] Universitat Trier

On the Accuracy of Loader’s Algorithm for
the Binomial Density and Algorithms for
Rectangle Probabilities for Markov
Increments

Dissertation

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

Dem Fachbereich IV der Universitit Trier
vorgelegt von

Jannis Dimitriadis

Trier, im August 2016

Betreuer: Prof. Dr. Lutz Mattner

Berichterstatter: Prof. Dr. Norbert Miiller

Acknowledgement

I would like to thank Prof. Dr. Lutz Mattner for giving me the opportunity to work on this thesis
and for very helpful advices during the work. Without his patience and continuous support this
thesis would not have been completed. Prof. Dr. Lutz Mattner already was supervisor of my
diploma thesis and a teacher of mine for many years. I learned very much from him.

I would like to thank Prof. Dr. Norbert Miiller for agreeing to referee this thesis.

I would like to thank my family and my friends for supporting me during the years in which I
worked on this thesis.

Zusammenfassung

In dieser Arbeit wird in Verallgemeinerung von Corrado [4] ein Algorithmus hergeleitet, welcher
die Berechnung von Rechteckwahrscheinlichkeiten fiir Markov-Inkremente erméglicht. Es wird
gezeigt, dall es sich bei multinomialverteilten und bei multivariat hypergeometrisch verteilten
Zufallsgroen um Markov-Inkremente handelt. In einem Beispiel wird gezeigt, da3 der hergeleit-
ete Algorithmus im Multinomialfall schneller ein Ergebnis liefert, als eine herkommliche Meth-
ode, bei welcher alle Elemente des Trigers der Multinomialverteilung konstruiert werden und
deren relevante Einpunktwahrscheinlichkeiten aufsummiert. Als Anwendung des hergeleiteten
Algorithmus wird eine Verteilung der Spannweite einer multinomial verteilten Zufallsgroen
berechnet. Fiir die Untersuchung der Rechengenauigkeit bei dem hergeleiteten Algorithmus
ist es im Multinomialfall notig, zunédchst die Genauigkeit eines Algorithmus zu untersuchen,
welcher Einpunktwahrscheinlichkeiten von Binomialverteilungen berechnet. Dies geschieht bei
dem Statistik Softwarepaket R mit einem Algorithmus nach Loader [16]. Daher werden Hilfsre-
sultate hergeleitet, welche dazu dienen konnen, einen Satz iiber die Rechengenauigkeit des Algo-
rithmus nach Loader herzuleiten. Zudem werden in Beispielen die Genauigkeit des hergeleiteten
Algorithmus im Multinomialfall sowie im multivariat hypergeometrischen Fall untersucht mit
Hilfe von intervallarithmetischen Berechnungen. Es wird folgendes statistische Anwendungs-
beispiel untersucht: Es kommen n Patienten in einer Klinik an d = 365 Tagen des Jahres an,
jeder der Patienten mit Wahrscheinlichkeit 1/d an jedem dieser d Tage und alle Patienten un-
abhingig voneinander. Wie grof} ist die Wahrscheinlichkeit, dal 3 aufeinanderfolgende Tage
existieren, an denen zusammen mehr als £ Patienten ankommen?

Contents

1 Algorithms for the computation of rectangle probablilities for Markov increments 9

2

3

1.1 Proof of correctness for an abstract algorithm for the computation of rectangle

probablilities for Markov increments Lo 9
1.2 Multinomially distributed random variables are Markov increments 11
1.3 Multivariate hypergeometrically distributed random variables are Markov incre-

MENES . . ¢ o v e e e e e e e e e e e e e e 16
1.4 Application: The distribution of the multinomial range 19
Basics of approximative computations 21
2.1 Definitions of computer number systems and operations 21
2.2 The computer number systems Cs; 29
2.3 Analysis of error propagation by standard functions 34
Analysis of error propagation in Loader’s algorithm for the binomial density 43
3.1 Loader’s algorithm for the binomial density 43
3.2 Overview about research on the accuracy of algorithms for the binomial density . 47
3.3 Error propagation in the computation of npandn(1—p) 47
3.4 Error bounds for the deviance part bd0(k, np) in case of |k —np| < 0.1 |k +np|

and e, (k,mp) > ¢ .o 48
3.5 Absolute error bounds for the deviance part bd0(x, np) in case of e, (z,np) < ¢ 55
3.6 Error bounds for the deviance part bd0(k, np) in case of |k — np| > 0.1 % |k +np| 57
3.7 Approximative evaluation of Stirling’s Series 59
3.8 Computation of the value “Ic” in Loader’s algorithm 67
3.9 Computation of the value “If” in Loader’s algorithm 70
3.10 Error propagation in exponentiationo L. 73

Computations of rigorous bounds for binomial, multinomial and multivariate hy-

pergeometrical probabilities 75

4.1 Displaying double precision floating point numbers in hexadecimal format and
asrational eXpressiono e e 75

4.2 Changing the rounding mode in C programs 76

4.3 Computation of rigorous bounds for rectangle probabilities for a multinomially
distributed random variable oL Lo 79

4.4 Comparison of the multiplication method and Loader’s algorithm for the bino-

mialdensity 83
4.5 Computation of rigorous bounds for rectangle scan probabilities for a multino-

mially distributed random variable 83
4.6 Computation of rigorous bounds for rectangle scan probabilities for a multivari-

ate hypergeometrically distributed random variable 89
4.7 Calling C-functions from R and changing the rounding mode inR 91
An algorithm for the multinomial range 93

An algorithm for the cumulative distribution function of a scan statistic of a multi-

nomially distributed random variable 95
Stirling’s Series 101
Loader’s algorithm for the binomial density 103
D.1 Printofthe filedbinom.c, 103
D.2 PrintofthefilebdO.c 105
D.3 Printofthefilestirlerr.c o 107
Computation of the Poisson density 111

An algorithm for the cumulative distribution function of a scan statistic of a multi-
variate hypergeometrically distributed random variable 113

An enumerative algorithm for multinomial rectangle scan probabilities 119

Introduction

The main achievement of this thesis is an analysis of the accuracy of computations with Loader’s
algorithm for the binomial density. This analysis in later progress of work could be used for
a theorem about the numerical accuracy of algorithms that compute rectangle probabilities for
scan statistics of a multinomially distributed random variable. An example that shall illustrate
the practical use of probabilities for scan statistics is the following, which arises in epidemiology:
Let n patients arrive at a clinic in d = 365 days, each of the patients with probability 1/d at each
of these d days and all patients independently from each other. The knowledge of the probability,
that there exist 3 adjacent days, in which together more than k patients arrive, helps deciding,
after observing data, if there is a cluster which we would not suspect to have occurred randomly
but for which we suspect there must be a reason. Formally, this epidemiological example can be
described by a multinomial model. As multinomially distributed random variables are examples
of Markov increments, which is a fact already used implicitly by Corrado [4] to compute the dis-
tribution function of the multinomial maximum, we can use a generalized version of Corrado’s
Algorithm to compute the probability described in our example. To compute its result, the al-
gorithm for rectangle probabilities for Markov increments always uses transition probabilities of
the corresponding Markov Chain. In the multinomial case, the transition probabilities of the cor-
responding Markov Chain are binomial probabilities. Therefore, we start an analysis of accuracy
of Loader’s algorithm for the binomial density, which for example the statistical software R [20]
uses. With the help of accuracy bounds for the binomial density we would be able to derive ac-
curacy bounds for the computation of rectangle probabilities for scan statistics of multinomially
distributed random variables. To figure out how sharp derived accuracy bounds are, in examples
these can be compared to rigorous upper bounds and rigorous lower bounds which we obtain by
interval-arithmetical computations.

Chapter 1

Algorithms for the computation of
rectangle probablilities for Markov
increments

1.1 Proof of correctness for an abstract algorithm for the com-
putation of rectangle probablilities for Markov increments

In this section we describe an abstract algorithm for the computation of rectangle probabilities
for Markov increments. We prove that if the operations +, - on R are performed exactly, this
algorithm is correct.

Definition 1.1. Let (X, -) be a group with X" a countable set and (X})¢_, a Markov chain on
the probability space (€2, .4, P) which takes values in the measurable space (X,2%). Let Y :=
X, and Y, == X, ! X}, for k € {2,...,d}. Then the family (Y;){_, is called the (Markov)
increment of the Markov chain (X3)¢_,.

We remark that if (Y;)¢_, is the increment of the Markov chain (X})¢_,, then we have
Xp=Y1-...- Y,

fork € {1,...,d}.

Corrado [4] uses the algorithm A, which we state in this section below, for the computation of
rectangle probabilities for Markov increments. It is based on the recursion formula (1.1) we state
in the following theorem.

Theorem 1.2. Let Y = (Y}.){_, be Markov increment of a Markov chain (X)¢_, which takes
values in a group (X, -). Let Ay, ..., Ay C X be countable sets. Then the probabilities

plk,z) =P(Xy=2,Y1 € Ay,...,Yr € Ap)

9

fork e {1,...,d} and x € X fulfill the recursion

(1.1) plh,x) = > P(Xp =2 | Xy =ay p(k —1,2y™")

yEAg

for k > 2. Here and throughout, we use the convention P(A|B) = P(AN B)/P(B) := 0 if

P(B) = 0.

Proof. The functions f; : X? — X defined by fi(z1,22) = 7'z, have the property that
Yi = fr(Xg_1, Xi) and fi(-, x) is bijective for every = € X. Using this (which is actually all
we need, so the method works not only for Markov increments but actually for any functions
of two successive states of a Markov chain having the above bijectivity property) and writing

gr(z,) == fr(-,2)71, we get:
P(szx,ifl €AY, GAk)
= ZP(Xk:$7Yk:ya}/iEAla"'7Yk—1€Ak—1>

yEAy

= Z]P)(Xk:x7Xk—1:gk(xay)7}/1 eAl)‘-'ayk—l eAkz—l)
yEAg

= D P(Xk = 2| X1 = gil,y))
yEAL

XP(Xp—1 = ge(z,y), Y1 € A1,..., Yoy € Apq)

In the last step the Markov property was used.

]

From the recursion formula we can derive the following algorithm that computes the probability
P(Y; € Ay, ..., Yy € Ay). We assume that Ay, ..., A, are finite, so we get a finite algorithm.

Algorithm A:
1. For every x € A; compute the value p(1,z) = P(X; =)

2. Forevery k € {2,...,d}:
For every © € A; - ... Ay compute the value p(k, x) with formula (1.1)

3. Compute P(Y) € Ay,...,Ya € Ag) = ca,..a,P(dT)

Here,let A --- A, :=={a1---a,:a1 € Ay,...,a, € A,},if Xisagroupand A4, ...

Now, we describe how to compute a rectangle scan probability
q::P(}/l'...'}/geAl,...,Yd,g+1'...'YdEAd,ngl)

for a Markov increment Y.

We use the following obvious and well-known lemma:

10

A, C AL

Lemma 1.3. Let X be a countable set and (X},){_, an X-valued Markov chain. Let W, :=
(Xk, -+, Xpse_1)- Then (Wk)i;lfl is an X*-valued Markov chain with transition probabilities

P(Wii1 = w | Wy = v) = P(Xgyr = we | Xpyo—1 = vr)

forv,w € X withP(W, = v) > 0and vy = wy, ..., v = wy_;.

The desired rectangle scan probability for the Markov increment Y can be written as a rectangle
probability for the increment V of W: If we set By, := {(y1,...,y¢) € X lyr ... -y € Ax} we
have

q=PVi € By,..., Vi1 € Big1)

because V, = (X,;_lle, . ,X,;ingJrg_l) forke {2,...,d—{(+1}.

The sets By, ..., B4_¢+1 are possibly infinite so the Algorithm A would not compute a result in
finite time. But if there exist finite sets My, ..., My 441 C X ¢ with

P(Vi € By,...,Vaey1 € Bagr1) =P(Vi € My, ..., Vg g1 € Mag_y11)

we can apply the Algorithm A and thus are able to compute the desired probability.

Example: If ¥ = (Z,+) and Y is a Markov increment with Y7,...,Y; > 0, then for finite sets
Ay, ..., Ag_si1 C Z the probability

P(}/l—i-...—i-nGAl,...,Y(i_g+1+...+Yd€Ad)
equals
]P)((}/ba}/f) eMla'--v(Ydferla"'?Yvd) e]\4df€+1)

with My, := {(y1,...,y¢) € N§|y1 + ...+ ye € Ag}, which are finite.

In the next section we will prove that multinomially distributed random variables are Markov in-
crements and the transition probabilities of the corresponding Markov chain are binomial prob-
abilities. Therefore the Algorithm A can be used to compute rectangle scan probabilities for
multinomially distributed random variables.

1.2 Multinomially distributed random variables are Markov
increments

We define the multinomial distribution and the binomial distribution by their densities.

11

Definition 1.4. (a) Let n,d € N with d > 2 and p € [0, 1]¢ with Ele p; = 1. The multinomial
distribution M,, , is the probability measure on (R¢, B(RY)) with

n 1 n
Mapl{Onreema) = (" ot el

forny,...,ng € Ngwithny + ... +ng = n.
(b) Let n € N and p € [0,1]. The binomial distribution B, , is the probability measure on
(R, B(R)) with

n xT n—x
Bu((e}) = bugle)i= (7)1)
forx € {0,...,n}. Forn = 0let B, , := Jy be the Dirac measure in 0 and b,, , its density.

Our aim in this section is to show that multinomially distributed random variables are Markov
increments. The derivation in this section follows [5] and we use the fact that the multino-
mial distribution M, , is the distribution of the sum ! | X; of n independent random vari-
ables X;,...,X,, each with d-dimensional Bernoulli distribution B, := Zle pide;. Here

We begin with an easy lemma on the special case of a 2-dimensional multinomially distributed
random variable, which can be written as (X,n — X) with a binomially distributed random
variable X.

Lemma 1.5. Letn € N, p € [0;1] and X : Q — R a random variable on a probability space
(Q, A, IP). Then we have

(X, n— X) ~ Mn,(p,l—p) — X ~ Bnyp

Proof. We have

(X,n=X) ~ Mgy < PB(X=z,n—X—y) = (x y)pm ~p)forz,y € No
— P(X =12)=B,,({z}) forxr e Ny
— X ~B,,

Condensed boxes

The multinomial model M,, , with p € [0, 1]d, 27:1 p; = 1 can be illustrated by the idea of n
balls independently falling into d boxes, each ball falling into box ¢ with probability p;. When
different of these boxes in the multinomial model are condensed, again a multinomial model
results. This is proposed in the next theorem.

12

Theorem 1.6. Let n,d € N withd > 2 and p € [0, 1]d with Zle pi = 1. Let N ~ M,,
a multinomially distributed random variable. Let { > 2 a natural number and {K7, ..., K;}
a partition of {1,...,d}. Further we define for r € {1,...,(} the random variable U, :=
Yick, Niand g =Y.y pi. Then we have (Ui, ..., Up) ~ M, (4. q0)-

Proof. Let Xi,..., X, ~ B, independent random variables with N = ", X} and for k €
{1,...,nyandr e {1,... {}let Yy, := > ., Xi; Thenforr € {1,...,(} we have

n

ZYk,r:ZZXk,i = ZZX’W: ZNZ. =,
k=1

k=1 1€K, 1€Kr k=1 1€ Ky

and therefore (Uy,...,Us) = >0 _;(Yi1,...,Yes). Because the familiy ((Yj1,...,Y5ke))}, i8
independent and each (Y} 1,..., Y ,) ~ Bq.....q,) Bernoulli distributed with the same parameter
(q1,---,q0), we get (Un, ..., Us) ~ My (g1,..00)- [

Marginal distributions

In the next Corollary we state the marginal distributions of a multinomially distributed random
variable.

Corollary 1.7. Let n,d € Nwithd > 2 and p € |0, 1]d with Elepi = 1. Let N ~ M,, , a multi-
nomially distributed random variable. Let k € {1,...,d — 1} and {iy,... it} C {1,...,d}.
Let Ay, ..., Ay CH{0,...,n}. Then

(1.2)]P)(N“ € Al, c. 7Nik € Ak) = Mn’(pil PikJ*pz‘l*m*pik)(Al X ... X A X {O, o ,n})

.....

Particularly we get that for i € {1,...,d} the random variable N; has the binomial distribu-
tion By, ,,,.

Proof. From Theorem 1.6 we get (N;,,...,N;,,n—N;, —...—N;,) ~ Mo, i, Piy 1—piy — i)
and from this we get equation (1.2). Because of Lemma 1.5 this implies N; ~ B,, ,, for every
ie{l,...,d}. O

Multinomially distributed random variables are Markov increments

Let n,d € Nwithd > 2and p € [0,1)" with 3¢ p; = 1. Let N ~ M,,, a multinomially
distributed random variable. We define

k
Sk ::ZNi fork € {1,...,d}
i=1

Our aim in this section is Corollary 1.10. In that Corollary we will show that (S;)¢_, is a Markov
chain. Therefore we get that the multinomially distributed random variable N is a Markov incre-
ment. For simplicity we assume p €]0; 1[%.

13

Theorem 1.8. Let k € {2,...,d}, sx_1, s, € {0,...,n}. Then we have
P(Sk = 5k|Sk71 = Skq) = bnfsk,l,p]t(Sk - Skq)
with py = pr/ Y, Di-

Proof. For s;_1 > s the proposition is obviously true. Now let s;_; < s; and q := Z;:ll ;-

With Theorem 1.6 we get

P(Sk—1 = Sk—1, Sk = sk)
= P(Sk-1 = Sp—1, Nk, = s, — sp_1,n — Sp = n — i)
= an(quvl—q—pk)({(sk*h Sk — Sk—1,1 — 5k>})

n! e)
= qSkflpk k—1 1_(]—]? n—sk
Sk—1!(sk — sk—1)!(n — sg)! k (k)

und from Theorem 1.6 and Corollary 1.7

n!
P(Sk-1 = sg-1) = bng(sr-1) =

q5k—1 1— q n—sk_1
sk_ll(n — Sk’—l)! ()

Altogether we get

P(Sk = Sk|Sk—1 = Sk—l)
P(Sk = sk, Sp—1 = Sk—1)
P(Sk-1 = sk-1)

(TL - Sk*l)! Sk—Sk_1 _ _
1—0g— n—=spg 1 — n—sg_1
(sk — s_1)!(n — Sk)!pk (q — pr) /(q)

(n_ Sk—l)! (Pk)Sk*Sk—l(l o Pk)nfsk
(sg — sp—1)!(n—sp)! "1 —¢q 1—gq
= bnosi iy (Sk — Sk-1)

O

To show that (Sy){_, is a Markov chain, we need the following theorem about the conditional
distribution of the random variables Ny, ..., Ng, given Ni_q,..., Ny.

Theorem 1.9. Let ny,...,ng € {0,...,n} and k € {2,...,d} withP(Ny = nq, ..., Ny = ng_1) >
0. Then withm := % n; and q :== Y% p; we have

]P)(Nd =ng,..., Ny = nk|Nk—1 = Ng_1,..., N1 = nl)
= M, (o1 /g,-pata) L (M5 s na) })

14

Proof. We have

nj
nll...nd!pl

d

P(N1 =n4,..., Ng = nq) = My py,..p) { (71, ..., na) }) = Dy

and because of Theorem 1.6

IED(N1 =N, ., N1 = nkq) = Mn,(pl,...,pk,l,q)({(nla -~-;nk717m)})

|
n: Nk—1 _m

1
nll...nk_llm!pl P14

Hence

P(Nd =MNdy ...y Nk = nk|Nk_1 = N1y eny N1 = TLl)
P(Nl =Ny, ~-~;Nd = nd)
P(Nl = N1,y Npo1 = nkfl)
m!
— nk... d m
nk'nd'pk Pa /q

m!

- El.ng! (pe/q)"™...(pa/q)"™

n
= Mm,(pk/q ,,,,, Pd/Q)({(nk7‘“7nd)})

O

Corollary 1.10. The family (Si)$_, is a Markov chain. For k € {2,...,d} and s;_1,s; €
{0, ...,n} we have

P(Sy = sk|Sk—1 = sk-1) = bn—s,_, pr (81 — Sk-1)

with p} == pi/ Zf: i Di- Therefore the multinomially distributed random variable N is a Markov
increment.

Proof. Letk € {2,...,d} and s1, ..., s, € {0,...,n} with P(S; = sq, ..., Sk—1 = sx_1) > 0. Then
from Theorem 1.9 and Corollary 1.7 we get

P(Sk = Sk|Sk_1 = Sk—1y -+ Sl = 81)
]P)(Sk = Sky ey Sl = 81))
P(Sk_l = Sk—1y -+ Sl = 81)
P(Nk = $g — Sk—1,---,No = 89 — 51, N; = 51))
P(Nk_1 = Sk—1 — Sk—2, ..., No = 59 — 51, N1 = 51)
= P(Ny =8k — Sp1 | Npo1 = Sp—1 — Sk—2,--., No = 89 — 81, N; = $1)

= bn—si_1 (5K — Sk-1)

und therefore with Theorem 1.8 the proposition.]

15

We conclude that the Algorithm A can be used to compute rectangle scan probabilities
PNy +...+Ne<k,....Ngp1+...+N;<k)

for a multinomially distributed random variable N = (N, ..., N;). This method is much faster
than the enumerative method stated in the Appendix G. The enumerative method works as fol-
lows: Let D = {x € N¢ : 2, + ...+ x4 = n} the support of the multinomial distribution M, .
Foreachx € Dwithzy + ...+ 2, < k, ..., X441+ ... + x4 < k compute the probability
P(N =) =nl/(x!...2z)p" ... p}" and sum up these values. But because the support D is
large, this procedure takes much time. For example: For n = 20,d = 12,p = (1/d,...,1/d)
it took 41 minutes and 38 seconds with the enumerative algorithm stated in G to compute the
probability P(Ny + Ny + N3 < 9,..., Ng_o + Ng_1 + Ng < 9) = 0.88744 on a 3.7 GHz CPU
with 4.0 GB Ram, while with the implementation of Algorithm A which is stated in Appendix B
it took less than 1 second.

1.3 Multivariate hypergeometrically distributed random vari-
ables are Markov increments

In this section we cover another important example for Markov increments, namely multivariate
hypergeometrically distributed random variables. The multivariate hypergeometrical distribution
is a model for drawing from an urn with balls of different colors, without replacing the drawn
balls. Following the derivation in [5], in this section we show that multivariate hypergeometri-
cally distributed random variables are Markov increments. Further properties of the multivariate
hypergeometrical distribution can be found in [11].

Letn,dEN,dz2andm1,...,mdENwichlemiZn.

Definition 1.11. (a) The multivariate hypergeometrical distribution H,, (,,,,
ability measure on (R?, B(R?)) with

my) 18 the prob-

Hn,(ml md)({kh ceey kd}) =

for(k:l,...,kd)E{O,...,ml}x...><{0,...,md}withk31—l—...+k:d:n.

(b) Let r,b € Ny with » + b > n. The hypergeometrical distribution I, ,, is the probability
measure on (R, B(R)) with

(1) (.20
(")

fork € {0,...,n}. Incase of n = 0let H, ,, = dy the Dirac measure in 0 and h,, ., its density.

Hnﬂ",b({k}) = hn,r,b(k?) =

16

In the rest of this section let N = (N, ..., Ng) be a H,, ¢,
m =" m,.

We need the following theorem.

mg)-distributed random variable and

.....

Theorem 1.12. Let ¢ € N, ¢ > 2,{Ty,..., Ty} a partition of {1,...,d} and S, := Y .., N;
and s, :=) .. m; for v € {0,...,l}. Then the random variable (S, ..., S;) has distribution

Proof. This Theorem can be proven with the help of the Vandermonde convolution identity,
which for £ € N, reads as follows

() e)

Corollary 1.13. Fori € {1, ...,d} we have
Ni ~ Hn,mi,m—mi

Proof. Fori € {1,...,d} from Theorem 1.12 we get that the random variable (N;,n — N;) has
distribution H,, (,; sn—m,). From this we get the proposition. O

We define
k
Sy = ZNZ» fork € {1,....d}
i=1

Theorem 1.14. Let k € {1,...,d} and s;_1, s € {0, ...,n}. Then we have
P(Sk = sk|Sk—1 = Sk-1) = hn—s, | mp.m—s(Sk — Sk—1)
with s 1= Zle m;.

Proof. For s;_1 > s; the proposition obviously is true. Now let s;_1 < si. From Theorem 1.12
we get

P(Sk-1 = sk—1, Sk = s&)
= P(Sk-1=5k1,Np =8k — Sp_1,n — Sp =n — s)
= Hp (sompmpm—s) ({(Sk—1, Sk — Sk—1,1 — 58) })
5 — my my m—s m
- o))

17

From Theorem 1.12 and Corollary 1.13 we get
P51t = s1-1) = v (o0 = (") (M) ()
Sk—1 n— Sk n
Jointly we get
P(Sk = si|Sk-1 = sr-1)

P(Sk = Sk, Sk—1 = Sk—1)
P(Sk-1 = Sk-1)

- M m— S / m— S+ myg
N Sk — Sk—1 n — Sk n — Sk

- hnfsk,l,mk,mfs<5k - Skfl)

[l
Theorem 1.15. Let ny,....,ng € {0,...,n} and k € {2,...,d} with P(N; = nq,...,Ny_1 =
ng_1) > 0. Then with r := Z?:k n; we have
]P(Nd = Ng, ..., Nk = nk‘Nk,1 = Np—_1y ey N1 = nl)
_I—Ir(m;C md)({(nk7 -and)})
Proof. We have
my my m
(Vs = 1t N = 1) = Hogonong (0, n)}) = (7)o (7)1 ()
and because of Theorem 1.12
]P)(Nl =N, ... Nk:—l = nk—l) = Hn,(ml mk,1,3)<{(n17 sy nk—hr)})
. mq mi—1 S / m
o\) T\ neey)\ n
with s := Zf:k m;. This implies
P(Nd =Ngqy .., Nk = nk|Nk_1 = N1y -y N1 = nl)
P(Nl =N1y...y Nd = nd)
P(Nl =N, Npo1 = nk—l)
. my mg / S
A\ /T \ny r
- Hr,(mk md)({(nk7~~und>})
[l

18

Corollary 1.16. The family (Sy)%_, is a Markov chain. For k € {2,...,d} and sj_1,s; €
{0, ...,n} we have

P(Sk = Sk’Sk—l = Sk—l) = hn—sk,l,mk,m—s(sk - Sk—l)

with s 1= Zle m,;. Therefore, the multivariate hypergeometrically distributed random variable
N is a Markov increment.

Proof. Letk € {2,...,d} and sq, ..., s, € {0,...,n} with P(S} = sq,..., 51 = sx—1) > 0 and
s = Zle m,;. Then from Theorem 1.15 and Corollary 1.13 we get

]P(Sk = Sk|Sk_1 = Sk—1y -y Sl = 81)
P(Sk = sk, ..., 51 = s1))
P(Sk—1 = Sk—1, ..., 51 = $1)
P(N, = $g — Sg—1,---,No = 89 — 81, N1 = 51))
P(Nk_1 = Sk-1 — Sk—2,...,No = 59 — 51, N1 = 1)
= P(Ny =Sk — Sk—1 | Nk—1 = Sk—1 — Sg—2,--.,Na = 89 — 51, N1 = 579)

= hn—sk,l,mk,m—s<5k - Sk—l)

From this, with Theorem 1.14 we get the proposition.]

1.4 Application: The distribution of the multinomial range

Pfeifer [17] discussed inappropriate intuitive uses of the expectation y in repeated trials each
with probability of success p. To clearify his argumentation, Pfeifer computed the probability
density function of the Range

d d
D, = mgx N; — Hl_l{l N;

of a multinomially distributed random variable (Ny, ..., Ng) ~ M,,, for n = 100,d = 6 and

p=(1/d,...,1/d). To compute the probabilty density function of the Range D,, for n = 1000

and the same p, he made use of a simulating algorithm.

According to Corrado [4] this probability can be computed with the following formula, which
uses rectangle probabilities

E

3

P(D, < k) P(N, € {h,....h+k},....Ng€ {h,....,h+k})

>

=0
—k—1

PNy e{h+1,...,h+k},....,.Nge{h+1,...,h+k})

(1.3)

3

i
o

19

Table 1.1: The cumulative distribution function of the multinomial Range D1

k P(D1oo0 < k) k | P(D1goo < k) k | P(D1goo < k) k | P(D1goo < k)
1 1.028242 - 106 18 0.0863429 35 0.6253632 52 0.953737
2 6.541602 - 106 19 0.1059366 36 0.6576482 53 0.9605108
3 3.882427 - 10~° 20 0.1279544 37 0.6884817 54 0.9664172
4 0.0001275595 21 0.1523472 38 0.717738 55 0.9715444
5 0.0003384679 22 0.1790134 39 0.7453226 56 0.9759761
6 0.00075915 23 0.207805 40 0.7711718 57 0.9797904
7 0.001510181 24 0.2385296 41 0.7952502 58 0.9830595
8 0.002740486 25 0.2709564 42 0.8175492 59 0.9858498
9 0.00463207 26 0.304823 43 0.8380834 60 0.9882219
10 0.007381874 27 0.3398435 44 0.8568881 61 0.9902303
11 0.01121232 28 0.3757151 45 0.8740164 62 0.991924
12 0.01635051 29 0.4121272 46 0.8895357 63 0.9933469
13 0.02302565 30 0.4487688 47 0.9035247 64 0.9945377
14 0.03145717 31 0.4853358 48 0.916071 65 0.9955304
15 0.04184907 32 0.5215378 49 0.9272679 66 0.9963548
16 0.05437359 33 0.5571033 50 0.9372124 67 0.9970371
17 0.06917238 34 0.5917851 51 0.9460028 68 0.9975995

We use formula (1.3) in the R algorithm stated in Appendix A to compute the cumulative distri-
bution function and with that the probability density function of the multinomial Range D;ggg.
The values P(D1gp9 < k) of the cumulative distribution function for & € {1, ..., 68} are listed in
Table 1.1, while in Figure 1.1 a plot of the probability density function of Dy is shown. This
may be compared with Pfeifer’s diagram on his p.6, obtained by simulation.

°
[®®%,
0.035 ° o
[° °
° °
0.030 ° °
030 o °
o °
i °
0.025 ° °
° °
i °
0.020 °
I °
° °
0.015 ° ®
[°
[N °
[°
0010 d o
b °
° .
L . .
0.005 L %
[° o
° %o,
°® %00o
"v-..\ S S S S (S S S S B \.’..QL
10 20 30 40 50 60 70

Figure 1.1: The probability density function of the multinomial Range D1

20

Chapter 2

Basics of approximative computations

Mathematical algorithms often are applied using computers that are not able to perform the
operations +, —, -, / on R exactly, but approximatively. We are interested in the accuracy of
results which we get when we use such a computer for applying the algorithms for Rectangle
Probabilities that we derived in Chapter 1. As preparation for an analysis of their accuracy, in
this chapter we state important basics of approximative computations.

2.1 Definitions of computer number systems and operations

In this section we define number systems and operations that we assume the considered comput-
ers use. We will work in a general setting, where computer numbers are elements of an ordered
field, not nessesarily real numbers. As far as possible, we will not make any further assumptions
about the structure of the number system or the distances between computer numbers but only
assume that there exists a constant which bounds the relative error between the computed result
and the exact result of an operation in the field. This will only be possible if the result lies in a
subset of the ordered field. We will call such a subset the range of the computer number system.
Similar approaches, which are the same in the important case of the number systems defined by
the IEEE 754 Standard [3], can be found in [9] or [14].

In the entire rest of this work let (K, +, -, <) be an ordered field and —oo, co two objects with
—00,00 ¢ K. We expand the order < to the set K := K U {—00, 00} by defining —oo < x and
v < ooforeveryxz € K. Forz,y € K wedefiner < y &y > :< (z <yandx # y) as
well as ¢ > y < y < x. We define

—co+ =2+ (—00):=—00 forxe KU{—o0}
x4+ 00 =00+ T =00 forz € K U {oo}

21

and

—oo forz € K withz >0

0 forx=0

oo forz € K mitz <0

oo forx € K withz >0

0 forx=0
—oo forz € K withz <0
We further define —y := oo fory = —oo, y~' := 0 fory € {—00,00} and y~! := oo fory = 0
and with that z/y := == x - (y™!) for (z,y) € K and z — y:=x+ (—y) for (z,y) € K \
{(—00, —0), (00, 00)}. We further define the sets D := K \ {(—00, 0), (00, —00)}, D_ =
K \ {(=00, =), (c0,00)} and D, := K? for * € {-,/}. With these sets we just defined

functions * : D, — K for * € {+,—,-, /}. For x € K let the absolute value |z| := z if z > 0
and |z] := —zif v < 0. The set N = Nx = {1,2,3,...} as well as intervalls in K we define in
usual way. For z,Z € K we define the relative error ¢, (z, Z) := |z — Z|/|z|. For A C K we

set —A :={-x:x € A} and +A := (—A) U A. Let NaN denote a set which is not element of
the set K. The symbol NaN stands as an abbreviation for “Not a Number” and will be used as a
computer number which a computer returns as exceptional result.

Now we define roundings into a finite subset of K.

Definition 2.1. For a finite subset M/ C K we define M := M U {—00,00} and the functions
rdys, ruy ¢ K — M by

rdy (7) ;= max{z € M : 2 < z}

ruy(z) == min{z € M : z > z}

for # € K. Every function 7 : K — M we call rounding into M. The function rdy; we call
lower rounding and the function ruy, we call upper rounding into M. A rounding r : K — M
we call regular, if rdy; < r < ruy,, and monotonic, if r(z) < r(z) for every x,7 € K with
r < Z.

In the rest of this section let always M C K be a finite subset of K and rd := rdj;, ru := ruy,.

We now define computer operations for approximative computations with results rounded down-
wards or rounded upwards, respectively.

Definition 2.2. Let C' := K U {NaN}. For * € {+,—, -, /} we define the functions ®,,, ® :
C? — C by

T®,,y = 2®yy := NaN for (z,y) € C*\ D,

22

1®,,y = 1d(x *y), 2@y = ru(z * y) for (z,y) € D,
with the following exceptions

2@,y = 20ny = NaNif z = 0,y € {—o00,00} ory = 0,2 € {—00, 00}

22,y =x0ny =NaNifz =y =0orz,y € {—o0,00}

We note that from the last definition we for example get 0©,,00 = 0y 00 = NaN while
0 - 0o = 0. These and further exceptions in the last definition are consistent with the definition
of the computer operations according to the IEEE Standard 754.

In the rest of this section, we study roundings and computer operations. We declare that computer
operations @, ©, ®, @ always have higher priority than each of the operations +, —, -, /, so for
example the expression a - b — ¢ means (a - b) — ¢ and the expression a - b © c means a - (b S ¢).

Lemma 2.3. For v € K we have the properties vd(z) < x < ru(z) and

VeeM:x>z=1d(z)>2

VeeM:z<z=ru(z) <z
and if rd(x) # ru(z) we have

ru(r) = min{z € M : z > rd(z)}

Proof. We have 1d(z) = max{w € M : w < x} < x. For z € M with z < z we have
z <max{w € M : w < x} = rd(z). The inequality z > ru(z) for every z € M with
z > x follows from ru(z) = —rd_y(—z). We get rd(x) < x < ru(x). For every z € M with
z > rd(x) we have z > x and therefore z > ru(x). If rd(z) # ru(z) then we have rd(x) < ru(z)
and therefore ru(z) = min{z € M : z > rd(z)}. O

From the last Lemma we further get the following corollary.

Corollary 2.4. For every regular rounding r : K — M and x € K,z € M we have the
implications

r>z=r(r)>=2

r<z=r(r)<z

Proof. From Lemma 2.3 we have

x>z=r(r)>rd(r) >z

r<z=r(r)<rulzr) <z

23

Corollary 2.5. The lower rounding rd and the upper rounding ru are regular and monotonic.

Proof. The regularity of rd, ru follows from rd < ru. Let z,7 € K with z < Z. Then ru(z) =
min{z € M : z > z} < ru(z) and rd(z) = max{z € M : z < x} < rd(z). Therefore rd, ru
are monotonic O]

Definition 2.6. A rounding r : K — M we call close, if there exist A, B € K with]A, B[D M
and

(2.1) |r(z) — x| = min{|ru(z) — z|, |rd(x) — z|}
forevery x € |A, Bland r(z) = —0 if z € [—00, A] and r(z) = o0 if z € [B, 00].

Lemma 2.7. Every close rounding is regular and monotonic

Proof. Letr : K — M a close rounding and A, B € K with A, B[O M and (2.1) for every
r€]A Blandr(z) = —0if x € [—00, Al and r(z) = 0 if z € [B, 00].

Proof of r being regular: If x € [—o00, A] we have r(z) = —oo0 = rd(z), if x € [B, co] we have
r(z) = oo =ru(x) . Letz € |A, B|. If r(z) > z, with Lemma 2.3 we get r(z) > ru(z) > x
and therefore |r(z) — x| > |ru(z) — z|. Because of (2.1) we also have |r(z) — z| < |ru(z) — z|

and therefore |r(x) — x| = |ru(z) — x| which is equivalent to r(z) = ru(z). If r(z) < x, with
Lemma 2.3 we get r(z) < rd(z) < z and therefore |r(x) — x| > |rd(x) — z|. Because of (2.1)
we also have |r(z) — z| < |rd(z) — z| and therefore |r(x) — 2| = |rd(z) — x| and therefore
r(z) = rd(z).

Proof of 7 being monotonic: Let 7,7 € K with z < Z. We prove r(z) < 7(Z). Because r is
regular we have r(x) € {rd(z),ru(z)} and r(Z) € {rd(z),ru(z)}. In case of r(z) = rd(z)
we have r(z) = rd(z) < rd(Z) < r(z) while in case of r(x) = ru(z) and r(Z) = ru(z) we
have 7(z) = ru(z) < ru(z) = r(Z). Now let r(x) = ru(z) and r(Z) = rd(z). In this case
we have z, 7 € | A, B[because otherwise it would be 7(z) = —oo or 7(Z) = oo and therefore
r(z) # ru(z) or r(Z) # rd(Z). From r(Z) = rd(z) with (2.1) we get |rd(Z) — Z| < |ru(Z) — Z|.
Assumed that ru(z) > rd(Z) from Lemma 2.3 we would get ru(z) > ru(z) and rd(Z) < rd(zx),
and with ru(z) < ru(z) and rd(z) < rd(z) we would get ru(z) = ru(z) and rd(z) = rd(Z).

Therefore with |rd(z) — Z| = [rd(Z) — Z| < |ru(Z) — Z| = |ru(x) — Z| and = < T we would get
lrd(xz) — x| < |ru(z) — 2| which contradicts 7(z) = ru(x). Thus we have ru(z) < rd(Z) and
with that the proposition 7(z) = ru(z) < rd(Z) = r(2). O

Theorem 2.8. Let v : K — M a monotonic rounding and for x € {+,—,-,/} let ® : D, — M
defined by

T®Yy =r(T*y)

for (z,y) € D..
Then for (x,y),(Z,7) € D, we have the implications

24

(a) Monoticity of
(2.2) r<Tandy<y=xdy<rdy
(b) Monoticity of ©
(2.3) r<zZandy>y=c0y<10Y

(c) Monoticites of ®

2.4) 0<z<2and 0 <y<y=20y<20Y
(2.5) 0>2>22and0<y<y=zx0y>r0Yy
(2.6) 0>2x>Zand0>y>gJ=20y<10y
2.7 0<z<zand0>y>y=c20y>120Yy

(d) Monoticites of ©

(2.8) 0<z<zand0<yg<y=2z0y<10Yy
(2.9) 0>22>22and0<y<y=20y>210%Y
(2.10) 0>z>22and0>y>y=20y<z20yY
2.11) 0<r<iand0>j>y=20y>i07j

Proof. In each case, under the stated condition we get z xy < T *xy or Z * y < z * y and with
the monoticity of we get the propositions. O]

Lemma 2.9. Let v : K — M a regular rounding and for x € {+,—,-, /} let® : D, — M
defined by

r®y =r(r*xy)
for (z,y) € D..
Then for (x,y) € D, and z € M we get the following implications.

(2.12) rrxyYy<z=>c®y <z
(2.13) TRYZ>22=>TP®Y > 2
(2.14) THY=2=>TPY =2

25

Proof. The first two implications follow from Corollary 2.4. If z x y = z then x * y < z and

x *xy > z and therefore we getz ® y = 2. [
In the IEEE-Standard 754 the computer operations ® for * € {4, —, -, /} are not consistent with
our definition of the operations +, —, -, / in K but there are some exceptions. These exceptions
are

r@y=NaNifz =0,y € {—o0,00} orz € {—o0,00},y =0
while our definition of the operation - in K yields
x-y=0ifz =0,y € {—o00,00}orz € {—00,00},y =0
Further exceptions are
roy=NaNifz =y=0o0rz,y € {—o00,00}
while our definition of the operation / in K yields

z/y=0ifx=y=0o0rx,y € {—00,00}

In the following two theorems we examine if the implications (2.2) - (2.14) still remain true when
we define the operations ® with the exceptions from the IEEE-Standard 754.

Corollary 2.10. Letr : K — M a monotonic rounding and C' := KUNaN. Forx € {+,—,-, /}
let the functions ®); : C? — C' be defined in the following way:

x ®y y = NaN for (z,y) € C*\ D,

@y y :=r(xxy)for (z,y) € D,
with the following exceptions

Oy y:=NaNifz =0,y € {—o0,00} orz € {—o00,00},y =0

ropy:=NaNifr=y=0o0rz,y € {—o00,00}
Then for x,y,%,5 € K and x € {4+, —, -, /} we get the implications (2.2) - (2.11) with ® = ®.
Proof. Let* € {+,—,-,/}and ® : D, — M without exceptions defined by
x®y = r(x *y) for (z,y) € D,

From Theorem 2.8 we get the implications (2.2) - (2.11) for (z,v), (Z,7) € D, and ® = ®. For
x € {+,—,-}andz,y,Z,gorfor* = /andz,7 € K,y,y € K\{0} we have (z,v), (Z,7) € D.
and x ®); y = v®y and T ®,; § = 2®7. Therefore we get the proposed implications.]

26

Corollary 2.11. Letr : K — M a regular rounding and C' := K UNaN. For x € {+,—,-,/}
let the functions ®y; : C? — C' be defined in the following way:

x ®y 1y = NaN for (x,y) € C*\ D,

x®yy:=r1(xxy)for(z,y) € D,
with the following exceptions

rOpy:=NaNifx =0,y € {—00,00} orz € {—00,00},y =0

x@py:=NaNifr =y=0orz,y € {—o00,00}
Then for x € {+,— -, /Y and v,y € K,z € M withy # 0 in case of x = | we get the
implications (2.12) - (2.14) with ® = ® ;.
Proof. Letx € {+,—,-,/}and ® : D, — M without exceptions defined by
x®y = r(x *y) for (z,y) € D,

From Lemma 2.9 we get the implications (2.2) - (2.11) for (z,y) € D,,z € M and ® = ®. For
x,y € K,z € M with y # 0in case of x = / we have x ®); y = r(z * y) = 2®y and therefore
the implications (2.12) - (2.14) with ® = ®,.]

We want to derive accuracy bounds for rounded computations. For this purpose, we define the
following approximating property of roundings.

Definition 2.12. Let R C K \ {0} and u € [0,00[. A rounding r : K — M is called an
(R, u)-approximator, if

(2.15) r(z) € K and e;q(x,7(x)) < u
for every x € R.

Now we derive accuracy bounds for rounded computations. First we only consider rounded
results in a subset /' of positive elements of M.

Lemma 2.13. Let FF C M N |0, 00[with #(F) > 2. For z € F with z < max F we define
succ(z) :=min{y € F :y > z}. Let

u = %max {erai(z,succ(2)) : z € F'\ {max F'}}

and
1
R := |min F, max F + §(maXF — max(F \ {max F'}))
Letr : K — M a rounding with (2.1) for x € R. Then r is an (R, u)-approximator.

27

Proof. Letxz € R. The condition r(x) € K obviously is true. If z < max F' thenru(z) < max F
and

Ir(z) — x| = min{|ru(z) — z|, |rd(x) — z|} < %]rd(m) — ru(x)]

and therefore e (z,7(2)) < epq(rd(z),ru(z))/2 < w. If > max F then rd(x) > max F and
we have

1
r—rd(z)) < §(maxF — max(F \ {max F'})
and therefore e (z,7(z)) < Jere(max(F \ {max F}), max F) < u. O

The following Theorem 2.14 generalizes the result of Lemma 2.13 by allowing negative elements
in the subset /' C M.

Theorem 2.14. Let F' C M with #(F N] — 00,0[) > 2 and #(F N0, 00[) > 2. For z € F with
z > min F we define prec(z) :== max{y € F' : y < z} and for z € F with z < max F we define
succ(z) :==min{y € F': y > z}. Let

v:=1/2max {e,(z,prec(z)) : z € FN]min F,0[}
w :=1/2max {e,(z,succ(z)) : x € F N0, max F[}
Ry :=|min F' — 1/2(min(F \ {min F'}) — min F'), max(F' N | — oo, 0[)]

Ry := [min(F N0, 00]), max F' + 1/2(max F' — max(F' \ {max F'}))|

Let u := max{v,w} and R := Ry U Ry. Letr : K — M a rounding with (2.1) for v € R. Then
r is an (R, u)-approximator.

Proof. From Lemma 2.13 we directly get
eral(z,7(x)) < wforx € Ry

If we apply Lemma 2.13 to the functions ruy, rdy with N := —M instead of M, the set G :=
—(F'N] — o0,0]) instead of F', and the function ¢ : —R; — N defined by ¢(z) := —r(—z) for
r € —Ry, we get

eral(z,7(x)) <wvforx € M withz € Ry

because of ruy(—z) = —rd(z),rdy(—2z) = —ru(z) and e;o(—x,q¢(—2)) = ea(z,r(x)) for
x € R;. Therefore the proposition is proven.]

28

We remark that in case of F' being symmetrical, that means F' = £F', in Theorem 2.14 we get
the easier expressions max{v, w} = vand Ry U Ry = £R;.

Corollary 2.15. Let R C K \ {0},u € [0,1[and r : K — M an (R, u)-approximator. Let
C := KUNaN. For x € {+, —, -, /} let the functions ®,; : C* — C' be defined in the following
way

x ®y y = NaN for (x,y) € C*\ D,

x @y y:=r(xxy)for(x,y) € D,
with the following exceptions

rOpy:=NaNifx =0,y € {—00,00} orz € {—00,00},y =0

x@py:=NaNifr =y=0orz,y € {—00,00}
Then for x € {+,—,-, /} and for z,y € K with x x y € R we have

r®yy € Kande(rxy,z®yy) <u

Proof. Let x € {+,—,-,/} and z,y € K with x x y € R. Because of x,y € K we have
(x,y) € D,. Because of 0 ¢ Rand x *y € R we have x * y # 0. Therefore we have got none
of the exceptional cases in the definition of ®,,, but x ®,; y = r(z % y). Because of x xy € R
we have r(z x y) € K and e,q(z * y,7(z * y)) < u. Therefore we get the proposition. O

2.2 The computer number systems C’ ;

We now define computer number systems C; with s,¢ € N. For s = 11,¢ = 52 we get the
number system IEEE-Double and for s = 8,¢ = 23 we get the number system IEEE-Single
which are described in the IEEE Standard 754 [3]. Particularly the first of these two examples is
important because of frequent applications in practice.

Definition 2.16. Let s,¢ € Nand Cs; := £ F;; U+G,; U {—00, 00, NaN} with
Fop={(1+de)2° :d€{0,...,2" = 1},e € {1,...,2° — 2}}
withe; :=2"tand ¢y := 25! — 1, and
Gop = {de2» : d € {0,...,2" = 1}}
with e, ;=1 — ey = —2°"1 + 2. Let
R, := £[min Fy;, max Fy; + 228_1*"/*2[

and u; = 27U We define IEEESingle := Cgo3,IEEEDouble := ()5 and
IEEEMinExtended := 015,63-

29

For s,t € N we define rds; := rdyp, ,utq,, and rus; := ruyp, ,usq, ,. For = € {+,—,-,/} we
define

@s,t = ®iFs,tUiGs,t7@s7t = @iFs,tUiGS,i
We further define

1
Agpi=max Fy; + §(max Fy; — max(Fy; \ {max F,}))

In this section we always assume 7 ; : K — Cst N Kisa rounding with
|z — rs(2)| = min{|z — rds(2)], |z — rus ()|}

forz € | — Agy, Asy[and with 7, ,(z) = —oo forz € [—00, —Ag,] and 7,4 (x) = oo for z €
[Ag 4, 00]. Further let C' := K U {NaN} and for * € {4, —, -, /} the functions ®,, : C* — Cj,
defined as

T ®;y = NaN for (z,y) € C*\ D,

T @5,y = rs(x*xy) for (x,y) € D,
with the following exceptions
r@sry:=NaNifz =0,y € {—o0,00} orz € {—00,00},y =0
T Qs y:=NaNifz =y =0orz,y € {—o0,00}
We list the smallest examples of sets of the form Fj ;.
Example 2.17. For every ¢t € N we have I ; = (). We have
Fg’l = {].,]_5, 2, 3}, R271 = :t[]., 35[, Uy =]./4

As Iy, C Iy ifg,r,s,t € Nwithqg < sandr < ¢, thismeansthat1,1.5,2,3 € F;,fors,t € N
with s > 2. For example we have

Fyo ={1,1.25,1.5,1.75,2,2.5,3,3.5}, Ro.y = £[1,3.75[, up = 1/8

F3,={0.25,0.375,0.5,0.75,1,1.5,2,3,4,6, 8,12}, R3; = £[0.25, 14]
Lemma 2.18. Let s,t € N with s > 2. Then
min F,, = 2> maxF,, = (2—-27)2>" !
Farticularly we have
[22—25*1’228*1—1] C Ry,
For k € Z we have
FPeF,&2-21<k<2v -1

ke, o227 —t<k<2vt 1

30

Proof. With d = 0 and e = 1 we have min F,; = (1 4 dg;)2¢® =) = 222" and with
d =2 —Tlande = 2° — 2 we get max Fy; = (1 4 dg;)2¢ =D = (2 — 271)22" -1,
Letk € {2 —251 —¢, ..., 1—21} Then with d := 22" ~2++%k ¢ {0, .. 21} we have
2 — dg,2272""" . Hence 2* € G,,. O

We now compute the values which in Theorem 2.14 we called v and R, in case of [’ = F};, and
get that g, is a (R, 4, u)-approximator.

Lemma 2.19. Let s,t € N. The rounding 7, is a (R4, ut)-approximator. Therefore for x €
{+,—,-,/} and for z,y € K withx xy € R,; we have

T ®s,t Yy e K and erel(x *Y,x <>Bs,t y) S Us,t

Proof. Let F' := Fj,. For z € F with z < max F' we define 2’ := min{y € F' : y > z}. Let
z€ F\{max F}ande € {—2°"'+2,...,25" ' —1}andd € {0,...,2—1} with 2 = (1+dg;)2°.
Then 2’ = (14 (d + 1)&)2° and

Eth B Et <
z - 1 + dgt -

erel(za Z/) -

Therefore
1/2max {e,q(2,2) 1 2 € F\ {max F}} <2771 =,

From Lemma 2.18 we have max F, , = (2—27%)22"'~1. We further have max(F'\ {max F'}) =
(2 — 2711227~ From that we get

1/2(max F' — max(F \ {max F'})) = 9281 —t=2

With Theorem 2.14 we get that the rounding 7, is a (R, u;)-approximator. With that, from
Corollary 2.15 we get that for x € {4+, —, -, /} and for z,y € K with x x y € R,; we have

r®sry € Kand epq(z*y,r ®s,y) < ugy
OJ

We remark that Lemma 2.19 states that the precision u; of the number system C ; is determined
by the parameter ¢ and, if ¢ is small compared to 2°, the parameter s roughly determines how
large the range R, ; of the number system Cj ; is.

Lemma 2.20. Ler t < 2°' — 1. Then we have max{n € N: {1,...,n} C Cy,;} = 21

Proof. Letk € {0,...,t}andm € {0,...,2¥—1}. We show that 2*+m € C, ;. Letd := m2!~*
and e :=ep+ k. Thend € {0,...,2" — 1},e € {eg,...,2¢9 — 1} and (1 + de;)2°7 % = 2°7% +
m2t=*g, 267 = 2% + m. Furthermore we have 2/t1 = (1+4dg;)2¢7% withd = 0,e = eg+t+1 €
{€0,...,2¢e0}. Ford = 1,e = ey +t + 1 we have (1 + dg;)2¢7% = (1 + 272! = 201 4 2,
Hence 2™ + 1 ¢ C,. O

31

Lemma 2.21. Let s,t € Nand x € Cyy N K. If |z| < 227, then —2x,2x € Cy,. If
2| > 2372 then we have —1:/2, /2 € Cs,.

Proof. If 2227 < |z| < 227" then € +F,, and there exist d € {0,...,2! —1},e €
{2 —2571 .. 2571 — 2} with |z| = (1 + de;)2¢. Therefore |2x| = (1 + dg;)2¢T, withe + 1 <
251 — 1. We get |2z| € F,, and therefore 2z, —22 € +F,,. If || < 2272 then = € +G,,
and there exists d € {0,...,2" — 1} with |z| = d&,22~2"". Therefore |2z| = 2de,2> > € G,
if d < 20V and |22] = (28 + 2(d — 2°°1)g 222 = (14 2(d — 27 1)g)2> 2" € Fy, if
d > 271, We get —2x,2x € C,,. The proof of the second proposition is even easier than the
first one: If || > 2372, then there existd € {0,...,2' —1},e € {3—2°"1,...,2°"1 — 1} with
|z| = (1 + de;)2¢. Therefore |z|/2 = (1 + de;)2¢7 !, withe — 1 > 2 — 2571, We get |z|/2 € F,
and therefore /2, —x/2 € £F,. O

The next one is a somewhat crude but sometimes helpful estimate.

Lemma 2.22. Let s,t € Nand x € Cs; N K with 0 < rd(|z|) and rus(|x|) < co. Then

U (|z]) < 2rdg . (|x)

Proof. Let k € Z with |x| € [2¥71,2%]. Then 2*~! < rd,(|z|) and therefore rug(|z|) < 2% <

2rdg ¢ (|]). O

Corollary 2.23. Ler s,t € Nyz,y € C;;, N K and x € {+,—,-,/} with 0 < rd(|z * y|) and
rug(jz *y|) < oco. Ifx*xy > 0 we get

®s1y < 2(2®,)
If v xy < 0 we get
T®, Y > 2(x®5,y)

Proof. The proof directly follows from the Lemma 2.22. [

Corollary 2.24. Let s,t € Nand z € Cyy N K. If 2> < |z| and ru,,(|z]) < 2271, then
rds(22) = 2rds () and rug ¢ (2x) = 2rug ().

If25727" < || andrug,(|z|) < 2%, thenrd, (2/2) = rd, () /2 and rug,(z/2) = ru,,(z) /2.

Proof. Without loss of generality we assume z > 0. We have rd,,(z) < ru,,(z) < 22 '~L
From Lemma 2.21 we get 2rd (), 2rus,(z) € Cs:. We further have 2rd (z) < 2z <
2ru,(x). Therefore we get 2rd, () < rd,.(2x) and 2ru,,(z) > rus(2z). We have 2z >
232" and therefore ru,,(2z) > rd,(2z) > 232" and therefore with Lemma 2.21 we get
rds . (22)/2,rus4(22) /2 € Cs,. We further have rd,¢(22)/2 < x < rug(2x)/2. Therefore we
getrd;(22)/2 < rds¢(x) and rug4(22)/2 > rug(x).

The second proposition follows from the first one with /2 instead of z, because under the stated
conditions from /2 < rug,(z)/2 follows ru(x/2) < ru,,(z)/2 < 2> -1 0

32

The next corollary states that in C; the operations ©, ®, @, © work very well together with the
multiplication and the division by 2.

Corollary 2.25. Let s,t € Nand z,y € Cs; N K.
12227 < |xy| and ru(|zy|) < 221, then

(Qx)és,ty = xgs,t(ly) = 2('r63,ty>

(Qx)Qs,ty = x@s,t(Zy) = Q(sz,ty)
IF2327" < |xy| and ru(|zy|) < 227, then

(2/2)Osy = 20:4(y/2) = (2Os2y)/2

(2/2)0, 5 = 20, ,(y/2) = (z0;,y)/2
1227270 < |a/y| and ru(|z/y|) < 221, then

(2x)@s,ty = x@s,t(y/z) = 2(£®S,ty)

(22)0, ,y = 20, ,(y/2) = 2(22, y)
12327 < |z /y| and ru(|z/y|) < 2%, then

10s1(2y) = (2/2)0sy = (205,1y)/2

10,,(29) = (2/2)2, 9 = (€0, y)/2
Proof. The proof of this corollary directly follows from Corollary 2.24]

Lemma 2.26. Let s,t € N, k € Z with 2F € F,,. Let sy := 2" and s; := s;_1 ®,, 2877 for
j €{l,...,t}. Thenfor j € {0,...,t} we have s; = >1_ 2" and for every o € Cy; with
a < 28 we have s; . o < 28FL Furthermore, for every 8 € Cyy with 0 < 3 < 287t we have
2k:+1 Dy 6 _ 2k+1.

Proof. For j € {0,...,t} we have S/ 28" = 25(1 4 ¢,3°7_ 2¢%) € F,, and thus via
induction we get s; = Y 7_, 2%, From s; + 2" = 28! we get 5, @ 28~ = 2K+, O

Lemma 2.27. Lets,t € N, o € Fy, and k € Z with 2k ¢ Cs,. and 2k < o Then

(i) a @y (—2F) > a —2F1

(ii) If 2" > o then o — 2% € C,; and therefore o ®4; (—2F) = a — 2*

33

Proof. Letk, € Z with 28 < a < 2M*landd € {0,...,2" — 1} with a = 2M (1 + d27"). We
first show that (ii) implies (i). In case of 2¥**+1 > (this is obvious. In case of 287! < o we
have k +t+1 < k. If k +t + 1 = k; then 2**"+2 > ¢ and hence with (ii) we get

a @s,t (—Qk) Z Q @s,t (_2k+1) — - 2k+1

If k+t+ 1<k wehave a ®,; (—2%) = a > a — 2¥1. Now we prove (ii). Let 28! > .
From 2% < a we get k < k; and from 287171 > o we get k+t+1 > k. Incase of k+t+1 = k;
we have o = 2¥' and hence

o —2F =2k ok —oM=1(1 4 (2f —1)27") € Oy,
In case of k = ky, withi € {0,...,t},d € {0,...,2" — 1} with d = 2/ 4+ d we have
a — 2/<: — d2k1—t — 2k1—t+i + J2k:1—t _ 2k1—t+i(1 + JQt_iQ_t)

which yields o — 2¥ € C; ;. Incase of k +t + 1 > k; > k we have 281+t ¢ {1 . 2071} We
have the equations

a— 28 =2M(1 4 427" — 28 = oM (1 + (d — 2~ Rttt
and
a—2F = 9f—l okl goklit _ ok — oki=1(] 4 (9! 4 9(d — 2FFitt))a 1)

Hence, if d — 281+t > (0 we have o — 2% € Oy, with a — 2% € [27 2" [and if d —2F"F1+t < (
we have a — 2% € Oy, with a — 28 € [2F1=1 2k, O

2.3 Analysis of error propagation by standard functions

In this section we always assume that M is a finite subset of K and R C K\ {0}, u € [0, 1]. Let
C := M U{NaN} and for x € {+,—,-, /} let ® : C?* — M U {NaN} functions that fulfill the
condition

r®yy € Kandeg(zxy,z®yy) <u

forx,ye KNCwithx xy € R.

Now we examine how certain standard Operations, such as summation or multiplication, propa-
gate errors from the operands to the result. Before we state the easy case of summation in Lemma
2.31, we begin with two lemmas about the relative error e, and one lemma about products.

Lemma 2.28. Let x,y € K and c € [0,00[. Then we have the follwing two implications

erel('r7y) S c<l1l= erel(yux) S C/(l - C)
erel(x7y> Z Cc = erel(y>x> Z C/(l + C)

34

Proof. In case of x = y = 0 the implications obviously are true. In case of x # 0 or y # 0 we
have

Y Y
re) :]-__2]-__
el y) = 1= 2 21— 14|

and hence
] _ _ewa(z,y)
erel(y7 x) = erel(ma y)_ < —F—
Yl 1 —epa(w,y)
if e;e1(x,y) < 1, which yields the first implication. The proof of the second implication is
analogousl.]

Lemma 2.29. Let x,y € K and c € |0, 00 with e,e(x,y) < c. Then we have |x| > |y|/(1 + ¢)
and if ¢ € [0, 1] we have |z| < |y|/(1 — ¢).

Proof. We have |1 — y/x| < cand hence |y/z| = y/x € [1 — ¢,1 + ¢|. From that, we get the
proposed inequalities. [

Lemma 2.30. Let ¢y,...,¢, € K and dy,...,0, € K mit 61| < c1,...,|0n] < cn. Then

[Ja+06)- H1+cl

i=1

Y Y [Ty T chzﬁum) |

i=1 k=0 IC{1,...n} i€l k=1 IC{1,..n} i€l
[I|=k |I|=k
]
Lemma 2.31. Let x,y € K, Z,y € K NC and ¢y, ¢y € [0, 00[with
erel(xyj) S Claerel(yag) S Co
If T —y € R, then
cilx|+c
erel(z =y, 26 7) < (14 u) (HM) -1
|z -yl
Proof. Let 4y := w;i”, 09 1= % and 7 := %y) Then
teoyg=@-9)(1-n=(@1-0a)—y(l—-24))1-n)
It follows
Zog—(r—y)| = [(1-n)(—xd +yd)—n(r—y)|
< (T+u)(alz] + ealyl) + ulz -y
and thus the conclusion. (]

35

We state another lemma on error propagation in a subtraction. Before that, we state the following
easy consequence of the triangle inequality.

Lemma 2.32. Let x,y,,0 € K with |1 — x| <ecand |l —y| > 6. Then |1l —zy| > (1+0)(1 —
e) — 1L

Proof. Without loss of generality we assume ¢ > 0. We have ¢ > 0. We assume ¢ < 1 and
d > ¢/(1—¢), otherwise it would be (1 +6)(1 —¢) —1 < 0 and hence the proposition obviously
be true. Especially we have § > cand x > 0. Incaseof y > 1 wehavey > 1+ > 1+¢/(1—¢)
and therefore zy > (1 —¢)y > land hence |1 —ay| =2y —1 > (1 —¢)(1+6)—1. In
case of 0 < y < lwehave zy < (1+¢€)(1 —0) = 1+e—3—ed < 1 and therefore
l—zyl=1—2y>1—-—(1+¢e)(1—-0) > (1—¢)(1+0)— 1. Incase of y < 0 we have
l—ayl=1-2y>1—-(1-e)(1—-0)>(1+0)(1—¢)—1. O

Now we state another lemma on the error propagation which can occur when a subtraction © is
performed.

Lemma 2.33. Let x,y € K, T, € KN C c1, 02, c3 € [0, 00[with erel(x z) < e, ealy, g) <
2 < 1, erel(x,9) > c3. Let d := = 62)(1+C3/(1+C3)) T+ G 6022/(1 =) ;- If T —y € Rand
(1—co)(I+c3/(1+c3),(14+c3)(1 —cof(1 —c2) > 1, thenx # y and

ez —y,2070) < (1+u)(l+d) —1

Proof. We have |1 — /x| > ¢3 and |1 — §/y| < cy. Because of Lemma 2.28 we further have
1 —x/g] > ¢3/(1+¢3)and |1 —y/g| < co/(1 — cg). Thus, by Lemma 2.32 we get

era(y,) = [L = (2/9) - (5/y)] =2 (1 = co) (1 + 3/ (1 +¢3)) = 1

erel(z,y) = [1 = (y/8) - (5/2)] = (1 +c5)(1 = 2/ (1 = ¢2)) — 1
By Lemma 2.31 we get
erel(r — 4,26 9) < (1+u)(1+c1/era(y, 2) + c2/era(z,y)) — 1
and thus the conclusion. [
Lemma2.34. Letm € N, 1, ..., € K, y1,...,ym € KNC, ¢1,...,cn € [0, 00[with
erel(T1,y1) < 1y vy erel (T, Ym) < Oy
and
1= Y1, ¢ = qi1 Oy fori €{2,...,m}
If gi_1y; € Rfori € {2,...,m}, then
€rel <H xz,qm> (14)™ H(l +¢)—1
i=1

36

Proof. Let 6y := -4 . 5, = f2-tn gy i=0and ¢, 1= % fori € {2,...,m}. Then
Q=Y = 5171(1 - 51) = 561(1 - 51)(1 - 51)

and
¢ = qi1yi(1 — i) = qiawi(1 — &) (1 — ;)

fori € {2,...,m}. Therefore, for j € {1,...,m} we have

4 = Hﬂfz’(l —&i)(1—4)

Hence, with the use of lemma 2.30 we get

Gm — HSL‘Z = Hﬂfl H(l —g)(1—=9;)—1
=1 i=1 i=1

VAN
— =
8
P
—_
+
£
3
L
==
—
+
%
|
—
N———

which yields the proposition. [
Lemma 2.35. Letx € K,y € K\ {0},z,y € KNC withZ/j € Rand c; € [0,00[,cy € [0,1]
with

erel (7, %) < c1,er(y, J) < 2
Then

erel(x/yaj % g) < (1 + Cl)(l + U)/(l - 02) -1

Proof Let 6§y := =2, §, := y%g and 7 := %. We have

Toy = z/y(1—n)
= 2/y(1—6)/(1—8)(1—1n)
— x/y(l—él)(1+1f252)(1—77)

With lemma 2.30 we get

ofy =031 < lofol (14)+ T2+ 0) = 1) = /(14)1+ /(1 -) = 1)

and thus the proposed inequality.]

37

Theorem 2.36. Letm € N, ¢ € [0,00[and x1,...,2m € K, y1,...,ym € KN C with

erel(xla yl)a s 7erel($m7 ym) S c

and sy :=yy and s; := s;_1 Dy fori €{2,...,m}. If s;_1 +y; € Rfori € {2,...,m}, then

m

|5m—Z$i| < (M+)A+u)™ =1 |u

=1

Especially, if x; > 0 for everyi € {1,... ,m} orifx; <0 foreveryi € {1,...,m}:

Crel (Z Li, Sm> S (1 + C)<1 + u)mil -1
i=1

Proof. Letdy := =4 .. 5, = #=-d= and ¢y := O and ¢; := %{f;s‘ fori € {2,...,m}.
m 11— 1
We have

s1=x1(1 =) (1 —&y)
and fori € {2,...,m}
si=(sic1+2;(1—6))(1 — ;)
and hence for j € {1,...,m}

;=Y (mi(l —) [Ja- 54)>

i=1 =i

Hence, with ¢; := (1 — ;) [[,—,(1 — &¢) — 1 we have
|Sm—z$z’| < Z|$ﬂ91|
i=1 i=1

< lml(Q+od+u)" ' -1)+ Z 2l (1+) (1 +u)" ™ = 1)

< (44w =1)) |l

=1

Lemma 2.37. Letz,y € K, Z,5 € KNC, ¢1,¢o € [0, 00] with
erel(xai') S Cl7erel(yag) S Co
Letz +y € R. Then

5oy 5 cal|r|+c
erat (€ + 4,7 @) < (14 u) (HM) 1

|z +y|

38

<

Proof. Let ey := *=% and €, := Y4 Hence & = x(1 —&1), § = y(1 — &) and |&1] < a,

lea] < co. Letd := ”g%;@y Then

roy=@+y) 1-0)=z(l-e)l-05)+y(l—-e)(1-9)
and with that we get

lz+y—1D Y|

[z +y— (2l —e)(1—0) +y(l—e2)(1—0))|
= |1 —=9d)(e1x + e2y) + d(z + y)|
< (A +u)(alz] +clyl) +ulz +yl

Hence
et +9, 507 = H%ZM
< (1+ u)%ﬁm +u
which yields the proposition. .

Now, we state a lemma on the error propagation in a summation where one of the summands has
a much larger absolute value than the other:

Lemma 2.38. Let v,y € K, Z,5 € KNC, ¢1,¢3 € [0, 00] with
erel<xaj) S C1, erel(yyg) S Co

Let c3 € |1, 00[with |z|/|y| > c3. Let & + § € R. Then

o c c
%ﬂx+%$@y)§0ﬂﬂﬁ<1+ —+—)—1
1—cs cg—1

Proof. We have the following inequatlitiy

—_
+

DY ci|x| +c¢
ea(z+y,207) < (1+u) M)_l

|z +y|

C1 Co
1+ +) -1
1+y/z| |z/y+1]

(
(

§(1+u)(1+ a =)_1
(

l’
L—|y/=| |z/y| -1

(&1 (&)
1+ + —1
1—c3! c3—1>

39

The next Lemma states an error bound for summation in cases where the absolute value of some
of the summands is smaller than a certain bound §. For example, ¢ could be the smallest positive
normal machine number.

Lemma2.39. Letn € N, a;...,a, € K,by,...,b, € KNC. Letc,§ € [0,00[, m € {0,...,n}
with e, (ay, by) < cfork € {1,...,m} and |ag|,|bx| < dfork € {m+1,...,n}. Let s; :=b;
and sy = sp_1 ® by fork € {2,...,n}. We assume sp_1 + b, € Rfork € {2,...,n}. Then

§ A — Sp

< Z|ak] (1 +u)"t —1) 4+ 2n6(1 +u)" !

Proof. Let), := %; ey O 1= “”;—_bm, so that

b1 = a1(1 —51),...,bm = am(l _5m)

P P +bo— R 5n—1+bn_5n . _
and e, := 0, g9 := w, ey Ep = TR S0 that s; = b1(1 — &) and s = (sk_1 +

bp)(1 —¢eg) for k € {2,...,n}. By induction we get

Zb Hl—ek

Jj=1 k=j
and with that

> o
j=1

= D a1 =1 =) JJ(1—er)) Z a;— > b [J(1 e
=1 k=3 J=m+1 J=m+l k=j

< D lal(@+o)@+u ™ =1+ Y oy —b [J(1—er)
j=1 j=m-+1 k=j

TV
<26(14u)n—1

3

< D (T o)L+ u)" = 1) + 2n6(1 4+ u)"!
j=1
and hence the proposition.]

Now we use Lemma 2.39 to approximate sums of the form a + b, _, #il Here some of the
summands may be smaller than the smallest positive normal machine number and hence may not
be computed with small relative error.

40

Lemma 2.40. Letn € N, ky € {1,...,n}, a,b,x € K, ¢g,,...,c, € K\ {0} and sg,_1, %0, T,
Chkgy--++Cn € KNC. Let Ky, Ky, K3 € [0,00[, K, € [0, 1[with

erel(ba j‘0) S Klverel(xaj:) S K2aerel(a7 Sko—l) S K3

and ey (cg,¢x) < Ky for k € {ko,...,n}. For k € {1,...,n} let &, := Tx_1 ® &. For
k € {ko,...,n} let zp := Ty @ ¢ and s == Sp_1 D 2. Let § € [0,00[and m € {0,... ,n}
with 7, - @ € Rfork € {1,...,m}, 7/¢, € R for k € {ko,...,m} and |z], |bx*/c}| < §
fork € {ko,...,n} withk > m. Let sy_1 + z, € R for k € {ko,...,n}. Then, with K;5 :=
max (K3, (1 4+ K1)(1+ K)"(1 4+ u)"™ /(1 — K4) — 1) we have

(M o z": %> (1+ K5)(1+u)" ™" = 1) +2(n — ko + 2)0(1 +u)"~H0*

Proof. From Lemmas 2.34 and 2.35 we get
et (b2, 71) < (14 K1) (1 + Ko)(1 +u)F — 1
fork € {1,...,m} and

ZEk

erel(bc—k, z) < (T4+ K1+ K1 +uw) /(1 - Ky) —1

< (I+K)I+K) (1 +u)" /(11— Ky) —1

for k € {ko, ..., m}. With the use of this bounds, by Lemma 2.39 we get the proposition. [

41

Chapter 3

Analysis of error propagation in Loader’s
algorithm for the binomial density

In this chapter, after a review of Loader’s algorithm for the binomial density we derive bounds
for the error propagation in Loader’s algorithm. In the entire chapter we use the the notions we
defined in chapter 2. We often will write ®, ®, ® as abbreviations for ®, , ®, ®s -

3.1 Loader’s algorithm for the binomial density

In this section we assume A = R. An algorithm for computing the binomial density

byt = (

is given by Loader [16]. The statistical software R [20] computes the binomial density with a
slightly modified version of Loader’s algorithm. The version that R uses is stated in Appendix D.
The command for executing the algorithm with R is dbinom(x,n,p). In case of p €]0,1],
ne{2,...,2%},xe{l,...,n—1} the following program, which is written in the programming
language C according to the C standard defined in [2], is very similar to the version of Loader’s
algorithm that R uses.

n
T

)px(l —p)"

double bin(double x, double n, double p){

double q = 1-p;

double 1lc = stirlerr(n)-stirlerr(x)-stirlerr(n-x)-bd0(x,n*p)-bd0(n-x,n*q);
double 1f = M_LN_2PI + log(x) + loglp(- x/n);

return exp(lc - 0.5%1f);

}

Here M_LN_2PI is the element of the set of IEEE-Double numbers which is closest to log(27),
the function loglp is an approximation for | — 1, 00[3 = — log(1 + z), the function stirlerr

43

is an approximation for |0, 00[3 2 + S(z) := log(I'(x 4+ 1)/(2%e~*v/2mx)) and the function
bd0 is an approximation for |0, c0[* 3 (z,np) — xlog(z/np) — = + np. The C programs
that define the functions stirlerr and bdO are displayed in appendix D. A brief summary of
analytical approximations of S(z) can be found in appendix C.

The basic idea of this algorithm can be understood by regarding the equation

b p()
bn7£ (I)

n

brp(x) = by 2 (2)

in which the value b, ./ ,(x) is called “saddle point approximator” and the fraction
byp(x)/bpa/m(x) is called “deviance part”. The problem of directly computing b, () here
has changed to computing saddle point approximator and deviance part first and then getting
b, p() by multiplying them. The advantage of this “saddle point shift” is, that while b, ,(x)
could be very small at the tails of the binomial distribution, the approximator by, ,/,,() is not
that small because the binomial density b, , has its maximal values near its expectation p = np
and in case of p = z/n its expectation is u = z. It is assumed that it is easier to compute values
of the binomial density accurately which are not very small, than to compute very small values
accurately.

The saddle point approximator can be written in the form

3.1) b,z (z) = (Z) (%)x (n - I)H - z_'(n:;'—fﬂ)'

T (n_x)nf:l:

Now the idea is, to use Stirling’s series to approximate the three minor fractions in the last
expression. To do so, the expression first is brought into the form

n!

n"e~"\2mn 1
(32) bn,%(ﬂf) = ! ’ (n—a)! '

TTe~ %/ 21w ' (n—z)"*we*’””\/%r(n—r) 2m (1 - %)

where Stirling’s approximations can be applied three times. In order to do that in an easy way, the
last equation is transformed by the logarithm, which means one turns to compute log(b, ,())
instead of b, ,(x) and will get b, ,(x) by exponentiation in the end. The transformation via
logarithm yields the equation

log (by,= () = log (W) ~log (ﬁ)
—log ((n - I)n_m(e”_;f)! — x)) ~ log (2 (1- %))

The function stirlerr in the algorithm stated above is a tool to approximate the first three ex-
pressions on the right side of this equation, using Stirling’s series. The last of the four expressions
on the right side is the one which occurs as the value -0.5%1f in the algorithm.

44

The logarithm of the deviance part is

bn (] — n—x
o 2] g (200
b,z (z) ()
]_ _
(3.3) = zlog (@> +(n—2)log (u)
T n—x

We remark that because of cancelation here no more binomial coefficients occur. For more
accurate numerical computation, Loader brought this expression into the form

64 o (fj—%) = —f(e,mp) = f(n =201 = p))

with f(x,y) := xlog(x/y) — = + y which is the function that is approximated by bdo in the
algorithm stated above. We remark that because f is positive, which is a direct consequence of
the well known inequality log(¢) > 1 — 1/¢, in (3.4) both terms on the right side are negative
whereas in (3.3) one was negative and the other one was positive.

To get a deeper understanding of Loader‘s algorithm, we briefly want to compare it to a classical
method of computing the value b, ,(x), which was used before Loader’s algorithm has been
developed. The logarithm of the probability b,, ,(z) has been computed according to the formula

(3.5) log(by()) = log(n!) — log(a!) — log((n — z)1) + wlog(p) + (n —) log(1 — p)
where log(n!) could be computed with the help of Stirling’s series via

n!
nnhe="\/2mn
and log(x!) and log((n — z)!) analogously. In (3.5) the problem is, that the logarithms of the
factorials n!, z! and (n — z)! typically are very large compared to the absolute value of the result
log(by,»(x)). Because of this, moderate relative errors in the operands can lead to a very large
relative error in the result of the subtraction. This problem does not exist in Loader’s algorithm
anymore, because in the deviance part as mentioned no more binomial coefficients do occur,
which were possibly very large compared to the result, and in the saddle point approximator, in

transition from equation (3.1) to (3.2), the possibly large expressions e, e" and e"~* canceled
out.

log(n!) = log <) +(n+ %) log(n) —n + % log(2)

We conclude this overview by looking again at the expression b, ,/, () in equation (3.2). If we
approximate the three minor fractions by 1, we get the approximation

1
bn%(iﬂ) ~
2mx (1 — %)
which with p = x/n also can be written as
1
bn np) =~ = Pnpnp(1—p)\ NP
»(1p) 2rnp(1—p) Prp,np(1—p) (D)

45

1 R
where ¢, ;2 = e 2t s the density of the normal distribution with mean p and variance

o?. Hence, the way in which Loader‘s algorithm works can be comprehensed in the following
sentence: A saddle point shift is performed where the saddle point approximator is computed
by a normal approximation in the center of the corresponding normal distribution and the de-
viance part should be computed numerically accurate because due to cancelation of binomial
coefficients no more subtraction of large operands with small result does occur.

In the remainder of this chapter we will examine the error propagation in Loader‘s algorithm,
assuming that all computations are performed by a machine with machine precision v €]0, 1[.
That means our aim is the following.

If p €]0, 1] is approximated by a machine number p and the relative error in this approximation
is bounded by ¢ €]0, oo[, we want to derive a bound for the relative error in the approximation
of b, ,(z) by the computed result bin(z,n,p), assuming n and = are machine numbers.

From the following example we infer that it can not be possible to derive bounds less than 1/5
for every value of p € |0, 1], if the computations are performed in the IEEE-Double number
system.

Example 3.1. Let n = 2°° = max{n € N : {1,...,n} C I[EEEDouble}, z =n—1,p =
1 — 27°*. We compute an approximator for b, ,(z) with R. We use the value p = 1 — 27 as
approximator for p. One might imagine that we do not know p and got the approximator p by a
numerical computation. The relative error in the approximation of p by p is

erl(p,p) =277/ (1—27%) < 27%

Hence, the approximation of p by p is good considering the machine precision usy = 27°3 of
the IEEE-Double Number System, in which the computations with R are performed. Evaluation
with R returns the value dbinom(x,n,p) = 0.3678794 as approximator for bn,p(x), but for the
exact result with (C.1) and (C.2) from appendix C we get the inequality

n! !
log (bn = log| ———=—) —log | ———=—
g(47(1‘)) S) (nne—n 27Tn> & <ﬂj‘$e_‘r 271'37)

“log ((n - x)n_x(;;f)! —— x)) ~log (2z (1 - %))

+xlog (%) 4 (n—2)log (M)

n—ux
1 (1 1)= (1 1)
12n ‘12z 36023 12(n—z) 360(n —x)3

o (o (1-2)) e (2) + 0 s (22220

Computation with the computer algebra system Mathematica verifies that the right side of this
inequality is less than — 219204l apq that exp(— 1192641y - 30312 © Hepnce provided that these

g : 1000000 : 1000000 100000 . : :
verifications with Mathematica are reliable, we have b, ,(x) < and the relative error in

100000
the approximation of b, ,(x) by the approximator we computed with R must be larger than 1/5.

IN

46

3.2 Overview about research on the accuracy of algorithms
for the binomial density

Loader [16] performs numerical experiments which indicate numerical accuracy of Loader’s
algorithm for the binomial density.

Kaiser [12] in examples studied the accuracy of a so called “multiplication method” which was
stated in Appendix B of Loader [16]. This method multiplicates all the factors in the representa-
tion

x xT n—=x

beple) = [[Tp [T -)

=1 =1 i=1
in an order which aims to prevent numerical underflow. Here, numerical underflow means that a
result of a computer operation is smaller than the smallest positive computer number.

Hirai and Nakamura [10] construct a new arithmetic system in the programming language C.
They further propose an algorithm for the computation of the binomial density using the proposed
arithmetic system. Further Hirai and Nakamura perform numerical experiments which indicate
usefulness of the proposed algorithm for a very large range of sample size n.

3.3 Error propagation in the computation of np and n(1 — p)

We start our examination of error propagation in Loader’s algorithm with examining how bounds
for the relative error e, (p, p) propagate when the values n ® p and n ® (1 © p) are computed,
which in Loader’s algorithm occur as inputs for the function bdo0.

Lemma 3.2. Letn € KNCandp €)0,1[, p €]0,1[N C and ¢ € [0, oo with

B ~ P
max (erel(p7p)7erel(pap)1 _p> S ¢

Then
erel(npan Qﬁ) < (1 + U)(l + erel<p7ﬁ)) —-1< (1 + U)(l + C) —1

ea(l —p,167) < (1+u)(1 +erel<p,ﬁ>%) 1< (1 +u)(l+e) -1

ea(n(1—p),n©(1675) < (1+u)?(l+c)—1

Remark: If s, € Nwitht +2 < 2" 'andn € {2,...,2""'} we have n € Cj;.

Example 3.3. If t = 52, c = 27%, p < 1275 &~ 0.999985, then & < 2'% and we get

<9720

C
I—p

47

3.4 Error bounds for the deviance part bd0(k, np) in case of
|k —np| < 0.1%|k+ np|and e,q(k,np) > ¢

Now we estimate the error propagation by the function bd0. The function that we want to ap-
proximate by bdo is the function N x |0, 00| > (k, x) — klog(k/x)+ x — k. We will use that for
every k € N, the function |0, 00[3 = — klog(k/xz) + = — k is nonnegative, convex and = 0 if
x = k. In this section, we examine the error propagation in the evaluation of bd0(k, np) in case
of |k —np| < 0.1 % |k + np| and e, (k, np) > ¢, where ¢ € |0, oo[. In this case, the following C
code fragment is equivalent to the program that R uses.

double ej, s, s1, v;

int j;
v = (x-np)/(x+np);
s = (x-np)*v;

if (fabs(s) < DBL_MIN) return s;
ej = 2¥x*v;

Vv = Vkv;

for (j = 1; j < 1000; j++) {
ej *= v;
sl = s+ej/((j<<1)+1);
if (s1 == 8) return si;
s = s1;
+

}

This program evaluates the following representation of the function bd0, which is valid for z, y €
R with |(z — y)/(z +y)| < 1

bd0(z,y) = wlog(z/y) —x+y

1+ =
= xlog(—ﬁ‘”)—ﬁy
1 ==Y
T4y
r—=y r—=y
= zllog|1+—2) —log|1l— —x+
(g(w+y) g(x+y)) /
- 1 T =Y\ ok
- 9 A PLS S
oS (grrrter) e

— b 1 —
= 2 eyt (LY ok
k=

T+y 12/€+1 T+

(z —y)? - 1 T = Y\ 2k+1
B V) L A

T4y * x;Qk—i-l(x—l—)

48

In the third step the power series expansion log(1 + z) = Zf:l(—l)k“% was used, which is
valid forz € | — 1, 1].

Our first lemma gives bounds for the error propagation in the initial steps of the algorithm.
Lemma 3.4. Let x,y € |0,00, Z,7 € |0,00[NC, ¢1,¢2 € [0,2/(1 +u) — 1], c3 €]0, oo[with
erel(7,2) < 1, era(y, §) < Co,€re1(x,) > c3. We further assume (1 —c2)(1+c3/(1+¢3)), (1+

3)(l—c/(1—c)>1l Lets: =27 d:=T053v:=d2s, e :=((20%)0v)O (vOv)
and

K = (1 + max(c1,¢2))(14+u) —1

=)t/ te) -1 (+ta)l-cn/l-am)-1

Kyi=(1+u)(1+) -1

Let ¥ +9,& — 9,d/s,dv,v? 2%,(2® Z)v € R. Then

(x_y)Q 2 2
erel(m,d(Dv) <(14+u)(1+Ky) /(1 —-K;)—1

erel(<i . z) WE) < (1+u)(1+ Ko)?2/(1— K)? —1

erel@xz . z 20F)00) < (1+u)*(1+a)(1+Ky)/(1—K)—1

and, if (20 %) ©v)(vOv),e1/3 € R

eral (22 (%) /3,61 23) < (L+wP(1+c)(1+ K /(1 — Ky)P — 1

Proof. By Lemma 2.36, we get

erel(7 +y,8) < K
By Lemma 2.33, we get

erel(z — y,d) < Ko

and hence by Lemma 2.35, we get
CE) < 1+ w1+ Ka)/(1 - Kp) — 1
erel(—,v) < u — —
A J 2 1
From these inequalities with Lemmas 2.34, 2.35 we get the propositions.]

49

Lemma 3.5. Let z,y € 0,00, Z,7 € [0,00[NC, ¢1,¢2 € [0,2/(1 +u) — 1], ¢35 € |0, co[with
era(7,7) < 1, (Y, §) < o, (2, 9) > csand | O gl < (1@ 10) © (T @ 7). We define

Ky = (14 u)(1 +max(cy,) — 1

1 C2

Ky:=(1+u)(1+ (1—c)(I+es/(I+es) —1 + (14 c3)(1—co/(1 —c2)) — 1) !

1- K,
1+ K,y

Kg =12

Ky =(1+u?*(1+Ky)*/(1-K;)—1

Ks:=(1+u)d1+ec)1+Ky)?/(1—K;)? =1

Lets =1®qg, d:=1260¢v:=d@s,a:=dGvande; .= ((207) ®v)® (vOv), We assume
[2,3,8,10 € C and] 2+74,T—17,d/s,dv,v? 2%, (20%)v, (20Z)Ov)(vOD), e1/3, a+(e1©3) €
Rand (108)® (T@y) = (T & y)/8. We further assume (1 —co)(14+c3/(1+c¢3)), (1 +¢3)(1—
co/(1 —¢) > 1and K1, Ky < 1, K3 > 1. Then we have

(z —y) z—y\’ K, K;
. P 3. 3| <@ 1 _ —1
e1<w+y + 2z e /3,a® (e; © 3) (+u)(—|—1_K31+K3_1)

Ifcy = 0,c0 = 2725 ¢c3 = 2718, Mathematica yields

K4 K5 —2
1 <1.95-10
(+u)(1_K3_1+K3_1>+u

Proof. From Lemma 2.36 we have e, (x+y,Z®¢) < K; and from Lemma 2.33 we have = # y
and e,q1(x — 3,7 © §) < K. From Lemma 2.29 we get

[z -yl <|zogl/(1 - K2)

r+y > (@ey)/(1+K)
We further have
iejl<(1010)e@a)) <(108)e (@aj) =T aj)/8
and therefore % < 1/8. We therefore have

eyl [FO0K) 14K,
zr4+y ~ (1-K)(zdy) ~ 8(1 - Ky)

50

and hence

Te)2
SE | syl Bty o oK
= = = = 53
2 () 3| 2 T Al TR
Tty
From Lemma 3.4 we have
2
T —
erel((y>))<K4
r+y
r—1Y 3
rel(220 | —— 3, 3) < K
) 1<x<x+y) /8e08) < K
Therefore, by Lemma 2.38 we get the proposition.]

Lemma 3.6. Let s,t € Nwith4t +8 <2571 Let & = @y, © = Og4, © = Oy, @ = Ogy. Let
n € Nwith{l,...,2n+ 1} C Cyy, i.e. with2n+1 < 21 & 5 €10, 00[N Cy 4 with T # . We
assume T > 1,9 > 1/2and 7,5 < 2" and |7 © | < 273 © (T @). We define s := T & 1,
d:=72079v:=d0s. Letsy :=dOv,eg:=20%) Qvandej :=e;_1 ® (vOV),z =
e; @ (2j+1),s;:=s;_1®zforje{l,...,n}

Then for k € {1,...,n} we have sy_1 + z € Ry and if 6k >t + 11 also sy = si_1.

Proof. Because of & # § we have |d| > &;/2 = 27'~!. Furthermore because of |s| < 2172 we
have 27273 < |v| < 273, To prove the proposition we first consider the case of d < 0. In this
case we use the inequality

=201 [dos)>207)0([doi)>2d(1+u)*>2d(1+27°)*>3d
which is valid if t > 2, and the inequality ¢y > (2© Z) ©® (d© Z) = 2d > 3dift = 1. Let

my, my € Z with —2™ %t < d < —2™1 and —2™m2T! <y < —2™2, Then we get ¢g > —3 - 2m1T!
and v ® v < 22(m2+1) and thus

e Z —3. 2m1+1+2(m2+1)

2 =e03>e/2>-3- omi+2(mz-+1)

and by induction

e, Z —3. 2m1+1+2k(m2+1)

Zp = e, @ (2k 4+ 1) > 272, > —gmitl+2kimatl)

51

for k € {2,...,n}. Furthermore we have
Sog=d@®uy > 2mtm:
Because of |v| < 273 we have my < —4. Hence we get the inequalities

(2m1+m2 3. 2m1+2(m2+1))(1 o Ut)
(2m1+m2 —3. 2m1+2(m2+1))/2
2m1+m271(1 . 3 A 22+m2>

gmitma=l(] _3.927%)
2m1+m2—3

So + 21,51

AVARLY,

v

and with Lemma 2.27

o0
Sko1 o > 2mtmed N gmitiimat)
J=2
oo

_ 2m1+m2—3 . 2m1+2+4(m2+1) Z 22j(m2+1)
=0

2m1+m2—3 . 2m1+2+4(m2+1)/<1 _ 22(m2+1))

2m1+m273(1 o 29+3m2/<1 o 22(m2+1)))

gmitme=3(1 _ 973 /(] — 276))

2m1 +mo—4

VAR

for k € {2,...,n}. Because of |[v| > 27%73 and |d| > 27! we have m; > —t — 1 and
my > —2t — 3. Hence we get 2m1+m2—4 > 9-3t=8 > 92-2""1 Becayge of s,_; > 2™ +m2~4 and
|2,| < 2mat1H2k(met1) we get 5,1 @ 2, = s if 6k > ¢ + 11. Obviously, in case of d < 0 we
also have the inequality s, < sy and hence s;_1 + z;, € R, forevery k € {1,...,n}.

Now we consider the case d > 0 where we have s, > s for & € {1,...,n}. Because of
5o < 273d < 2785 <27 g < 27l and v ® v < 27 we also get 2, < 207275% and hence
with Lemma 2.26 we get s, < 2/3 and s,_; + 2, < 2072 < 22 '“fork € {1,...,n}. Let
mi, my € Z with 2™ < d < 2™+ and 22 < v < 2™2+! Then we have 5,1 > sp =d O v >
2mtm2 and ey = 207) O (d0s) < 2607)®(do) < 2d(1 +u)? < 4d < 2™*2 and
2 < 2matlH2k(matl) From this, if 6k >t + 7 we get sp_1 ® 25 = Sp_1. O

Now we are able to prove the main result about the deviance part bd0(k, np) in case of |z —np| <
0.1 % (k +np) and e (k,T) > c.

Theorem 3.7. Let s,t € Nwith4t +8 < 251 Let ® = @4, © = D4, © = Ogp, @ = D
Letn € Nwith {1,...,2n+ 1} C Cyy, ie. with2n +1 < 211 e withn < 2!, y,z €]0, 00|
and §j,% €]0,00[NCyy, c1,¢0 € [0,1/2],¢5 €]0, 00 with T # § and e;e1(x, Z) < ¢1, €ra(y, §) <
Co,eral(T,§) > c3. We assume v,7 > 1 and y,x,9,7 < 2 and [z © 5| < 273 © (T ® 7).

52

We define s .= 2@y, d =267 v:=d0s. Let sy :=dOuve = (20601 ©vand
e; =e_10WOv),z =e0(2j+1),s; :=s;1®zjforj€{l,...,n}. Wefurther assume
(1—co)(14c3/(14¢3)), (1+c3)(1—c2/(1—ca) > Land (1+c1) (14 K3)*™ 3 (14u,)*™ -1 < 1.
Let

Ky = (1 4+ max(cy, c2))(1 +uy) — 1

(1 - Cz)(l +Cg/(1 + Cg)) -1 * (1 +63)(1 - 62/(1 - Cg)) -1

Ky :=(1+u)(1+

1+ K,
C1-K;

(1+w)—1

Let § = 2872 ' H44m1472 ywhere r1 1y € Nwith2n 4+ 1 < 2™ and ry < 2t + 2571 — 10 and
1/(2 = (14 1) (1 + K3)* (1 +)" ™3) < 272, Then

(r—y)*

+
:L'+y

Z
< (S ex

+2(n+ 1)5(1 + ut)

2J+1/2 + >_5n

2]—}—1

/(25 + 1)) (14 c)(L+ K3)* (L +uy)™" ™ — 1)

Furthermore we have s; = sj_; forevery j € {1,...,n} with 65 >t + 11.
Proof. Because of 4t + 8 < 2°7! we have s > 5 and therefore 272 ® 2 = 2732 for every

z € Foy with z > 1land 2 ©3/4 = z — 3/4 for every z € Fy,; with 2" > 2z > 1. From
7oyl <22® (Z®7y)and T > 1 we get § > 3/4 because otherwise would

zoglzr0

if £ > 3/2 and

if 7 < 3/2.
Hence with ¢ < 1/2 we gety > 1/2. We have 2,3 € Coy, 1 < T+ 7,2 Dy < 2072
2l = £,/2 < [F—g| < 242,271 < [Fog| < 273(EF®) < 201, 2723 < |d/s|, |v] < 2%,

27 Ky <2270 < <270,2<22 =202 <272, 272 <20 gz)v <2
The proof of these inequalities is mostly Very easy. For example the inequality |v|
because —27% < d < 273s and hence —273 = (=273s5) @ s < v < (2735) 0 s

53

all these inequalities we get & + 7, & — 7, d/s, dv, v, 2%, (20 Z)v € £[2272" 22"~ C R,,.
Hence we can use Lemma 3.4 and get

2

(({L‘—y)

,doOv) < (1+ Koy)(1+ K3)(1+ —1
oy v) (2)(3)(Ut)

€rel

2
x‘_
erel(<m—+z) L ov) < (1+ K3)2(1 +u) — 1

r—y
Tty

erel (27 208)0v) < (T+e)(1+ K3)(1+u)®—1

Lemma 3.6 yields sy + 2, € Ry, for k € {1,...,n}. We want to apply Lemma 2.40 and
therefore now want to show that there exists m € {0,...,n} with

ej—1-(vOwv),e;/(2j+1) € Ryyforje{l,...,m}

and

2j+1
i . .
|Zj’7|2x<x+:;/) /27 + 1) <dforje{m+1,....,n}

At first, we remark that the values |e;, |e;/(2j + 1)], |2;] and ’2x(%)2j+1)/(2j + 1)‘ are de-

creasing when j increases. From that we get that all of these values for every j € {1,...,n}
are bounded from above by 22 ~! < maxF,,;. Lety := 02772, Then vy > 2> =
min Ranges ¢ N]0, 0o[and hence in case of |e;_1|(v ® v),|e;|/(27 + 1) > ~ for every j €
{1,...,n}, we are done. Otherwise let m € {0,...,n—1} with |e;_1|(vO), |e;] /(27 +1) >~
for j € {1,...,m} and with |e,,,|(v ©® v) < 7y or |epi1|/(2m 4+ 3) < 7. As |en|(v O v) < v
implies |e,,+1] < 7, we then have |e,,41|/(2m + 3) < v too. Thus |z,,4+1| < v < . It remains to

show that ‘2x(%)2m+3)/(2m + 3)‘ < 4. We have |e,,| > . If m € {1,...,n — 1} we get this

from |e,,,_1|(vOv) > 7, if m = 0 we get this with r; < 2t +2571 — 10 and |ey| > 27272, Hence
we have |epi1] = |em © (VO V)| > - 27476 = 22227471 and |e,, 1|/ (2m + 3) > 22727,
Hence ¢,,11/(2m + 3) € R, and with Lemma 2.36 and Lemma 2.35 we get

T =Y om
Crel (2x($ - y)z +3)/(2m + 3), zm+1)

S (1 +Cl)(1 —I—Kg)(l +Ut)2(1 +K3)2m+2(1 +ut)m+1(1 +ut)m+2 -1
_ (1 +cl)(1 +K3)2m+3<1 _|_ut)2m+5 -1

From that we get

v
|256(x—+z>2m+3)/(2m +3)| < 2l /(2= (L+ e) (14 Ka)™ (14 u,) ™) <922 =6

54

because of (1 + ¢;)(1 + K3)?™3(1 + ug)>™ ™ — 1 < 1.
Thus we are allowed to apply Lemma 2.40 which because of K3 > K5 and hence

max ((1 + Ko) (14 K3) (14 uy), (1 + c) (1 + K3)* (1 + ut)2”+3)
= (L4) (L4 K3)™ (1 4 uy)***?

yields the proposed bound.

An Example for the bounds which the last Theorem yields:
Example 3.8. If ¢c; = 0, c; = 2725, ¢5 = 2718, Mathematica yields
Ky = 0.00787, K3 = 0.00787, (1 + K3)' — 1 = 1.190918

Hence, the relative error bound unfortunately is rather big.

We could improve the bound which the last Theorem yields if we used Lemma 2.40 with ky = 2

instead of kyp = 1 and with a = % + 2x(z—133 /3 and the error bound for a which is stated in

Lemma 3.5.

The following lemma states an upper bound for the number of cycles that the “for” loop in
Loader’s algorithm takes until it quits.

Lemma 3.9. Ler s,t € Nwithdt +8 < 271 Let ® = @y, © = Ogy, © = Sgp, @ = Dy
Letn € Nwith {1,...,2n+ 1} C Cyy, ie. with2n +1 < 211 je. withn < 2%, y,x €]0, 00|
and §, 7 €]0,00[NCsy, c1,¢2 € [0,1/2], ¢35 € |0, 00 with T # § and e;e(x, %) < ¢1,€a(y, §) <
Co,eral(T,§) > c3. We assume xv,7 > 1 and y,x,9,7 < 2 and [T © §] < 2730 (2 © 7).
We define s .= 1@y, d =269 v:=d2s. Let so :=dOuve = (2601 ©vand
ej i =e_10W0OV),z =€ (2] +1),s; :=sj_1Pzjforje{l,...,n}. Then sj11 = s,
for every 5 € Nwith 65 > 5t + 8.

For example, if t = 52, we have 5t + 8 = 268 and hence 65 > bt + 8 iff j > 45. Ift = 23, we
have 5t + 8 = 123 and therefore 65 > 5t + 8 iff j > 21.

Proof. For every j € Ny we have s; > 27378 and hence s; & a = s; for every a € C;, with
|| < 273678-(t42) — 9=41-10 We further have |z;] < 2¢727% for j € N and hence |z;| < 27410
and hence Sj = Sj-1 &b Zj = Sj-1 if 6] Z 5t + 8. O]

3.5 Absolute error bounds for the deviance part bd0(x, np) in
case of e, (x,np) < ¢

If e, (, np) is very small, then the function bd0 computes 0 as result because the computations
leave the range of the number system. Then, we do not get the bound for the relative error we
derived in the last section but have to derive a bound for the absolute error instead.

55

We derive an estimation for the function bd0, which is based on the monotonicity of the computer-
functions.

Theorem 3.10. Let s,t € N with s > 4 and jmax € N with {1,...,2jmax + 1} C Cs,. Let
z,y € 10,00[N Cyy with z,y < 22 2and |z Syl <220 (xDy). Let 2 == 2 ®y,d =
rOy,v=d0z5 =dOv,e:=20z)Qvande; =e;_1 © (VOV),z; =¢; O (2] + 1)
and s; := sj_1 @ zj for j € {1,..., jmax}. Then we have s; > 0 for every j € {0, ..., jmax}-

Proof. Because of 2,y < 22 =2 we have |d| < 22 '~2. If d > 0 or v ® v = 0 then obviously
s; > 0forevery j € {0,..., jmax}- Letd < 0and v ®v > 0, and therefore v < 0. From Lemma
2.21 we further have 2z € C;; and therefore 2z = 2x. Letm,n € Z withz € |21, 2™], y €
]27=1,2™]. We have m < n and 2™, 2" € Cj ;. If we assume n > m + 2 then we get 2772 > 2™
and therefore 2" 2 € (s, and we get

273 oz S 273 ® 2n+1 — 2n72 — _(2n72 o 2n71) S —d — |d’

which is a contradiction to |d| < 272 @ 2. Therefore we have n < m + 1. We now show
the inequality ey > 2d. Let k € Z with |d|/(2z) € |2!,2*]. Because of v # 0 we have
21-2"'~t < |d|/z < |d|/(2x). Because of v ® v # 0 we further have 212"t = |d|/z.
Therefore k > 2 — 257! — ¢, Because of 0 < |d| < 272 @ z we have 23271t £ 935 5 <
273 © 2"*1 and therefore 2732"+1 > 22-2"7'~t and therefore |d| < 273 ® 2"t! = 272 and
|d|/(2x) < 2n72/2m < 2m~1/9m = 271 We get k < —1 and therefore —2* € C, ;. Because of
d/(2x) > —2* with Lemma 2.3 we get d©(2x) > —2* > d/z and therefore 2d < (27)(d2(2z)).
Because 2d € C;; we get

2d < (22)0(do(27)) < (22)0(d2z) < €

Now we show the inequality 272 ® 2z < 2722, Let k; € Z with 2732 € |2M~1 2k] We get 2 €
C;, because of 2732 < 2z < 22" ~1and 273 ® z > |d| > 0 and therefore 273 @ z > 2372 '~
and therefore 273z > 2272~ From 273z < 2F we get 230z < 2% < 2722 and therefore
|d] <273 ® z < 2722, This implies [v| <22 and v ® v < 274

In case of |v| > 242" with Lemma 2.21 we get v ©® v < v ® (—272) = 272|v], while in case
of [v| < 24-2"" because of s > 4 we get lv] < 27* and therefore v ® v < 272|v|. We get
2d(v ® v) > —27!dv and therefore e; > (2d) ® (v ©®v) > —(d ® v) = —s.

Let 7 := 50/2. In case of s, > 272" with Lemma 2.21 we get sy © 2 = r € C,, and therefore
$1> 50 @ (—r) = r. Incase of s) < 2372 we get 5o @ 21 = So + 21 > 7.

Withv ©v < 27% we gete; > —2730"Ve, for j € {1,..., jumax}- We further get
s59>r@(=273r) > (r—27%r)/2>1r/4
and if j € {2, ..., fmax} With s; > 27207D7 we get
Spu1 2 (55 2320)/2 2 (272070 — 273009 > 9720y

Therefore we inductively get s; > 2720y for j € {2, ..., jmax } and therefore the proposition.
O]

56

Theorem 3.11. Let s,t € Nn € {1,...,t} with3n >t + 5 and jmax € Nwith{1,...,2jmax +
1} CCyy. Lette{1,....,n}and x € 21,2 N Cyy. Lety € [z — 27" 2+ 27" N C, .
Then withv .= (z8y) @ (P y),s0 = (2 0Y) Ov,e0:= (20) Qvande; :=e;_1 © (VOV)
and s; == sj_1 @ (e; © (2j + 1)) for j € {1,..., jmax} We have

S, S 2—2n+€+1 D 2—3n+€+1

forevery j €{0,..., jmax}-

Proof. Wehave x ®y > x > 2071,

In case of y > x we have ¢ © y < 0, hence v < 0 and hence e; < 0 and s; < s for every
J €40, dmax} AsO >z 6y > —2""andz @y > 271, we getv > 271 @
2t=1 = —27F1 therefore sp = (z © y) ©® v < 272"+ and hence s; < 272"FF1 for every
7 €90, ., jmax -

Incase of y < rwehave 0 < 20y < 26 (v —2") = 27" and hence 0 < v <
27+ @ 26=1 = 27*+1 From that we get ey < 27"*2, From that and v ® v < 27272 we get
e; < 2(72n42)i—n+42 and hence e; @ (25 + 1) < 20720425+ for every j € {0, ..., fmax}-
For] c {27 o ajmax} we have (272n+€+1 D 273n+€+3) D 2(72n+2)j7n+€+1 — 9—2n+¢ D 9—3n+l
because of 272n+€+1 D 273n+5+3 > 272n+€+1 and 2(72n+2)j7n+f+1 < 275n+£+5 < 272n+27t_ As
so = (z O y) ®v < 2721 we get the proposition.

]

Lemma 3.12. Let K = R, z,y €]0,00|, ¢ € [0, 1] with e;e(y,x) < ¢, which means y €
lz/(1+¢),z/(1 — c)|. Then we have xlog(z/y) — x +y > 0 and

zlog(z/y) —x+y < max{zlog(l—c)—z+az/(1 —c),zlog(l+c)—az+z/(1+c)}

Proof. For fixed « the function f : [z/(1 + ¢),z/(1 — ¢)] — R defined by f(y) := xlog(x/y) —
x + y has derivatives f'(y) = 1 — z/y and f”(y) = x/y?. Therefore f has a local minimum at
y = x with f(y) = 0 for y = z. Further the function f takes its maximal values at the boundary
of its domain [z /(1 + ¢),z/(1 — ¢)]. O

3.6 Error bounds for the deviance part bd0(k, np) in case of
|k —np| > 0.1 % |k + np

In this section we examine the error propagation in the evaluation of bd0(k, np) in case of |k —
np| > 0.1 % |k 4+ np|. In this case the function evaluates the formula x*1og(x/np) +np-x, using
an approximation log of the logarithm.

In the rest of this section let f : |0, 0o] — K with f(z -y) = f(x) + f(y) for ,y € |0, 00 and
f:CN]0,00[= C,v € [0,00[with f(z) € K and e, (f(x), f(x)) < vforevery z € C'NJ]0, 0]
with f(z) € R.

57

Theorem 3.13. Let x €]0,00[, & € C'N]0,00[and ¢ € [0, 1] with f(Z) € R and e;o(z, %) < c.
Let M € [0, c0[with |f(1 —¢)| < M for every € € [—c,c|. Then

(14+v)M

era(f(@), F(2)) S v+ =

Proof. Let e := “=£. We have

f(@)] = [z =) < [f(@)[+ [f(1 =) < |f(z)[+ M

and hence

~ f(2)

(@) = f@)] = |f@E/(1-e))
))+ (1 =€)

f(@) — f(@
vl f(Z)
v[f(x)

IA A IA

()| +M
()] + (1 +v)M
O

Theorem 3.14. Let y € |0, 00|, z, 7, € CNJ]0, 00| withx /g, x—7, z+7, f(x@7), a(zdY) € R
and ¢ € [0,1] with e;(y,9) < cand (1 +u)/(1 —¢) < 2. Let My, My, My € [0, 00[with
lf()| < M foreveryt € |0,00[with |1 —t| < (14+u)/(1 —c)—1and |f(t)| < M, for every
t €10,00[with |1 —t| < cand |f(t)| > M; for every t € |0, 00 with |1 — t| > a(11::;)2_ Let
lze g > a® (x®y)and Ms > M,. Then

(1+v)M,;

e (Fa /), fle @9)) < vt St

In particular, if K = R with usual order < and f = log we get

[log (2 — 3£2)|
log (1 (1+u) |log(1 — ¢)|

qd@%@w)(x®w)§v+ﬂ+v)

if log (1+a(1+u > > | log(1 — ¢)|.

Proof. From 2.35 we get e;qi(z/y, 2 @ 9) < (1 +u)/(1 — ¢) — 1. With that, from 3.13 we get

(1 + U)Ml
| /y)l

With) := x—(zey) we get [t &gl = |(x — §)(1 —n)| < |z —g|(1 +) and hence

et (Flafy). fle09)) < vt

afz ®g)(1 —u)

k—gl eo@ae)
(1 +u)

y g(1 +u)

>

-

204(14-7
Yy

< 8

58

We get f(x/g) > Mj. Lete := % We have
[f(e/y)l = 1f(x/g) + A =) = |f(/g)| = |f(1 = &) = M5 — M,

Therefore we get

(]_ —I— U)Ml

erel <f($/y), flzo 37)) <v+ BYASSTA
The inequality for K = R, f = log follows from

|log(t)| < |log(l —s)| fors € [0,1[,t €]0,00[with |1 —¢| < s
|log(t)| > log(1 + s) for s,t € |0, 00[with |1 — ¢| > s

3.7 Approximative evaluation of Stirling’s Series

In Appendix C we described approximations of the function y : |0, co[— R

B [(x+1)
p(z) =log (—@)x 2m>

by Stirling’s Series. Loader’s algorithm for the binomial density utilizes the function stirlerr,
which we displayed in Appendix D.3, to compute approximative values for u(x). Depending
on how large z is, the function stirlerr approximatively evaluates one of the following four
partial sums of Stirling’s Series:

1
— — ——— if 500
120 36025 "7
= ! + if 80 <z < 500
— i x
12z 360x3 126025’ -
1 1 1
— — if 35 <z <80
127 3605 126005 168027 ' v
1 1 1 1 1
— — if 15 <x <35
120 3602° 126005 168027 « 1issad’ 0 =TS
If v € {1,...,15} the function stirlerr returns a value which is stored in an internal table.
In this section we derive an error bound for the approximation of ;(z) by the computed value
stirlerr(x) for z € {16,..., Ny depending on . € N.

In the first lemma of this section we examine the error propagation of an algorithm that alternates
division and subtraction, which we will apply to approximately evaluate Stirling’s Series.

59

Lemma 3.15. Let m € N ay,...,a, € [0,00[,b1,...,b, € [0,00[NC and ¢ € [0, 0] with
ere1(a1,01), . s erel(Am, b)) < ¢ Letyy, ..., Ym €10,00[, 21,...,2m €10,00[NCe1,... e, €
0, 1] with ey (Y1, 21) < €1y« €rel(Ym» Zm) < €m. Letdy := by, q1 := d1@z1 and dy, := bpOqr_1
and q := dy, @ z for k € {2,...,m}. We assume

(3.6) bi/z1 € R,by — qr—1,di/2x € Rfork € {2,...,m —1},bp, — gm-1 € R

Then we have

3.7)
Z ((—1)’”_’@/ H yj> —dy| < ((1 +o)(1+u)*m?) H(l —ei) = 1) Zai/ H Yi

and, if dpy [z € R
(3.8)

Z ((—1)m_iai/Hyj> — m

=1

< ((1 ro+um [-e) - 1) > ai/ T w

i=1

Proof. In case of m = 1 the proposition follows from Lemma 2.35. Let m > 2. Let n; =

l’ll)/lz/—l;’l e1:=0,m : d’“d/Z#qkandsk::%forkE{Z,...,m}.Wehave
¢ = b1/z1(1—m)
and

@ = (b — qe—1)/2(L —) (1 — &g) for k € {2,...,m}

By induction we get

:Z<(mle (1 =&)L —mny)) HZJ>

] Z
and
m

dm:CJm'zm/(l_nm):Z<<)m Zb 1_5m H 1_5] 1_77] /HZJ>

=1

60

Hence, with ; := %% and §; := -2 fori € {1,...,m} we get

> ((—1>m—iai/Hyj> 4
= Z(— " az/Hyg <1— L=][0 -2 1—77j)/(1—5j)>>|

< Zaz/HyJ
Zal/Hyj(+ o) (14 u)*™” 1/1_[1—6 —1>

=1

1-(1—-v)][(a-¢)a)/(1—53'))‘

IN

and

Z ((—Dmiai/ 1:[yj) —dn
(—)" a/H%((1 —)(Hl—éj ‘)/(1—5j)>)‘

J=i

3

1= (=) —em) | J (1 =&)X =ny)/(1 = 6;))

_1(1 — 61‘) —].)

To be able to practically apply the previous lemma, we have to replace the occuring conditions
(3.6) and d,,,/z,, € R by formulas which are easily verfiable in the concrete case of C' = C .
This will be done in the next lemma.

IA
NE
8
~—
=
&

=

3

A

INgE
2
~

| Ui ((1 +o)(14u)*™?/

%

O

Lemma 3.16. Let m € Nwithm > 2, ay,...,a, € 10,00[,b1,...,b, €]0,00[NC,c € [0,1]
with ege(a1,b1), ..., eel(Am, byn) < ¢ Letx € [1,00[and z1,...,zy, € [1,00[NCande, f €
[0, 1] with eca (22, 21), . . ., (2%, 2m-1) < freral(T, 2m) < €. Let dy := by, q := dy @ 2, and
di :=br © qr—1 and qi, == dy, @ z for k € {2,...,m}. Let A, B € |0, 00[with [A, B] C R and

(3.9) ai(l+¢) < B
(3.10) a(1—c)/(z*(1+ f)) > A
(3.11) ap1(1—c) —ap/a* —h>Aforke{1,..., m—1}

61

(3.12) agr1(1+c¢)+h<Bforke{l,...,m—1}

(3.13) (aper —ap/2®> —h)/(2*(1+ f)) > Afork € {1,...,m —2}

(3.14) (G — Am1/2* — R)/(z(1 +¢€)) > A

withag := 0and h := (14 ¢)(1 +uw)*™ /(1 — max{e, f})™ — 1) D" a;. Wedefineey, ..., ey 1 =
fiemi=candyi, ..., Ym-1 = 2% Y := x. Then with s := Z:Zl a; we have (3.7) and (3.8).

Proof. At first, we inductively show that for & € {1,...,m} the following inequalities are valid

k > a Ak —1
j Z W — 72
(3.15) 2; x2(k 7 { < a
j:
b a >0
k—j 4 2
(3.16) > (=1 ”m{ < a
i=1 ==

The case k = 1 is trivial. If the above inequalities hold for k € {1,...,m — 1}, then

k+1 k ax
I R = s I
— g1 T 223t | < app

J= J=

From ax1(1 — ¢) — ax/2® — h > A we get agy — % > 0. Thus

1 . k1
k4+1—j J _ k41—
Z(_l)]x2(k+2—j) - <Z(_1) K k+1])> /z? {

j=1 j=1

(appr — %) /2> >0

Ap41

IN IV

Thus the induction is complete. We define

i ((l—i-c)(l—i-uzk 2/1_[1—61—1)Zz

hy, := ((1 +c)(1 +u)*1) H(1 —e;) — 1) Za

for k € {1,...,m}. Then gy, hy < hfork € {1,...,m}. Now we inductively show that for
ke {l,...,m} we have

by — qr—1,dr/2x € R

62

with ¢ := 0. The base of the induction by, d;/z; € R is valid because of
A<a(1—eo)/(@*(1+f)<di/zx1 <bi<ai(l1+c)<B

Letk € {1,...,m — 1} with by — qo,d1/21,...,br — qk—1,dr/2zx € R. Then Lemma 3.15 and

(3.16) yield
> —hy
%\ < ap/a? + hy

Hence

b _ > bpy1 — ap/x? — by > ap(1 — ¢) — ag/x* — by > A
O b1+ he < appa(l4+¢)+hy < B

Hence b;1 — qr € R and Lemma 3.15 and (3.15) yield

d > gyl — Z—g — Gk+1
M < g1+ gpr1 < B

Hence

> (a — % _ z > A
dk+1/2k+1{ 2 Elkil< §2 Gr+1)/ 21 =

and therefore dyy1/2zx.1 € R. Thus, the induction is complete. Now we are allowed to apply
Lemma 3.15 which yields the proposition. [

Now we examine the approximative evaluation of Stirling’s Series in the number system C} ;. We
define vy := 1/12,7, := 1/360, 3 := 1/1260, 4 := 1/1680, ;5 := 1/1188, 75 := 691 /360360
and S, (x) = Y p_ (=) 'y /2 and h,(z) = >0 w/x** ! forn € {1,...,5} and
z €]0,00[. If s > 5 wehave vyy,...,7 € Fs.

Corollary 3.17. Let s,t € N with s > 5t > 15 and by,...,bs €]0,00[NCs; with
eret(71,01); - -+ €ret (5, b5) < up. Let x € [2,2% 78],y € [1,00[N Cyy and e € 0,277 with
erel(z,y) < e Letz := y®y. Thenwith [:= (1+e)*(14+u;)—1and g := (14+u;)'°/(1— f)°—1
we have

|Sa(z) — ((bo © b1 @ 2) @ y)| < gha(z)
‘Sg([ﬂ) — ((bo o (bl S by Z) (%) Z) @ y)‘ < ghg(a:)
1Sa(z) = (b0 © (b1 © (b2 © b3 @ 2) @ 2) @ 2) @ y)| < gha(z)

[S5(x) = (b © (1 © (b2 © (b30bs©2) ©2) ©2) ©z) QY| < ghs(z)

63

Proof. From Lemma 2.34 we get e,q(2%,2) < f. Because of t > 15 and ¢ < 27!7 with
Mathematica we get (v4 — v5/4 — ¢)/(1+ f) > 27" and 4 (1 — w) — 75/4 — g > 27 and
Yy —2/4—g > 2% Wehave [A, B] C R,, with A = 222 " and B = 22" '~!. Now we apply
Lemma 3.16 four times, the first time with m = 2 and (a1, a2) = (g5, 15), the second time with

m = 3 and (a1, a2,a3) = (355, 365 15)> and so on. We need to verify conditions (3.9)- (3.14)

with ¢ = u; and h = g. We use that 2711 < v, ..., 95 < 1.
Verification of (3.9):

ar(l1+c¢) <2a <2<B

Verification of (3.10):

a(1—¢) /(3 (14 f)) > 271271 /(227 716.9) = 23271 > 4
Verification of (3.11):

ar1(1—c¢) —ap/a* —h > 71 =270 — 5 /4 —h>27" > A
Verification of (3.12):

agi1(l+¢)+h<2+1<B
Verification of (3.13):
(aps1 — ap/2> — W)/ (@2*(L+) > (4 —5/4 —) /(1 +)22 > A
Verification of (3.14)
(am — aneaf2* = B/ (2(1 4 €)) > (— /A~)27 2) > 2527 > 4

Lemma 3.16 yields the proposed inequalities. O]

In the rest of this section let X' = R. We now compare the approximative evaluation of Stirling’s
series to the value u(x).

Corollary 3.18. Let s,t € N with s > 5,t > 15. Let by,...,bs €]0,00[NCs; with
erel(71,01); - - s €ral (75, 5) < wy. Let Tyin, T € |2, 22572*8] With x > Ty and y € [1,00[N Cs 4
and e € (0,271 [with e, (z,y) < e. Let z := y®y. Then with g := (1+u;)°/(2— (1+e)*(1+
w))® — 1 and L := Sy(Tmin) we have

erel (11(2),(bp © 01 © 2) 0 y)) < (9h2(5‘7min) + 7337;1?n) /L
eret (11(7), (b0 © (11 © 02 @ 2) @ 2) @ y)) < (gha(Tmin) + 1a751,) /L
erel (1(2),(bp S (01 © (020 bs02) 0 2) 0 2)0yY)) < (gh4(xmm) + 75x;1?n) /L

erel (1(), (b0 © (01 © (b2 © (30 b4 @ 2) ©2) @ 2) @ 2) DY) < (ghs(Tmin) + V6T min) /L

64

Proof. We have

() — (bo © b1 @ 2) @y
()
() — Sa(@)] + |S2(x) — (bo © b1 @ 2) @y
S ()

erel(u(x), (bo S b1 %) Z) %) y)

IN

gha(x) 4 327"
- SQ(SL’)

and analogously

ered (1(2), (b & (1 b @2) @ 2) @y)) < (ghs(x) +z™") /Sy(x)
erel (11(), (b0 © (01 © (b2 © b3 © 2) @ 2) @ 2) @ y)) < (gha(x) + y527") /Sa()

eret (14(), (b © (01 © (b2 © (b3 © b4 @ 2) © 2) © 2) @ 2) @) < (ghs(w) + Y62~ ") /S (2)
When z increases, the right sides of these inequalities are decreasing because

ha(x)/Sa(w) = 1+ 272/ (a°Sa(x))
and 23 S5() is increasing. Therefore we get the proposed inequalities. O]

Example 3.19. Let s,t € N with s > 5¢ > 15 and by,...,b5 €]0,00[NC5; with
et (71,015 - -+ €ret (75, b5) < up. Letx € [2,2% 78N C, and 2 := £ ® z. Then from Corollary
3.18 and verifications with Mathematica we get the following inequalities.

If (s, ¢) = (11,52):

erel (11(7), (bp © by @ 2) @ 7)) < 27%2 if 2 > 500
evet (11(2), (o © (1 © by @ 2) @ 2) @ 7)) <274 if 2 > 80
erel ((2), (o © (1 © (b ©bs@2) @ 2) @ 2)@x)) <274, ifz > 35

erel (11(), (b0 © (1 © (0 © (30 b,02)02)02)02)0x)) <27 ifx > 15
If (s,t) = (8,23):

erel (11(z), (bg © by @ 2) @) < 272 if z > 500

e (11(z), (Do © (M ©by @ 2) @2) @) <272 if x > 80

65

Crel (11(), (b0 © (01 © (b © b3 © 2) © 2) © 2) @ w)) < 272, if w > 35

Crel (1(7), (b0 © (1 © (1 © (300, @ 2) @ 2) ©2) ©2) @) <272, if x> 15
If (s, £) = (15, 63):

€rel (M(x)u (bO S) bl % Z) @ ZL’)) S 2_427 if 2 > 500
erel (11(2), (g © (1 © by @ 2) @ 2) @) <274 if x> 80
erel (14(2), (b © (1S (b ©bs 0 2) 0 2) 0 2) @) <274 ifx > 35

erel (11(2), (bo© (1 © (0 © (b3 b0 2)02)02)02)0x)) <27 ifz > 15
Corollary 3.20. Let s,t € N. Let xp. € [1,00] and x1,x9 € Csy N [1, Tmax), Y1, Y2, Y3 €
Cst,c €10, 1] with erel(u(1) Y1), erel(11(22), Y2), erel (p(x1 — 22),y3) < cand x1 > xo + 1. We
assume Si(Tmax) — So(Tmax — 1) + ¢(S1(1) + Sy(1)) < —=222"". Then with
q = So(Tmax — 1)/S1(Tmax) and d := 1/(q — 1) + 1/(1 — q~') we have the inequalities

el (p(1) — p(22), 91 © 92) < (1 +u;) (1 4de) — 1

eral(1t(21) — p(a) — (w1 — x3), (11 © 92) © y3) < (1 +uy)? (1 +de) — 1
Proof. The condition y; — 1, € [—22" =1, —2272"""| C R, is fullfilled because of

o—1p > —yo > —p(z)(1+¢) > —(1+¢)>—2> 2% !

and
i —y2 < p(x)(1+c) = p(r)(1 —c)
< Si(z)(1+c¢) = Sa(x2)(1 = ¢)
< Si(x)(I4¢) = Sz —1)(1 —¢)
S Sl(xmax) - SQ(:Emax -) + C(Sl<1) + SQ(1>>
< _92-2°71

In the second last step we used that the function |2, 0o[3 © +— Si(x) — Sa(x — 1) is increasing.
We apply Lemma 2.31 and get that

erel(p(1) — p(22), Y1 © Y2)

< () (1 e <|1 - ,u(xi)/u(a:lﬂ e u(xi)/u(xz)!» !
66

We have p(zo)/p(z1) > So(xa)/S1(x1) > Sa(xqy — 1)/Si(x1). The function 2,00 > z +—
So(x —1)/S:1(x) is decreasing. Hence we get pu(xo)/p(x1) > g and pu(zy)/pu(ze) < g~'. There-
fore we get the first of the proposed inequalites. The second we again get from Lemma 2.31
which this time we are allowed to apply because

Oy —ys > (0601)—1=-2>-22""1

(VOy) — s <110y < —22

and hence (y; S y1) — y3 € Rs,. O

Remark. As the proof shows, in Corollary 3.20 we could also use the weaker precondition
S1(Tmax) (14) — So(Tmax — 1)(1 —¢) < _ g2
instead of
51 (Zmax) — Sa(Tmax — 1) + ¢(S1(1) + Sp(1)) < =222

In order to do that, we had to derive monotonicity of the function S;(z1)(14¢)—Ss(z1—1)(1—c)
on an interval depending on c. Using the weaker precondition would allow us to increase .y
given c and s.

Example 3.21. Let s = 11, = 52,¢ = 27%2 2., = 2%°. Then with Mathematica we verify
S1(Zmax) — S2(Tmax — 1) + ¢(S1(1) 4+ S5(1)) < =227 and therefore from Corollary 3.20 we
get

erel(ﬂ(xl) - N('T?)v v © y2) < 272!
for zy, 5 € Csy N [1,22].
Let s = 15, = 63,c = 27%2, 5.« = 22!, The range condition is not fulfilled.
Lets = 15,t = 63,c = 274 2., = 2%°. We get

eraa(p(21) — pl@2), 1 © o) < 27

for z1, 25 € Csy N [1,22].

3.8 Computation of the value “Ic”’ in Loader’s algorithm

In this section we examine the follwowing function 1c.

double 1lc(double x, double n, double p){
double q = 1-p;
return stirlerr(n)-stirlerr(x)-stirlerr(n-x)-bd0(x,n*p)-bd0(n-x,n*q);

}

67

We derive a lower bound for |p(x1) — p(xs) — p(zy — x2)]-

Lemma 3.22. Let X, € [2,00[and x1, x5 € [1, Tyax| With x1 > x5 + 1. Then

p(z1) — plaz) — p(z1 — 22) < S1(Tmax) — 252(Tmax/2)

which means the following lower bound for |j(z1) — p(za) — p(xy — z9)|
|M($1) - ,U(QTQ) - ,U(ZEl - $2)| Z _(Sl (xmax) - 232(xmax/2))
Proof. We have

u(z1) — plza) — p(zr — 22) < Si(z1) — S2(22) — Sa2(21 — 32)

Differentiation shows that the function [1,27 — 1] 3 = +— Si(z1) — Sa(x) — Sa(z1 — x) has a
local maximum at z = x/2 and at most two further points in [1,z; — 1] where its derivative is
0, one of these being smaller than x; /2 and the other one being larger than z; /2. Hence

() = p(w2) = p(@r — x2) < max (Si(w1) — 252(21/2), S1(w1) — S2(1) = Sz — 1))

Now differentiation shows that the functions [2, Zyay] 3 © — Si(z) — 2S2(2/2) and [2, Tpax] D
x +— Si(x) — S3(1) — Sa(x — 1) are increasing. Therefore we get

p(r1) — p(x2) — p(r1 — 22) < S1(Tmax) — MIN(255(Tmax/2), S2(1) + So(Tmax — 1))

With f : [2,00[= R, f(2) := 720 — 2160z — 324022 + 154802% — 174152 + 79652 — 13052
the inequality 255(2max/2) < S2(1) + So(Zmax — 1) is equivalent to f(Zyax) < 0. We have
f(Zmax) < 0because of f(2) =0, f'(2) =0, f"(2) <0, f”(2) < 0and f"(z) < 0 for every
x € (2, 00[. Therefore we get min(2.Ss(Zmax/2), S2(1) + S2(Zmax — 1)) = 252(Zmax/2) and with
that the proposition. O

The following rather easy inequality could be the foundation of the main theorem of this section.

Lemma 3.23. Let a,b,a,b,0,,0, € K withab < 0 and b € [0,8,],b € [0,8,]. Let ¢ € [0, 1] with
erel(a,a) < c. Then

ere(a —b,a — b) < ¢+ max{dy, 5 }/|al

Proof. We have |b — b < max{d;, 0} and |[a — b — (a —)| < |a —a| + |b— b]. We get
la—b—(a—10b)| <l|a—al+ max{dy, >} and with |a — b| > |a| we get the proposition. O

In an example we now want to show how Lemma 3.23 can be used to obtain bounds for the
relative error for the value “lc” in Loader’s algorithm. In this example we only consider the

special case of e,q(z,n © p) < c.

68

Example 3.24. Let s = 11 and ¢ = 52 so Cy; = IEEEDouble. Let ny,, = 22 andn €
{2, nmax s € {1,...,n—1},p €]0,1[,p €]0,1[N F,; with e;1(p,p) < 2728 =: ¢. We
further assume the condition e, (z, n©p) < 2720 is fulfilled. From Example 3.19 we get that the
function stirlerr yields 1, y2, ys € Csy With e (16(n), Y1), €rel (16(2), y2), erea((n—2), y3)) <
2742 From this, with Corollary 3.20 and a := u(n) — pu(z) — pu(n — z) and a := (y; © y2) © Y3
we get e (a,a) < 2-107°. Lemma 3.22 yields |a| > 6 - 107°.

Let jmax € Nwith {1,...,2jpax + 1} C Cs. Lety :=n O p,v = (z0y) @ (x B y),s0 =
(zroy)Ouve:=20r)Ovande; :=¢€;_1 © (v©wv)and s; := 5,1 & (e; @ (25 + 1)) for
JE{L, ..., Jmax}-

Let £ € {1,...,20} with z € [271,2°]. Because of e,q(7,n ® p) < 272° we have n © p €
[I o 2—20-&-6’ T+ 2—20-&-@].

Let o := 2740+H+1 @ 9-60++1 From Lemmas 3.10, 3.11 we get
0<s; <«

for j € {1,..., jmax}. From z < 212 we get ¢ < 12 and therefore o < 2727 ¢ 2747 < 8.107°.
Because of e, (p, p) < cand ey (z,nOp) < 272° from Lemma 2.29 we get (n®p)/z < 1+27%
and therefore

erel(7,n O P) + [np — (n©p)|/x
eret(z,n ©P) + (n©P)(1/((1 —c)(1 —w)) —1)/z
2 4 (14 2)(1/(1— ¢)(1— u)) — 1)

erel<m7 np)

IA N IA

From Lemma 2.28 we get
erel(np,) < exel(w,1p) /(1 — ever(w, np))
With this bound and z < 2'? from Lemma 3.12 with f(z,y) := xlog(z/y) — = + y we get
0< f(x,y) <2-107°

We use Lemma 3.23 and get

8.1077
<2.107*

re — f(k (i — ; <2-107°
(S l(a f(7np)7a S]max) — O +61075 -

Now we further assume the condition e,q(n — z,n @ (1 © p)) < 272° and repeat the above
calculations with n — x instead of x and n ® (1 ©p) instead of n © p. Lety :=n© (10p), w :=
(n—z)ey)a((n—z)dy), 00 := (n—x)0Yy)Ov, fo := 20 (n—r))Gvand f; == f;_1O(vOD)
ando; :=0,1 ® (f; © (25 + 1)) for j € {1,..., jmax}. Then again with Lemma 3.23 we get

8.107°
<4-107%

erel(a - f(k’np) - f(n - k? n(l _p>)7d - Sjmax - Ujmax) S 2 ’ 10_4 + 6 . 1075 -

69

Conclusion

We conclude that we derived intermediate results in the derivation of an accuracy bound for
Loader’s algorithm for the binomial density. We derived a relative error bound for p(x;) —
w(xe) — p(xy — x2), a lower bound for |u(xy) — p(ze) — p(x1 — x2)| and and upper bound for
bdO(z, np) in case of e, (x, np) < c. These results can be combined using the Lemma 3.23.

3.9 Computation of the value “If”’ in Loader’s algorithm

In this sectionlet K = R, v € [0, 1[and ¢ : |0, co[NC' — C with {(x) € Rand e, (log(z), {(z)) <
v for x €]0,00[N C with log(z) € RU{0}. Futherlet ¢, : | —1,0[N C — C with {;1(z) € R
and eye (log(1 + z), (1(x)) < wvforevery x € | — 1,0[N C with log(1 + z) € R.

We analyse the following function.

double 1f(double x, double n){
return M_LN_2PI + log(x) + loglp(- x/n);
b

At first we analyse the error propagation of the function | — 1,0[3 x — log(1 4+ x). We need
the following two lemmas.

Lemma3.25. Letx € | — 1,0[{and f : |1 + 1/x,00] = R, f(e) :=log(14+x(1—¢))/log(1+x).
We have f(0) = 1. By differentiation we get that f is convex and hence f(—¢) —1 > 1 — f(e)
foreverye € [0, —(1 4 1/x)[. Furthermore, f is decreasing.

Lemma 3.26. Letc € [0,1[, f :] —1/(1 +¢),0] = R, f(x) :=log(1 + z(1 + ¢))/log(1 + z).
The function f is decreasing.

Proof. Letg:]—1/(14+¢),0] = R, g(z) == (14+¢)(1+2)log(l+x)— (1 +2(1+c¢))log(l+
z(1+¢)). Forz €] —1/(1+ ¢),0] we have

(I14+c¢)log(l+2)/(1+z(1+¢)) —log(l+z(1+¢))/(1+x)
log®(1 +)

f'(x) =
and therefore f'(z) < 0 < g(z) < 0. We have g(0) = 0 and
g'(z) = (1 +¢)(log(1 +) —log(1 + z(1 +¢))) <0
and therefore g(x) < 0. O

Lemma 3.27. Let 6 € 10,1/2|and z € [—1 + 0, —0],Z € RNC'and ¢ € [0, 1| withe,q(x,Z) < c.
Let (=14 6)(14+¢) > =1 and [log(1 4+ (=1 +9)(1 +¢)),log(1 — (1 — ¢)] C R. Then

log(1+ (—=14+9)(1+4¢))
log(6)

70

era(log(l +), 64(Z)) < (14+v)—1

Proof. Because of ¢ < 1 we have & < —d(1 —¢) and Z > (—1 + 0)(1 + ¢) and therefore
log(1+4 %) € R. We have |log(1 +z) — ¢1(Z)| < |log(1 4 x) —log(1+ &)| + v|log(1 + Z)| and
with Lemma 3.25 we get

3 log(1+) log(1 +)
re1(log(1 v < 1-——= —
eralog(l +2), 61(7)) ‘ log(1 +) * Ulog(l +)
log(l1+z(1+¢) L+ Ulog(l +2(1+¢))
log(1 + 2) log(1 + 2)
With Lemma 3.26 we get the proposition. O]

From the last lemma we get the following corollary.

Corollary 3.28. Let s,t € Nand C = C,;, R = Ry;. Let Ymax € [2,00] With ymax < 2! and
Ymax < 2272 Let 2,y € [1, Ymax] N Csp with z < y — 1. Let

(3.17) 10g(1 4 (=1 + 1/ymax) (1 +u)) > =221
(3.18) log(1 — (1 —) /Ymax) < =272
Then we get

log(ymax/(l — (ymax - 1)ut))
10g(/max)

erel(log(l — 2/y), 61(—(z 0 y)) < (1+v) -1

Proof. Because of 1 /Yy > 1 ymax > 22727 we have z/y € R,, and therefore
erel(—z/y, —(x @ y)) < up. With 6 := 1/ymax €]0,1/2] and ¢ := w; we have § > ¢ and
therefore (—1 + 0)(1 4 ¢) > —1. We have —z/y € [—1 + J, —4]. Furthermore we have

>
<

log(1 + (=1 +0)(1+¢)),log(l —6(1 —¢)] C [-2* 71, =22 '] C R,,

Thus we are allowed to apply Lemma 3.27 which because of 1 + (—1+6)(1+¢) = —c+cd =
d— (1 —0) = 1/Ymax — Ut (Ymax — 1)/Ymax yields the proposed inequality. O
Example 3.29. If n,,., = 2%° and v, = 2753 then

log(1+ (=14)(1 4+ w))
log(0)

Lemma 3.30. Let yax € [2,00] and x,y € [1, Ymax| with x < y — 1. Then

(14 v) — 1< 1.00000441(1 + v) — 1

log(27) ‘ - 10g(27 (Ymax — 1))
log(l —x/y)| — 10g(Ymax)

71

Proof. Let f,g : [1,y] — R, f(t) := log(2nt)/log(1 — t/y) and g(t) := tlog(2nt) + (y —
t)log(1 — t/y). Differentiation of f yields that f' > 0 < g > 0. We have ¢/(t) = log(2nt) —
log(1 —t/y) > 0fort € [1,y[and ¢g(1) = log(27) + (y — 1)log(1l — 1/y) > log(27) + (y —
1)1__11//yy = log(2m) — 1 > 0. Therefore ¢ > 0. Hence f increases and f(x) < f(y — 1) =
—log(2m(y — 1))/log(y). Let h,k : [2,Ymax] — R, A(t) := —log(2n(t — 1))/log(t) and
k(t) :== (t — 1)log(2m(t — 1)) — tlog(t). Then K’ > 0 < k > 0. We have £/(t) = log(2n(t —
1)) — log(t) > 0 fort € [2, Ymax| and k(2) = log(27) — log(4) > 0. Therefore h is increasing
and we get f(2) < f(y — 1) = h(y) < h(Ymax) = —% < 0. From that we get the
proposition. o [
Corollary 3.31. Let s,t € N,C = Cs;, R = Ry Let Yax € [2,00[With Ypax < 271
and Yuax < 227 2 and 1,y € [1,Ymax) N Csy with x < y — 1. Let a € RN Cy, with
erel(log(2m),a) < uyand b := a ® {(z). We assume (3.17), (3.18) and

(1 +w)log(2m) + (1 4 v)10g(Ymax — 1) < 9211
Let
c1 = (14 w)(1 4+ max(v,uy)) — 1

Co = log(ymax/(l - (ymax - 1)“15))
. 108 (Yimax)

(14+v)—1

C3 1= log(zﬂ—(ymax - 1))/log(ymax)
Let co < 1 and
(1 = 1) 10g(27 (Ymax — 1)) + (1 + c2) 10g(1/Ymax) > 227

Then we get

cunlog(2ma(1 = /9), 00 6~ o)) < (1) (14 12+ =2) -1
1— Cs C3 — 1
Proof. Because of log(z) < x € (s, we have log(z) € RU{0} and therefore e, (log(x), {(x)) <
v. Because of a + ((z) < (1 4 u)log(2m) + (1 + v)10g(Ymax — 1) < 227! we have
a+{(z) € Ry, and with Lemma 2.36 we get e,¢(log(272),b) < ¢;. From Corollary 3.28 we get
era(log(1—2/y), l1(—(x@y)) < cy. Therefore we have b+ (1 (—(x @y)) > (1 —¢;) log(2my) +
(14 ¢2)log(1l — x/y). Now differentiation yields b + ¢1(—(z @ y)) > (1 — ¢1) 1og(27 (Ymax —
1) + (1 + ¢2)10g(1/ymax) > 2272, Because of ¢, < 1 and log(1 — z/y) < 0 we also have
l1(—(z©@y)) < 0 and therefore b+ ¢, (—(z@y)) < b € RNCs,. Hence b+ (1 (—(x@y)) € R
From Lemma 3.30 we get |log(27z)|/|log(1 — z/y)| > c3. We use Lemma 2.38 and get the
proposition. [

Example 3.32. For s = 11,¢t = 52,0 = 27 % n.. = 2% and n € {2,...,nmax}, T €
{1,...,n—1} and a € RN Cy; with e, (log(27), a) < u; we get

erel(log(2mx(1 — z/n), (a ® £(z)) ® ¢1(—(x @ n))) < 0.0001006

72

3.10 Error propagation in exponentiation

In this section let K = R.

Lemma 3.33. Let ¢ € [0,00] and © € [—c, ¢|. Then we have
|1 —exp(z)| < exp(c) — 1
Proof. Because exp has positive derivative we get exp(z) € [exp(—c), exp(c)] and therefore
|1 — exp(z)| < max{exp(c) — 1,1 —exp(—c)}

We now show exp(c) — 1 > 1 — exp(—c). Let f : [0, 00[— R defined by f(y) := exp(y) +
exp(—y). Then f'(y) = exp(y) — exp(—y) and we get f'(y) = 0 < y = 0. Because of
1" (y) = exp(y) + exp(—y) > 0 we get that y = 0 is minimum of f and therefore exp(c) +
exp(—c) = f(c) > f(0) = 2. From this we get exp(c) — 1 > 1 — exp(—c) and therefore

|1 —exp(x)| < max{exp(c) — 1,1 —exp(—c)} =exp(c) — 1

[
Lemma3.34. Let f : | — 00,0[NC — Candv € |0, 1[with f(x) € R and ey (exp(x), f(z)) <
v forevery x €] —00,0[N C withexp(z) € R. Letz € | — 00,0, € | —00,0[NC,c € [0,1]
with exp(Z) € R and eyq(z,T) < ¢ Then
erel(exp(2), f(£)) < exp(cfz[)(1+v) — 1
Proof. We have
| exp(x) — f(7)] | exp(x) — exp(Z)|

<

= |1 —exp(Z —)| +vexp(T —)

< explelal)(1+v)— 1
In the last step |x — Z| < ¢|x| and Lemma 3.33 was used. O

Example: If s,t € N,C = Cyy and 2 > log(2>~*"")/(1 + ¢) then exp(#) > 2** and
|z| < (257! — 2) log(2) and therefore

exp(clz])(1 +v) — 1 < exp(e(2°! = 2)1og(2))(1 +v) — 1 =21 +0) -1

Example: If s = 11,¢ = 274 v = 2720 then we get exp(c(25~! — 2)log(2))(1 +v) — 1 < 0.074

73

Chapter 4

Computations of rigorous bounds for
binomial, multinomial and multivariate
hypergeometrical probabilities

We still consider the computation of Scan Probabilities for Markov increments. Instead of using
the “rounding to nearest mode” to get approximate values and then use the error bounds derived
in the last chapter, we are able to compute rigorous bounds using the functions &, ®, S, ..., @
which we defined in chapter 2. A case study can be found in [6].

4.1 Displaying double precision floating point numbers in hex-
adecimal format and as rational expression

The following code is suitable for displaying a double precision floating point number x in C
programs in hexadecimal format.

printf ("%p\n",x);

This prints a sequence of 8 hexadecimal characters which represents the floating point number.
The first 3 characters of that sequence represent the sign s and the exponent e in the representation

T = (_1)8(1 +d- 2—52)26—1023

while the last 5 characters represent the mantissa d. The hexadecimal sequence can be converted
into a rational representation with Mathematica, which is described below. In Mathematica the
command 16~" can be used to convert a hexadecimal number into a decimal number. For exam-
ple the hexadecimal number AA with Mathematica can be converted using the command 16~~AA
and Mathematica returns the value 170 as result. With the help of this command, a hexadecimal

75

represenation of a double precision floating point number which is displayed by the C instruc-
tion printf can be converted with Mathematica into a rational representation. For example the
C instruction printf ("%p\n", 0.1); displays the hexadecimal number 3FB999999999999A.

This can be converted into a rational expression with Mathematica with the following command:
x= (1 + 27-52%16""9999999999994) *2~(16~~3FB - 1023)

3602879701896397
36028797018963968

As result Mathematica provides the rational representation
number 0.1 that we entered to the function printf.

of the floating point

Negative double precision floating point numbers are characterised by a hexadecimal representa-
tion in which the first character is larger than or equal to 8. In negative numbers, the hexadecimal
representation of the absolute value can be obtained by subtracting the hexadecimal character 8
from the first character of the hexadecimal sequence which represents the floating point number.
For example printf ("%p\n", -0.1); displays the hexadecimal number BFB9999999999994.
Here the difference of the hexadecimal value B and 8 is 3, so the hexadecimal representation of
the absolute value of -0.1 is 3FB999999999999A.

4.2 Changing the rounding mode in C programs

The rounding mode in C according to the C 99 standard can be changed using the
#include<fenv.h>

header file and the commands

fesetround (FE_DOWNWARD) ;

for rounding downwards, and

fesetround (FE_UPWARD) ;

for rounding upwards.

The following programs measure the time needed to change the rounding mode.

void measureTimeAddition(void){
double z=1.0;

double eps=pow(2,-52);

int i;
for(i=0;1<2147483647;i++){
z=z+eps;

}

}

76

The execution of the program measureTimeAddition took 5.3 seconds.

void measureTimeChangeRounding(void){
double z=1.0;

double eps=pow(2,-52);

int i;

for(i=0;i<2147483647;i++){

fesetround (FE_UPWARD) ;

fesetround (FE_DOWNWARD) ;

}

}

The execution of the program measureTimeChangeRounding took 269.8 seconds.

void measureTimeNoOperation(void){

double z=1.0;

double eps=pow(2,-52);

int i;
for(i=0;i<2147483647;i++){
}

}

The execution of the program measureTimeNoOperation took 3.2 seconds.

In this experiment changing the rounding mode took about 63 times the computation time for an
addition.

4.2.1 Example: Computation of rigorous bounds for binomial probabili-
ties

The following function can be used to compute lower and upper bounds for the binomial density
b,,(k). Input variables are n, k and a lower bound lowerp and an upper bound upperp for the
value p. If the input variable rounding is O, then the function bin returns an upper bound for
b, (k), otherwise the function returns a lower bound for b,, , (k).

#include<stdio.h>
#include<fenv.h>

double bin(int n, int k, double lowerp, double upperp, int rounding){
int d=n-k;

double e;

e=1.0;

77

int 1i;

if (rounding==0){
fesetround (FE_UPWARD) ;
for(i=1;i<=k;i++){

e=e* (double) (d+i)/(double)i;
e=exupperp;

}

for(i=1;i<=d;i++){
e=e*(1-lowerp);

}

}

else{

fesetround (FE_DOWNWARD) ;
for(i=1;i<=k;i++){

e=e* (double) (d+1i)/(double)i;
e=e*xlowerp;

}

for(i=1;i<=d;i++){

e=ex (1-upperp) ;

}

}

return e;

}

Example: The following program computes lower and upper bounds for the binomial probability
b30,2/3(20)

int main (void){

double b=2.0;

double ¢=3.0;

fesetround (FE_UPWARD) ;

double upperp=b/c;

fesetround (FE_DOWNWARD) ;

double lowerp=b/c;

printf ("%p\n", bin(30,20,lowerp,upperp,0));
printf ("%p\n", bin(30,20,lowerp,upperp,1));
return O;

}
The program returns the lower bound 3FC39600E4A68EBS and the upper bound 3FC39600E4A68FO0C

for the binomial probability bs2/3(20). With Mathematica we are able to compute the rational
forms of these hexadecimal representation:

78

Rational form of the lower bound 3FC39600E4AG8SEBS:

(1 + 27-52%16""39600E4A68EB8) *2~(16~"3FC - 1023)

689119392223703
4503599627370496

Rational form of the upper bound 3FC39600E4A68FO0C:

This gives us the exact rational expression as lower bound for b » /3(20).

(1 + 27-52%16""39600E4A68F0C)*2~(16~~3FC - 1023)

1378238784447427

This gives us the exact rational expression gig=T55>==7r0s0

as upper bound for bgg 2/3(20).

4.3 Computation of rigorous bounds for rectangle probabili-
ties for a multinomially distributed random variable

In the last section we stated functions which are suitable for computing rigorous bounds for the
binomial density. These functions can be used to further compute rigorous bounds for rectangle
probabilities for a multinomially distributed random variable. The following algorithm is an
efficient C implementation of the algorithm which was stated in the Appendix A of [5]. Here the
so called “multiplication method” which was stated in Appendix B of Loader [16] was used.

In this example, the algorithm computes a rigorous upper bound for the probability P(N; €
{jl, C. 7l€1}, Ce ,Nd c {jd; RN k’d}) with (Nb C ,Nd) ~ Mn,(l/d 1/d) and n = 10,d =
6,1 =...=7a=0ky=... =k;=4.

#include <stdio.h>
#include <fenv.h>
#include <stdlib.h>

(@) > (b)) 7 (a) : (b))
(@) < (b)) 7 (a) : (b))

#define max(a,

b)
#define min(a, b)

Ve ey

(
(

void sum(int n, doublex startadress, doublex sum){
int i;
*sum=0;
for (i=0; i<n; i++){ *sum=+*sum + *(startadress+i);}

}

void isum(int n, int* startadress, int* sum){
int i;
*sum=0;

79

for (i=0; i<n; i++){ *sum=+*sum + *(startadress+i);}

}

double upperbnp(int k,int n, double pu, double po){
fesetround (FE_UPWARD) ;

if (2%k>n){

double ponew,punew;

ponew=1-pu;

fesetround (FE_DOWNWARD) ;
punew=1-po;

return (upperbnp(n-k,n,punew,ponew)) ;
}

double f=1.0;

int j0=0,j1=0, j2=0;

while ((jO<k)| (ji<k)|(j2<n-k))
{ 1f((jO<k)&& (f<1))

{jOo++;

f*= (double) (n-k+j0)/(double) jO;
}

else

{if (ji<k){jil++;f*x= po;}

else { j2++; f*= 1-pu;}

}

}

return(f);

}

double upperMarkovtransition (int k, int i, int j, doublex pu,
double* po, int d, int n){

double so,su;

fesetround (FE_UPWARD) ;
sum(d-k+1,&po[k],&s0) ;

fesetround (FE_DOWNWARD) ;
sum(d-k+1,&pulk],&su);

double psu=pulk]/so;

fesetround (FE_UPWARD) ;

double pso=pol[k]/su;

double prob=upperbnp(j-i,n-i,psu,pso);
return prob;

+

double upperStartProb(int i,int n, double* pu, doublex po){
return upperbnp(i,n,pul0],po[0]);

80

void upperRectangleProb(void){

int i,k;
int n = 10;
int d = 6;

double zahler=1.0;

double nenner=(double) d;

double* pu = (doublex) malloc (d * sizeof(double));
double* po = (doublex) malloc (d * sizeof (double));
fesetround (FE_DOWNWARD) ;

for (i=0;i<d;i++){ pulil=zahler/nenner; }
fesetround (FE_UPWARD) ;

for (i=0;i<d;i++){ pol[i]=zahler/nenner; }

int* b = (int*) malloc (d * sizeof(int));
for (i=0;i<d;i++){ b[i]=0; }
int* ¢ = (int*) malloc (d * sizeof(int));

for (i=0;i<d;i++){ c[il=4; }

int* alpha = (int*) malloc ((d-1) * sizeof(int));
int* beta = (int*) malloc ((d-1) * sizeof(int));
int zl,z2;
for (k =1;k<d;k++){

isum(d-k,&c[k],h6&=z1);

isum(k,&b[0],&z2) ;

alphalk-1]= max(n-z1,z2);

+
for (k =1;k<d;k++){

isum(d-k,&b[k] ,&z1);

isum(k, &c[0],&z2) ;

betalk-1]= min(n-z1,z2);

+

double* temp = (doublex) malloc ((n+l1) * sizeof(double));
doublex P = (doublex*) malloc ((n+1) * sizeof(double));
double*x R = (doublex*) malloc ((n+1) * sizeof(double));
doublex Q;

int j;

for (j=0;j<=n;j++){ R[j1=0; }
for (j=0;j<=n;j++){ P[j1=0; }

81

for (j=alphal[O0]; j<= betal0]; j++) { P[jl= upperStartProb(j,n,pu,po); }

int x,su,so;
for (k = 2; k<d; k++) {

Q=R;
for (x = alphalk-1]; x <= betalk-1]; x ++) {

su=max (x-c[k-1],alphalk-2]);
so=min(x-b[k-1],betalk-2]);

if (su<= so){

for (j=su;j<= so; j++) {

temp[j] = upperMarkovtransition(k-1,j,x,pu,po,d,n)*P[jl;};
sum(so-su+l,&temp[sul ,&Q[x]);

}

}

for (j=0;j<=n;j++){ P[j1=0;}
R=P;

P=Q;

}

double result;
sum(n+1,&P[0] ,&result);
printf ("% .20f",result);
}

int main (void){
upperRectangleProb() ;
return O;

}

82

4.4 Comparison of the multiplication method and Loader’s
algorithm for the binomial density

While the multiplication method for the binomial density allows the computation of rigorous
bounds when the rounding modes of the computer are changed, it is much slower in comparison
with Loader’s algorithm for the binomial density. For example, we consider the computation
of the values P(Ny,..., Ny < k) of the cumulative distribution function for a multinomially
distribed random variable (Ni,..., Ng) ~ M, , withn,d € N;d > 2and p = (1/d,...,1/d).
Table 4.1 lists the times needed to compute these values with the function stated in Appendix A,
when the binomial transition probabilities were computed with one of the two different methods.
All computations were done on a 3.7 GHz CPU with 4.0 GB Ram.

Table 4.1: Time needed to compute P(Ny, ..., Ny < k) for (Ny,...,Ng) ~ M,,,

n d k | P(Ny,..., Ng < k) | Time (multiplication method) | Time (Loader’s algorithm)
100 100 | 4 0.7016461 1.0s 0.25s
100 | 100 | 5 0.9475989 1.3s 0.33 s
100 | 100 | 6 0.9929082 1.6s 0.36 s
300 | 250 | 4 0.1332788 17.5s 1.7s
300 | 250 | 5 0.6913766 22.6s 2.1s
300 | 250 | 6 0.9417305 29.2s 2.5s
500 | 250 5 0.0111244 47.3 s 2.8s
500 | 250 | 6 0.3171264 61.1s 3.5
500 | 250 | 7 0.7644753 75.6 s 4.1s

4.5 Computation of rigorous bounds for rectangle scan prob-
abilities for a multinomially distributed random variable

Let (Ny,...,Ng) ~ M, , withn = 500,d =365 and p = (1/d,...,1/d). Let
d—2
S = I]?_ELI}{(Nk + Nk+1 + Nk+2)

In Appendix B we listed an implementation of the Algorithm A from chapter 1 which computes
lower bounds and upper bounds for the values P(S < k) of the cumulative distribution function
of Sfor k € {8,...,15}. These values are listed in Table 4.2.

Table 4.2: Bounds for the cumulative distribution function of the multinomial scan S

k| P(S<k) k | P(S<k) k | P(S<E) k | P(S<k)
8 | 0.0007795 10 | 0.3773 12 [0.9030 14 | 0.9920
0.0007796 0.3774 0.9031 0.9921

9 | 0.0661 11 | 0.7210 13 | 0.9708 15 | 0.9979
0.0662 0.7211 0.9709 0.9980

83

4.5.1 Comparison of the accuracy of bounds in double precision and in
single precision
Following [6], we do a following case study which compares the accuracy of rigorous bounds for

multinomial scan probabilities when either the double precision number system I[EEEDouble or
the single precision number system [EEESingle are used.

For a quantitative analysis of the accuracy of computed probabilities we need to consider absolute
and relative errors. For p, p € [0, 1] we define the absolute error

eabs(pvﬁ) = ’p —]5‘

and the relative error

Cabs(P; P) €abs(l —p, 1 _ﬁ)} _ lp — Pl

P 1—p min(p, 1 — p)
in the approximation of p by p, with 3 := 0 and £ := oo for 2 > 0. For a,b € [0,1] witha < b
and p € [a, b] we further define the absolute error

erel(p7ﬁ) ‘= max {

eabs([ay b]7]5) = ;2[3%] eabs(paﬁ) - max{b - 257]5 - CL}
and the relative error

erel([aa b]aﬁ) = pe[g);):] erel(pvﬁ)

in the approximation of a probability which is known to lie in [a, b] by p. We get simple formulas
for e,e1([a, b], p) in the following two cases. If a,b € [0,1/2] or a,b € [1/2,1] we have

erel([aa b]) ﬁ) = maX{6r91<(l, ﬁ)7 erel(ba]5)}
Hence, if a, b €]0,1/2] we have

ceal(a0),7) = max{ =, 22T
and if a,b € [1/2, 1] we have
ceal(a 8], 7) = max{ P =%, 270

For accuracy measurements in interval calculations we use the following mini-max errors.

Definition 4.1. For a,b € [0, 1] with a < b we define the absolute error

) _ a+b b—a
eabs([au b]) = ;521[:11%} eabs([au b]7p> = eabs([au b]u 9) = 9

and the relative error

erel([aa b]) = f)ren[g})] erel([aa b]aﬁ)

in the approximation of a probability by the interval [a, b|.

84

Easy calculations yield the following formulas:

Theorem 4.2. Ifa,b € [0,1/2] we have

2ab b—a
- : Ny _
Vi € [a,8]: ecalla,0,) < erallast],) = p
Hence
b—a
erel([aa b]) T bra
Ifa,b € [1/2,1] we have
R B a+b—2ab b—a
P Cre , O, S re » U1, -
Vi € 0,6 ([, ,) < enalfa, B, 500 = 2
Hence
b—a
re 7b =5 1
erella, b]) = 5——

Note that the absolute error e,s([a,b]) and the relative error e,q([a,b]) need not be reached
simultaneously by one of the approximators. It need not be reached at all, as the following
example illustrates.

Example 4.3. In Table 4.3 we listed the errors eaps([a, b], p) and e,q([a, b, p) for [a, b] = [0.02,0.03]
and different approximators p . We see that e,ps([a, b]) = 0.005 and e,q([a, b)) = 1/5. If we take
the upper bound p = b as approximator for the unknown probability p , neither e.s([a, b], p) =
eans(|a, b]) is reached, nor e, ([a, b],) = era([a, b]). If, for example, the unknown probability is

Table 4.3: Errors for the interval [a, b] = [0.02,0.03]

D eabS([a7 b]vﬁ) erel([av b]vﬁ)
2ab/(a+b) = 0.024 0.006 1/5
(a+1b)/2 = 0.025 0.005 1/4
a 0.01 1/3
b 0.01 1/2

p = (3/10)> = 0.027, then the errors are as listed in Table 4.4.

85

Table 4.4: Errors for the probability p = 0.027
]5 €abs (pa ﬁ) €rel (p7 ﬁ)
0.024 0.003 3/27
0.025 0.002 2/27
a 0.007 7/27
b 0.003 3/27

Examples

For N ~ M,,, withn = 500, d = 365,p = (1/d,...,1/d)and k € {4,...,32} we computed an
upper bound 7 and a lower bound p for the probability P(max?=2(N; + Niy1 + Nijs) < k) with
the Algorithm from Appendix B . In Table 4.5 we tabulate the computed bounds p, 7 and analyze
their accuracy in double precision, in Table 4.6 we list the results if all computations are done
in single precision. Numbers written in typewriter font are hexadecimal. The coloumn titled
“approx” gives the known decimal digits of a value of the “probability representation number
system” 7', that lies nearest to the exact value. The probability representation number system 7'
consists of all numbers with 7 decimal digits without leading zeros or nines. We use the notation
.0% as an abbreviation for a decimal point followed by x zeros, analogously .9*. The symbol ?
appearing in a number means that the following digits are not exactly known.

The value e, TeSp. €y is the minimal upper bound for e,ps([p, P]) resp. e ([p, p]) which has
the form c - 10* where c has 3 significant digits and k € Z.

Thus, in Table 4.5 the line with & = 15 means that the probability P(max?=?(N;+ N1+ Niyo) <
15) lies in the interval [p, p] with

P = 1.fef956911fe58-27!
= (1+15-167 4 14-1672+ ... +8-1671%) . 27!
= 0.99799604913273309847454584087245166301727294921875
1.fef95690c7eda - 27!
= (1+15-167 4+...+10-1673) - 27!
= 0.9979960490927297644958571254392154514789581298828125

IS
|

with all equalities exact. The minimal upper bound for e,ps([p, p]) which has the form ¢ - 10*
where ¢ has 3 significant digits and & € Z is 2.01 - 10~"* and the minimal upper bound for
eabs([p,P]) which has this form is 9.99 - 107°. A value of the number system 7" which is
nearest to the exact probability is 0.9979961. As the numbers of the system 7' in the interval
[0.001,0.9989999] differ by 107, just knowing the approximate value we can infer that the ab-

solute error in this approximation is less than 1077,

The computed probabilities can be used as p-values for tests that check data on clusters. For
example: Let n = 500 patients arrive at a clinic in d = 365 days. We compute the probability
that there exist three successive days in which together more than 15 patients arrive. From the

86

Table 4.5: Upper and lower bounds p, p for P(max?=? N; + Niy1 + Niyo < k) with N ~ M, ,,,
n=1500,d=365p=(1/d,...,1/d)and k € {4,...,32}.
|

P €abs €rel || approx
4 0 0 0 0
5 || itearersioes o | 552:10°0% [2011071 | 028993
6 | §resersaesocs s o | 231-107% [2010 || 0%11651
T | ceeanar a2 | 257107 [2ot | oT1z7so
8 1:::22:13;3;2?311 1571071 | 2.01-107'" || .0377957
0 | Lot 51 | La3-1072 [201107 | 0661642
10 1:5225233232223:2 7.57-10712 | 2.01-107'1 || 3773734
|t 5 1| Lse107 | 5191071 [7210882
12 | e enge 5 1 | Lste10- | 18710 [9030104
13 | iiiessorsore o 1| 195:10° | 66910 [o70s70
14 122222222‘;822333 1.99-1071 | 251-107° | 9920622
15 | 1 ioteesoniee 5t | 201107 | 0.99.10-0 || 9979961
16 | e a1 | 201107 [420107 [9752685
17 | ionane a1 | 201107 [1or10-7 [%800
18 | s o 1| 201107 [9111077 [Ltrroso
19 | ieseenes a1 | 201107 [450107 [o°se2sa
20 | 1 iiticsmmreae s | 200107 | 240.100 [oearer
21|} iiieeeis. a1 | 201107 | 13610~ | o®85207
22 | i a1 | 20010 | rorw0-+ [orar
2 | i o1 | 201107 [assa0- | oser
20 | iitiresores a1 | 201107 | sosa02 907
25 | | iititeemae s | 201107 | 20107 [L%
26 1 .ffffffff1b44b7 g1 l1-p 00 9107
27 1 .fffffffflcf373 .91 L-p oo 9107
28 1 .fffffffflede .21 l—p oo 9107
29 1 .ffffffff1d37fa g1 l-p 00 9107
30 1 .ffffffff1d3908 91 l-p oo 9107
31 1 .ffffffff1d392a .91 l—p 00 .9107
32 1 .ffffffff1d392a -271 l-p oo 9107

87

Table 4.6: Upper and lower bounds p, p for P(maxf;f Ni+ Nij1+ Niyo < k) with N ~ M, ,,

n =500,d = 365,p=(1/d,...,1/d)and k € {4,...,25}, computed in single-precision.
k

“ PP j 254 ‘ €abs ‘ €rel “ approx
4 0 0 0 0 0
. 9—135 A09n
5 1.974c00 - 2 03652 | | ga 1041 | 104.10-2 || 0107
0 0
1.bccbad - 2767 091177 22 N "
‘ 10— Py ;
6 1539300 . 2-67 191150 | 1:22-10 1.04- 10 019117
1.bbb862 - 2727 .0712913... 0 N .
. - . — 2
7 1.b28b40 - 227 0712646... 1.34-10 1.04 - 10 07127
1.9d02a2 - 211 .0378775... p N 5
. - . — 2
8 1. 947834 . 2~ 11 e | 815:10 1.04- 10 0371
1.11da84 - 272 .0668587... . - 3
9 1.0¢30d0 - 274 .0654762... 6.91-10 1.04-10 .067
1.867cac - 272 .3813349... S -)
10 1.7¢699a - 22 .3734497... 3.94-10 1.04-10 .37
1.7511fc- 27! .7286528... . - .
" 1.6d5b2a - 27! 7135861... | (03710 2.7-10 77
1.d331e6 271 .9124900... . - N
12 1.c988cc - 2! 8936218... | O43-10 9.7-10 7
1.£64e04 - 271 .9810639... - -)
13 1.ebeb16 - 271 9607779... | 10110 3.49-10 97
1 1
- ?
14 1.f6a7a6 -2~ 981747S... 1-p o0 97
1 1
— ?
15 1.£92056 - 2~ .9876200.... l-p oo 97
1 1
- ?
16 1.fabfe6 -2 19891349... l-p 00 97
1 1
- ?
17 1.fa9fa0 - 27! .9894990... 1-p o0 97
1 1
— ?
18 1.fa2a68 - 2~! 19895813... l-p oo 97
1 1
- ?
19 1.faach6 - 2! 19895980... l-p 00 97
1 1
- ?
20 1.faad2c - 2! .9896024... 1-p 00 97
1 1
— ?
21 1.faad3c 2! .9896029... l-p oo 97
1 1
- ?
22 1.faad40 - 2! .9896030... l-p 00 97
1 1
- ?
23 1.faaddd .21 .9896031... I=p o0 97
1 1
- ?
24 1.faad46 -2~} .9896032... l-p) .97
1 1
— ?
25 1.faad46 - 2~! 19896032... 1—p o0 97

88

line for £ = 15 in Table 4.5 on page 87, we get the approximate value 1—0.9979961 = 0.0020039
with an absolute error less than 10~7. As this probability is so small we would, if the described
event occurs, reject the hypothesis that the patients arrived independently and hence suspect that
there must be a reason for this cluster.

4.6 Computation of rigorous bounds for rectangle scan prob-
abilities for a multivariate hypergeometrically distributed
random variable

As stated in 1.3, multivariate hypergeometrically distributed random variables are Markov incre-
ments. Therefore implementations of the Algorithm A from Chapter 1 can be used to compute
rectangle scan probabilities for a multivariate hypergeometrically distributed random variable.
From [6] we take the following example, where we compute rigorous bounds for the exact prob-
abilities.

We use the following algorithm to compute the multivariate hypergeometric transition probabil-
ities, which are univariate hypergeometric. In the “rounding up” mode this algorithm calculates
an upper bound for the exact hypergeometric probability. In the “rounding down” mode this
algorithm calculates a lower bound for the exact hypergeometric probability.

double hyp(int n, int r, int b, int k){

double £=1.0;

int j0=0,j1=0,j2=0;

while ((jO<k)| (ji<n-k) | (j2<mn)){

if(£<1 && ((jO<k) | (ji<n-k))){

if (jo<k) { f*x=(double) (r-j0)/(jO+1);jO++;}

else {if (ji<n-k) { f*=(double) (b-j1)/(j1+1);j1++;}
else if (j2<n) {fx=(double) (r+b-3j2)/(j2+1);j2++;}}
}

else if (j2<n) { fx=(double) (j2+1)/(r+b-j2);j2++;}
}

return f;

+

Table 4.7 contains the distribution function of the random variable maxf:_f(]\fi + Nit1 + Niyo)
with N ~ H,, ,, with n = 500, d = 365 and m = (10,...,10). Details on the used notation are
described in 4.5.1. The algorithm with which the values were computed is printed in Appendix
F.

89

Table 4.7: Upper and lower bounds p, p for P(max?=? N; + Niy1 + Niyo < k) with N ~ H,, .
n = 500, d = 365, m = (10,...,10) and k € {4,...,26}.
k|l

p. 7l €abs €rel “ approx
4 0 0 0 0
5 | 1 oevaccooueg a0 | 309:10° | 286-10-1 | 04710815
6 | o eeieae 5 o | 820-107% | 257101 || 0%as026
7 | L oreeeareoeas 5 m | 309-1077 | 257101 [oPazsse
8 | L ecasomme o | 281107 25710 | ooorsez
o | 1ireaeraceeems o | 191107 257101 | 2541468
10 | iovaseonrreg o1 | 200°10 [5701000 | geasssa
| e o1 | 281010 [27020 | gosszas
12 e 51| 2860107 | 130-10-0 [o7ssaze
13 | aererneste 51| 287107 | 62100 [oosses:
14 | U inersocasess o1 | 28710 [2010 | 9951603
15 | itroreastons o1 | 25710 [200007 | otorass
16 | rceecranore o1 | 287101 | 231100 | 9%s7ss
17 | iireanoitoter o1 | 25710 [210100 | 986207
18 | [iieretsesse o1 | 287101 [215104 | osesr
19 | e 51| 287100 | 2610100 | o7
20 | | irrerearsson a1 | 287100 | sesea0-2 [oo
2 | i a1 | 287100 [sssea0 [oo
22 1 .fffffffflbb782 .91 l-p 00 9107
23 1 .ffffffff1c0de3 .9t l-p 00 .910?
24 1 .ffffffff1c11b4 .2-1 l-p oo 9107
25 1 .fffffffflclldg R l-p 00 9107
26 1 .fffffffflclldg .21 l-p 00 9107

90

4.7 Calling C-functions from R and changing the rounding
mode in R

In R there exists the option to call C-functions. In order to do this, with the C-Compiler first a
shared library has to be created that contains the functions which shall be called in R. The shared
library, which is located in a file with the file extension .so, then can be included into R with the
dyn.load command. After having included the shared library in R, functions can be called from
that library using the interface function which is called .C.

By including C-functions it is possible to change the rounding mode in R for example in a way
that all the floating point operations +, —, *, / always give results which are rounded downwards
and therefore are lower bounds for the exact result.

For example, to functions that change the rounding mode in R, the following C-functions can to
be compiled into a shared library with the .so extension.

void rounddown(void){
fesetround (FE_DOWNWARD) ;
}

void roundup(void){

fesetround (FE_UPWARD) ;
}

If the shared library is called RoundingModes.so, then this shared library can be included using
the following command in R:

dyn.load("RoundingModes.so")

After the shared library is included in R, the rounding modes can be changed in R using the
following commands

.C("rounddown")
or
.C("roundup")

Further information on including C code in R can be found in “Writing R Extensions” at the R
project webpage https://cran.r-project.org/manuals.html

A different reason for using C code in R, besides the use of alternate rounding modes, could be
the following. Loops in R are said to be slower than in C.

91

Appendix A

An algorithm for the multinomial range

The following R script prints the values of the cumulative distribution function of the Range

d d
D = max N; — min N;
i=1 i=1

for a multinomially distributed random variable D ~ M,, , with n = 1000,d = 6 and p =
(1/d,...,1/d). These values are listed in Table 1.1.

rm(list = 1s(all = TRUE))

n=1000;
d=6;
p=array(1/d,d)

startprob<- function(i){dbinom(i,n,p[1]) }

markovTransition<- function(k,i,j){

prob=numeric(length(i));

for (1 in 1:length(i)) { prob[l]l=dbinom(j-i[1],n-i[1],p[k]/sum(plk:dl)) };
prob

}

multiRectangleProb<- function(n,b,c){

alpha=numeric(d-1)

beta=numeric(d-1)

for (k in 1:(d-1)) alphalk]=max(n-sum(c[(k+1):d]),sum(b[1:k]))
for (k in 1:(d-1)) betalk]=min(n-sum(b[(k+1):d]),sum(c[1:k]))

P=numeric(n+1)

93

for (j in alpha[1]:betal[1]) P[j+1]l=startprob(j)
for (k in 2:(d-1)) {
Q=numeric (n+1)
for (x in alphalk]:betalk]) {

su=max (x-c[k],alphalk-1])
so=min(x-b[k] ,betalk-1])

if(su<=so0) Q[x+1]=sum(markovTransition(k,su:so,x)*P[su:so+1])

CDFMultiRange<- function(k){

x=0

for (h in 0:(n-k)) {x=x+multiRectangleProb(n,array(h,d),array(h+k,d))}

for (h in 0:(n-k-1)) { x=x-multiRectangleProb(n,array(h+1,d),array(h+k,d))}
X

}

for (k in 1:68) {print(k); print(CDFMultiRange(k))}

94

Appendix B

An algorithm for the cumulative
distribution function of a scan statistic of a
multinomially distributed random variable

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <fenv.h>

#define max(a, b) ((@) > (M) ? (a) : (b))
#define min(a, b) (((a) < (b)) ? (a) : (b))

void sum(int n,int s, doublex startadress, doublex sum){
int i;

*sum=0;

for (i=0; i<n; i++){ *sum=+*sum + *(startadress+i*s);}

}

double bnp(int k, int n, double p, double g){
if (2*k>n) return(bnp(n-k,n,q,p));

double £=1.0;

int j0=0,j1=0,j2=0;

while ((jO<k) | (ji<k)| (j2<n-k))

{

if((jO<k) && (£<1)) {

95

jO++;

fx= (double) (n-k+j0)/(double) jO;}
else {

if(j1<k) {j1++; fx= p’}

else {j2++; f*x= q;}

}

}

return f;

}

void ComputeTransitionProbs(int d, doublex pu, doublex po,
double* psu, double* pso, double* gsu, double* gso){

(doublex*)malloc (8x*d) ;
(doublex*)malloc (8x*d) ;

double*x sumu
double* sumo

sumu[d-1]=puld-1];

sumo [d-1]=po[d-1];
fesetround (FE_DOWNWARD) ;
int 1i;

for (i=d-1;i>1;i--){
sumul[i-1]= sumul[i]+puli-1];
}

fesetround (FE_UPWARD) ;

for (i=d-1;i>1;i--){
sumo[i-1]= sumo[i]+po[i-1];

+

psuld-1]=1;

psold-1]=1;
psul0]=pu[0];
pso[0]=po[0];
fesetround (FE_DOWNWARD) ;
for (i=1;i<d-1;i++){
psulil=pulil/sumo[i];
if (psulil>1){psulil=1;}
}

fesetround (FE_UPWARD) ;
for (i=1;i<d-1;i++){
psolil= pol[il/sumuli];

96

if (psol[il>1){psol[il=1;}
}

fesetround (FE_DOWNWARD) ;
for (i=0;i<d;i++){
gsulil=1-psol[il;

}

fesetround (FE_UPWARD) ;
for (i=0;i<d;i++){
gso[il=1-psulil;

}

free(sumu) ;
free(sumo) ;

return;

+

void Mult3ScanRectangleProb(int d,int 1, int n, doublex ps,
double* gs, int* b, int* c, int* m, int* M){
int nn=(n+1)*(n+1);

//Initialize memory

double* P=(doublex)malloc(8x(n+1)*(n+1)*(n+1));
doublex R=(doublex*)malloc(8*(n+1)*(n+1)*(n+1));
doublex @Q;

int 1i,j,k;

int index;
for(i=0;i<=n;i++){
for(j=i;j<=n;j++){
for(k=j;k<=n;k++){
index=i*nn+j*(n+1)+k;
* (P+index)=0;

* (R+index)=0;

1}

97

//Compute starting probabilities
int ma= min(M[0],n);
int mi= min(m[0],n);

for(i=mi;i<=ma;i++){

for(j=1i;j<=ma;j++){

for (k=j;k<=ma;k++){

* (P+i*nn+j* (n+1)+k)
=bnp(i,n,ps[0],qs[0])*bnp(j-i,n-i,ps[1],qs[1])*bnp(k-j,n-j,ps[2],qs[2]);
1}

//Use recursion to fill the array of probabilities
int nu;
int su,so;

for (nu=2;nu<=d-1+1;nu++){
Q=R;

ma=min(M[nu-1] ,n);
mi=min(m[nu-1],n);

for(i=mi;i<=ma;i++){
for(j=i;j<=ma;j++){

for (k=j;k<=ma;k++){
su=max(k-c[nu-1] ,m[nu-21);
so=min(k-b[nu-1] ,min(i,M[nu-21));
index=i*nn+j*(n+1)+k;

if (j<= M[nu-2] && su<= so){
sum(so-su+l,nn,P+su*nn+i*(n+1)+j,Q+index) ;
* (Q+index) *=bnp(k-j,n-j,ps[nu+l],qs[nu+ll);
}else{*(Q+index)=0;3}

11}

for(i=0;i<=n;i++){
for(j=i;j<=n;j++){
for(k=j;k<=n;k++){
* (P+i*nn+j* (n+1)+k)=0;

1}

98

//Sum up the relevant entries of the last row of the array
//of probabilities. This yields the result.

double result=0;

ma= min(M[d-1],n);

mi= min(m[d-1],n);

for(i= mi;i<= ma;i++){

for(j=i;j<=ma;j++){

for (k=j;k<=ma;k++){result = result+ *(P+i*nn+j*(n+1)+k);
i3

printf("%p ",result);printf("%.20f\n",result);

free(P);
free(R);
return;

}

void Mult3ScanRectangleWrapper (int* D,int* L, intx* N,
double* pu, doublex po, int* b, int* c, int* m, int*x M){
int d=xD;

int 1=xL;

int n=%N;

int nn=(n+1)*(n+1);

//Compute the transition probabilities
double* psu = (double*)malloc(8+d);

double* pso = (doublex)malloc(8*d);
double* gsu = (doublex)malloc(8%d);
double* gso = (doublex)malloc(8%d);

ComputeTransitionProbs(d,pu,po,psu,pso,qsu,qso);

//Compute lower and upper bound for the exact rectangle scan probability
fesetround (FE_DOWNWARD) ;

Mult3ScanRectangleProb(d,1l,n,psu,qsu,b,c,m,M);

fesetround (FE_UPWARD) ;

Mult3ScanRectangleProb(d,1l,n,pso,gso,b,c,m,M);

}

void computation(int d, int 1, int n, int k){
double* pu = (doublex)malloc(8xd);
double* po = (doublex)malloc(8xd);

99

int i,j;

for (i=0;i<d;i++){
fesetround (FE_DOWNWARD) ;
pulil=1/(double)d;
fesetround (FE_UPWARD) ;
polil=1/(double)d;

}

int* b=(int*)malloc(4*(d-2));
int* c=(int*)malloc(4*x(d-2));
int* m=(int*)malloc(4*x(d-2));
int* M=(int*)malloc(4*(d-2));

for(i=0;i<d-1+1;i++){b[i1=0;}
for(i=0;i<d-1+1;i++){c[il=k;}
for(i=0;i<d-1+1;i++){m[i]=0;}

M[0]=k;

for(i=0;i<d/1-1;i++){
for(j=1;j<=1;j++){M[i*1+jl=k*(i+2);}

}
for(j=1;j<=d-1*(d/1);j++t){M[d-1+1-j]1=k*(d/1+1);}

double zeit=clock();

Mult3ScanRectangleWrapper(&d,&l, &n, pu, po, b, ¢, m, M);
printf("%.2f ", (clock()-zeit)/CLOCKS_PER_SEC) ;printf ("%c\n",’s’);
return;

}

int main (void){
int d=365;

int 1=3;

int n=500;

int k;

for(k=8;k<=15;k++){
printf ("%i\n",k) ;
computation (d,1,n,k);
}

return O;

}

100

Appendix C

Stirling’s Series

Definition C.1. We define the Bernoulli Numbers b, b;, b3, . .. € R in the following way as the
coefficients in the series

2 24
Z—i—...

X e i
—1—Z4b——b
et — 1 g Toigy —

which according to [8] converges for every € R with |z| < 27.

Definition C.2. We define Stirling’s Series (.S,,),cn by

o " (—)k_lbk 1
Sule) =3 2h(2k — 1) 221

k=1
for x €]0,00[and n € N.

Example C.3. We have Sg(r) = - 691

1 1 1 1
o7 ~ 3603 T 126055 — 168057 T 11885° — 36036001T 10T T € 10, 00

Let 1 :]0,00[= R

() = log (I(z+1))

1"t ae=u\/27
where I :]0, o[— R is the Gamma-Function which is defined by the conditions

['(z+1)=a T(z) forz €]0,00]
(1) =1

log(T") is convex

From [18] we know the following theorem which states approximations of x by Stirling’s series.
The theorem is proven with the help of results from [23].

101

Theorem C.4. For x — oo we have the asymptotic expansion

That means, that for every n € N we have
p(x) — Sp(x) = o(Sp(x) — Sp_1(x)) for v — oo

Moreover, for every x € |0, 00| the series (S, ())nen is enveloping the value ji(x), which means
that we have the inequalities

Sn-1(z) 2 p(x) = Sn(x)
for every n € N which is even.

Example C.5. We have

1
1 < —
(C.1) S() < 55
and
1 1
2 > _-
€2 5(*) 2 157 ~ 35008
and therefore
1 1
- | <
‘S (@) = 192 | = 36047

for every x € |0, 00|, and therefore the relative error

— L
() — 5l _ 1 1

S(@)] ~ 36023(mk — zos) 3022 — 1

for every = €] 2=, oo[.

102

Appendix D

Loader’s algorithm for the binomial
density

This is a print of the files dbinom.c, bd0.c and stirlerr.c, called from the folder http://svn.r-
project.org/R/trunk/src/nmath/ on October 9th 2014. These files contain the program code for
the function dbinom, that the R version 3.1.0 (2014-04-10) uses to compute the binomial den-
sity. Uwe Ligges [15] wrote an article that describes how the C-Code of every built-in R-function
can be displayed. We assume that the C code is written according to the C Standard [2]. This al-
gorithm for the binomial density is a slightly modified version of the algorithm described in [16].

D.1 Print of the file dbinom.c

/%

* AUTHOR

* Catherine Loader, catherine@research.bell-labs.com.

* QOctober 23, 2000.

*

* Merge in to R and further tweaks :

* Copyright (C) 2000-2014 The R Core Team

* Copyright (C) 2008 The R Foundation

*

* This program is free software; you can redistribute it and/or modify
* 1t under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

%

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

103

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, a copy is available at
http://www.r-project.org/Licenses/

DESCRIPTION

To compute the binomial probability, call dbinom(x,n,p).
This checks for argument validity, and calls dbinom_raw().

dbinom_raw() does the actual computation; note this is called by
other functions in addition to dbinom() .
(1) dbinom_raw() has both p and q arguments, when one may be represented
more accurately than the other (in particular, in df()).
(2) dbinom_raw() does NOT check that inputs x and n are integers. This
should be done in the calling function, where necessary.
-- but is not the case at all when called e.g., from df() or dbeta() !
(3) Also does not check for 0 <= p <= 1 and 0 <= q <= 1 or NalN’s.
Do this in the calling function.

¥ XK XK X X K K K K K K X X X X X K ¥ ¥ X ¥

*

/

#include '"nmath.h"
#include '"dpq.h"

double attribute_hidden
dbinom_raw(double x, double n, double p, double q, int give_log)

{
double 1f, 1c;

if (q == 0) return((x == n) ? R.D__1 : R_D__0);

if (p == 0) return((x == 0) ? R_.D__1 : R_D__0);

if (x == 0) {
if(n == 0) return R_D__1;
lc = (p < 0.1) ? -bd0(n,n*q) - n*p : n*log(q);
return(R_D_exp(lc));

}

if (x == n) {
lc = (q < 0.1) ? -bd0(n,n*p) - n*q : n*log(p);
return(R_D_exp(lc));

104

if

1c

/%
/*
*
*

1f

(x <0 |l x>n) return(R_.D__0);

nxp or nxq can underflow to zero if n and p or q are small.
This used to occur in dbeta, and gives NaN as from R 2.3.0.

= stirlerr(n) - stirlerr(x) - stirlerr(n-x)
- bd0(x,n*p) - bd0(n-x,nx*q);

f = (M_2PI*x*(n-x))/n; could overflow or underflow */
Upto R 2.7.1:

1f = log(M_2PI) + log(x) + log(n-x) - log(n);

-- following is much better for x << n : %/

= M_LN_2PI + log(x) + loglp(- x/n);

return R_D_exp(lc - 0.5%1f);

}
double dbinom(double x, double n, double p, int give_log)
{
#ifdef IEEE_754
/* NaNs propagated correctly */
if (ISNAN(x) || ISNAN(n) || ISNAN(p)) return x + n + p;
#endif
if (p <0 Il p>1 || R_D_negInonint(n))
ML_ERR_return_NAN;
R_D_nonint_check(x) ;
if (x < 0 || 'R_FINITE(x)) return R_D__O;
n = R_forceint(n);
x = R_forceint(x);
return dbinom_raw(x, n, p, 1-p, give_log);
}
D.2 Print of the file bd0.c
/%
* AUTHOR
* Catherine Loader, catherine@research.bell-labs.com.

105

*/

October 23, 2000.

Merge in to R:
Copyright (C) 2000, The R Core Team

the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, a copy is available at
http://www.r-project.org/Licenses/

DESCRIPTION
Evaluates the '"deviance part"
bd0(x,M) := M * DO(x/M) = Mx[x/M * log(x/M) + 1 - (x/M)] =

= x x log(x/M) + M - x
where M = E[X] = n*p (or = lambda), for x, M >0

*
*
%
*
*
*
*
*
*
*
*
*
*
%
*
*
*
*
%
*
*
*
*
%
*
*
* in a manner that should be stable (with small relative error)
* for all x and M=np. In particular for x/np close to 1, direct
* evaluation fails, and evaluation is based on the Taylor series
x of log((1+v)/(1-v)) with v = (x-M)/(x+M) = (x-np)/(x+np).

*/

#include "nmath.h"

double attribute_hidden bd0(double x, double np)

{
double ej, s, s1, v;
int j;
if ('R_FINITE(x) || !R_FINITE(np) || np == 0.0) ML_ERR_return_NAN;

if (fabs(x-np) < 0.1*(x+np)) {
v = (x-np)/(x+np); // might underflow to O
s = (x-np)*v;/* s using v -- change by MM */

106

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

if (fabs(s) < DBL_MIN) return s;
e] = 2¥x*v;
V = VkV;
for (j = 1; j < 1000; j++) { /x Taylor series; 1000: no infinite loop
as |v|l < .1, v~2000 is "zero" x/
ej *=v;// = v (2j+1)
sl = s+ej/((j<<1)+1);
if (s1 == s) /* last term was effectively 0 */

return sl ;
s = si;
}
}
/* else: | x - np | 1is not too small */

return(x*log(x/np)+np-x);

D.3 Print of the file stirlerr.c

~
*

AUTHOR
Catherine Loader, catherine@research.bell-labs.com.
October 23, 2000.

Merge in to R:
Copyright (C) 2000, The R Core Team

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, a copy is available at
http://www.r-project.org/Licenses/

¥ K X X X X K K K K X X X X K X ¥ ¥ ¥ ¥ X

107

DESCRIPTION

write lgamma!)

¥R X X K K ¥ X ¥

* Merge in to R:

* Copyright (C) 2000, The R Core Team
* R has lgammafn, and lgamma is not part of ISO C

*/

#include "nmath.h"

/* stirlerr(n)
*

*

*

* see also lgammacor() in ./lgammacor.c

*/

Computes the log of the error term in Stirling’s formula.
For n > 15, uses the series 1/12n - 1/360n"3 + ...
For n <=15, integers or half-integers, uses stored values.
For other n < 15, uses lgamma directly (don’t use this to

log(n!) - log(sqrt(2xpi*n)*(n/e)"n)
log Gamma(n+1) - 1/2 * [log(2*pi) + log(n)] - n*x[log(n) - 1]
log Gamma(n+1) - (n + 1/2) * log(n) + n - log(2*pi)/2

which computes almost the same!

double attribute_hidden stirlerr(double n)

{

#define SO 0.083333333333333333333
#define S1 0.00277777777777777777778
#define S2 0.00079365079365079365079365 /* 1/1260 */
#define S3 0.000595238095238095238095238 /* 1/1680 */
#define S4 0.0008417508417508417508417508/* 1/1188 */

/%
error for 0, 0.5, 1.0, 1.5,
*/

const static double sferr_halves[31]
.0, /* n=0 - wrong, place holder only */
.5

.15634264097200273452913848,
.0810614667953272582196702,
.06481412105619176538961390,
.0413406959554092940938221,
.03316287351993628748511048,
.02767792568499833914878929,

O O O O O O O

/%
/%
/%
/%
/%
/%

*

W NN = =~ O
O o1 O o O

14.5,

*/
*/
*/
*/
*/
*/

108

/* 1/12 x/
/* 1/360 */

15.0.

=1

.02374616365629749597132920, /* 3.5 */
.02079067210376509311152277, /* 4.0 */
.01848845053267318523077934, /* 4.5 */
.01664469118982119216319487, /* 5.0 */
.01513497322191737887351255, /* 5.5 */
.01387612882307074799874573, /* 6.0 */
.01281046524292022692424986, /* 6.5 */
.011896709945891770095056572, /* 7.0 */
.01110455975820691732662991, /* 7.5 */

.010411265261972096497478567, /% 8.0 */
.009799416126158803298389475, /% 8.5 */
.009255462182712732917728637, /* 9.0 */
.008768700134139385462952823, /* 9.5 */

O O O O O O O OO OO O OO IODO O OO O OO oo

.008330563433362871256469318, /* 10.0 */
.007934114564314020547248100, /* 10.5 */
.007573675487951840794972024, /* 11.0 */
.007244554301320383179543912, /* 11.5 */
.006942840107209529865664152, /* 12.0 */
.006665247032707682442354394, /* 12.5 */
.006408994188004207068439631, /* 13.0 */
.006171712263039457647532867, /* 13.5 */
.005951370112758847735624416, /* 14.0 */
.005746216513010115682023589, /* 14.5 */
.005554733551962801371038690 /* 15.0 */

s

double nn;

if (n <= 15.0) {
nn =n + n;
if (nn == (int)nn) return(sferr_halves[(int)nn]);
return(lgammafn(n + 1.) - (n + 0.5)*log(n) + n - M_LN_SQRT_2PI);
+

nn = n*n;

if (n>500) return((S0-Si1/nn)/n);

if (n> 80) return((S0-(S1-S2/nn)/nn)/n);

if (n> 35) return((S0-(S1-(S2-S3/nn)/nn)/nn)/n);
/* 15 < n <= 35 : %/
return((S0-(S1-(S2-(83-S4/nn)/nn)/nn)/nn)/n);

109

Appendix E

Computation of the Poisson density

With the help of a rounding error estimate for the functions stirlerr and bd0 also a rounding
error estimate for the following algorithm for the computation of the Poisson density

P
pa(x) == Ee

can be done. This algorithm is proposed by Loader [16], Appendix A, and is used by the sta-
tistical software R to compute the poisson density. It was called from the folder https://svn.r-
project.org/R/trunk/src/nmath/ on July 17 2016.

#include "nmath.h"
#include '"dpq.h"

double attribute_hidden dpois_raw(double x, double lambda, int give_log)
{
/% x >= 0 ; integer for dpois(), but not e.g. for pgamma()!
lambda >= 0
*/
if (lambda == 0) return((x == 0) ? R_.D__1 : R.D__0);
if (!R_FINITE(lambda)) return R_D__O;
if (x < 0) return(R_D__0);
if (x <= lambda * DBL_MIN) return(R_D_exp(-lambda));
if (lambda < x * DBL_MIN) return(R_D_exp(-lambda
+ x*xlog(lambda) -lgammafn(x+1)));
return(R_D_fexp(M_2PI*x, -stirlerr(x)-bd0(x,lambda)));
}

double dpois(double x, double lambda, int give_log)

111

{
#ifdef IEEE_754
if (ISNAN(x) || ISNAN(lambda))
return x + lambda;
#endif

if (lambda < 0) ML_ERR_return_NAN;
R_D_nonint_check(x) ;
if (x < 0 || !'R_FINITE(x))

return R_D__O;

x = R_forceint(x);

return(dpois_raw(x,lambda,give_log)

112

Appendix F

An algorithm for the cumulative
distribution function of a scan statistic of a
multivariate hypergeometrically
distributed random variable

The following algorithm computes the probability P(max?=2(N; + Niy1 + Niyo) < k) for a
multivariate hypergeometrically distributed random variable N ~ H, ,, with n = 500,d =
365,m = (10,...,10) € R%and k € {4, ...,26}.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <fenv.h>

#define max(a, b) (((a) > (b)) ? (a) : (b))
#define min(a, b) (((a) < (®)) ? (a) : (b))
#tdefine sumw(n,s,startadresse, summe)
*summe=0;for(lindex=0;lindex<n;lindex++)
{*summe+=*(startadresse+lindexx*s);}

void sum(int n, doublex startadresse, doublex sum){
int i;

*sum=0;

for (i=0; i<n; i++){ *sum+=*(startadresse-i);}

}

double hyp(int n, int r, int b, int k){

if ((k<max(0,n-b)) | (k>min(n,r)) | (n>r+b)) {return 0.0;}
1f(b==0){ if(r>=n && k==n){return 1.0;} else {return 0.0;}}

113

double f=1.0;

int j0=0,3j1=0,3j2=0;

while ((jO<k)| (ji<n-k) | (j2<n)){

if (£<1 && ((jOo<k) | (ji<n-k))){

if (jo<k) { f*=(double) (r-j0)/(jO+1);jO++;}

else {if (ji<n-k) { f*=(double) (b-j1)/(j1+1);jl++;} else if (j2<n)
{f*=(double) (r+b-3j2)/(j2+1);j2++;}}

}

else if (j2<n) { f*=(double) (j2+1)/(r+b-j2);j2++;}
}

return f;

}

void computeTransitionProb(int d, int* p, intx q){
qld-11=0;
qld-2]=p[d-1];

int i;

for (i=d-1;i>0;i--){
qli-11= qlil+p[i-1];
}

return;

3

double Hyper3ScanRectangleProb(int D, int L, int N, int* p, int* q,
int* B, int* C, int* mini, int* maxi){

unsigned int d=(unsigned int)D;
unsigned int 1=(unsigned int)L;
unsigned int n=(unsigned int)N;
unsigned int* b=(unsigned int*)B;
unsigned int* c=(unsigned int*)C;
unsigned int* m=(unsigned int*)mini;
unsigned int* M=(unsigned int*)maxi;
unsigned int lindex;

unsigned int nl=n+1;
unsigned int n2=nlx*nil;

114

size_t w=(size_t)n;
w=sizeof (double)* (w+1)* (w+1) *(w+1);

//Initialize memory

double* P=(doublex*)malloc(w);
double* R=(doublex*)malloc(w);
doublex Q;

unsigned int i,j,k;
unsigned int index;
for(i=0;i<=n;i++){
for(j=i;j<=n;j++){
for (k=j;k<=n;k++){
index=i*n2+j*nl+k;
* (P+index)=0;

* (R+index)=0;

13}

//Compute starting probabilities

unsigned int ma= min(M[O0],n);

unsigned int mi= m[0];

for(i=mi;i<=ma;i++){

for(j=i;j<=ma;j++){

for (k=j;k<=ma;k++){

* (P+i*n2+j*nl+k)=hyp(n,p[0],q[0],i)*hyp(n-i,p[1],q[1],j-1)
*hyp(n-j,pl2],q[2],k-j);

13

//Use recursion to fill the array
unsigned int nu;

unsigned int su,so;

unsigned int jo,ko;

for (nu=2;nu<=d-1+1;nu++){

Q=R;

ma=min(M[nu-1],n);

mi=m[nu-1];

for(i=mi;i<=ma;i++){
jo=min(ma,M[nu-2]1) ;

ko=min(ma,c[nu-1]+1i);

115

for(j=i;j<=jo;j++){

for (k=j;k<=ko;k++){
su=(c[nu-1]<k)?max(m[nu-2] ,k-c[nu-1]) :m[nu-21;
so=(b[nu-1]1<k)?min(k-b[nu-1] ,min(i,M[nu-2])) :min(i,M[nu-21);
if (su<=so0){

index=1i*n2+j*nl+k;

sumw (so-su+1,n2,P+su*n2+i*ni+j, (Q+index)) ;
(Q+index)= hyp(n-j,plnu+1],qlnu+1] ,k-3);

}

1}

ma=min(M[nu-2],n);

for(i=m[nu-2] ;i<=ma;i++){

for(j=i;j<=ma;j++){

for (k=j;k<=ma;k++){

* (P+i*n2+j*nl+k)=0;

i3}

//Sum up the relevant entries of the last row of the array. This yields the result.
double result=0;

ma= min(M[d-1],n);

mi= m[d-1];

for(i= mi;i<= ma;i++){

for(j=i;j<=ma;j++){

for (k=j;k<=ma;k++){result += *(P+i*n2+j*ni+k);

11}

free(P);
free(R);
return result;

3

116

int main(void){

double time;

double upperbound, lowerbound;
int n=500;

int d=365;

int 1=3;

int k=6;

int* p=malloc(d*sizeof (int));
int* g=malloc(d*sizeof (int));
int* b=malloc(d*sizeof (int));
int* c=malloc(d*sizeof (int));
int 1,];

for(i=0;i<d;i++){

*(p+i)=10;

}

computeTransitionProb(d,p,q);

for(k=4;k<27;k++){

for(i=0;i<d-1+1;i++){
(b+1)=0;(c+i)=k;
3

int* mini=(int*)malloc((d-2)*sizeof (int));
int* maxi=(int*)malloc((d-2)*sizeof (int));

for(i=0;i<d-1+1;i++){mini[i]=0;}

maxi[0]=k;

for(i=0;i<d/1-1;i++){
for(j=1;j<=1;j++){maxi[i*1+j]1=k*(i+2);}

}
for(j=1;j<=d-1%(d/1);j++){maxi[d-1+1-j]1=k*(d/1+1);}

printf ("%i\n",k);

fesetround (FE_DOWNWARD) ;

time=clock();
lowerbound=Hyper3ScanRectangleProb(d,1l,n,p,q,b,c,mini,maxi);
printf("%.2f ", (clock()-time)/CLOCKS_PER_SEC) ;printf ("%c\n",’s’);

117

printf ("%p\n",lowerbound) ;

fesetround (FE_UPWARD) ;

time=clock();
upperbound=Hyper3ScanRectangleProb(d,1,n,p,q,b,c,mini,maxi);
printf("%.2f ", (clock()-time)/CLOCKS_PER_SEC) ;printf ("%c\n",’s’);
printf ("%p\n",upperbound) ;

printf ("% .60f\n",lowerbound) ;

printf ("%.60f\n",upperbound) ;

printf("\n");

}

return O;

}

118

Appendix G

An enumerative algorithm for multinomial
rectangle scan probabilities

#include <stdio.h>
#include <time.h>

double bnp(unsigned int n, double p, unsigned int k){
double result=1;

int i;

for(i=1;i<=k;i++){

result=result * (double) (n-k+i)/(double)i * p;

}

for(i=1;i<=n-k;i++){

result= result * (1-p);

}

return result;

+

double multi2(unsigned int n, unsigned int il, unsigned int i2,
unsigned int i3, unsigned int i4, unsigned int 15, unsigned int i6,
unsigned int i7, unsigned int i8, unsigned int i9, unsigned int i10,
unsigned int ill, unsigned int i12){

return bnp(n,1/(double)12,il)*bnp(n-il,1/(double)11,i2)
*bnp(n-i1-i2,1/(double)10,i3) *bnp(n-i1-i2-i3,1/(double)9,i4)
*bnp(n-i1-i2-i3-i4,1/(double)8,i5) *bnp(n-i1-i2-13-i4-i5,1/(double)7,i6)
*bnp(n-i1-i2-i3-i4-ib-i6,1/(double)6,i7)
*bnp(n-i1-i2-i3-i4-i5-i6-1i7,1/(double)5,1i8)
*bnp(n-i1-i2-13-14-1i5-16-17-18,1/ (double)4,i9)
*bnp(n-i1-i2-13-14-i5-16-17-18-19,1/(double)3,110)

119

*bnp(n-11-i2-13-i4-i5-16-i7-18-19-110,1/(double)2,i11)
*bnp(n-i1-i2-i3-i4-ib5-i6-17-18-19-110-i11, (double)1,i12);
}

int main (void){

unsigned int n = 20;
unsigned int d = 12;
unsigned int k = 9;

double result = 0;
double time=clock();

unsigned int i,i1,i2,i3,i4,i5,i6,1i7,18,1i9,110,i11,i12;
for(i1=0; il<= k; i1++){
for(i2=0; i2<= k; i2++){

for(13=0; i3<= k; 13++){
for(i4=0; i4<= k; i4++){
for(i5=0; ib<= k; i5++){
for(i6=0; i6<= k; i6++){
for(i7=0; i7<= k; i7++){
for(i18=0; i8<= k; 18++){

for(19=0; 19<= k; 19++){

for(110=0; 110<= k; i10++){

for(111=0; il1l<= k; i11++){

for(112=0; i12<= k; i12++){

1f(11+i2+13+14+15+16+i7+18+19+110+111+112==n && (11+i2+i3<=k) && (i2+i3+id<=k)
&& (i3+i4+ib<=k) && (i4+ib+i6<=k) && (i5+i6+i7<=k) && (i6+i7+i8<=k)

&& (i7+i8+i9<=k) && (i8+19+i10<=k)&& (i9+i10+il11<=k) && (i10+il11+i12<=k)){
result=result+multi2(n,il1,i2,i3,i4,i5,i6,1i7,18,19,110,1i11,1i12);

}

333333 g

printf("%.2f ", (clock()-time)/CLOCKS_PER_SEC) ;printf ("%c\n",’s’);

printf ("%f\n",result);

return O;

}

120

Bibliography

[1] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions: with for-
mulas, graphs, and mathematical tables, volume 55. Courier Corporation, 1964.

[2] ANSI. ISO/IEC 9899: Programming languages - C. 1999.

[3] ANSI/IEEE. Standard 754-1985 for binary floating-point arithmetic (also IEC 60559).
1985.

[4] C.J. Corrado. The exact distribution of the maximum, minimum and the range of multi-
nomial/dirichlet and multivariate hypergeometric frequencies. Statistics and Computing,
21:349-359, 2011.

[5] J. Dimitriadis. Die Verteilungsfunktion des Multinomial-Maximums. Algorithmen und Ap-
proximationen. Universitit zu Liibeck, 2009. Diploma Thesis.

[6] J. Dimitriadis. Rigorous computing of rectangle scan probabilities for markov increments.
Preprint, arXiv:1109.3254, 2011.

[7] Norbert Henze. Stochastik fiir Einsteiger - Eine Einfiihrung in die faszinierende Welt des
Zufalls. Springer-Verlag, Berlin Heidelberg New York, 2013.

[8] Harro Heuser. Lehrbuch der Analysis 1. Teubner, Stuttgart, 1980.

[9] N. J. Higham. Accuracy and Stability of Numerical Algorithms - Second Edition. SIAM,
Philadelphia, 2nd edition, 2002.

[10] Y. Hirai and T. Nakamura. A new arithmetic and an application to the computation of
binomial probability for very wide range of sample size. Japanese J. Appl. Statisti., 35
(2):93-111, 2006.

[11] Norman Lloyd Johnson, Samuel Kotz, and Narayanaswamy Balakrishnan. Discrete multi-
variate distributions, volume 165. Wiley New York, 1997.

[12] R. Kaiser. Binomial probabilities. Online: https://www.soa.org/News-and-
Publications/Newsletters/Compact/2015/march/Binomial-Probabilities.aspx, 2015.

121

[13] Donald E. Knuth. The Art of Computer Programming, Volume 2 - Seminumerical Algo-
rithms. Addison-Wesley Professional, Boston, 3rd edition, 2014.

[14] U. Kulisch. Computer Arithmetic and Validity - Theory, Implementation, and Applications.
Walter de Gruyter, Berlin, 2013.

[15] Uwe Ligges. R Help Desk: Accessing the sources. R News, 6(4):43-45, October 2006.

[16] C. Loader. Fast and accurate computation of binomial probabilities. On-
line: https://lists.gnu.org/archive/html/octave-maintainers/201 1-09/pdfKOuKOST642.pdYf,
accessed 11 July 2016, 2000.

[17] D. Pfeifer. Strichlisten bei Laplace-Experimenten - zum Paradox der ungleichmifBigen
Verteilung. Stochastik in der Schule, 26:23-27, 2006.

[18] George Pdlya and Gabor Szegd. Problems and Theorems in Analysis I: Series. Integral
Calculus. Theory of Functions. Springer Science & Business Media, 1998.

[19] William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery. Numerical
recipes in C, volume 2. Cambridge university press Cambridge, 1996.

[20] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2014.

[21] Walter Rudin. Principles of mathematical analysis. McGraw-Hill Book Co., New York,
third edition, 1976. International Series in Pure and Applied Mathematics.

[22] William T Vetterling, Saul A Teukolsky, William H Press, and Brian P Flannery. Numerical
recipes example book (C). JSTOR, 1992.

[23] Edmund Taylor Whittaker and George Neville Watson. A course of modern analysis. Cam-
bridge university press, 1996.

122

