able to state a conver-

gence result for algorithm 5.1 according to Conn et al. (2000).

Theorem 5.1.2. (Strong global convergence)
Let f : U → R be twice continuously differentiable and bounded below with uniformly bounded
Hessian. If the model function mquad

k is given by (5.3) with bounded Hessian Hk and the
trust-region subproblems are solved by (5.4), then one has

lim
k→∞

||∇f(uk)|| = 0.

Unfortunately, for our needs, most of the assumptions on the model setting are too re-
strictive. In the next section, we consider several generalizations. First, the model function
is not necessarily of quadratic type (the notation will be mk instead of mquad

k). Further,
the function value of the model function at the trust region center point is not equal to the
function value of the objective function, i.e. in general mk(uk) 6= f(uk). The same holds true
for the gradient, thus, ∇mk(uk) 6= ∇f(uk). In addition to this, only few information about
the second derivative are available.
Nevertheless, we want to be able to state a convergence result similar to theorem 5.1.2.

5.1.2 Generalizations

To get an appropriate framework for a model function based on POD, several assumptions
that have been made above have to be generalized. Thus, we now recall the main ingredients
of the results presented in Fahl (2000) since we want to combine this with the error estimates
of the last chapter in section 5.2. As it has been done in Fahl (2000), we restrict ourselves to
the case of U = Rn, but a generalization to a general Hilbert space should be straightforward.
In this framework, the objective function of our minimization problem, f , meets some

requirements.

Assumption 5.1. (Objective function)
Given u0 ∈ U , the model function f : U → R is Fréchet-differentiable on an open convex

98

5.1 Trust-Region Methods

set containing the level set of f at u0, {u ∈ U : f(u) ≤ f(u0)}, with Lipschitz continuous
gradient ∇f . Further, f is bounded below.

Non-quadratic Model Functions

A first generalization compared to the standard trust-region approach described above is
a non-quadratic appearance of the model function, mk. We can no longer use the Cauchy
point as proposed above to solve the trust-region subproblem. Fortunately, Toint (1988) has
proposed a more general algorithm to derive a step that fulfills a certain sufficient decrease
condition in the sense of (5.5).
Prior to that, we have to introduce some notations and make a few assumptions on the

model function.

Assumption 5.2. (Model function)
The model function mk with trust region center point uk and trust radius ∆k is Fréchet-
differentiable on an open convex set containing the trust region Bk. Further, we set gk :=
∇mk(uk).

The following algorithm 5.2 can be found in Fahl (2000) and is a slightly modified version
of the corresponding algorithm proposed in Toint (1988). The first part of the algorithm

Algorithm 5.2 Step determination algorithm

Input: ∆k > 0, uk ∈ U and constants that satisfy

0 < α ≤ β < 1, 0 < µ ≤ 1, 0 < ν1 < 1, ν2, ν3 > 0

1: compute λAk such that

2: mk(uk − λAk gk) ≤ mk(uk)− αλAk ||gk||2

3: ||λAk gk|| ≤ ∆k

4: and λAk ≥ min{ν1∆k/||gk||, ν2} or λAk ≥ λBk
5: where λBk > 0 (if required) has to satisfy

6: mk(uk − λBk gk) ≥ mk(uk)− βλBk ||gk||2

7: if ∆k ≥ ν3 then
8: compute step sk such that

9: mk(uk)−mk(uk + sk) ≥ µ
(
mk(uk)−mk(uk − λAk gk)

)
10: ||sk|| ≤ ∆k

11: end if

(lines 1-6) is the search for a generalized Cauchy point. This means, we want to find an
appropriate step length within the trust region to get a sufficient decrease in steepest descent
direction implied by the Armijo-like condition in line 2. The boundedness away from zero is
guaranteed by line 4 and the Goldstein-type condition in line 6, respectively.

99

Chapter 5 Trust-Region POD

It is known from quadratic model functions that the Cauchy point is only taken as a first
initial step which is tried to be improved by more advanced methods. The second part of the
step determination algorithm (lines 7-11) can be interpreted similarly. Here, for a sufficiently
large trust radius, ∆k, we may leave the steepest descent direction to find another direction,
sk, possibly leading to a greater decrease.
Note that the step determination algorithm produces feasible steps, i.e. the conditions are

not incompatible. The following result originally proven by Toint (1988) can also be found
in Fahl (2000, lemma 5.9).

Lemma 5.1.3. Algorithm 5.2 always provides a feasible step sk.

A Curvature Measure for Non-quadratic Model Functions

The curvature of the model also plays an important role for the sufficient decrease. This can
be seen by regarding the Cauchy decrease, (5.5), where the norm of the second derivative,
Hk, is involved. If the Hessian itself and its norm, respectively, are not available, we need
another criterion.
The following concept is based on Toint (1988).

Definition 5.1.4. (Curvature measure)
Let h : U → R be Fréchet-differentiable. Then

ω(h, u, s) := 2
||s||2

(h(u+ s)− h(u)− 〈∇h(u), s〉) (5.6)

is defined as a measure for the curvature of h along the step s and based at the point u.

For instance, if we assume the function h to have Lipschitz continuous derivatives with
Lipschitz constant L, we can easily estimate (cf. Fahl (2000))

ω(h, u, s) ≤ L, (5.7)

a result that is repeatedly used in proofs for the statements further below.

Lemma 5.1.5. (Sufficient model decrease)
Given a model function, mk, according to assumption 5.2 with bounded, non-critical gradient
gk at uk (i.e. 0 < ||gk|| ≤ cg). Apply algorithm 5.2 and define

ωk :=
{
ω(mk, uk,−λBk gk), if λBk is required in alg. 5.2
0, else.

(5.8)

Then ωk ≥ 0 and there exists a constant cs > 0 such that algorithm 5.2 produces a step sk
with

mk(uk)−mk(uk + sk) ≥ cs||gk||2 min
{
||gk||2

1 + ωk
,∆k

}
. (5.9)

Proof. For a proof, see Fahl (2000, theorem 5.12). �

100

5.1 Trust-Region Methods

Thus, equation (5.9) provides a sufficient decrease condition for the model function when
we apply algorithm 5.2.
If we now use the step determination algorithm to compute an approximate minimizer

in algorithm 5.1 (lines 2-3), then we can easily deduce the corresponding decrease of the
objective function f in case of a successful iteration (see Fahl (2000)).

Corollary 5.1.6. (Sufficient objective function decrease)
Let the assumptions of lemma 5.1.5 be satisfied. Given an arbitrary iteration k of algorithm
5.1 where we use algorithm 5.2 for the ‘step calculation’, then we have

f(uk)− f(uk + sk) ≥ η1cs||gk||2 min
{
||gk||2

1 + ωk
,∆k

}
(5.10)

if the iteration is successful.

Of course, it is not yet clear that there exist such successful iterations. This issue will be
addressed further below.

Inexact Gradient Information

The next important generalization is an inexact gradient. The gradient of our model func-
tion, mk, will in general not coincide with the real gradient at the trust region center point as
it is the case for the quadratic model function as defined in (5.3). Thus, we have∇f(uk) 6= gk.
However, to still get a convergence result, the error between ∇f(uk) and gk has to be con-
trolled. The topic is well-known in literature and there are several approaches defining an
upper bound for the difference. We briefly mention two of them. For constants κ1, κ2 > 0,
Toint (1988) has proposed to demand a gradient accuracy in the sense of

||∇f(uk)− gk|| ≤ min{κ1∆k, κ2} (5.11)

for all k. On the one hand, it is natural to refine the model gradient for a small trust radius,
and this approach also implies ideas for a practical implementation. On the other hand, it
may happen that the algorithm finds a critical point for the model, i.e. ||gk|| = 0, that is not
critical for the objective function, thus, ||∇f(uk)|| > 0. This has to be avoided in addition
to the estimate above.
To overcome this problem, Carter (1991) has recommended a relative error condition

||∇f(uk)− gk||
||gk||

≤ ζ (5.12)

with ζ ∈ (0, 1). Then, if we are close to a critical point for the model function, (5.12)
appropriately ensures that the error ||∇f(uk)− gk|| is small.
A further disadvantage of error condition (5.11) is that, given an unsuccessful iteration

with resulting reduced trust radius ∆k, the gradient gk may need to be updated to fit the
sharper error condition. This can be an expensive task in many applications.
In the following we assume our model function to fulfill the Carter condition, (5.12):

101

Chapter 5 Trust-Region POD

Assumption 5.3. (Model gradient)
The gradient of the model function at the trust region center point uk, gk, fulfills condition
(5.12) with ζ ∈ (0, 1).

This new assumption on the gradient accuracy allows now to make two important state-
ments. Firstly, we can easily proof a connection between critical points for the model and
the objective function.

Lemma 5.1.7. Let assumption 5.3 be fulfilled and further assume a sequence of iterates uki,
i = 1, 2, . . ., with

lim
i→∞

gki = 0.

Then

lim
i→∞
∇f(uki) = 0.

Proof. Cf. Conn et al. (2000, lemma 8.4.1). �

Secondly, we can make a statement on the success of a trust-region iteration if the descent
is calculated via the step determination algorithm.

Lemma 5.1.8. (Successful iteration)
Let assumptions 5.1, 5.2 and 5.3 be satisfied for a fixed iterate uk with ζ ∈ (0, 1 − η1).
Applying algorithm 5.2 to get a trial step sk, and assuming ω(mk, uk, sk) ≤ cw for a cw > 0.
Then, for sufficiently small ∆k, we have ρk > η1, and the iteration is successful.

Proof. For a complete proof, we refer to Fahl (2000, theorem 6.2). �

Note that our model function based on a POD model also involves inexact function values
at the trust region center point, i.e. mk(uk) 6= f(uk). However, it turns out that this is only
implicitly important to ensure convergence.

Convergence of the Generalized Algorithm

Given the framework and assumptions stated above, we are able to state a convergence result
for this generalized type of model functions similar to the result in theorem 5.1.2.

Theorem 5.1.9. (Generalized strong global convergence)
Let assumptions 5.1, 5.2 and 5.3 be satisfied with ζ ∈ (0, 1 − η2). Further, assume {uk} to
be a sequence of iterates produced by algorithm 5.1 using algorithm 5.2 to compute the trial
steps {sk}. If we have, for cb > 0,

bk := 1 + max
0≤i≤k

{ωi, ω(mi, ui, si)} ≤ cb, (5.13)

for all k, then

lim
k→∞

||∇f(uk)|| = 0.

102

5.2 Trust-Region POD Algorithms

Proof. A complete proof can be found in Fahl (2000, theorem 6.3 and theorem 6.4). �

Note that the bounded curvature in condition (5.13) is the counterpart to the bounded
Hessian for quadratic model functions.
The next section shows that for a general class of optimal control problems – as they have

been discussed in the previous chapters – a model function based on a POD model fits the
assumptions on the model function that have been made above to guarantee convergence.

5.2 Trust-Region POD Algorithms

We have seen a convergence result for a generalized trust-region algorithm in the last section.
This section is now devoted to the combination of this result with a reduced order model
based on POD. We recall the general optimal control problem that has been discussed at
several points in this thesis. For given market data di at t̂i (i = 1, . . . , D), find solutions
y ∈W ([0, T], V) and u ∈ U satisfying

min
y∈W,u∈U

J(y, u) := 1
2

D∑
i=1
||Cy(t̂i)− di||2H + α

2 ||u||
2 (5.14)

s.t. ẏ(t) +A(u; t)y(t)− l(u; t) = 0 , t ∈ (0, T]
y(0) = y0.

As already mentioned, this problem can be written as f̃(u) := J(y(u), u) such that a trust-
region algorithm can be applied. We now want to build a model function which is based
on a POD reduced order model and can therefore be solved much more cheaply than the
original one.

5.2.1 Derivation

Focussing on a discretized version of (5.14), our problem is given by

min
u∈U

f(u) = 1
2

D∑
i=1
||CyFEki (u)− di||2H + α

2 ||u||
2, (5.15)

where {yFEk }
nt
k=0 ⊂ Hnx is the finite element approximation to the state equation discretized

with the θ-method, i.e

∂̄yFEk + θA(u; tk)yFEk + (1− θ)A(u; tk−1)yFEk−1 =
θl(u; tk) + (1− θ)l(u; tk−1), k = 1, . . . , nt (5.16)

yFE0 = y0.

Each function evaluation of f requires the solution of the discretized differential equation.
The computational effort of solving nt systems of equations of size nx×nx is quite expensive
and should therefore be avoided. Thus, we build a small POD model on the space V l with

103

Chapter 5 Trust-Region POD

dimension l� nx for the constraint. This means, for a given control uk, we define

ml
k(u) = 1

2

D∑
i=1
||Cylki(u)− di||2H + α

2 ||u||
2, (5.17)

where {ylk}
nt
k=0 ⊂ V l is the POD approximation to the state equation discretized in time with

the θ-method, i.e

∂̄ylk + θA(u; tk)ylk + (1− θ)A(u; tk−1)ylk−1 =
θl(u; tk) + (1− θ)l(u; tk−1), k = 1, . . . , nt

yl0 = y0.

As we have seen in the last section, a model function needs to fulfill certain properties
to guarantee convergence of the corresponding trust-region algorithm. We need to have a
Fréchet-differentiable objective function (assumption 5.1) with Lipschitz continuous gradient,
thus, we need to assume that the operators A(u; t) and l(u; t) are sufficiently smooth with
respect to the control variable. Since the model function uses the same operators, this
assumption also implies its sufficient smoothness (assumption 5.2).
For the last main requirement, namely an adequate gradient accuracy, we can now make

use of the results of the previous chapter. According to assumption 5.3, we have to guarantee
the accuracy of the model gradient at the trust region center point uk.
Theorem 4.2.13 has estimated the error for a reduced derivative. Combining this with

assumption 5.3 yields the following property for the accuracy of the model function:

||∇f(uk)−∇ml
k(uk)|| ≤

(
c

r∑
j=l+1

λj
) 1

2 ≤ ζ||∇ml
k(uk)||. (5.18)

To have the outer inequality, i.e. the Carter condition, fulfilled, we need to guarantee that
the inequality on the right-hand side holds. Increasing the number of POD basis functions,
l, reduces the middle term, however, it may also decrease the term on the right-hand side
which is depending on l as well. But even for ||∇ml(uk)|| = 0, we can – at least theoretically
– choose l = r to get (5.18).
So, the crucial point about the a priori error estimates is that we now know that there

exists an l such that the condition above is satisfied.

5.2.2 Convergence Proof

Before we state a global convergence proof for a trust-region algorithm based on POD, we
first define the adaptive trust-region POD method in algorithm 5.3.
Let us just comment on some issues of the proposed algorithm. The general structure

is given by the basic trust-region algorithm 5.1. The task ‘compute the model’ is now
replaced by the lines 1-3. Thus, to get our model we first have to calculate the state and
adjoint snapshots for the current control uk. These are then used to calculate a POD basis
where the rank l is chosen such that the inequality in line 3 is satisfied. The Cauchy step
for the solution of the trust-region subproblem is again replaced by the step determination

104

5.2 Trust-Region POD Algorithms

Algorithm 5.3 Adaptive TRPOD algorithm

Input: ∆0 > 0, k = 0, an initial control u0 ∈ U and constants η1, η2, γ1, γ2, γ3, ζ satisfying

0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1 ≤ γ3, 0 < ζ < 1− η2.

1: compute state y(uk) and adjoint p(uk) to form the set of snapshots S

2: compute for S the POD basis of rank l and model ml
k such that

3: ||∇f(uk)−∇ml
k(uk)|| ≤ ζ||∇ml

k(uk)||

4: compute an approximate solution sk ∈ U to

5: min
||s||≤∆k

ml
k(uk + s)

6: using algorithm 5.2

7: compute f(uk + sk) and
8: ρk = f(uk)−f(uk+sk)

ml
k
(uk)−ml

k
(uk+sk)

9: if ρk ≥ η2 then
10: set uk+1 = uk + sk and ∆k+1 ∈ [∆k, γ3∆k]

11: set k ← k + 1 and go to line 1

12: else if η1 ≤ ρk < η2 then
13: set uk+1 = uk + sk and ∆k+1 ∈ [γ2∆k,∆k]

14: set k ← k + 1 and go to line 1

15: else if ρk < η1 then
16: set uk+1 = uk and ∆k+1 ∈ [γ1∆k, γ2∆k]

17: set k ← k + 1 and go to line 4

18: end if

algorithm. We also stress that in case of an unsuccessful iteration (line 15), we do not have
to compute a new POD model. We can keep the old one and only decrease the trust radius.
The main result of the thesis, a global convergence proof for the algorithm above, can now

be stated.

Theorem 5.2.1. (Strong global convergence of the adaptive TRPOD)
Given problem (5.15) with Lipschitz continuous Fréchet derivatives A′ and l′ in (5.16) and
ζ ∈ (0, 1 − η2), let the assumptions of theorem 4.2.13 be satisfied. Further, assume {uk} to
be a sequence of iterates produced by algorithm 5.3. Then,

lim
k→∞

||∇f(uk)|| = 0.

Proof. We begin by showing that the assumptions of theorem 5.1.9 are satisfied. First, the
function f(u) is clearly bounded below by zero. Further, the Lipschitz continuous operators

105

Chapter 5 Trust-Region POD

A′ and l′ yield a Lipschitz continuous gradient ∇f(u) for (5.15), and, due to the similar
structure of the reduced model function, (5.17), this directly implies the differentiability of
ml
k(u) and the Lipschitz continuity of∇ml

k(u). Using, in turn, this latter conclusion together
with (5.7), we obtain inequality (5.13).
By definition of the algorithm, the Carter condition is fulfilled for each model function,

however, the point here is that it can be fulfilled. This is ensured by the inclusion of the
adjoint snapshots and the error estimate of theorem 4.2.13, which completes the proof. �

Let us summarize the main assumptions on the problem 5.14 that have to be fulfilled. First,
the objective function has to be sufficiently smooth with respect to the control variables,
thus, the operators A(u; t) and l(u; t) have to be differentiable and the derivatives have to
satisfy a Lipschitz condition. Second, to be able to apply the error estimates to the state
equation, the bilinear operator has to be elliptic, and we need to use an implicit discretization
scheme as the backward Euler or Crank-Nicolson method. To further use the error estimates
for the gradient, the reduced order model needs to include adjoint information.
It is easy to design an example where the necessity of the adjoint snapshots gets clear.

Example 5.2.2. (Omit adjoint snapshots)
Given the optimization problem

min
y∈W,u∈R1

J(y, u) := 1
2 ||y(T)− d||2H (5.19)

s.t. ẏ(t)−∆y(t)− utE = 0 , t ∈ (0, T]
y(0) = 0

with E ∈ V ∗. The gradient of the reduced function f(u) = J(y(u), u) is then given by
∇f(u) =

∫ T
0 〈p(t),−tE〉dt with adjoint p ∈W given by

ṗ(t) + ∆p(t) = 0
p(T) = y(T)− d.

Of course, in general p 6= 0 ∀ t, and thus, in general ∇f(u) 6= 0. However, a POD model
function solely based on the state snapshots for the particular control uk = 0 would yield an
empty POD basis and accordingly, mPOD

k (u) ≡ 1
2 ||d||

2
H .

This example also illustrates the reason for combining the state and adjoint snapshots in
one POD basis instead of building an own POD basis for each of them. Let us assume to
have one basis for the state and another one for the adjoint equation. Then, in the example
above, the state basis would be an empty set and the model function which is only based on
the state solution would be given by mPOD

k (u) ≡ 1
2 ||d||

2
H with gradient gk clearly equal to

zero. Given a second basis for the adjoint at uk, we would be able to sufficiently approximate
the gradient ∇f(uk), however, this would not be the gradient of our model function mPOD

k ,
and the theory above would not be applicable.
The next remark handles the extreme case when state and adjoint snapshots both are

zero.

106

5.2 Trust-Region POD Algorithms

Remark 5.2.3. (Empty set of snapshots)
It may happen that the state and adjoint snapshots both are zero. In case of an additional
regularization term, this does not need to imply ∇f(uk) = 0. However, the real gradient and
the model gradient are even identical ∇f(uk) = αuk = ∇mPOD

k (uk) because mPOD
k (u) =

α
2 ||u||

2, and we can still make a step in steepest descent direction. In this particular situation,
the computation of a POD basis is redundant because the set of snapshots is empty and the
local minimizer of the trust-region subproblem with trust radius ∆k can be calculated directly
as uk+1 = uk −min{∆k, ||uk||} 1

||uk||uk.

5.2.3 Managing the POD Error

One main question that arises when the algorithm is to be implemented is how to manage the
number of POD basis functions. We observe that, to get convergence, the state and adjoint
at uk have to be computed. This drawback turns out to be an advantage now because in
many applications, the exact gradient ∇f(uk) can be calculated via the adjoint approach
quite cheaply. Given this gradient, we estimate an initial value for the number of POD basis
functions, l, and then cheaply compute the corresponding reduced gradient, ∇ml

k(uk), as
well as the factor

ζ lk := ||∇f(uk)−∇ml
k(uk)||

||∇ml
k(uk)||

. (5.20)

If ζ lk > 1 − η2, then we need to increase the number of basis functions, l, and compute the
new ζ l+1

k iteratively until the condition is satisfied. For this, it would be preferable to be
able to stop the eigenvalue solver and restart it if necessary. Or we may compute a few
eigenvalues more than we expect to need – this expectation might be a combination of the
previous number of basis functions and the previous value ζ lk+1 – to be able to easily increase
l.
Further, we have to set the weightings ηS and ηA for the state and adjoint snapshots. In

our application, the state equation evolves in the same order of magnitude throughout the
calibration. But the adjoint equation tends towards zero when the least-squares error in
the objective function is reduced. Thus, in our implementation, the weighting factor ηA is
coupled with the inverse of some norm of the adjoint solution.
The error condition above is hard to satisfy in practice when ||∇ml

k(uk)|| is very small.
This is due to rounding errors which occur if the POD basis is very large and the correspond-
ing eigenvalues are close to zero. On the one hand, due to the inclusion of weighted adjoint
snapshots POD is less susceptible to computational rounding errors because the eigenvalues
do not drop that fast. On the other hand, in this case, i.e. in case of a large POD basis, it
may also be not efficient in the sense of computational effort to use a reduced order model
anymore. However, we can then use the current iterate as a starting vector and switch to a
traditional minimizer.

5.2.4 Multi-level Strategies

It is clear that the solution of the exact – i.e. discretized on a sufficiently fine finite element
grid – state and adjoint equation is a major part of the total computing time. Further,

107

Chapter 5 Trust-Region POD

concerning the construction of the POD basis and of the reduced system matrices, the
original spatial discretization is determining for the computational effort. Thus, it seems to
be a good idea to combine the POD approach with a multi-level algorithm. This means,
if we are far away from the optimal solution of the problem, we do not only use less POD
basis functions to compute our model in order to satisfy (5.20), but we also compute the
snapshots, i.e. the FE solutions, on a coarser grid.
From a theoretical point of view, we may be able to combine the previous convergence

result with a convergence proof for a multi-scale trust-region algorithm in Gratton et al.
(2008). However, in the calibration problem that we consider, we restrict ourselves to a
nested iteration, i.e. solutions of the TRPOD algorithm on a coarser grid – where we also
use the coarse finite element gradient as our reference in (5.20) – are taken as starting point
on the finer grid. Using such an implementation, a generalization of the convergence proof
above is not necessary.
Note that we do not need to prolongate the control variable in our application since it is

parameterized and its dimension does not vary even if the dimension of the PDE constraint
is changed. Further note that a fully adaptive refinement of the finite element space is not
possible because we are restricted to the use of an equidistant mesh preserving the Toeplitz
property of the discretized integral term. Thus, the hierarchical predefined grids that are
used just differ in the equidistant step size.

5.3 Numerical Results

As a numerical example showing the efficiency of the algorithm proposed above, we consider
the problem discussed in section 3.3.3. Hence, we calibrate Merton’s jump-diffusion model
with constant or parameterized volatility function to 100 given market prices (table 3.9).
The parameters used in the trust-region algorithm are set as follows:

∆0 = 0.1, η1 = 0.1, η2 = 0.8, γ1 = 0.25, γ2 = 0.9, γ3 = 1.05,

whereas the discretization setting and starting vector are given by

x = −5, x = 5, Tmax = 5, r ≡ 5%, ∆x = 0.0025, ∆T = 0.0125,
starting vector: u = (λ, µJ , σJ , σ2) = (40%, 0%, 40%, 40%2),

i.e. the same setting as in (3.50). To get comparable results, we further use the same
regularization term as introduced on page 54.
Before we discuss the results, let us comment on some implementation issues. Since the

building of one reduced order model is quite expensive and includes the computation of
the full gradient, it seems to be not very efficient to only make a step in steepest descent
direction as proposed in the first part of the step determination algorithm 5.2. We rather
restrict ourselves to the second part of the algorithm and use the MATLAB procedure
‘fmincon’ to find a descent direction providing a greater decrease. Since PIDE evaluations
for the POD model function are far less expensive, we use the Gauß-Newton approach to
compute first- and second-order information within the trust-region subproblems.
Starting with the calibration of four parameters, i.e. with constant volatility, table 5.1 now

108

5.3 Numerical Results

k ||∇f(uk)||2 f(uk) mk(uk+1) ρk ∆k #POD l ζl
k

0 8.34e+0 1.21e+0 2.43e-1 1.00 0.10 8 0.0024
1 5.81e+0 2.41e-1 4.45e-4 1.00 0.11 10 0.0019
2 1.51e-1 1.32e-4 7.47e-5 1.01 0.11 11 0.0012
3 1.40e-3 7.44e-5 5.84e-5 1.01 0.12 12 0.1368
4 1.80e-3 5.83e-5 5.63e-5 1.09 0.12 18 0.1551
5 4.41e-4 5.61e-5

Table 5.1: Iterations of a TRPOD calibration run with corresponding gradient norm,
function values, ratios ρk, trust radius ∆k, number of used POD basis func-
tions l and ζl

k; constant volatility (four control parameters)

algorithm evaluations timing (sec.) optimal values
FE POD total FE POD basis f(uopt) ||∇f(uopt)||2

TRPOD 12 210 55 36 10 2 5.61e-5 4.41e-4
ML TRPOD 16 135 24 15 4 1 7.62e-5 5.71e-4
quasi-Newton 184 — 554 516 — — 5.34e-5 1.00e-4

Table 5.2: Comparison between TRPOD, Multi-level TRPOD and a quasi-Newton al-
gorithm: number and timings of FE- and POD evaluations, total computing
time, time for POD basis computation, and optimal function value and gra-
dient norm; constant volatility (four control parameters)

shows the corresponding calibration run. Given the iteration counter in the first column,
the second column contains the norm of the ‘exact’ – i.e. based on the full finite element
state and adjoint solution – gradient. This value is also used as stopping criterion. The
following columns show the ‘exact’ function value in uk and the value of the model function
in the optimal solution of the trust-region subproblem mk(uk+1). ρk is the ratio between
actual reduction and predicted reduction as defined in algorithm 5.3 line 8 and ∆k is the
corresponding trust radius. The last two columns contain values directly connected to the
POD model function. We see the number of POD functions, l, that is used in the current
iteration and the ratio ζ lk.
We observe that all iterations are successful and all ratios ρk are close to one. The

approximation quality of the POD model function is quite good even if we veer away from
the trust region center point as it can be seen by comparing, e.g., m2(u3) and f(u3).
The most interesting results can be found in the last two columns. We observe that the

POD model satisfies the Carter condition using very few POD basis functions when we are far
from the optimal control. And as expected, the closer the optimal solution, i.e. the smaller
the model gradient, the more POD basis functions are needed to guarantee ζ lk < 1 − η2.
However, in this real-world example, the results are acceptable, in particular if we compare
them with the quasi-Newton approach of section 3.3.3.
This comparison is shown in table 5.2. We see the performance of different algorithms in

terms of evaluations of the discretized differential equations (discretized on a finite element
and the POD space, resp.), in terms of itemized computing times and with regard to the
function and gradient values in the optimal solution. The algorithms used are the TRPOD

109

Chapter 5 Trust-Region POD

k ||∇f(uk)||2 f(uk) mk(uk+1) ρk ∆k #POD l ζl
k

0 3.58e+0 1.21e+0 2.43e-1 1.00 0.10 10 0.0228
1 1.77e+0 2.44e-1 2.76e-4 1.00 0.11 16 0.0286
2 4.91e-2 3.63e-4 1.29e-5 1.00 0.11 22 0.0216
3 1.43e-3 1.38e-5 1.14e-5 0.83 0.12 28 0.1562
4 1.24e-4 1.18e-5

Table 5.3: Iterations of a TRPOD calibration run with corresponding gradient norm,
function values, ratios ρk, trust radius ∆k, number of used POD basis func-
tions l and ζl

k; local volatility (23 control parameters)

algorithm evaluations timing (sec.) optimal values
FE POD total FE POD basis f(uopt) ||∇f(uopt)||2

TRPOD 10 600 86 30 45 2 1.18e-5 1.24e-4
ML TRPOD 18 768 59 21 29 1 1.19e-5 2.42e-4
quasi-Newton 274 — 888 809 — — 9.62e-6 8.29e-4

Table 5.4: Comparison between TRPOD, Multi-level TRPOD and a quasi-Newton al-
gorithm: number and timings of FE- and POD evaluations, total computing
time, time for POD basis computation, and optimal function value and gra-
dient norm; local volatility (23 control parameters)

algorithm (cf. table 5.1), a multi-level version of the TRPOD algorithm using three different
finite element grids (level 1: ∆x × ∆T = 0.01 × 0.025, level 2: 0.005 × 0.025, level 3:
0.0025× 0.0125) and the quasi-Newton approach.
Let us first note that the optimal values in the last two columns have the same order of

magnitude and we can thus just compare the computational effort. The first observation is
that TRPOD needs 55 sec. for the optimization compared to 554 sec. in the quasi-Newton
approach corresponding to a time saving of 90%.
We may also compare the evaluations of the differential equation. The quasi-Newton needs

184 evaluations – containing the state and the adjoint equations – all computed on the full
finite element grid. In contrast, the TRPOD algorithm needs 12 + 210, this means even
more, evaluations. However, most of them are computed via the reduced order model and
we only need six state and six adjoint solutions on the full grid. In the table, the total
computing time is further split into the time needed for the full PIDE solutions, the time
needed for the POD solutions and the time for the basis computation, i.e. the solution of
the eigenvalue problem. We observe that 12 finite element evaluations require about 36 sec.,
i.e. three seconds each, and 210 POD evaluations only need ten seconds, i.e. about 0.05 sec.
each. The two seconds for the basis computation are negligible. The seven seconds that
are not listed in the table (55 − 36 − 10 − 2 = 7) are mainly needed to compute the exact
gradient from a given state and adjoint solution.
As we have already expected in the previous section, implementing a multi-level strategy

yields a further reduction of the computing time, to be precise by a factor of more than two
in our application. Although we need more iterations in this case – which is clear taking a
look at the number of FE evaluations –, the main time saving is observable in the solution of

110

5.3 Numerical Results

the full PIDE. As we need 15 sec. for 16 evaluations, the time per evaluation has decreased
to one second in average. However, also the time per POD evaluation has decreased to a
mean of 0.03 sec. since the reduced system matrices are also based on the coarser FE system
matrices.
We now consider the second example that has already been discussed in section 3.3.3. We

again calibrate Merton’s jump-diffusion model to the market data as above, but now the
volatility is assumed to be parameterized with 20 parameters. Thus, together with the jump
intensity λ, the average jump size µJ and the mean jump size σJ , there are 23 parameters
to be calibrated. Table 5.3 is set up analogously to the preceding table 5.1. We observe a
similar convergence as in the case of four parameters, however, we need a few POD basis
functions more to be able to satisfy the Carter condition.
Table 5.4 shows – analogously to table 5.2 – that the TRPOD algorithm still saves about

90% of the computing time compared to the quasi-Newton method. Note that the time
saving is even more pronounced when we compare the TRPOD which is based on the Gauß-
Newton approach for the solution of the trust-region subproblems with the Gauß-Newton
results in section 3.3.3.

111

Chapter 6

Conclusions

Studying different option pricing models in the first part of the thesis, a jump-diffusion
model with an additional local volatility function turned out to have many advantages with
regard to the modeling of underlying prices. The calibration of such models was done in a
least-squares formulation comparing given market prices with our model prices. The model
prices were calculated via a Dupire-like partial integro-differential equation, such that we
needed to solve an optimization problem with a PIDE constraint, a quite challenging task
from a numerical point of view.
In this thesis, we used a preconditioned GMRES algorithm to solve the differential equation

constraint reducing the complexity even for implicit time discretization schemes as Crank-
Nicolson or the Rannacher smoothing scheme to O(nx log2 nx) per time step. However, when
an optimization algorithm is applied, the repeated solution of the PIDE is still expensive.
Thus, the main part of this thesis dealt with reduced order models based on proper

orthogonal decomposition. This technique is known to be very efficient for smooth parabolic
differential equations and their application in finance as shown here is a current field of
research. Numerical results proved the approximation quality of the reduced order models
and also their efficiency in terms of computational effort. Theoretically, we have shown
error estimates for time-dependent parabolic problems based on the work of Kunisch and
Volkwein (2001). The extension of these error estimates to optimal control problems was an
important result. We estimated the difference between the ‘true’ objective function and a
reduced objective function where the parabolic constraint is based on a reduced order model.
The same was done for the gradient of the objective function and its reduced counterpart,
however, additional adjoint information was crucial here.
All estimates only hold true for unchanged parameters, but a globalization has been

achieved by an embedding in a trust-region framework as proposed by Arian et al. (2000).
As the main result of this thesis, we have shown convergence for this trust-region POD al-
gorithm, in which the size of the POD basis has to be adjusted in each iteration such that
a certain gradient error tolerance is satisfied.
The theoretical results are not only valid for the calibration problem considered here. The

algorithm can be applied to a wide class of optimization problems with general parabolic
constraints and this class can probably be extended in future. The main ingredients are
error estimates for the constraint and based on this for the gradient of the reduced objective
function as shown in chapter 4.
However, the application of the TRPOD algorithm to a certain problem has to be reason-

able. In other words, the problem has to be suited for the application of POD. The thesis
has addressed many influencing factors, e.g. the unwanted effects of a strong convection

113

Chapter 6 Conclusions

on the decay of the eigenvalues and therefore on the size of the POD basis that is needed
to guarantee a predetermined error tolerance. Another important aspect determining the
efficiency of the TRPOD algorithm is the affine parameter- and time-dependence of the op-
erators occurring in the partial differential equations. This effect is even more important
considering nonlinear problems.
Given an appropriate structure of the problem, the reduced matrices and vectors have to

be computed only once per TRPOD iteration. For instance, in the results that we have seen
in this thesis, we had to compute the reduced stiffness matrix each time we changed the
parameters because the dependence on the jump parameters is nonlinear.
Nevertheless, the results of the TRPOD algorithm are promising in the sense that they

provide a significant acceleration of the calibration of jump-diffusion option pricing models.

114

List of Tables

1 Introduction 1

2 Calibration Problems in Option Pricing 7

3 Numerical Solution of the Calibration Problem 23
3.1 Condition number of the unpreconditioned (κ2(Ã)) and preconditioned system

(κ2(P−1Ã)) for different step sizes ∆x . 37
3.2 L2(Ω)- and L∞(Ω)-error (for T = 1 and T = 2) between finite element solution

with Crank-Nicolson and closed-form solution for different time step sizes ∆T
and fixed ∆x . 40

3.3 L2(Ω)- and L∞(Ω)-error (for T = 1 and T = 2) between finite element solution
with Rannacher smoothing and closed-form solution for different time step
sizes ∆T and fixed ∆x . 41

3.4 Computing times and L2(Ω)- and L∞(Ω)-error (for T = 1 and T = 2) between
finite element solution with Midpoint-122 rule and closed-form solution for
different time step sizes ∆T and fixed ∆x . 41

3.5 Computing times, Ø-GMRES iterations per time step and L2(Ω)- and L∞(Ω)-
error (for T = 1 and T = 2) between finite element solution with Rannacher
smoothing and closed-form solution for different time step sizes ∆T and fixed
∆x . 41

3.6 Computing times, Ø-GMRES iterations per time step and L2(Ω)- and L∞(Ω)-
error (for T = 1 and T = 2) between finite element with Rannacher smoothing
and closed-form solution for different spatial step sizes ∆x and fixed ∆T . . . 42

3.7 L2(Ω)-error at T = 0 of the adjoint solution for the three approaches in figure
3.4 and 3.5, resp., for different time step sizes ∆T and fixed ∆x (Reference
solution calculated with FO (Rann.) and ∆T = 3.125e-4, ∆x = 0.0025) . . . 51

3.8 Relative gradient errors for the three approaches of figure 3.4 and 3.5, resp.,
and different time step sizes ∆T and fixed ∆x with control u ∈ R4 52

3.9 Implied volatility table with interest rate r = 5% and no dividends (a slightly
modified test example on S&P 500 options according to Andersen and Brotherton-
Ratcliffe (1998)) . 53

3.10 Computing times, number of iterations, function evaluations and gradient
evaluations for the quasi-Newton and Gauß-Newton method; optimization
with constant volatility (four parameters) . 55

3.11 Computing times, number of iterations, function evaluations and gradient
evaluations for the quasi-Newton and Gauß-Newton method; optimization
with local volatility (23 parameters) . 56

115

List of Tables

4 Model Order Reduction via POD 57
4.1 Energy El for different l corresponding to the picture example (figure 1.2) in

chapter 1 . 63
4.2 Error ERR1 = 1

n

∑n
i=1

∣∣∣∣y(ti)− yl,1i
∣∣∣∣2
H

between closed-form- and POD solu-
tion of the PIDE (using Crank-Nicolson) and the corresponding sum of re-
maining eigenvalues for different numbers of POD basis functions, l, including
and excluding the difference quotients, resp. 84

4.3 Error ERR2 = 1
n

∑n
i=1

∣∣∣∣yFEi − yl,2i
∣∣∣∣2
H

between FE- and POD solution of the
PIDE (using Crank-Nicolson) and the corresponding sum of remaining eigen-
values for different numbers of POD basis functions, l, including and excluding
the difference quotients, resp. 85

4.4 Error ERR2 = 1
n

∑n
i=1

∣∣∣∣yFEi − yl,2i
∣∣∣∣2
H

between FE- and POD solution of the
PIDE (using Rannacher time stepping) and the corresponding sum of remain-
ing eigenvalues for different numbers of POD basis functions, l, including and
excluding the difference quotients, resp. 86

4.5 Error ERR2 between FE- and POD solution and the corresponding sum of
remaining eigenvalues for different numbers of POD basis functions, l, for the
PIDE (2.13) with convection term and the transformed PIDE (2.14) without
convection . 87

4.6 Computing times (in sec.) of the FE- and POD solution for several discretiza-
tions: overall time for FEM, solving the POD linear systems of equations
(LSE), building the POD system matrices and vectors, computation of the
POD basis for constant and piecewise constant parameters 88

4.7 Relative error εrelf (u) between the objective function based on FE- and POD
solution, resp., and the corresponding sum of remaining eigenvalues for dif-
ferent numbers of POD basis functions l, where we use three different POD
bases . 89

4.8 Relative error εrelg (u) between the gradient (via adjoints) based on FE- and
POD solution, resp., for different numbers of POD basis functions l, where
we use three different POD bases . 90

4.9 Relative eror εrelg (u) between the gradient (via finite differences) based on
FE- and POD solution, resp., for different numbers of POD basis functions l,
where we use three different POD bases . 91

4.10 Relative error εrelf (u∆) between the objective function based on FE- and POD
solution, resp., for varying step size ∆ and corresponding control u∆; for three
different POD bases with l = 15 fixed . 91

5 Trust-Region POD 95
5.1 Iterations of a TRPOD calibration run with corresponding gradient norm,

function values, ratios ρk, trust radius ∆k, number of used POD basis func-
tions l and ζ lk; constant volatility (four control parameters) 109

5.2 Comparison between TRPOD, Multi-level TRPOD and a quasi-Newton al-
gorithm: number and timings of FE- and POD evaluations, total computing
time, time for POD basis computation, and optimal function value and gra-
dient norm; constant volatility (four control parameters) 109

116

List of Tables

5.3 Iterations of a TRPOD calibration run with corresponding gradient norm,
function values, ratios ρk, trust radius ∆k, number of used POD basis func-
tions l and ζ lk; local volatility (23 control parameters) 110

5.4 Comparison between TRPOD, Multi-level TRPOD and a quasi-Newton al-
gorithm: number and timings of FE- and POD evaluations, total computing
time, time for POD basis computation, and optimal function value and gra-
dient norm; local volatility (23 control parameters) 110

6 Conclusions 113

117

List of Figures

1 Introduction 1
1.1 Extracting significant information from an image 2
1.2 Reconstruction of the image in figure 1.1(a) using different numbers, l, of basis

functions . 3

2 Calibration Problems in Option Pricing 7
2.1 Payoff of a European call option with strike K = 100 at maturity depending

on the underlying price ST . 8
2.2 Comparison between DAX history (1990–2011) and a sample path of a geo-

metric Brownian motion . 10
2.3 Xt = µt+ σWt +

∑Nt
j=1 Yj : Composition of a typical path of a jump-diffusion

process used to model the log-price . 14

3 Numerical Solution of the Calibration Problem 23
3.1 Eigenvalue distribution of the preconditioned and unpreconditioned matrix

P−1Ã and Ã, resp., for different ∆x . 38
3.2 FE solution of the Merton model (highlighted in red: non-smooth initial con-

dition) . 39
3.3 Error between FE solution and closed-form solution for the Merton model

(∆x = 0.005, ∆T = 0.01) . 40
3.4 First optimize: solutions of the adjoint equation (∆T = 0.02, ∆x = 0.0025) . 50
3.5 First discretize: solution of the adjoint equation (∆T = 0.02, ∆x = 0.0025) . 50
3.6 Difference between reference adjoint and the adjoints on coarser grids for first

discretize (a) and first optimize (b), resp. 52
3.7 Difference between reference adjoint and the adjoints on coarser grids for first

discretize and first optimize (dotted line), resp., at time T = 0 and at time
T = 0.02 . 52

3.8 Visualization of the implied volatility surface of table 3.9 54
3.9 Optimal solution of the Gauß-Newton method for Merton’s model with con-

stant volatility (four parameters) . 55
3.10 Optimal solution of the Gauß-Newton method for Merton’s model with local

volatility (23 parameters) . 56

4 Model Order Reduction via POD 57
4.1 Ten sample POD basis functions for the PIDE with and without convection,

resp. 86

119

List of Figures

4.2 Relative error εrelf (u∆) between the objective function based on FE- and POD
solution, resp., for varying step size ∆ and corresponding control u∆; for three
different POD bases with l = 15 fixed . 92

4.3 Influence of adjoint snapshots on the POD state error when the control u is
changed and the basis not updated . 93

5 Trust-Region POD 95

6 Conclusions 113

120

Bibliography

Achdou, Y. and Pironneau, O. (2005). Computational Methods for Option Pricing, SIAM.

Afanasiev, K. and Hinze, M. (2001). Adaptive control of a wake flow using proper orthogonal
decomposition, Lecture Notes in Pure and Applied Mathematics pp. 317–332.

Almendral, A. and Oosterlee, C. (2005). Numerical valuation of options with jumps in the
underlying, Applied Numerical Mathematics 53(1): 1–18.

Andersen, L. and Andreasen, J. (2000). Jump-diffusion processes: Volatility smile fitting
and numerical methods for option pricing, Review of Derivatives Research 4(3): 231–262.

Andersen, L. and Brotherton-Ratcliffe, R. (1998). The equity option volatility smile: an
implicit finite-difference approach, Journal of Computational Finance 1(2): 5–37.

Antoulas, A. (2005). Approximation of Large-Scale Dynamical Systems, Advances in Design
and Control, SIAM.

Antoulas, A., Sorensen, D. and Gugercin, S. (2001). A survey of model reduction methods for
large-scale systems, Structured Matrices in Operator Theory, Numerical Analysis, Control,
Signal and Image Processing, Contemporary Mathematics, AMS publications 280: 193–
219.

Arian, E., Fahl, M. and Sachs, E. W. (2000). Trust-region proper orthogonal decomposition
for flow control, ICASE Report 2000–25, ICASE, NASA Langley Research Center .

Armstrong, N., Painter, K. and Sherratt, J. (2006). A continuum approach to modelling
cell–cell adhesion, Journal of Theoretical Biology 243(1): 98–113.

Barndorff-Nielsen, O. E. (1997). Processes of normal inverse gaussian type, Finance and
Stochastics 2: 41–68.

Barrault, M., Maday, Y., Nguyen, N. and Patera, A. (2004). An ‘empirical interpolation’
method: application to efficient reduced-basis discretization of partial differential equa-
tions, Comptes Rendus Mathematique 339(9): 667–672.

Bates, D. (1996). Jump and stochastic volatility: Exchange rate processes implicit in
Deutsche Mark options, The Review of Financial Studies 9: 69–107.

Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities, Journal
of Political Economy 81(3): 637–654.

Brenner, S. C. and Scott, L. R. (2008). The Mathematical Theory of Finite Element Methods,
Texts in Applied Mathematics, 3rd edn, Springer.

121

Bibliography

Briani, M., Natalini, R. and Russo, G. (2007). Implicit–explicit numerical schemes for jump–
diffusion processes, Calcolo 44(1): 33–57.

Carr, P., Geman, H., Madan, D. and Yor, M. (2002). The fine structure of asset returns:
An empirical investigation, The Journal of Business 75: 305–332.

Carr, P. and Madan, D. B. (1999). Option valuation using the fast Fourier transform,
Journal of Computational Finance 2(4): 1–18.

Carter, R. G. (1991). On the global convergence of trust region algorithms using inexact
gradient information, SIAM Journal on Numerical Analysis 28(1): 251–265.

Chaturantabut, S. and Sorensen, D. (2011). Application of POD and DEIM on dimen-
sion reduction of non-linear miscible viscous fingering in porous media, Mathematical and
Computer Modelling of Dynamical Systems 17(4): 337–353.

Chriss, N. (1997). Black-Scholes and Beyond: Option Pricing Models, Irwin.

Chung, K. L. and Williams, R. J. (1990). Introduction to Stochastic Integration, Birkhäuser.

Conn, A., Gould, N. and Toint, P. (2000). Trust-Region Methods, MPS-SIAM series on
optimization, SIAM.

Cont, R., Lantos, N. and Pironneau, O. (2011). A reduced basis for option pricing, SIAM
Journal on Financial Mathematics 2(1): 287–316.

Cont, R. and Tankov, P. (2004a). Financial Modelling with Jump Processes, Chapman &
Hall.

Cont, R. and Tankov, P. (2004b). Non-parametric calibration of jump-diffusion option pricing
models, Journal of Computational Finance 7(3): 1–49.

Cont, R. and Voltchkova, E. (2005). A finite difference scheme for option pricing in jump
diffusion and exponential Lévy models, SIAM Journal on Numerical Analysis 43(4): 1596–
1626.

Cox, J. C., Ross, S. A. and Rubinstein, M. (1979). Option pricing: A simplified approach,
Journal of Financial Economics 7(3): 229–263.

Dautray, R. and Lions, J.-L. (1992). Mathematical Analysis and Numerical Methods for
Science and Technology, Vol.5: Evolution Problems I, Springer.

Derman, E. and Kani, I. (1994). The volatility smile and its implied tree, Quantitative
Strategies Research Notes, Goldman Sachs .

Dupire, B. (1994). Pricing with a smile, Risk 7: 1–10.

Düring, B., Jüngel, A. and Volkwein, S. (2008). Sequential quadratic programming method
for volatility estimation in option pricing, Journal of Optimization Theory and Applica-
tions 139(3): 515–540.

122

Bibliography

Elliott, R. and Kopp, P. (2005). Mathematics of Financial Markets, Vol. 10 of Springer
finance, Springer.

Fahl, M. (2000). Trust-Region Methods for Flow Control Based on Reduced Order Modelling,
PhD thesis, Universität Trier.

Föllmer, H. and Schied, A. (2004). Stochastic Finance: An Introduction in Discrete Time,
De Gruyter studies in mathematics, Walter de Gruyter.

Gerisch, A. (2010). On the approximation and efficient evaluation of integral terms in PDE
models of cell adhesion, Journal of Numerical Analysis 30: 173–194.

Giles, M. and Carter, R. (2006). Convergence analysis of Crank-Nicolson and Rannacher
time-marching, Journal of Computational Finance 9(4): 89–112.

Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering, Applications of
mathematics, Springer.

Goll, C., Rannacher, R. and Wollner, W. (2011). Goal-oriented mesh adaptation in the
space-time finite element approximation of the Black-Scholes equation, submitted .

Golub, G. and van Loan, C. (1996). Matrix Computations, Johns Hopkins studies in the
mathematical sciences, Johns Hopkins University Press.

Gratton, S., Sartenaer, A. and Toint, P. L. (2008). Recursive trust-region methods for
multiscale nonlinear optimization, SIAM Journal on Optimization 19(1): 414–444.

Grepl, M. A. (2005). Reduced-Basis Approximation and A Posteriori Error Estimation for
Parabolic Partial Differential Equations, PhD thesis, Massachusetts Institute of Technol-
ogy.

Grepl, M. A. and Patera, A. T. (2005). A posteriori error bounds for reduced-basis approx-
imations of parametrized parabolic partial differential equations, ESAIM: Mathematical
Modelling and Numerical Analysis 39(01): 157–181.

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with
applications to bond and currency options, Review of Financial Studies 6: 327–343.

Hinze, M., Pinnau, R., Ulbrich, M. and Ulbrich, S. (2009). Optimization with PDE Con-
straints, Mathematical Modelling: Theory and Applications, Springer.

Hinze, M. and Volkwein, S. (2008). Error estimates for abstract linear-quadratic optimal
control problems using proper orthogonal decomposition, Computational Optimization and
Applications 39(3): 319–345.

Holmes, P. J., Lumley, J. L., Berkooz, G., Mattingly, J. C. and Wittenberg, R. W.
(1997). Low-dimensional models of coherent structures in turbulence, Physics Reports
287(4): 337–384.

Holmes, P., Lumley, J. and Berkooz, G. (1996). Turbulence, Coherent Structures, Dynamical
Systems and Symmetry, Cambridge University Press.

123

Bibliography

Hull, J. (2008). Options, Futures, and Other Derivatives, 7th edn, Pearson Prentice Hall.

Hull, J. C. and White, A. D. (1987). The pricing of options on assets with stochastic
volatilities, Journal of Finance 42(2): 281–300.

Kahlbacher, M. and Volkwein, S. (2007). Galerkin proper orthogonal decomposition meth-
ods for parameter dependent elliptic systems, Discussiones Mathematicae: Differential
Inclusions, Control and Optimization 27: 95–117.

Kahlbacher, M. and Volkwein, S. (2012). POD a-posteriori error based inexact SQP method
for bilinear elliptic optimal control problems, ESAIM: Mathematical Modelling and Nu-
merical Analysis 46(02): 491–511.

Karatzas, I. and Shreve, S. (2000). Brownian Motion and Stochastic Calculus, Graduate
texts in mathematics, Springer.

Kelley, C. (1995). Iterative Methods for Linear and Nonlinear Equations, Frontiers in applied
mathematics, Society for Industrial and Applied Mathematics.

Kou, S. G. (2002). A jump-diffusion model for option pricing, Management Science
48(8): 1086–1101.

Kunisch, K. and Volkwein, S. (1999). Control of the Burgers equation by a reduced-order
approach using proper orthogonal decomposition, Journal of Optimization Theory and
Applications 102(2): 345–371.

Kunisch, K. and Volkwein, S. (2001). Galerkin proper orthogonal decomposition methods
for parabolic problems, Numerische Mathematik 90(1): 117–148.

Kunisch, K. and Volkwein, S. (2002). Galerkin proper orthogonal decomposition methods for
a general equation in fluid dynamics, SIAM Journal on Numerical Analysis 40(2): 492–
515.

Kunisch, K. and Volkwein, S. (2008). Proper orthogonal decomposition for optimality sys-
tems, Mathematical Modelling and Numerical Analysis 42(1): 1–23.

Lamberton, D. and Lapeyre, B. (1996). Introduction to Stochastic Calculus Applied to Fi-
nance, Chapman & Hall.

Larsson, S. and Thomée, V. (2003). Partial Differential Equations with Numerical Methods,
Texts in applied mathematics, Springer.

Lions, J.-L. (1971). Optimal Control of Systems Governed by Partial Differential Equations,
Springer.

Lipton, A. (2002). The vol smile problem, Risk February: 61–65.

Lörx, A. (2012). Adjoint-based Calibration of Local Volatility Models, PhD thesis, Universität
Trier.

124

Bibliography

Lumley, J. (1967). The structure of inhomogeneous turbulent flows, in A. M. Yaglom and
V. I. Tatarski (eds), Atmospheric turbulence and radio wave propagation, Nauka, Moscow,
pp. 166–178.

Matache, A.-M., von Petersdorff, T. and Schwab, C. (2004). Fast deterministic pricing of
options on Lévy driven assets, Mathematical Modelling and Numerical Analysis 38(1): 37–
72.

Merton, R. C. (1973). Theory of rational option pricing, Bell Journal of Economics and
Management Science 4: 141–183.

Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous,
Journal of Financial Economics 3(1): 125–144.

Nocedal, J. and Wright, S. (1999). Numerical Optimization, Springer series in operations
research, Springer.

Øksendal, B. (2003). Stochastic Differential Equations – An Introduction with Applications,
6th edn, Springer.

Pironneau, O. (2007). Dupire identities for complex options, Compte Rendu de l’Academie
des Sciences I 344: 127–133.

Pironneau, O. (2009). Calibration of options on a reduced basis, Journal of Computational
and Applied Mathematics 232: 139–147.

Rannacher, R. (1984). Finite element solution of diffusion problems with irregular data,
Numerische Mathematik 43: 309–327.

Ravindran, S. (2002). Adaptive reduced-order controllers for a thermal flow system using
proper orthogonal decomposition, SIAM Journal on Scientific Computing 23(6): 1924–
1942.

Reed, M. and Simon, B. (1980). Methods of Modern Mathematical Physics: Functional
analysis, Methods of Modern Mathematical Physics, Academic Press.

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems, 2nd edn, SIAM.

Saad, Y. and Schultz, M. H. (1986). GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Comput-
ing 7: 856–869.

Sachs, E. and Schu, M. (2008). Reduced order models (POD) for calibration problems
in finance, in K. Kunisch, G. Of and O. Steinbach (eds), Numerical Mathematics and
Advanced Applications, ENUMATH 2007, Springer, pp. 735–742.

Sachs, E. and Schu, M. (2010). Reduced order models in PIDE constrained optimization,
Control and Cybernetics 39: 661–675.

Sachs, E. and Schu, M. (2012a). Gradient computation for model calibration with pointwise
observations, submitted.

125

Bibliography

Sachs, E. and Schu, M. (2012b). A priori error estimates for reduced order models in finance,
To appear in Mathematical Modelling and Numerical Analysis .

Sachs, E. and Strauss, A. (2008). Efficient solution of a partial integro-differential equation
in finance, Applied Numerical Mathematics 58: 1687–1703.

Said, K. (1999). Pricing exotics under smile, Risk November: 72–75.

Schoutens, W. (2003). Lévy-Processes in Finance, Wiley.

Scott, L. (1973). Finite element convergence for singular data, Numerische Mathematik
21(4): 317–327.

Sirovich, L. (1987). Turbulence and the dynamics of coherent structures, part i-iii, Quarterly
of Applied Mathematics 45(3): 561 – 571.

Stein, E. M. and Stein, J. C. (1991). Stock price distributions with stochastic volatility: An
analytic approach, Review of Financial Studies 4(4): 727–52.

Toint, P. (1988). Global convergence of a class of trust region methods for nonconvex
minimization in Hilbert spaces, IMA Journal of Numerical Analysis 8(2): 231–252.

Toivanen, J. (2008). Numerical valuation of European and American options under Kou’s
jump-diffusion model, SIAM Journal on Scientific Computing 30(4): 1949–1970.

Tröltzsch, F. (2010). Optimal Control of Partial Differential Equations: Theory, Methods,
and Applications, Graduate studies in mathematics, American Mathematical Society.

Tröltzsch, F. and Volkwein, S. (2009). POD a-posteriori error estimates for linear-quadratic
optimal control problems, Computational Optimization and Applications 44(1): 83–115.

Volkwein, S. (2001). Optimal control of a phase-field model using proper orthogonal decom-
position, Zeitschrift für angewandte Mathematik und Mechanik 81: 83–97.

Wilmott, P., Dewynne, J. and Howison, J. (1993). Option Pricing: Mathematical Models
and Computation, Oxford Financial Press.

126

	German Summary
	Acknowledgements
	Introduction
	Motivation
	Outline

	Calibration Problems in Option Pricing
	Option Pricing
	Introduction
	Option Pricing Models
	Option Pricing with Partial Differential Equations

	Calibration of Model Parameters

	Numerical Solution of the Calibration Problem
	Weak Formulation of the PIDE
	Discretization of the PIDE
	Spatial Discretization
	Time Discretization
	Efficient Solution of the Fully Discretized PIDE
	Numerical Results

	Solving the Optimization Problem
	First Discretize, then Optimize or vice versa?
	Optimization Methods
	Numerical Results

	Model Order Reduction via POD
	Proper Orthogonal Decomposition
	POD Error Estimates
	A Priori Error Estimates for Parabolic Differential Equations
	Error Estimates in Optimal Control Problems

	Numerical Results
	Partial Integro-Differential Equation
	Optimal Control Problem

	Trust-Region POD
	Trust-Region Methods
	Quadratic Model Functions
	Generalizations

	Trust-Region POD Algorithms
	Derivation
	Convergence Proof
	Managing the POD Error
	Multi-level Strategies

	Numerical Results

	Conclusions
	List of Tables
	List of Figures
	Bibliography

