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Zusammenfassung

In dieser Arbeit wird in Verallgemeinerung von Corrado [4] ein Algorithmus hergeleitet, welcher
die Berechnung von Rechteckwahrscheinlichkeiten für Markov-Inkremente ermöglicht. Es wird
gezeigt, daß es sich bei multinomialverteilten und bei multivariat hypergeometrisch verteilten
Zufallsgrößen um Markov-Inkremente handelt. In einem Beispiel wird gezeigt, daß der hergeleit-
ete Algorithmus im Multinomialfall schneller ein Ergebnis liefert, als eine herkömmliche Meth-
ode, bei welcher alle Elemente des Trägers der Multinomialverteilung konstruiert werden und
deren relevante Einpunktwahrscheinlichkeiten aufsummiert. Als Anwendung des hergeleiteten
Algorithmus wird eine Verteilung der Spannweite einer multinomial verteilten Zufallsgrößen
berechnet. Für die Untersuchung der Rechengenauigkeit bei dem hergeleiteten Algorithmus
ist es im Multinomialfall nötig, zunächst die Genauigkeit eines Algorithmus zu untersuchen,
welcher Einpunktwahrscheinlichkeiten von Binomialverteilungen berechnet. Dies geschieht bei
dem Statistik Softwarepaket R mit einem Algorithmus nach Loader [16]. Daher werden Hilfsre-
sultate hergeleitet, welche dazu dienen können, einen Satz über die Rechengenauigkeit des Algo-
rithmus nach Loader herzuleiten. Zudem werden in Beispielen die Genauigkeit des hergeleiteten
Algorithmus im Multinomialfall sowie im multivariat hypergeometrischen Fall untersucht mit
Hilfe von intervallarithmetischen Berechnungen. Es wird folgendes statistische Anwendungs-
beispiel untersucht: Es kommen n Patienten in einer Klinik an d = 365 Tagen des Jahres an,
jeder der Patienten mit Wahrscheinlichkeit 1/d an jedem dieser d Tage und alle Patienten un-
abhängig voneinander. Wie groß ist die Wahrscheinlichkeit, daß 3 aufeinanderfolgende Tage
existieren, an denen zusammen mehr als k Patienten ankommen?
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Introduction

The main achievement of this thesis is an analysis of the accuracy of computations with Loader’s
algorithm for the binomial density. This analysis in later progress of work could be used for
a theorem about the numerical accuracy of algorithms that compute rectangle probabilities for
scan statistics of a multinomially distributed random variable. An example that shall illustrate
the practical use of probabilities for scan statistics is the following, which arises in epidemiology:
Let n patients arrive at a clinic in d = 365 days, each of the patients with probability 1/d at each
of these d days and all patients independently from each other. The knowledge of the probability,
that there exist 3 adjacent days, in which together more than k patients arrive, helps deciding,
after observing data, if there is a cluster which we would not suspect to have occurred randomly
but for which we suspect there must be a reason. Formally, this epidemiological example can be
described by a multinomial model. As multinomially distributed random variables are examples
of Markov increments, which is a fact already used implicitly by Corrado [4] to compute the dis-
tribution function of the multinomial maximum, we can use a generalized version of Corrado’s
Algorithm to compute the probability described in our example. To compute its result, the al-
gorithm for rectangle probabilities for Markov increments always uses transition probabilities of
the corresponding Markov Chain. In the multinomial case, the transition probabilities of the cor-
responding Markov Chain are binomial probabilities. Therefore, we start an analysis of accuracy
of Loader’s algorithm for the binomial density, which for example the statistical software R [20]
uses. With the help of accuracy bounds for the binomial density we would be able to derive ac-
curacy bounds for the computation of rectangle probabilities for scan statistics of multinomially
distributed random variables. To figure out how sharp derived accuracy bounds are, in examples
these can be compared to rigorous upper bounds and rigorous lower bounds which we obtain by
interval-arithmetical computations.
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Chapter 1

Algorithms for the computation of
rectangle probablilities for Markov
increments

1.1 Proof of correctness for an abstract algorithm for the com-
putation of rectangle probablilities for Markov increments

In this section we describe an abstract algorithm for the computation of rectangle probabilities
for Markov increments. We prove that if the operations +, · on R are performed exactly, this
algorithm is correct.

Definition 1.1. Let (X , ·) be a group with X a countable set and (Xk)
d
k=1 a Markov chain on

the probability space (Ω,A,P) which takes values in the measurable space (X , 2X ). Let Y1 :=
X1 and Yk := X−1k−1Xk for k ∈ {2, . . . , d}. Then the family (Yk)

d
k=1 is called the (Markov)

increment of the Markov chain (Xk)
d
k=1.

We remark that if (Yk)
d
k=1 is the increment of the Markov chain (Xk)

d
k=1, then we have

Xk = Y1 · . . . · Yk

for k ∈ {1, . . . , d}.
Corrado [4] uses the algorithm A, which we state in this section below, for the computation of
rectangle probabilities for Markov increments. It is based on the recursion formula (1.1) we state
in the following theorem.

Theorem 1.2. Let Y = (Yk)
d
k=1 be Markov increment of a Markov chain (Xk)

d
k=1 which takes

values in a group (X , ·). Let A1, . . . , Ad ⊆ X be countable sets. Then the probabilities

p(k, x) := P(Xk = x, Y1 ∈ A1, . . . , Yk ∈ Ak)
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for k ∈ {1, . . . , d} and x ∈ X fulfill the recursion

(1.1) p(k, x) =
∑
y∈Ak

P(Xk = x | Xk−1 = xy−1)p(k − 1, xy−1)

for k ≥ 2. Here and throughout, we use the convention P(A|B) = P(A ∩ B)/P(B) := 0 if
P(B) = 0.

Proof. The functions fk : X 2 → X defined by fk(x1, x2) = x−11 x2 have the property that
Yk = fk(Xk−1, Xk) and fk(·, x) is bijective for every x ∈ X . Using this (which is actually all
we need, so the method works not only for Markov increments but actually for any functions
of two successive states of a Markov chain having the above bijectivity property) and writing
gk(x, ·) := fk(·, x)−1, we get:

P(Xk = x, Y1 ∈ A1, . . . , Yk ∈ Ak)
=

∑
y∈Ak

P(Xk = x, Yk = y, Y1 ∈ A1, . . . , Yk−1 ∈ Ak−1)

=
∑
y∈Ak

P(Xk = x,Xk−1 = gk(x, y), Y1 ∈ A1, . . . , Yk−1 ∈ Ak−1)

=
∑
y∈Ak

P(Xk = x|Xk−1 = gk(x, y))

×P(Xk−1 = gk(x, y), Y1 ∈ A1, . . . , Yk−1 ∈ Ak−1)

In the last step the Markov property was used.

From the recursion formula we can derive the following algorithm that computes the probability
P(Y1 ∈ A1, . . . , Yd ∈ Ad). We assume that A1, . . . , Ad are finite, so we get a finite algorithm.

Algorithm A:

1. For every x ∈ A1 compute the value p(1, x) = P(X1 = x)

2. For every k ∈ {2, . . . , d}:
For every x ∈ A1 · . . . · Ak compute the value p(k, x) with formula (1.1)

3. Compute P(Y1 ∈ A1, . . . , Yd ∈ Ad) =
∑

x∈A1·...·Ad p(d, x)

Here, let A1 · · ·An := {a1 · · · an : a1 ∈ A1, . . . , an ∈ An}, if X is a group and A1, . . . , An ⊂ X .

Now, we describe how to compute a rectangle scan probability

q := P (Y1 · . . . · Y` ∈ A1, . . . , Yd−`+1 · . . . · Yd ∈ Ad−`+1)

for a Markov increment Y .

We use the following obvious and well-known lemma:
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Lemma 1.3. Let X be a countable set and (Xk)
d
k=1 an X -valued Markov chain. Let Wk :=

(Xk, . . . , Xk+`−1). Then (Wk)
d−`+1
k=1 is an X `-valued Markov chain with transition probabilities

P(Wk+1 = w |Wk = v) = P(Xk+` = w` | Xk+`−1 = v`)

for v, w ∈ X ` with P(Wk = v) > 0 and v2 = w1, . . . , v` = w`−1.

The desired rectangle scan probability for the Markov increment Y can be written as a rectangle
probability for the increment V of W : If we set Bk := {(y1, . . . , y`) ∈ X `|y1 · . . . · y` ∈ Ak} we
have

q = P(V1 ∈ B1, . . . , Vd−`+1 ∈ Bd−`+1)

because Vk = (X−1k−1Xk, . . . , X
−1
k+`Xk+`−1) for k ∈ {2, . . . , d− `+ 1}.

The sets B1, . . . , Bd−`+1 are possibly infinite so the Algorithm A would not compute a result in
finite time. But if there exist finite sets M1, . . . ,Md−`+1 ⊆ X ` with

P(V1 ∈ B1, . . . , Vd−`+1 ∈ Bd−`+1) = P(V1 ∈M1, . . . , Vd−`+1 ∈Md−`+1)

we can apply the Algorithm A and thus are able to compute the desired probability.

Example: If X = (Z,+) and Y is a Markov increment with Y1, . . . , Yd ≥ 0, then for finite sets
A1, . . . , Ad−`+1 ⊆ Z the probability

P(Y1 + . . .+ Y` ∈ A1, . . . , Yd−`+1 + . . .+ Yd ∈ Ad)

equals

P((Y1, . . . , Y`) ∈M1, . . . , (Yd−`+1, . . . , Yd) ∈Md−`+1)

with Mk := {(y1, . . . , y`) ∈ N`
0|y1 + . . .+ y` ∈ Ak}, which are finite.

In the next section we will prove that multinomially distributed random variables are Markov in-
crements and the transition probabilities of the corresponding Markov chain are binomial prob-
abilities. Therefore the Algorithm A can be used to compute rectangle scan probabilities for
multinomially distributed random variables.

1.2 Multinomially distributed random variables are Markov
increments

We define the multinomial distribution and the binomial distribution by their densities.
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Definition 1.4. (a) Let n, d ∈ N with d ≥ 2 and p ∈ [0, 1]d with
∑d

i=1 pi = 1. The multinomial
distribution Mn,p is the probability measure on (Rd,B(Rd)) with

Mn,p({(n1, . . . , nd)}) =

(
n

n1, . . . , nd

)
pn1
1 · . . . · p

nd
d

for n1, . . . , nd ∈ N0 with n1 + . . .+ nd = n.
(b) Let n ∈ N and p ∈ [0, 1]. The binomial distribution Bn,p is the probability measure on
(R,B(R)) with

Bn,p({x}) = bn,p(x) :=

(
n

x

)
px(1− p)n−x

for x ∈ {0, . . . , n}. For n = 0 let Bn,p := δ0 be the Dirac measure in 0 and bn,p its density.

Our aim in this section is to show that multinomially distributed random variables are Markov
increments. The derivation in this section follows [5] and we use the fact that the multino-
mial distribution Mn,p is the distribution of the sum

∑n
i=1Xi of n independent random vari-

ables X1, . . . , Xn, each with d-dimensional Bernoulli distribution Bp :=
∑d

i=1 piδei . Here
ei := ((i = j))j∈{1,...,d} denotes the i-th unit vector in Rd.

We begin with an easy lemma on the special case of a 2-dimensional multinomially distributed
random variable, which can be written as (X,n − X) with a binomially distributed random
variable X .

Lemma 1.5. Let n ∈ N, p ∈ [0; 1] and X : Ω → R a random variable on a probability space
(Ω,A,P). Then we have

(X,n−X) ∼ Mn,(p,1−p) ⇐⇒ X ∼ Bn,p

Proof. We have

(X,n−X) ∼ Mn,(p,1−p) ⇐⇒ P(X = x, n−X = y) =

(
n

x, y

)
px(1− p)y for x, y ∈ N0

⇐⇒ P(X = x) = Bn,p({x}) for x ∈ N0

⇐⇒ X ∼ Bn,p

Condensed boxes

The multinomial model Mn,p with p ∈ [0, 1]d,
∑d

i=1 pi = 1 can be illustrated by the idea of n
balls independently falling into d boxes, each ball falling into box i with probability pi. When
different of these boxes in the multinomial model are condensed, again a multinomial model
results. This is proposed in the next theorem.
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Theorem 1.6. Let n, d ∈ N with d ≥ 2 and p ∈ [0, 1]d with
∑d

i=1 pi = 1. Let N ∼ Mn,p

a multinomially distributed random variable. Let ` ≥ 2 a natural number and {K1, . . . , K`}
a partition of {1, . . . , d}. Further we define for r ∈ {1, . . . , `} the random variable Ur :=∑

i∈Kr Ni and qr :=
∑

i∈Kr pi. Then we have (U1, . . . , U`) ∼ Mn,(q1,...,q`).

Proof. Let X1, . . . , Xn ∼ Bp independent random variables with N =
∑n

k=1Xk and for k ∈
{1, . . . , n} and r ∈ {1, . . . , `} let Yk,r :=

∑
i∈Kr Xk,i. Then for r ∈ {1, . . . , `} we have

n∑
k=1

Yk,r =
n∑
k=1

∑
i∈Kr

Xk,i =
∑
i∈Kr

n∑
k=1

Xk,i =
∑
i∈Kr

Ni = Ur

and therefore (U1, . . . , U`) =
∑n

k=1(Yk,1, . . . , Yk,`). Because the familiy ((Yk,1, . . . , Yk,`))
n
k=1 is

independent and each (Yk,1, . . . , Yk,`) ∼ B(q1,...,q`) Bernoulli distributed with the same parameter
(q1, . . . , q`), we get (U1, . . . , U`) ∼ Mn,(q1,...,q`).

Marginal distributions

In the next Corollary we state the marginal distributions of a multinomially distributed random
variable.

Corollary 1.7. Let n, d ∈ N with d ≥ 2 and p ∈ [0, 1]d with
∑d

i=1 pi = 1. LetN ∼ Mn,p a multi-
nomially distributed random variable. Let k ∈ {1, . . . , d − 1} and {i1, . . . , ik} ⊆ {1, . . . , d}.
Let A1, . . . , Ak ⊆ {0, . . . , n}. Then

(1.2) P(Ni1 ∈ A1, . . . , Nik ∈ Ak) = Mn,(pi1 ,...,pik ,1−pi1−...−pik )(A1 × . . .× Ak × {0, . . . , n})

Particularly we get that for i ∈ {1, . . . , d} the random variable Ni has the binomial distribu-
tion Bn,pi .

Proof. From Theorem 1.6 we get (Ni1 , . . . , Nik , n−Ni1− . . .−Nik) ∼ Mn,(pi1 ,...,pik ,1−pi1−...−pik )
and from this we get equation (1.2). Because of Lemma 1.5 this implies Ni ∼ Bn,pi for every
i ∈ {1, . . . , d}.

Multinomially distributed random variables are Markov increments

Let n, d ∈ N with d ≥ 2 and p ∈ [0, 1]d with
∑d

i=1 pi = 1. Let N ∼ Mn,p a multinomially
distributed random variable. We define

Sk :=
k∑
i=1

Ni for k ∈ {1, ..., d}

Our aim in this section is Corollary 1.10. In that Corollary we will show that (Sk)
d
k=1 is a Markov

chain. Therefore we get that the multinomially distributed random variable N is a Markov incre-
ment. For simplicity we assume p ∈ ]0; 1[d.

13



Theorem 1.8. Let k ∈ {2, ..., d}, sk−1, sk ∈ {0, ..., n}. Then we have

P(Sk = sk|Sk−1 = sk−1) = bn−sk−1,p
∗
k
(sk − sk−1)

with p∗k := pk/
∑d

i=k pi.

Proof. For sk−1 > sk the proposition is obviously true. Now let sk−1 ≤ sk and q :=
∑k−1

i=1 pi.
With Theorem 1.6 we get

P(Sk−1 = sk−1, Sk = sk)

= P (Sk−1 = sk−1, Nk = sk − sk−1, n− Sk = n− sk)
= Mn,(q,pk,1−q−pk)({(sk−1, sk − sk−1, n− sk)})

=
n!

sk−1!(sk − sk−1)!(n− sk)!
qsk−1p

sk−sk−1

k (1− q − pk)n−sk

und from Theorem 1.6 and Corollary 1.7

P(Sk−1 = sk−1) = bn,q(sk−1) =
n!

sk−1!(n− sk−1)!
qsk−1(1− q)n−sk−1

Altogether we get

P(Sk = sk|Sk−1 = sk−1)

=
P (Sk = sk, Sk−1 = sk−1)

P (Sk−1 = sk−1)

=
(n− sk−1)!

(sk − sk−1)!(n− sk)!
p
sk−sk−1

k (1− q − pk)n−sk/(1− q)n−sk−1

=
(n− sk−1)!

(sk − sk−1)!(n− sk)!
(
pk

1− q
)sk−sk−1(1− pk

1− q
)n−sk

= bn−sk−1,p
∗
k
(sk − sk−1)

To show that (Sk)
d
k=1 is a Markov chain, we need the following theorem about the conditional

distribution of the random variables N1, . . . , Nk, given Nk−1, . . . , N1.

Theorem 1.9. Let n1, ..., nd ∈ {0, ..., n} and k ∈ {2, ..., d} with P(N1 = n1, . . . , Nk = nk−1) >
0. Then with m :=

∑d
i=k ni and q :=

∑d
i=k pi we have

P(Nd = nd, ..., Nk = nk|Nk−1 = nk−1, ..., N1 = n1)

= Mm,(pk/q,...,pd/q)({(nk, ..., nd)})

14



Proof. We have

P(N1 = n1, ..., Nd = nd) = Mn,(p1,...,pd)({(n1, ..., nd)}) =
n!

n1!...nd!
pn1
1 ...p

nd
d

and because of Theorem 1.6

P(N1 = n1, ..., Nk−1 = nk−1) = Mn,(p1,...,pk−1,q)({(n1, ..., nk−1,m)})

=
n!

n1!...nk−1!m!
pn1
1 ...p

nk−1

k−1 q
m

Hence

P(Nd = nd, ..., Nk = nk|Nk−1 = nk−1, ..., N1 = n1)

=
P (N1 = n1, ..., Nd = nd)

P (N1 = n1, ..., Nk−1 = nk−1)

=
m!

nk!...nd!
pnkk ...p

nd
d /q

m

=
m!

nk!...nd!
(pk/q)

nk ...(pd/q)
nd

= Mm,(pk/q,...,pd/q)({(nk, ..., nd)})

Corollary 1.10. The family (Sk)
d
k=1 is a Markov chain. For k ∈ {2, . . . , d} and sk−1, sk ∈

{0, ..., n} we have

P(Sk = sk|Sk−1 = sk−1) = bn−sk−1,p
∗
k
(sk − sk−1)

with p∗k := pk/
∑d

i=k pi. Therefore the multinomially distributed random variable N is a Markov
increment.

Proof. Let k ∈ {2, ..., d} and s1, ..., sk ∈ {0, ..., n} with P(S1 = s1, ..., Sk−1 = sk−1) > 0. Then
from Theorem 1.9 and Corollary 1.7 we get

P(Sk = sk|Sk−1 = sk−1, ..., S1 = s1)

=
P(Sk = sk, ..., S1 = s1))

P(Sk−1 = sk−1, ..., S1 = s1)

=
P(Nk = sk − sk−1, . . . , N2 = s2 − s1, N1 = s1))

P(Nk−1 = sk−1 − sk−2, . . . , N2 = s2 − s1, N1 = s1)

= P(Nk = sk − sk−1 | Nk−1 = sk−1 − sk−2, . . . , N2 = s2 − s1, N1 = s1)

= bn−sk−1,p
∗
k
(sk − sk−1)

und therefore with Theorem 1.8 the proposition.
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We conclude that the Algorithm A can be used to compute rectangle scan probabilities

P(N1 + . . .+N` ≤ k, . . . , Nd−`+1 + . . .+Nd ≤ k)

for a multinomially distributed random variable N = (N1, . . . , Nd). This method is much faster
than the enumerative method stated in the Appendix G. The enumerative method works as fol-
lows: Let D = {x ∈ Nd

0 : x1 + . . . + xd = n} the support of the multinomial distribution Mn,p.
For each x ∈ D with x1 + . . . + x` ≤ k, . . . , xd−`+1 + . . . + xd ≤ k compute the probability
P(N = x) = n!/(x1! . . . xd!)p

x1
1 . . . pxdd and sum up these values. But because the support D is

large, this procedure takes much time. For example: For n = 20, d = 12, p = (1/d, . . . , 1/d)
it took 41 minutes and 38 seconds with the enumerative algorithm stated in G to compute the
probability P(N1 + N2 + N3 ≤ 9, . . . , Nd−2 + Nd−1 + Nd ≤ 9) = 0.88744 on a 3.7 GHz CPU
with 4.0 GB Ram, while with the implementation of Algorithm A which is stated in Appendix B
it took less than 1 second.

1.3 Multivariate hypergeometrically distributed random vari-
ables are Markov increments

In this section we cover another important example for Markov increments, namely multivariate
hypergeometrically distributed random variables. The multivariate hypergeometrical distribution
is a model for drawing from an urn with balls of different colors, without replacing the drawn
balls. Following the derivation in [5], in this section we show that multivariate hypergeometri-
cally distributed random variables are Markov increments. Further properties of the multivariate
hypergeometrical distribution can be found in [11].

Let n, d ∈ N, d ≥ 2 and m1, . . . ,md ∈ N with
∑d

i=1mi ≥ n.

Definition 1.11. (a) The multivariate hypergeometrical distribution Hn,(m1,...,md) is the prob-
ability measure on (Rd,B(Rd)) with

Hn,(m1,...,md)({k1, . . . , kd}) =

(
m1

k1

)
· . . . ·

(
md
kd

)(∑d
i=1mi
n

)
for (k1, . . . , kd) ∈ {0, . . . ,m1} × . . .× {0, . . . ,md} with k1 + . . .+ kd = n.

(b) Let r, b ∈ N0 with r + b ≥ n. The hypergeometrical distribution Hn,r,b is the probability
measure on (R,B(R)) with

Hn,r,b({k}) = hn,r,b(k) :=

(
r
k

)(
b

n−k

)(
r+b
n

)
for k ∈ {0, . . . , n}. In case of n = 0 let Hn,r,b = δ0 the Dirac measure in 0 and hn,r,b its density.
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In the rest of this section let N = (N1, ..., Nd) be a Hn,(m1,...,md)-distributed random variable and
m :=

∑d
i=1mi.

We need the following theorem.

Theorem 1.12. Let ` ∈ N, ` ≥ 2, {T1, ..., T`} a partition of {1, ..., d} and Sr :=
∑

i∈Tr Ni

and sr :=
∑

i∈Tr mi for r ∈ {0, ..., `}. Then the random variable (S1, ..., S`) has distribution
Hn,(s1,...,s`).

Proof. This Theorem can be proven with the help of the Vandermonde convolution identity,
which for k ∈ N0 reads as follows∑

(k1,...,kd)∈Nd0
k1+...+kd=k

(
m1

k1

)
. . .

(
md

kd

)
=

(
m1 + . . .+md

k

)

Corollary 1.13. For i ∈ {1, ..., d} we have

Ni ∼ Hn,mi,m−mi

Proof. For i ∈ {1, ..., d} from Theorem 1.12 we get that the random variable (Ni, n − Ni) has
distribution Hn,(mi,m−mi). From this we get the proposition.

We define

Sk :=
k∑
i=1

Ni for k ∈ {1, ..., d}

Theorem 1.14. Let k ∈ {1, ..., d} and sk−1, sk ∈ {0, ..., n}. Then we have

P(Sk = sk|Sk−1 = sk−1) = hn−sk−1,mk,m−s(sk − sk−1)

with s :=
∑k

i=1mi.

Proof. For sk−1 > sk the proposition obviously is true. Now let sk−1 ≤ sk. From Theorem 1.12
we get

P(Sk−1 = sk−1, Sk = sk)

= P (Sk−1 = sk−1, Nk = sk − sk−1, n− Sk = n− sk)
= Hn,(s−mk,mk,m−s)({(sk−1, sk − sk−1, n− sk)})

=

(
s−mk

sk−1

)(
mk

sk − sk−1

)(
m− s
n− sk

)
/

(
m

n

)
17



From Theorem 1.12 and Corollary 1.13 we get

P(Sk−1 = sk−1) = hn,s−mk,m−s+mk(sk−1) =

(
s−mk

sk−1

)(
m− s+mk

n− sk−1

)
/

(
m

n

)
Jointly we get

P(Sk = sk|Sk−1 = sk−1)

=
P (Sk = sk, Sk−1 = sk−1)

P (Sk−1 = sk−1)

=

(
mk

sk − sk−1

)(
m− s
n− sk

)
/

(
m− s+mk

n− sk−1

)
= hn−sk−1,mk,m−s(sk − sk−1)

Theorem 1.15. Let n1, ..., nd ∈ {0, ..., n} and k ∈ {2, ..., d} with P(N1 = n1, . . . , Nk−1 =
nk−1) > 0. Then with r :=

∑d
i=k ni we have

P(Nd = nd, ..., Nk = nk|Nk−1 = nk−1, ..., N1 = n1)

= Hr,(mk,...,md)({(nk, ..., nd)})

Proof. We have

P(N1 = n1, ..., Nd = nd) = Hn,(m1,...,md)({(n1, ..., nd)}) =

(
m1

n1

)
...

(
md

nd

)
/

(
m

n

)
and because of Theorem 1.12

P(N1 = n1, ..., Nk−1 = nk−1) = Hn,(m1,...,mk−1,s)({(n1, ..., nk−1, r)})

=

(
m1

n1

)
...

(
mk−1

nk−1

)(
s

r

)
/

(
m

n

)
with s :=

∑d
i=kmi. This implies

P(Nd = nd, ..., Nk = nk|Nk−1 = nk−1, ..., N1 = n1)

=
P (N1 = n1, ..., Nd = nd)

P (N1 = n1, ..., Nk−1 = nk−1)

=

(
mk

nk

)
...

(
md

nd

)
/

(
s

r

)
= Hr,(mk,...,md)({(nk, ..., nd)})
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Corollary 1.16. The family (Sk)
d
k=1 is a Markov chain. For k ∈ {2, . . . , d} and sk−1, sk ∈

{0, ..., n} we have

P(Sk = sk|Sk−1 = sk−1) = hn−sk−1,mk,m−s(sk − sk−1)

with s :=
∑k

i=1mi. Therefore, the multivariate hypergeometrically distributed random variable
N is a Markov increment.

Proof. Let k ∈ {2, ..., d} and s1, ..., sk ∈ {0, ..., n} with P(S1 = s1, . . . , Sk−1 = sk−1) > 0 and
s :=

∑k
i=1mi. Then from Theorem 1.15 and Corollary 1.13 we get

P(Sk = sk|Sk−1 = sk−1, ..., S1 = s1)

=
P(Sk = sk, ..., S1 = s1))

P(Sk−1 = sk−1, ..., S1 = s1)

=
P(Nk = sk − sk−1, . . . , N2 = s2 − s1, N1 = s1))

P(Nk−1 = sk−1 − sk−2, . . . , N2 = s2 − s1, N1 = s1)

= P(Nk = sk − sk−1 | Nk−1 = sk−1 − sk−2, . . . , N2 = s2 − s1, N1 = s1)

= hn−sk−1,mk,m−s(sk − sk−1)

From this, with Theorem 1.14 we get the proposition.

1.4 Application: The distribution of the multinomial range

Pfeifer [17] discussed inappropriate intuitive uses of the expectation µ in repeated trials each
with probability of success µ. To clearify his argumentation, Pfeifer computed the probability
density function of the Range

Dn :=
d

max
i=1

Ni −
d

min
i=1

Ni

of a multinomially distributed random variable (N1, . . . , Nd) ∼ Mn,p for n = 100, d = 6 and
p = (1/d, . . . , 1/d). To compute the probabilty density function of the Range Dn for n = 1000
and the same p, he made use of a simulating algorithm.

According to Corrado [4] this probability can be computed with the following formula, which
uses rectangle probabilities

(1.3)

P(Dn ≤ k) =
n−k∑
h=0

P(N1 ∈ {h, . . . , h+ k}, . . . , Nd ∈ {h, . . . , h+ k})

−
n−k−1∑
h=0

P(N1 ∈ {h+ 1, . . . , h+ k}, . . . , Nd ∈ {h+ 1, . . . , h+ k})
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Table 1.1: The cumulative distribution function of the multinomial Range D1000
k P(D1000 ≤ k)
1 1.028242 · 10−6

2 6.541602 · 10−6

3 3.882427 · 10−5

4 0.0001275595
5 0.0003384679
6 0.00075915
7 0.001510181
8 0.002740486
9 0.00463207
10 0.007381874
11 0.01121232
12 0.01635051
13 0.02302565
14 0.03145717
15 0.04184907
16 0.05437359
17 0.06917238

k P(D1000 ≤ k)
18 0.0863429
19 0.1059366
20 0.1279544
21 0.1523472
22 0.1790134
23 0.207805
24 0.2385296
25 0.2709564
26 0.304823
27 0.3398435
28 0.3757151
29 0.4121272
30 0.4487688
31 0.4853358
32 0.5215378
33 0.5571033
34 0.5917851

k P(D1000 ≤ k)
35 0.6253632
36 0.6576482
37 0.6884817
38 0.717738
39 0.7453226
40 0.7711718
41 0.7952502
42 0.8175492
43 0.8380834
44 0.8568881
45 0.8740164
46 0.8895357
47 0.9035247
48 0.916071
49 0.9272679
50 0.9372124
51 0.9460028

k P(D1000 ≤ k)
52 0.953737
53 0.9605108
54 0.9664172
55 0.9715444
56 0.9759761
57 0.9797904
58 0.9830595
59 0.9858498
60 0.9882219
61 0.9902303
62 0.991924
63 0.9933469
64 0.9945377
65 0.9955304
66 0.9963548
67 0.9970371
68 0.9975995

We use formula (1.3) in the R algorithm stated in Appendix A to compute the cumulative distri-
bution function and with that the probability density function of the multinomial Range D1000.
The values P(D1000 ≤ k) of the cumulative distribution function for k ∈ {1, . . . , 68} are listed in
Table 1.1, while in Figure 1.1 a plot of the probability density function of D1000 is shown. This
may be compared with Pfeifer’s diagram on his p.6, obtained by simulation.

10 20 30 40 50 60 70

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Figure 1.1: The probability density function of the multinomial Range D1000
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Chapter 2

Basics of approximative computations

Mathematical algorithms often are applied using computers that are not able to perform the
operations +,−, ·, / on R exactly, but approximatively. We are interested in the accuracy of
results which we get when we use such a computer for applying the algorithms for Rectangle
Probabilities that we derived in Chapter 1. As preparation for an analysis of their accuracy, in
this chapter we state important basics of approximative computations.

2.1 Definitions of computer number systems and operations

In this section we define number systems and operations that we assume the considered comput-
ers use. We will work in a general setting, where computer numbers are elements of an ordered
field, not nessesarily real numbers. As far as possible, we will not make any further assumptions
about the structure of the number system or the distances between computer numbers but only
assume that there exists a constant which bounds the relative error between the computed result
and the exact result of an operation in the field. This will only be possible if the result lies in a
subset of the ordered field. We will call such a subset the range of the computer number system.
Similar approaches, which are the same in the important case of the number systems defined by
the IEEE 754 Standard [3], can be found in [9] or [14].

In the entire rest of this work let (K,+, ·,≤) be an ordered field and −∞,∞ two objects with
−∞,∞ /∈ K. We expand the order ≤ to the set K := K ∪ {−∞,∞} by defining −∞ ≤ x and
x ≤ ∞ for every x ∈ K. For x, y ∈ K we define x < y :⇔ y > x :⇔ (x ≤ y and x 6= y) as
well as x ≥ y :⇔ y ≤ x. We define

−∞+ x := x+ (−∞) := −∞ for x ∈ K ∪ {−∞}
x+∞ :=∞+ x :=∞ for x ∈ K ∪ {∞}
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and

−∞ · x := x · (−∞) :=


−∞ for x ∈ K with x > 0

0 for x = 0
∞ for x ∈ K mit x < 0

∞ · x := x · ∞ :=


∞ for x ∈ K with x > 0
0 for x = 0
−∞ for x ∈ K with x < 0

We further define −y :=∞ for y = −∞, y−1 := 0 for y ∈ {−∞,∞} and y−1 :=∞ for y = 0

and with that x/y := x
y

:= x · (y−1) for (x, y) ∈ K2
and x − y := x + (−y) for (x, y) ∈ K2 \

{(−∞,−∞), (∞,∞)}. We further define the sets D+ := K
2 \ {(−∞,∞), (∞,−∞)}, D− :=

K
2 \ {(−∞,−∞), (∞,∞)} and D∗ := K2 for ∗ ∈ {·, /}. With these sets we just defined

functions ∗ : D∗ → K for ∗ ∈ {+,−, ·, /}. For x ∈ K let the absolute value |x| := x if x > 0
and |x| := −x if x ≤ 0. The set N = NK = {1, 2, 3, . . .} as well as intervalls in K we define in
usual way. For x, x̃ ∈ K we define the relative error erel(x, x̃) := |x − x̃|/|x|. For A ⊆ K we
set −A := {−x : x ∈ A} and ±A := (−A) ∪ A. Let NaN denote a set which is not element of
the set K. The symbol NaN stands as an abbreviation for “Not a Number” and will be used as a
computer number which a computer returns as exceptional result.

Now we define roundings into a finite subset of K.

Definition 2.1. For a finite subset M ⊆ K we define M := M ∪ {−∞,∞} and the functions
rdM , ruM : K →M by

rdM(x) := max{z ∈M : z ≤ x}

ruM(x) := min{z ∈M : z ≥ x}

for x ∈ K. Every function r : K → M we call rounding into M . The function rdM we call
lower rounding and the function ruM we call upper rounding into M. A rounding r : K →M
we call regular, if rdM ≤ r ≤ ruM , and monotonic, if r(x) ≤ r(x̃) for every x, x̃ ∈ K with
x ≤ x̃.

In the rest of this section let always M ⊆ K be a finite subset of K and rd := rdM , ru := ruM .

We now define computer operations for approximative computations with results rounded down-
wards or rounded upwards, respectively.

Definition 2.2. Let C := K ∪ {NaN}. For ∗ ∈ {+,−, ·, /} we define the functions ~M ,~M :
C2 → C by

x~My := x~My := NaN for (x, y) ∈ C2 \D∗
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x~My := rd(x ∗ y), x~My := ru(x ∗ y) for (x, y) ∈ D∗

with the following exceptions

x�My := x�My := NaN if x = 0, y ∈ {−∞,∞} or y = 0, x ∈ {−∞,∞}

x�My := x�My := NaN if x = y = 0 or x, y ∈ {−∞,∞}

We note that from the last definition we for example get 0�M∞ = 0�M∞ = NaN while
0 · ∞ = 0. These and further exceptions in the last definition are consistent with the definition
of the computer operations according to the IEEE Standard 754.

In the rest of this section, we study roundings and computer operations. We declare that computer
operations ⊕,	,�,� always have higher priority than each of the operations +,−, ·, /, so for
example the expression a · b− c means (a · b)− c and the expression a · b	 c means a · (b	 c).

Lemma 2.3. For x ∈ K we have the properties rd(x) ≤ x ≤ ru(x) and

∀z ∈M : x ≥ z ⇒ rd(x) ≥ z

∀z ∈M : x ≤ z ⇒ ru(x) ≤ z

and if rd(x) 6= ru(x) we have

ru(x) = min{z ∈M : z > rd(x)}

Proof. We have rd(x) = max{w ∈ M : w ≤ x} ≤ x. For z ∈ M with z ≤ x we have
z ≤ max{w ∈ M : w ≤ x} = rd(x). The inequality z ≥ ru(x) for every z ∈ M with
z ≥ x follows from ru(x) = −rd−M(−x). We get rd(x) ≤ x ≤ ru(x). For every z ∈ M with
z > rd(x) we have z > x and therefore z ≥ ru(x). If rd(x) 6= ru(x) then we have rd(x) < ru(x)
and therefore ru(x) = min{z ∈M : z > rd(x)}.

From the last Lemma we further get the following corollary.

Corollary 2.4. For every regular rounding r : K → M and x ∈ K, z ∈ M we have the
implications

x ≥ z ⇒ r(x) ≥ z

x ≤ z ⇒ r(x) ≤ z

Proof. From Lemma 2.3 we have

x ≥ z ⇒ r(x) ≥ rd(x) ≥ z

x ≤ z ⇒ r(x) ≤ ru(x) ≤ z
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Corollary 2.5. The lower rounding rd and the upper rounding ru are regular and monotonic.

Proof. The regularity of rd, ru follows from rd ≤ ru. Let x, x̃ ∈ K with x ≤ x̃. Then ru(x) =
min{z ∈ M : z ≥ x} ≤ ru(x̃) and rd(x) = max{z ∈ M : z ≤ x} ≤ rd(x̃). Therefore rd, ru
are monotonic

Definition 2.6. A rounding r : K →M we call close, if there exist A,B ∈ K with ]A,B[ ⊇M
and

(2.1) |r(x)− x| = min{|ru(x)− x|, |rd(x)− x|}

for every x ∈ ]A,B[ and r(x) = −∞ if x ∈ [−∞, A] and r(x) =∞ if x ∈ [B,∞].

Lemma 2.7. Every close rounding is regular and monotonic

Proof. Let r : K → M a close rounding and A,B ∈ K with ]A,B[ ⊇ M and (2.1) for every
x ∈ ]A,B[ and r(x) = −∞ if x ∈ [−∞, A] and r(x) =∞ if x ∈ [B,∞].

Proof of r being regular: If x ∈ [−∞, A] we have r(x) = −∞ = rd(x), if x ∈ [B,∞] we have
r(x) = ∞ = ru(x) . Let x ∈ ]A,B[. If r(x) ≥ x, with Lemma 2.3 we get r(x) ≥ ru(x) ≥ x
and therefore |r(x)− x| ≥ |ru(x)− x|. Because of (2.1) we also have |r(x)− x| ≤ |ru(x)− x|
and therefore |r(x) − x| = |ru(x) − x| which is equivalent to r(x) = ru(x). If r(x) ≤ x, with
Lemma 2.3 we get r(x) ≤ rd(x) ≤ x and therefore |r(x) − x| ≥ |rd(x) − x|. Because of (2.1)
we also have |r(x) − x| ≤ |rd(x) − x| and therefore |r(x) − x| = |rd(x) − x| and therefore
r(x) = rd(x).

Proof of r being monotonic: Let x, x̃ ∈ K with x < x̃. We prove r(x) ≤ r(x̃). Because r is
regular we have r(x) ∈ {rd(x), ru(x)} and r(x̃) ∈ {rd(x̃), ru(x̃)}. In case of r(x) = rd(x)
we have r(x) = rd(x) ≤ rd(x̃) ≤ r(x̃) while in case of r(x) = ru(x) and r(x̃) = ru(x̃) we
have r(x) = ru(x) ≤ ru(x̃) = r(x̃). Now let r(x) = ru(x) and r(x̃) = rd(x̃). In this case
we have x, x̃ ∈ ]A,B[ because otherwise it would be r(x) = −∞ or r(x̃) = ∞ and therefore
r(x) 6= ru(x) or r(x̃) 6= rd(x̃). From r(x̃) = rd(x̃) with (2.1) we get |rd(x̃)− x̃| ≤ |ru(x̃)− x̃|.
Assumed that ru(x) > rd(x̃) from Lemma 2.3 we would get ru(x) ≥ ru(x̃) and rd(x̃) ≤ rd(x),
and with ru(x) ≤ ru(x̃) and rd(x) ≤ rd(x̃) we would get ru(x) = ru(x̃) and rd(x) = rd(x̃).
Therefore with |rd(x)− x̃| = |rd(x̃)− x̃| ≤ |ru(x̃)− x̃| = |ru(x)− x̃| and x < x̃ we would get
|rd(x) − x| < |ru(x) − x| which contradicts r(x) = ru(x). Thus we have ru(x) ≤ rd(x̃) and
with that the proposition r(x) = ru(x) ≤ rd(x̃) = r(x̃).

Theorem 2.8. Let r : K → M a monotonic rounding and for ∗ ∈ {+,−, ·, /} let ~ : D∗ → M
defined by

x~ y := r(x ∗ y)

for (x, y) ∈ D∗.
Then for (x, y), (x̃, ỹ) ∈ D∗ we have the implications
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(a) Monoticity of ⊕

(2.2) x ≤ x̃ and y ≤ ỹ ⇒ x⊕ y ≤ x̃⊕ ỹ

(b) Monoticity of 	

(2.3) x ≤ x̃ and y ≥ ỹ ⇒ x	 y ≤ x̃	 ỹ

(c) Monoticites of �

(2.4) 0 ≤ x ≤ x̃ and 0 ≤ y ≤ ỹ ⇒ x� y ≤ x̃� ỹ

(2.5) 0 ≥ x ≥ x̃ and 0 ≤ y ≤ ỹ ⇒ x� y ≥ x̃� ỹ

(2.6) 0 ≥ x ≥ x̃ and 0 ≥ y ≥ ỹ ⇒ x� y ≤ x̃� ỹ

(2.7) 0 ≤ x ≤ x̃ and 0 ≥ y ≥ ỹ ⇒ x� y ≥ x̃� ỹ

(d) Monoticites of �

(2.8) 0 ≤ x ≤ x̃ and 0 < ỹ ≤ y ⇒ x� y ≤ x̃� ỹ

(2.9) 0 ≥ x ≥ x̃ and 0 < ỹ ≤ y ⇒ x� y ≥ x̃� ỹ

(2.10) 0 ≥ x ≥ x̃ and 0 > ỹ ≥ y ⇒ x� y ≤ x̃� ỹ

(2.11) 0 ≤ x ≤ x̃ and 0 > ỹ ≥ y ⇒ x� y ≥ x̃� ỹ

Proof. In each case, under the stated condition we get x ∗ y ≤ x̃ ∗ ỹ or x̃ ∗ ỹ ≤ x ∗ y and with
the monoticity of r we get the propositions.

Lemma 2.9. Let r : K → M a regular rounding and for ∗ ∈ {+,−, ·, /} let ~ : D∗ → M
defined by

x~ y := r(x ∗ y)

for (x, y) ∈ D∗.
Then for (x, y) ∈ D∗ and z ∈M we get the following implications.

(2.12) x ∗ y ≤ z ⇒ x~ y ≤ z

(2.13) x ∗ y ≥ z ⇒ x~ y ≥ z

(2.14) x ∗ y = z ⇒ x~ y = z
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Proof. The first two implications follow from Corollary 2.4. If x ∗ y = z then x ∗ y ≤ z and
x ∗ y ≥ z and therefore we get x~ y = z.

In the IEEE-Standard 754 the computer operations ~ for ∗ ∈ {+,−, ·, /} are not consistent with
our definition of the operations +,−, ·, / in K but there are some exceptions. These exceptions
are

x� y = NaN if x = 0, y ∈ {−∞,∞} or x ∈ {−∞,∞}, y = 0

while our definition of the operation · in K yields

x · y = 0 if x = 0, y ∈ {−∞,∞} or x ∈ {−∞,∞}, y = 0

Further exceptions are

x� y = NaN if x = y = 0 or x, y ∈ {−∞,∞}

while our definition of the operation / in K yields

x/y = 0 if x = y = 0 or x, y ∈ {−∞,∞}

In the following two theorems we examine if the implications (2.2) - (2.14) still remain true when
we define the operations ~ with the exceptions from the IEEE-Standard 754.

Corollary 2.10. Let r : K →M a monotonic rounding andC := K∪NaN. For ∗ ∈ {+,−, ·, /}
let the functions ~M : C2 → C be defined in the following way:

x~M y := NaN for (x, y) ∈ C2 \D∗

x~M y := r(x ∗ y) for (x, y) ∈ D∗

with the following exceptions

x�M y := NaN if x = 0, y ∈ {−∞,∞} or x ∈ {−∞,∞}, y = 0

x�M y := NaN if x = y = 0 or x, y ∈ {−∞,∞}

Then for x, y, x̃, ỹ ∈ K and ∗ ∈ {+,−, ·, /} we get the implications (2.2) - (2.11) with ~ = ~M .

Proof. Let ∗ ∈ {+,−, ·, /} and ~̃ : D∗ →M without exceptions defined by

x~̃y := r(x ∗ y) for (x, y) ∈ D∗

From Theorem 2.8 we get the implications (2.2) - (2.11) for (x, y), (x̃, ỹ) ∈ D∗ and ~ = ~̃. For
∗ ∈ {+,−, ·} and x, y, x̃, ỹ or for ∗ = / and x, x̃ ∈ K, y, ỹ ∈ K\{0}we have (x, y), (x̃, ỹ) ∈ D∗
and x~M y = x~̃y and x̃~M ỹ = x̃~̃ỹ. Therefore we get the proposed implications.
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Corollary 2.11. Let r : K → M a regular rounding and C := K ∪ NaN. For ∗ ∈ {+,−, ·, /}
let the functions ~M : C2 → C be defined in the following way:

x~M y := NaN for (x, y) ∈ C2 \D∗

x~M y := r(x ∗ y) for (x, y) ∈ D∗

with the following exceptions

x�M y := NaN if x = 0, y ∈ {−∞,∞} or x ∈ {−∞,∞}, y = 0

x�M y := NaN if x = y = 0 or x, y ∈ {−∞,∞}

Then for ∗ ∈ {+,−, ·, /} and x, y ∈ K, z ∈ M with y 6= 0 in case of ∗ = / we get the
implications (2.12) - (2.14) with ~ = ~M .

Proof. Let ∗ ∈ {+,−, ·, /} and ~̃ : D∗ →M without exceptions defined by

x~̃y := r(x ∗ y) for (x, y) ∈ D∗

From Lemma 2.9 we get the implications (2.2) - (2.11) for (x, y) ∈ D∗, z ∈ M and ~ = ~̃. For
x, y ∈ K, z ∈ M with y 6= 0 in case of ∗ = / we have x~M y = r(x ∗ y) = x~̃y and therefore
the implications (2.12) - (2.14) with ~ = ~M .

We want to derive accuracy bounds for rounded computations. For this purpose, we define the
following approximating property of roundings.

Definition 2.12. Let R ⊆ K \ {0} and u ∈ [0,∞[. A rounding r : K → M is called an
(R, u)-approximator, if

(2.15) r(x) ∈ K and erel(x, r(x)) ≤ u

for every x ∈ R.

Now we derive accuracy bounds for rounded computations. First we only consider rounded
results in a subset F of positive elements of M .

Lemma 2.13. Let F ⊆ M ∩ ]0,∞[ with #(F ) ≥ 2. For z ∈ F with z < maxF we define
succ(z) := min{y ∈ F : y > z}. Let

u :=
1

2
max {erel(z, succ(z)) : z ∈ F \ {maxF}}

and

R :=

[
minF,maxF +

1

2
(maxF −max(F \ {maxF}))

[
Let r : K →M a rounding with (2.1) for x ∈ R. Then r is an (R, u)-approximator.
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Proof. Let x ∈ R. The condition r(x) ∈ K obviously is true. If x ≤ maxF then ru(x) ≤ maxF
and

|r(x)− x| = min{|ru(x)− x|, |rd(x)− x|} ≤ 1

2
|rd(x)− ru(x)|

and therefore erel(x, r(x)) ≤ erel(rd(x), ru(x))/2 ≤ u. If x > maxF then rd(x) ≥ maxF and
we have

x− rd(x)) <
1

2
(maxF −max(F \ {maxF})

and therefore erel(x, r(x)) ≤ 1
2
erel(max(F \ {maxF}),maxF ) ≤ u.

The following Theorem 2.14 generalizes the result of Lemma 2.13 by allowing negative elements
in the subset F ⊆M .

Theorem 2.14. Let F ⊆M with #(F ∩ ]−∞, 0[) ≥ 2 and #(F ∩ ]0,∞[) ≥ 2. For z ∈ F with
z > minF we define prec(z) := max{y ∈ F : y < z} and for z ∈ F with z < maxF we define
succ(z) := min{y ∈ F : y > z}. Let

v := 1/2 max {erel(z, prec(z)) : z ∈ F ∩ ] minF, 0[}

w := 1/2 max {erel(z, succ(z)) : x ∈ F ∩ ]0,maxF [}

R1 := ]minF − 1/2(min(F \ {minF})−minF ),max(F ∩ ]−∞, 0[)]

R2 := [min(F ∩ ]0,∞[),maxF + 1/2(maxF −max(F \ {maxF}))[

Let u := max{v, w} and R := R1 ∪ R2. Let r : K →M a rounding with (2.1) for x ∈ R. Then
r is an (R, u)-approximator.

Proof. From Lemma 2.13 we directly get

erel(x, r(x)) ≤ w for x ∈ R2

If we apply Lemma 2.13 to the functions ruN , rdN with N := −M instead of M , the set G :=
−(F ∩ ]−∞, 0[) instead of F , and the function q : −R1 → N defined by q(x) := −r(−x) for
x ∈ −R1, we get

erel(x, r(x)) ≤ v for x ∈M with x ∈ R1

because of ruN(−x) = −rd(x), rdN(−x) = −ru(x) and erel(−x, q(−x)) = erel(x, r(x)) for
x ∈ R1. Therefore the proposition is proven.
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We remark that in case of F being symmetrical, that means F = ±F , in Theorem 2.14 we get
the easier expressions max{v, w} = v and R1 ∪R2 = ±R1.

Corollary 2.15. Let R ⊆ K \ {0}, u ∈ [0, 1[ and r : K → M an (R, u)-approximator. Let
C := K ∪NaN. For ∗ ∈ {+,−, ·, /} let the functions ~M : C2 → C be defined in the following
way

x~M y := NaN for (x, y) ∈ C2 \D∗

x~M y := r(x ∗ y) for (x, y) ∈ D∗

with the following exceptions

x�M y := NaN if x = 0, y ∈ {−∞,∞} or x ∈ {−∞,∞}, y = 0

x�M y := NaN if x = y = 0 or x, y ∈ {−∞,∞}

Then for ∗ ∈ {+,−, ·, /} and for x, y ∈ K with x ∗ y ∈ R we have

x~M y ∈ K and erel(x ∗ y, x~M y) ≤ u

Proof. Let ∗ ∈ {+,−, ·, /} and x, y ∈ K with x ∗ y ∈ R. Because of x, y ∈ K we have
(x, y) ∈ D∗. Because of 0 /∈ R and x ∗ y ∈ R we have x ∗ y 6= 0. Therefore we have got none
of the exceptional cases in the definition of ~M , but x ~M y = r(x ∗ y). Because of x ∗ y ∈ R
we have r(x ∗ y) ∈ K and erel(x ∗ y, r(x ∗ y)) ≤ u. Therefore we get the proposition.

2.2 The computer number systems Cs,t

We now define computer number systems Cs,t with s, t ∈ N. For s = 11, t = 52 we get the
number system IEEE-Double and for s = 8, t = 23 we get the number system IEEE-Single
which are described in the IEEE Standard 754 [3]. Particularly the first of these two examples is
important because of frequent applications in practice.

Definition 2.16. Let s, t ∈ N and Cs,t := ±Fs,t ∪ ±Gs,t ∪ {−∞,∞,NaN} with

Fs,t := {(1 + dεt)2
e−e0 : d ∈ {0, . . . , 2t − 1}, e ∈ {1, . . . , 2s − 2}}

with εt := 2−t and e0 := 2s−1 − 1, and

Gs,t =
{
dεt2

emin : d ∈ {0, . . . , 2t − 1}
}

with emin := 1− e0 = −2s−1 + 2. Let

Rs,t := ±[minFs,t,maxFs,t + 22s−1−t−2[

and ut := 2−(t+1). We define IEEESingle := C8,23, IEEEDouble := C11,52 and
IEEEMinExtended := C15,63.
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For s, t ∈ N we define rds,t := rd±Fs,t∪±Gs,t and rus,t := ru±Fs,t∪±Gs,t . For ∗ ∈ {+,−, ·, /} we
define

~s,t := ~±Fs,t∪±Gs,t ,~s,t := ~±Fs,t∪±Gs,t
We further define

As,t := maxFs,t +
1

2
(maxFs,t −max(Fs,t \ {maxFs,t}))

In this section we always assume rs,t : K → Cs,t ∩K is a rounding with

|x− rs,t(x)| = min{|x− rds,t(x)|, |x− rus,t(x)|}

for x ∈ ]− As,t, As,t[ and with rs,t(x) = −∞ for x ∈ [−∞,−As,t] and rs,t(x) = ∞ for x ∈
[As,t,∞]. Further let C := K ∪ {NaN} and for ∗ ∈ {+,−, ·, /} the functions ~s,t : C2 → Cs,t
defined as

x~s,t y := NaN for (x, y) ∈ C2 \D∗

x~s,t y := rs,t(x ∗ y) for (x, y) ∈ D∗
with the following exceptions

x�s,t y := NaN if x = 0, y ∈ {−∞,∞} or x ∈ {−∞,∞}, y = 0

x�s,t y := NaN if x = y = 0 or x, y ∈ {−∞,∞}

We list the smallest examples of sets of the form Fs,t.

Example 2.17. For every t ∈ N we have F1,t = ∅. We have

F2,1 = {1, 1.5, 2, 3}, R2,1 = ±[1, 3.5[, u1 = 1/4

As Fq,r ⊆ Fs,t if q, r, s, t ∈ N with q ≤ s and r ≤ t, this means that 1, 1.5, 2, 3 ∈ Fs,t for s, t ∈ N
with s ≥ 2. For example we have

F2,2 = {1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5}, R2,2 = ±[1, 3.75[, u2 = 1/8

F3,1 = {0.25, 0.375, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, 12}, R3,1 = ±[0.25, 14[

Lemma 2.18. Let s, t ∈ N with s ≥ 2. Then

minFs,t = 22−2s−1

,maxFs,t = (2− 2−t)22s−1−1

Particularly we have

[22−2s−1

, 22s−1−1] ⊆ Rs,t

For k ∈ Z we have

2k ∈ Fs,t ⇔ 2− 2s−1 ≤ k ≤ 2s−1 − 1

2k ∈ Cs,t ⇔ 2− 2s−1 − t ≤ k ≤ 2s−1 − 1

30



Proof. With d = 0 and e = 1 we have minFs,t = (1 + dεt)2
e−(2s−1−1) = 22−2s−1 and with

d = 2t − 1 and e = 2s − 2 we get maxFs,t = (1 + dεt)2
e−(2s−1−1) = (2 − 2−t)22s−1−1.

Let k ∈ {2 − 2s−1 − t, . . . , 1 − 2s−1}. Then with d := 22s−1−2+t+k ∈ {0, . . . , 2t−1} we have
2k = dεt2

2−2s−1 . Hence 2k ∈ Gs,t.

We now compute the values which in Theorem 2.14 we called u and R, in case of F = Fs,t, and
get that rs,t is a (Rs,t, ut)-approximator.

Lemma 2.19. Let s, t ∈ N. The rounding rs,t is a (Rs,t, ut)-approximator. Therefore for ∗ ∈
{+,−, ·, /} and for x, y ∈ K with x ∗ y ∈ Rs,t we have

x~s,t y ∈ K and erel(x ∗ y, x~s,t y) ≤ us,t

Proof. Let F := Fs,t. For z ∈ F with z < maxF we define z′ := min{y ∈ F : y > z}. Let
z ∈ F \{maxF} and e ∈ {−2s−1+2, . . . , 2s−1−1} and d ∈ {0, . . . , 2t−1}with z = (1+dεt)2

e.
Then z′ = (1 + (d+ 1)εt)2

e and

erel(z, z
′) =

εt2
e

z
=

εt
1 + dεt

≤ εt = 2−t

Therefore

1/2 max {erel(z, z′) : z ∈ F \ {maxF}} ≤ 2−t−1 = ut

From Lemma 2.18 we have maxFs,t = (2−2−t)22s−1−1. We further have max(F \{maxF}) =
(2− 2−t+1)22s−1−1. From that we get

1/2(maxF −max(F \ {maxF})) = 22s−1−t−2

With Theorem 2.14 we get that the rounding rs,t is a (Rs,t, ut)-approximator. With that, from
Corollary 2.15 we get that for ∗ ∈ {+,−, ·, /} and for x, y ∈ K with x ∗ y ∈ Rs,t we have

x~s,t y ∈ K and erel(x ∗ y, x~s,t y) ≤ us,t

We remark that Lemma 2.19 states that the precision ut of the number system Cs,t is determined
by the parameter t and, if t is small compared to 2s, the parameter s roughly determines how
large the range Rs,t of the number system Cs,t is.

Lemma 2.20. Let t < 2s−1 − 1. Then we have max{n ∈ N : {1, . . . , n} ⊆ Cs,t} = 2t+1.

Proof. Let k ∈ {0, . . . , t} andm ∈ {0, . . . , 2k−1}. We show that 2k+m ∈ Cs,t. Let d := m2t−k

and e := e0 + k. Then d ∈ {0, . . . , 2t − 1}, e ∈ {e0, . . . , 2e0 − 1} and (1 + dεt)2
e−e0 = 2e−e0 +

m2t−kεt2
e−e0 = 2k+m. Furthermore we have 2t+1 = (1+dεt)2

e−e0 with d = 0, e = e0+t+1 ∈
{e0, . . . , 2e0}. For d = 1, e = e0 + t + 1 we have (1 + dεt)2

e−e0 = (1 + 2−t)2t+1 = 2t+1 + 2.
Hence 2t+1 + 1 /∈ Cs,t.
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Lemma 2.21. Let s, t ∈ N and x ∈ Cs,t ∩ K. If |x| < 22s−1−1, then −2x, 2x ∈ Cs,t. If
|x| ≥ 23−2s−1

then we have −x/2, x/2 ∈ Cs,t.

Proof. If 22−2s−1 ≤ |x| < 22s−1−1, then x ∈ ±Fs,t and there exist d ∈ {0, . . . , 2t − 1}, e ∈
{2− 2s−1, . . . , 2s−1 − 2} with |x| = (1 + dεt)2

e. Therefore |2x| = (1 + dεt)2
e+1, with e+ 1 ≤

2s−1 − 1. We get |2x| ∈ Fs,t and therefore 2x,−2x ∈ ±Fs,t. If |x| < 22−2s−1 then x ∈ ±Gs,t

and there exists d ∈ {0, . . . , 2t − 1} with |x| = dεt2
2−2s−1 . Therefore |2x| = 2dεt2

2−2s−1 ∈ Gs,t

if d < 2t−1 and |2x| = (2t + 2(d − 2t−1))εt2
2−2t−1

= (1 + 2(d − 2t−1)εt)2
2−2s−1 ∈ Fs,t if

d ≥ 2t−1. We get −2x, 2x ∈ Cs,t. The proof of the second proposition is even easier than the
first one: If |x| ≥ 23−2s−1 , then there exist d ∈ {0, . . . , 2t−1}, e ∈ {3−2s−1, . . . , 2s−1−1} with
|x| = (1 + dεt)2

e. Therefore |x|/2 = (1 + dεt)2
e−1, with e− 1 ≥ 2− 2s−1. We get |x|/2 ∈ Fs,t

and therefore x/2,−x/2 ∈ ±Fs,t.

The next one is a somewhat crude but sometimes helpful estimate.

Lemma 2.22. Let s, t ∈ N and x ∈ Cs,t ∩K with 0 < rds,t(|x|) and rus,t(|x|) <∞. Then

rus,t(|x|) ≤ 2rds,t(|x|)

Proof. Let k ∈ Z with |x| ∈ [2k−1, 2k]. Then 2k−1 ≤ rds,t(|x|) and therefore rus,t(|x|) ≤ 2k ≤
2rds,t(|x|).

Corollary 2.23. Let s, t ∈ N, x, y ∈ Cs,t ∩K and ∗ ∈ {+,−, ·, /} with 0 < rds,t(|x ∗ y|) and
rus,t(|x ∗ y|) <∞. If x ∗ y > 0 we get

x~s,ty ≤ 2(x~s,ty)

If x ∗ y < 0 we get

x~s,ty ≥ 2(x~s,ty)

Proof. The proof directly follows from the Lemma 2.22.

Corollary 2.24. Let s, t ∈ N and x ∈ Cs,t ∩K. If 22−2s−1 ≤ |x| and rus,t(|x|) < 22s−1−1, then
rds,t(2x) = 2rds,t(x) and rus,t(2x) = 2rus,t(x).

If 23−2s−1 ≤ |x| and rus,t(|x|) < 22s−1
, then rds,t(x/2) = rds,t(x)/2 and rus,t(x/2) = rus,t(x)/2.

Proof. Without loss of generality we assume x > 0. We have rds,t(x) ≤ rus,t(x) < 22s−1−1.
From Lemma 2.21 we get 2rds,t(x), 2rus,t(x) ∈ Cs,t. We further have 2rds,t(x) ≤ 2x ≤
2rus,t(x). Therefore we get 2rds,t(x) ≤ rds,t(2x) and 2rus,t(x) ≥ rus,t(2x). We have 2x ≥
23−2s−1 and therefore rus,t(2x) ≥ rds,t(2x) ≥ 23−2s−1 and therefore with Lemma 2.21 we get
rds,t(2x)/2, rus,t(2x)/2 ∈ Cs,t. We further have rds,t(2x)/2 ≤ x ≤ rus,t(2x)/2. Therefore we
get rds,t(2x)/2 ≤ rds,t(x) and rus,t(2x)/2 ≥ rus,t(x).

The second proposition follows from the first one with x/2 instead of x, because under the stated
conditions from x/2 ≤ rus,t(x)/2 follows rus,t(x/2) ≤ rus,t(x)/2 < 22s−1−1.
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The next corollary states that in Cs,t the operations �,�,�,� work very well together with the
multiplication and the division by 2.

Corollary 2.25. Let s, t ∈ N and x, y ∈ Cs,t ∩K.

If 22−2s−1 ≤ |xy| and ru(|xy|) < 22s−1−1, then

(2x)�s,ty = x�s,t(2y) = 2(x�s,ty)

(2x)�s,ty = x�s,t(2y) = 2(x�s,ty)

If 23−2s−1 ≤ |xy| and ru(|xy|) < 22s−1
, then

(x/2)�s,ty = x�s,t(y/2) = (x�s,ty)/2

(x/2)�s,ty = x�s,t(y/2) = (x�s,ty)/2

If 22−2s−1 ≤ |x/y| and ru(|x/y|) < 22s−1−1, then

(2x)�s,ty = x�s,t(y/2) = 2(x�s,ty)

(2x)�s,ty = x�s,t(y/2) = 2(x�s,ty)

If 23−2s−1 ≤ |x/y| and ru(|x/y|) < 22s−1
, then

x�s,t(2y) = (x/2)�s,ty = (x�s,ty)/2

x�s,t(2y) = (x/2)�s,ty = (x�s,ty)/2

Proof. The proof of this corollary directly follows from Corollary 2.24

Lemma 2.26. Let s, t ∈ N, k ∈ Z with 2k ∈ Fs,t. Let s0 := 2k and sj := sj−1 ⊕s,t 2k−j for
j ∈ {1, . . . , t}. Then for j ∈ {0, . . . , t} we have sj =

∑j
i=0 2k−i and for every α ∈ Cs,t with

α ≤ 2k−t we have st⊕s,t α ≤ 2k+1. Furthermore, for every β ∈ Cs,t with 0 ≤ β < 2k−t we have
2k+1 ⊕s,t β = 2k+1.

Proof. For j ∈ {0, . . . , t} we have
∑j

i=0 2k−i = 2k(1 + εt
∑j

i=1 2t−i) ∈ Fs,t and thus via
induction we get sj =

∑j
i=0 2k−i. From st + 2k−t = 2k+1 we get st ⊕ 2k−t = 2k+1.

Lemma 2.27. Let s, t ∈ N, α ∈ Fs,t and k ∈ Z with 2k ∈ Cs,t and 2k < α. Then

(i) α⊕s,t (−2k) ≥ α− 2k+1

(ii) If 2k+t+1 ≥ α then α− 2k ∈ Cs,t and therefore α⊕s,t (−2k) = α− 2k
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Proof. Let k1 ∈ Z with 2k1 ≤ α < 2k1+1 and d ∈ {0, . . . , 2t − 1} with α = 2k1(1 + d2−t). We
first show that (ii) implies (i). In case of 2k+t+1 ≥ α this is obvious. In case of 2k+t+1 < α we
have k + t+ 1 ≤ k1. If k + t+ 1 = k1 then 2k+t+2 ≥ α and hence with (ii) we get

α⊕s,t (−2k) ≥ α⊕s,t (−2k+1) = α− 2k+1

If k + t + 1 < k1 we have α ⊕s,t (−2k) = α ≥ α − 2k+1. Now we prove (ii). Let 2k+t+1 ≥ α.
From 2k < α we get k ≤ k1 and from 2k+t+1 ≥ α we get k+t+1 ≥ k1. In case of k+t+1 = k1
we have α = 2k1 and hence

α− 2k = 2k1 − 2k = 2k1−1(1 + (2t − 1)2−t) ∈ Cs,t

In case of k = k1, with i ∈ {0, . . . , t}, d̃ ∈ {0, . . . , 2i − 1} with d = 2i + d̃ we have

α− 2k = d2k1−t = 2k1−t+i + d̃2k1−t = 2k1−t+i(1 + d̃2t−i2−t)

which yields α− 2k ∈ Cs,t. In case of k+ t+ 1 > k1 > k we have 2k−k1+t ∈ {1, . . . , 2t−1}. We
have the equations

α− 2k = 2k1(1 + d2−t)− 2k = 2k1(1 + (d− 2k−k1+t)2−t)

and

α− 2k = 2k1−1 + 2k1−1 + d2k1−t − 2k = 2k1−1(1 + (2t + 2(d− 2k−k1+t))2−t)

Hence, if d−2k−k1+t ≥ 0 we have α−2k ∈ Cs,t with α−2k ∈ [2k1 , 2k1+1[ and if d−2k−k1+t < 0
we have α− 2k ∈ Cs,t with α− 2k ∈ [2k1−1, 2k1 [.

2.3 Analysis of error propagation by standard functions

In this section we always assume that M is a finite subset of K and R ⊆ K \ {0}, u ∈ [0, 1[. Let
C := M ∪ {NaN} and for ∗ ∈ {+,−, ·, /} let ~ : C2 → M ∪ {NaN} functions that fulfill the
condition

x~M y ∈ K and erel(x ∗ y, x~M y) ≤ u

for x, y ∈ K ∩ C with x ∗ y ∈ R.

Now we examine how certain standard Operations, such as summation or multiplication, propa-
gate errors from the operands to the result. Before we state the easy case of summation in Lemma
2.31, we begin with two lemmas about the relative error erel and one lemma about products.

Lemma 2.28. Let x, y ∈ K and c ∈ [0,∞[. Then we have the follwing two implications

erel(x, y) ≤ c < 1⇒ erel(y, x) ≤ c/(1− c)
erel(x, y) ≥ c⇒ erel(y, x) ≥ c/(1 + c)

34



Proof. In case of x = y = 0 the implications obviously are true. In case of x 6= 0 or y 6= 0 we
have

erel(x, y) = |1− y

x
| ≥ 1− |y

x
|

and hence

erel(y, x) = erel(x, y)
|x|
|y|
≤ erel(x, y)

1− erel(x, y)

if erel(x, y) < 1, which yields the first implication. The proof of the second implication is
analogousl.

Lemma 2.29. Let x, y ∈ K and c ∈ [0,∞[ with erel(x, y) ≤ c. Then we have |x| ≥ |y|/(1 + c)
and if c ∈ [0, 1] we have |x| ≤ |y|/(1− c).

Proof. We have |1 − y/x| ≤ c and hence |y/x| = y/x ∈ [1 − c, 1 + c]. From that, we get the
proposed inequalities.

Lemma 2.30. Let c1, . . . , cn ∈ K and δ1, . . . , δn ∈ K mit |δ1| ≤ c1, . . . , |δn| ≤ cn. Then∣∣∣∣∣
n∏
i=1

(1 + δi)− 1

∣∣∣∣∣ ≤
n∏
i=1

(1 + ci)− 1

Proof.∣∣∣∣∣
n∏
i=1

(1 + δi)− 1

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
n∑
k=0

∑
I⊆{1,...,n}
|I|=k

∏
i∈I

δi − 1

∣∣∣∣∣∣∣∣ ≤
n∑
k=1

∑
I⊆{1,...,n}
|I|=k

∏
i∈I

ci =
n∏
i=1

(1 + ci)− 1

Lemma 2.31. Let x, y ∈ K, x̃, ỹ ∈ K ∩ C and c1, c2 ∈ [0,∞[ with

erel(x, x̃) ≤ c1, erel(y, ỹ) ≤ c2

If x̃− ỹ ∈ R, then

erel(x− y, x̃	 ỹ) ≤ (1 + u)

(
1 +

c1|x|+ c2|y|
|x− y|

)
− 1

Proof. Let δ1 := x−x̃
x

, δ2 := y−ỹ
y

and η := x̃−ỹ−(x̃	ỹ)
x̃−ỹ . Then

x̃	 ỹ = (x̃− ỹ)(1− η) = (x(1− δ1)− y(1− δ2))(1− η)

It follows

|x̃	 ỹ − (x− y)| = |(1− η)(−xδ1 + yδ2)− η(x− y)|
≤ (1 + u)(c1|x|+ c2|y|) + u|x− y|

and thus the conclusion.
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We state another lemma on error propagation in a subtraction. Before that, we state the following
easy consequence of the triangle inequality.

Lemma 2.32. Let x, y, ε, δ ∈ K with |1− x| ≤ ε and |1− y| ≥ δ. Then |1− xy| ≥ (1 + δ)(1−
ε)− 1.

Proof. Without loss of generality we assume δ ≥ 0. We have ε ≥ 0. We assume ε < 1 and
δ > ε/(1− ε), otherwise it would be (1 + δ)(1− ε)− 1 ≤ 0 and hence the proposition obviously
be true. Especially we have δ ≥ ε and x > 0. In case of y ≥ 1 we have y ≥ 1+δ ≥ 1+ε/(1−ε)
and therefore xy ≥ (1 − ε)y ≥ 1 and hence |1 − xy| = xy − 1 ≥ (1 − ε)(1 + δ) − 1. In
case of 0 < y < 1 we have xy ≤ (1 + ε)(1 − δ) = 1 + ε − δ − εδ ≤ 1 and therefore
|1 − xy| = 1 − xy ≥ 1 − (1 + ε)(1 − δ) ≥ (1 − ε)(1 + δ) − 1. In case of y ≤ 0 we have
|1− xy| = 1− xy ≥ 1− (1− ε)(1− δ) ≥ (1 + δ)(1− ε)− 1.

Now we state another lemma on the error propagation which can occur when a subtraction 	 is
performed.

Lemma 2.33. Let x, y ∈ K, x̃, ỹ ∈ K ∩ C, c1, c2, c3 ∈ [0,∞[ with erel(x, x̃) ≤ c1, erel(y, ỹ) ≤
c2 < 1, erel(x, ỹ) ≥ c3. Let d := c1

(1−c2)(1+c3/(1+c3))−1 + c2
(1+c3)(1−c2/(1−c2))−1 . If x̃ − ỹ ∈ R and

(1− c2)(1 + c3/(1 + c3)), (1 + c3)(1− c2/(1− c2) > 1, then x 6= y and

erel(x− y, x̃	 ỹ) ≤ (1 + u)(1 + d)− 1

Proof. We have |1 − ỹ/x| ≥ c3 and |1 − ỹ/y| ≤ c2. Because of Lemma 2.28 we further have
|1− x/ỹ| ≥ c3/(1 + c3) and |1− y/ỹ| ≤ c2/(1− c2). Thus, by Lemma 2.32 we get

erel(y, x) = |1− (x/ỹ) · (ỹ/y)| ≥ (1− c2)(1 + c3/(1 + c3))− 1

erel(x, y) = |1− (y/ỹ) · (ỹ/x)| ≥ (1 + c3)(1− c2/(1− c2))− 1

By Lemma 2.31 we get

erel(x− y, x̃	 ỹ) ≤ (1 + u)(1 + c1/erel(y, x) + c2/erel(x, y))− 1

and thus the conclusion.

Lemma 2.34. Let m ∈ N, x1, . . . , xm ∈ K, y1, . . . , ym ∈ K ∩ C, c1, . . . , cm ∈ [0,∞[ with

erel(x1, y1) ≤ c1, . . . , erel(xm, ym) ≤ cm

and

q1 := y1, qi := qi−1 � yi for i ∈ {2, . . . ,m}

If qi−1yi ∈ R for i ∈ {2, . . . ,m}, then

erel

(
m∏
i=1

xi, qm

)
≤ (1 + u)m−1

m∏
i=1

(1 + ci)− 1
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Proof. Let δ1 := x1−y1
x1

, . . . , δm := xm−ym
xm

, ε1 := 0 and εi := qi−1yi−qi
qi−1yi

for i ∈ {2, . . . ,m}. Then

q1 = y1 = x1(1− δ1) = x1(1− δ1)(1− ε1)

and

qi = qi−1yi(1− εi) = qi−1xi(1− εi)(1− δi)

for i ∈ {2, . . . ,m}. Therefore, for j ∈ {1, . . . ,m} we have

qj =

j∏
i=1

xi(1− εi)(1− δi)

Hence, with the use of lemma 2.30 we get∣∣∣∣∣qm −
m∏
i=1

xi

∣∣∣∣∣ =

∣∣∣∣∣
m∏
i=1

xi

∣∣∣∣∣
∣∣∣∣∣
m∏
i=1

(1− εi)(1− δi)− 1

∣∣∣∣∣
≤

∣∣∣∣∣
m∏
i=1

xi

∣∣∣∣∣
(

(1 + u)m−1
m∏
i=1

(1 + ci)− 1

)

which yields the proposition.

Lemma 2.35. Let x ∈ K, y ∈ K \ {0}, x̃, ỹ ∈ K ∩ C with x̃/ỹ ∈ R and c1 ∈ [0,∞[, c2 ∈ [0, 1[
with

erel (x, x̃) ≤ c1, erel(y, ỹ) ≤ c2

Then

erel(x/y, x̃� ỹ) ≤ (1 + c1)(1 + u)/(1− c2)− 1

Proof. Let δ1 := x−x̃
x

, δ2 := y−ỹ
y

and η := x̃/ỹ−x̃�ỹ
x̃/ỹ

. We have

x̃� ỹ = x̃/ỹ(1− η)

= x/y(1− δ1)/(1− δ2)(1− η)

= x/y(1− δ1)(1 +
δ2

1− δ2
)(1− η)

With lemma 2.30 we get

|x/y − x̃� ỹ| ≤ |x/y|
(

(1 + c1)(1 +
c2

1− c2
)(1 + u)− 1

)
= |x/y|((1 + c1)(1 + u)/(1− c2)− 1)

and thus the proposed inequality.
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Theorem 2.36. Let m ∈ N, c ∈ [0,∞[ and x1, . . . , xm ∈ K, y1, . . . , ym ∈ K ∩ C with

erel(x1, y1), . . . , erel(xm, ym) ≤ c

and s1 := y1 and si := si−1 ⊕ yi for i ∈ {2, . . . ,m}. If si−1 + yi ∈ R for i ∈ {2, . . . ,m}, then

|sm −
m∑
i=1

xi| ≤ ((1 + c)(1 + u)m−1 − 1)
m∑
i=1

|xi|

Especially, if xi ≥ 0 for every i ∈ {1, . . . ,m} or if xi ≤ 0 for every i ∈ {1, . . . ,m}:

erel

(
m∑
i=1

xi, sm

)
≤ (1 + c)(1 + u)m−1 − 1

Proof. Let δ1 := x1−y1
x1

, . . . , δm := xm−ym
xm

and ε1 := 0 and εi := si−1+yi−si
si−1+yi

for i ∈ {2, . . . ,m}.
We have

s1 = x1(1− δ1)(1− ε1)

and for i ∈ {2, . . . ,m}

si = (si−1 + xi(1− δi))(1− εi)

and hence for j ∈ {1, . . . ,m}

sj =

j∑
i=1

(
xi(1− δi)

j∏
`=i

(1− ε`)

)
Hence, with ϑi := (1− δi)

∏m
`=i(1− ε`)− 1 we have

|sm −
m∑
i=1

xi| ≤
m∑
i=1

|xiϑi|

≤ |x1|((1 + c)(1 + u)m−1 − 1) +
m∑
i=2

|xi|((1 + c)(1 + u)m−i+1 − 1)

≤ ((1 + c)(1 + u)m−1 − 1)
m∑
i=1

|xi|

Lemma 2.37. Let x, y ∈ K, x̃, ỹ ∈ K ∩ C, c1, c2 ∈ [0,∞[ with

erel(x, x̃) ≤ c1, erel(y, ỹ) ≤ c2

Let x̃+ ỹ ∈ R. Then

erel(x+ y, x̃⊕ ỹ) ≤ (1 + u)

(
1 +

c1|x|+ c2|y|
|x+ y|

)
− 1
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Proof. Let ε1 := x−x̃
x

and ε2 := y−ỹ
y

. Hence x̃ = x(1 − ε1), ỹ = y(1 − ε2) and |ε1| ≤ c1,
|ε2| ≤ c2. Let δ := x̃+ỹ−x̃⊕ỹ

x̃+ỹ
. Then

x̃⊕ ỹ = (x̃+ ỹ) · (1− δ) = x(1− ε1)(1− δ) + y(1− ε2)(1− δ)

and with that we get

|x+ y − x̃⊕ ỹ|
= |x+ y − (x(1− ε1)(1− δ) + y(1− ε2)(1− δ))|
= |(1− δ)(ε1x+ ε2y) + δ(x+ y)|
≤ (1 + u)(c1|x|+ c2|y|) + u|x+ y|

Hence

erel(x+ y, x̃⊕ ỹ) =

∣∣∣∣x+ y − x̃⊕ ỹ
x+ y

∣∣∣∣
≤ (1 + u)

c1|x|+ c2|y|
|x+ y|

+ u

which yields the proposition.

Now, we state a lemma on the error propagation in a summation where one of the summands has
a much larger absolute value than the other:

Lemma 2.38. Let x, y ∈ K, x̃, ỹ ∈ K ∩ C, c1, c2 ∈ [0,∞[ with

erel(x, x̃) ≤ c1, erel(y, ỹ) ≤ c2

Let c3 ∈ ]1,∞[ with |x|/|y| ≥ c3. Let x̃+ ỹ ∈ R. Then

erel(x+ y, x̃⊕ ỹ) ≤ (1 + u)

(
1 +

c1

1− c−13

+
c2

c3 − 1

)
− 1

Proof. We have the following inequatlitiy

erel(x+ y, x̃⊕ ỹ) ≤ (1 + u)

(
1 +

c1|x|+ c2|y|
|x+ y|

)
− 1

= (1 + u)

(
1 +

c1
|1 + y/x|

+
c2

|x/y + 1|

)
− 1

≤ (1 + u)

(
1 +

c1
1− |y/x|

+
c2

|x/y| − 1

)
− 1

≤ (1 + u)

(
1 +

c1

1− c−13

+
c2

c3 − 1

)
− 1
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The next Lemma states an error bound for summation in cases where the absolute value of some
of the summands is smaller than a certain bound δ. For example, δ could be the smallest positive
normal machine number.

Lemma 2.39. Let n ∈ N, a1 . . . , an ∈ K, b1, . . . , bn ∈ K ∩C. Let c, δ ∈ [0,∞[, m ∈ {0, . . . , n}
with erel(ak, bk) ≤ c for k ∈ {1, . . . ,m} and |ak|, |bk| ≤ δ for k ∈ {m+ 1, . . . , n}. Let s1 := b1
and sk := sk−1 ⊕ bk for k ∈ {2, . . . , n}. We assume sk−1 + bk ∈ R for k ∈ {2, . . . , n}. Then∣∣∣∣∣

n∑
k=1

ak − sn

∣∣∣∣∣ ≤
n∑
k=1

|ak|((1 + c)(1 + u)n−1 − 1) + 2nδ(1 + u)n−1

Proof. Let δ1 := a1−b1
a1

; . . . , δm := am−bm
am

, so that

b1 = a1(1− δ1), . . . , bm = am(1− δm)

and ε1 := 0, ε2 := s1+b2−s2
s1+b2

, . . . , εn := sn−1+bn−sn
sn−1+bn

, so that s1 = b1(1 − ε1) and sk = (sk−1 +

bk)(1− εk) for k ∈ {2, . . . , n}. By induction we get

sn =
n∑
j=1

bj

n∏
k=j

(1− εk)

and with that ∣∣∣∣∣
n∑
j=1

aj − sn

∣∣∣∣∣
=

∣∣∣∣∣
m∑
j=1

aj(1− (1− δj)
n∏
k=j

(1− εk)) +
n∑

j=m+1

aj −
n∑

j=m+1

bj

n∏
k=j

(1− εk)

∣∣∣∣∣
≤

m∑
j=1

|aj|((1 + c)(1 + u)n−1 − 1) +
n∑

j=m+1

∣∣∣∣∣aj − bj
n∏
k=j

(1− εk)

∣∣∣∣∣︸ ︷︷ ︸
≤2δ(1+u)n−1

≤
n∑
j=1

|aj|((1 + c)(1 + u)n−1 − 1) + 2nδ(1 + u)n−1

and hence the proposition.

Now we use Lemma 2.39 to approximate sums of the form a + b
∑n

k=1
xk

2k+1
. Here some of the

summands may be smaller than the smallest positive normal machine number and hence may not
be computed with small relative error.
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Lemma 2.40. Let n ∈ N, k0 ∈ {1, . . . , n}, a, b, x ∈ K, ck0 , . . . , cn ∈ K \ {0} and sk0−1, x̃0, x̃,
c̃k0 , . . . , c̃n ∈ K ∩ C. Let K1, K2, K3 ∈ [0,∞[, K4 ∈ [0, 1[ with

erel(b, x̃0) ≤ K1, erel(x, x̃) ≤ K2, erel(a, sk0−1) ≤ K3

and erel(ck, c̃k) ≤ K4 for k ∈ {k0, . . . , n}. For k ∈ {1, . . . , n} let x̃k := x̃k−1 � x̃. For
k ∈ {k0, . . . , n} let zk := x̃k � c̃k and sk := sk−1 ⊕ zk. Let δ ∈ [0,∞[ and m ∈ {0, . . . , n}
with x̃k−1 · x̃ ∈ R for k ∈ {1, . . . ,m}, x̃k/c̃k ∈ R for k ∈ {k0, . . . ,m} and |zk|, |bxk/ck| ≤ δ
for k ∈ {k0, . . . , n} with k > m. Let sk−1 + zk ∈ R for k ∈ {k0, . . . , n}. Then, with K5 :=
max(K3, (1 +K1)(1 +K2)

n(1 + u)n+1/(1−K4)− 1) we have∣∣∣∣∣a+ b
n∑

k=k0

xk

ck
− sn

∣∣∣∣∣ ≤(
|a|+ |b|

n∑
k=k0

|x|k

|ck|

)
((1 +K5)(1 + u)n−k0+1 − 1) + 2(n− k0 + 2)δ(1 + u)n−k0+1

Proof. From Lemmas 2.34 and 2.35 we get

erel(bx
k, x̃k) ≤ (1 +K1)(1 +K2)

k(1 + u)k − 1

for k ∈ {1, . . . ,m} and

erel(b
xk

ck
, zk) ≤ (1 +K1)(1 +K2)

k(1 + u)k+1/(1−K4)− 1

≤ (1 +K1)(1 +K2)
n(1 + u)n+1/(1−K4)− 1

for k ∈ {k0, . . . ,m}. With the use of this bounds, by Lemma 2.39 we get the proposition.
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Chapter 3

Analysis of error propagation in Loader’s
algorithm for the binomial density

In this chapter, after a review of Loader’s algorithm for the binomial density we derive bounds
for the error propagation in Loader’s algorithm. In the entire chapter we use the the notions we
defined in chapter 2. We often will write ~,~,~ as abbreviations for ~s,t,~s,t,~s,t.

3.1 Loader’s algorithm for the binomial density

In this section we assume K = R. An algorithm for computing the binomial density

bn,p(x) =

(
n

x

)
px(1− p)n−x

is given by Loader [16]. The statistical software R [20] computes the binomial density with a
slightly modified version of Loader’s algorithm. The version that R uses is stated in Appendix D.
The command for executing the algorithm with R is dbinom(x,n,p). In case of p ∈ ]0, 1[,
n ∈ {2, . . . , 253}, x ∈ {1, . . . , n−1} the following program, which is written in the programming
language C according to the C standard defined in [2], is very similar to the version of Loader’s
algorithm that R uses.

double bin(double x, double n, double p){

double q = 1-p;

double lc = stirlerr(n)-stirlerr(x)-stirlerr(n-x)-bd0(x,n*p)-bd0(n-x,n*q);

double lf = M_LN_2PI + log(x) + log1p(- x/n);

return exp(lc - 0.5*lf);

}

Here M_LN_2PI is the element of the set of IEEE-Double numbers which is closest to log(2π),
the function log1p is an approximation for ]− 1,∞[ 3 x 7→ log(1 + x), the function stirlerr
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is an approximation for ]0,∞[ 3 x 7→ S(x) := log(Γ(x + 1)/(xxe−x
√

2πx)) and the function
bd0 is an approximation for ]0,∞[2 3 (x, np) 7→ x log(x/np) − x + np. The C programs
that define the functions stirlerr and bd0 are displayed in appendix D. A brief summary of
analytical approximations of S(x) can be found in appendix C.

The basic idea of this algorithm can be understood by regarding the equation

bn,p(x) = bn, x
n
(x)

bn,p(x)

bn, x
n
(x)

in which the value bn,x/n(x) is called “saddle point approximator” and the fraction
bn,p(x)/bn,x/n(x) is called “deviance part”. The problem of directly computing bn,p(x) here
has changed to computing saddle point approximator and deviance part first and then getting
bn,p(x) by multiplying them. The advantage of this “saddle point shift” is, that while bn,p(x)
could be very small at the tails of the binomial distribution, the approximator bn,x/n(x) is not
that small because the binomial density bn,p has its maximal values near its expectation µ = np
and in case of p = x/n its expectation is µ = x. It is assumed that it is easier to compute values
of the binomial density accurately which are not very small, than to compute very small values
accurately.

The saddle point approximator can be written in the form

(3.1) bn, x
n
(x) =

(
n

x

)(x
n

)x(n− x
n

)n−x
=

n!
nn

x!
xx

(n−x)!
(n−x)n−x

Now the idea is, to use Stirling’s series to approximate the three minor fractions in the last
expression. To do so, the expression first is brought into the form

(3.2) bn, x
n
(x) =

n!
nne−n

√
2πn

x!
xxe−x

√
2πx
· (n−x)!
(n−x)n−xe−n+x

√
2π(n−x)

· 1√
2πx

(
1− x

n

)
where Stirling’s approximations can be applied three times. In order to do that in an easy way, the
last equation is transformed by the logarithm, which means one turns to compute log(bn,p(x))
instead of bn,p(x) and will get bn,p(x) by exponentiation in the end. The transformation via
logarithm yields the equation

log
(
bn, x

n
(x)
)

= log

(
n!

nne−n
√

2πn

)
− log

(
x!

xxe−x
√

2πx

)
− log

(
(n− x)!

(n− x)n−xe−n+x
√

2π(n− x)

)
− log

(√
2πx

(
1− x

n

))
The function stirlerr in the algorithm stated above is a tool to approximate the first three ex-
pressions on the right side of this equation, using Stirling’s series. The last of the four expressions
on the right side is the one which occurs as the value -0.5*lf in the algorithm.
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The logarithm of the deviance part is

log

(
bn,p(x)

bn, x
n
(x)

)
= log

(
px(1− p)n−x

(x
n
)x(n−x

n
)n−x

)
= x log

(np
x

)
+ (n− x) log

(
n(1− p)
n− x

)
(3.3)

We remark that because of cancelation here no more binomial coefficients occur. For more
accurate numerical computation, Loader brought this expression into the form

(3.4) log

(
bn,p(x)

bn, x
n
(x)

)
= −f(x, np)− f(n− x, n(1− p))

with f(x, y) := x log(x/y) − x + y which is the function that is approximated by bd0 in the
algorithm stated above. We remark that because f is positive, which is a direct consequence of
the well known inequality log(t) ≥ 1 − 1/t, in (3.4) both terms on the right side are negative
whereas in (3.3) one was negative and the other one was positive.

To get a deeper understanding of Loader‘s algorithm, we briefly want to compare it to a classical
method of computing the value bn,p(x), which was used before Loader’s algorithm has been
developed. The logarithm of the probability bn,p(x) has been computed according to the formula

(3.5) log(bn,p(x)) = log(n!)− log(x!)− log((n− x)!) + x log(p) + (n− x) log(1− p)

where log(n!) could be computed with the help of Stirling’s series via

log(n!) = log

(
n!

nne−n
√

2πn

)
+ (n+

1

2
) log(n)− n+

1

2
log(2π)

and log(x!) and log((n − x)!) analogously. In (3.5) the problem is, that the logarithms of the
factorials n!, x! and (n− x)! typically are very large compared to the absolute value of the result
log(bn,p(x)). Because of this, moderate relative errors in the operands can lead to a very large
relative error in the result of the subtraction. This problem does not exist in Loader’s algorithm
anymore, because in the deviance part as mentioned no more binomial coefficients do occur,
which were possibly very large compared to the result, and in the saddle point approximator, in
transition from equation (3.1) to (3.2), the possibly large expressions ex, en and en−x canceled
out.

We conclude this overview by looking again at the expression bn,x/n(x) in equation (3.2). If we
approximate the three minor fractions by 1, we get the approximation

bn, x
n
(x) ≈ 1√

2πx
(
1− x

n

)
which with p = x/n also can be written as

bn,p(np) ≈
1√

2πnp(1− p)
= ϕnp,np(1−p)(np)
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where ϕµ,σ2 = 1√
2πσ2

e−
(x−·)2

2σ2 is the density of the normal distribution with mean µ and variance
σ2. Hence, the way in which Loader‘s algorithm works can be comprehensed in the following
sentence: A saddle point shift is performed where the saddle point approximator is computed
by a normal approximation in the center of the corresponding normal distribution and the de-
viance part should be computed numerically accurate because due to cancelation of binomial
coefficients no more subtraction of large operands with small result does occur.

In the remainder of this chapter we will examine the error propagation in Loader‘s algorithm,
assuming that all computations are performed by a machine with machine precision u ∈ ]0, 1[.
That means our aim is the following.

If p ∈ ]0, 1[ is approximated by a machine number p̃ and the relative error in this approximation
is bounded by c ∈ ]0,∞[, we want to derive a bound for the relative error in the approximation
of bn,p(x) by the computed result bin(x,n,p̃), assuming n and x are machine numbers.

From the following example we infer that it can not be possible to derive bounds less than 1/5
for every value of p ∈ ]0, 1[, if the computations are performed in the IEEE-Double number
system.

Example 3.1. Let n = 253 = max{n ∈ N : {1, . . . , n} ⊆ IEEEDouble}, x = n − 1, p =
1 − 2−54. We compute an approximator for bn,p(x) with R. We use the value p̃ = 1 − 2−53 as
approximator for p. One might imagine that we do not know p and got the approximator p̃ by a
numerical computation. The relative error in the approximation of p by p̃ is

erel(p, p̃) = 2−54/(1− 2−54) < 2−53

Hence, the approximation of p by p̃ is good considering the machine precision u52 = 2−53 of
the IEEE-Double Number System, in which the computations with R are performed. Evaluation
with R returns the value dbinom(x,n,p̃) = 0.3678794 as approximator for bn,p(x), but for the
exact result with (C.1) and (C.2) from appendix C we get the inequality

log (bn,p(x)) = log

(
n!

nne−n
√

2πn

)
− log

(
x!

xxe−x
√

2πx

)
− log

(
(n− x)!

(n− x)n−xe−n+x
√

2π(n− x)

)
− log

(√
2πx

(
1− x

n

))
+x log

(np
x

)
+ (n− x) log

(
n(1− p)
n− x

)
≤ 1

12n
− (

1

12x
− 1

360x3
)− (

1

12(n− x)
− 1

360(n− x)3
)

− log

(√
2πx

(
1− x

n

))
+ x log

(np
x

)
+ (n− x) log

(
n(1− p)
n− x

)
Computation with the computer algebra system Mathematica verifies that the right side of this
inequality is less than −1192641

1000000
and that exp(−1192641

1000000
) < 30342

100000
. Hence, provided that these

verifications with Mathematica are reliable, we have bn,p(x) < 30342
100000

and the relative error in
the approximation of bn,p(x) by the approximator we computed with R must be larger than 1/5.
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3.2 Overview about research on the accuracy of algorithms
for the binomial density

Loader [16] performs numerical experiments which indicate numerical accuracy of Loader’s
algorithm for the binomial density.

Kaiser [12] in examples studied the accuracy of a so called “multiplication method” which was
stated in Appendix B of Loader [16]. This method multiplicates all the factors in the representa-
tion

bn,p(x) =
x∏
i=1

n− x+ i

i

x∏
i=1

p

n−x∏
i=1

(1− p)

in an order which aims to prevent numerical underflow. Here, numerical underflow means that a
result of a computer operation is smaller than the smallest positive computer number.

Hirai and Nakamura [10] construct a new arithmetic system in the programming language C.
They further propose an algorithm for the computation of the binomial density using the proposed
arithmetic system. Further Hirai and Nakamura perform numerical experiments which indicate
usefulness of the proposed algorithm for a very large range of sample size n.

3.3 Error propagation in the computation of np and n(1− p)

We start our examination of error propagation in Loader’s algorithm with examining how bounds
for the relative error erel(p, p̃) propagate when the values n � p̃ and n � (1 	 p̃) are computed,
which in Loader’s algorithm occur as inputs for the function bd0.

Lemma 3.2. Let n ∈ K ∩ C and p ∈ ]0, 1[, p̃ ∈ ]0, 1[ ∩ C and c ∈ [0,∞[ with

max

(
erel(p, p̃), erel(p, p̃)

p

1− p

)
≤ c

Then

erel(np, n� p̃) ≤ (1 + u)(1 + erel(p, p̃))− 1 ≤ (1 + u)(1 + c)− 1

erel(1− p, 1	 p̃) ≤ (1 + u)(1 + erel(p, p̃)
p

1− p
)− 1 ≤ (1 + u)(1 + c)− 1

erel(n(1− p), n� (1	 p̃)) ≤ (1 + u)2(1 + c)− 1

Remark: If s, t ∈ N with t+ 2 ≤ 2s−1 and n ∈ {2, . . . , 2t+1} we have n ∈ Cs,t.

Example 3.3. If t = 52, c = 2−36, p ≤ 216

1+216
≈ 0.999985, then p

1−p ≤ 216 and we get

c
p

1− p
≤ 2−20
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3.4 Error bounds for the deviance part bd0(k, np) in case of
|k − np| < 0.1 ∗ |k + np| and erel(k, np) ≥ c

Now we estimate the error propagation by the function bd0. The function that we want to ap-
proximate by bd0 is the function N× ]0,∞[ 3 (k, x) 7→ k log(k/x) +x−k. We will use that for
every k ∈ N, the function ]0,∞[ 3 x 7→ k log(k/x) + x − k is nonnegative, convex and = 0 if
x = k. In this section, we examine the error propagation in the evaluation of bd0(k, np) in case
of |k − np| < 0.1 ∗ |k + np| and erel(k, np) ≥ c, where c ∈ ]0,∞[. In this case, the following C
code fragment is equivalent to the program that R uses.

double ej, s, s1, v;

int j;

v = (x-np)/(x+np);

s = (x-np)*v;

if(fabs(s) < DBL_MIN) return s;

ej = 2*x*v;

v = v*v;

for (j = 1; j < 1000; j++) {

ej *= v;

s1 = s+ej/((j<<1)+1);

if (s1 == s) return s1;

s = s1;

}

}

This program evaluates the following representation of the function bd0, which is valid for x, y ∈
R with |(x− y)/(x+ y)| < 1

bd0(x, y) = x log(x/y)− x+ y

= x log

(
1 + x−y

x+y

1− x−y
x+y

)
− x+ y

= x

(
log

(
1 +

x− y
x+ y

)
− log

(
1− x− y

x+ y

))
− x+ y

= 2x
∞∑
k=0

(
1

2k + 1
(
x− y
x+ y

)2k+1

)
− x+ y

= 2x
x− y
x+ y

− x+ y + 2x
∞∑
k=1

1

2k + 1
(
x− y
x+ y

)2k+1

=
(x− y)2

x+ y
+ 2x

∞∑
k=1

1

2k + 1
(
x− y
x+ y

)2k+1
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In the third step the power series expansion log(1 + x) =
∑∞

k=1(−1)k+1 xk

k
was used, which is

valid for x ∈ ]− 1, 1[.

Our first lemma gives bounds for the error propagation in the initial steps of the algorithm.

Lemma 3.4. Let x, y ∈ ]0,∞[, x̃, ỹ ∈ ]0,∞[ ∩ C, c1, c2 ∈ [0, 2/(1 + u)− 1[, c3 ∈ ]0,∞[ with
erel(x, x̃) ≤ c1, erel(y, ỹ) ≤ c2, erel(x, ỹ) ≥ c3. We further assume (1− c2)(1 + c3/(1 + c3)), (1 +
c3)(1− c2/(1− c2) > 1. Let s := x̃⊕ ỹ, d := x̃	 ỹ, v := d� s, e1 := ((2� x̃)� v)� (v � v)
and

K1 := (1 + max(c1, c2))(1 + u)− 1

K2 := (1 + u)(1 +
c1

(1− c2)(1 + c3/(1 + c3))− 1
+

c2
(1 + c3)(1− c2/(1− c2))− 1

)− 1

Let x̃+ ỹ, x̃− ỹ, d/s, dv, v2, 2x̃, (2� x̃)v ∈ R. Then

erel(
(x− y)2

x+ y
, d� v) ≤ (1 + u)2(1 +K2)

2/(1−K1)− 1

erel(

(
x− y
x+ y

)2

, v � v) ≤ (1 + u)3(1 +K2)
2/(1−K1)

2 − 1

erel(2x
x− y
x+ y

, (2� x̃)� v) ≤ (1 + u)3(1 + c1)(1 +K2)/(1−K1)− 1

and, if ((2� x̃)� v)(v � v), e1/3 ∈ R

erel(2x

(
x− y
x+ y

)3

/3, e1 � 3) ≤ (1 + u)8(1 + c1)(1 +K2)
3/(1−K1)

3 − 1

Proof. By Lemma 2.36, we get

erel(x+ y, s) ≤ K1

By Lemma 2.33, we get

erel(x− y, d) ≤ K2

and hence by Lemma 2.35, we get

erel(
x− y
x+ y

, v) ≤ (1 + u)(1 +K2)/(1−K1)− 1

From these inequalities with Lemmas 2.34, 2.35 we get the propositions.
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Lemma 3.5. Let x, y ∈ ]0,∞[, x̃, ỹ ∈ ]0,∞[ ∩ C, c1, c2 ∈ [0, 2/(1 + u)− 1[, c3 ∈ ]0,∞[with
erel(x, x̃) ≤ c1, erel(y, ỹ) ≤ c2, erel(x, ỹ) ≥ c3 and |x̃	 ỹ| < (1� 10)� (x̃⊕ ỹ). We define

K1 := (1 + u)(1 + max(c1, c2))− 1

K2 := (1 + u)(1 +
c1

(1− c2)(1 + c3/(1 + c3))− 1
+

c2
(1 + c3)(1− c2/(1− c2))− 1

)− 1

K3 := 12
1−K2

1 +K1

K4 := (1 + u)2(1 +K2)
2/(1−K1)− 1

K5 := (1 + u)8(1 + c1)(1 +K2)
3/(1−K1)

3 − 1

Let s := x̃⊕ ỹ, d := x̃	 ỹ, v := d� s, a := d� v and e1 := ((2� x̃)� v)� (v� v), We assume
[2, 3, 8, 10 ∈ C and] x̃+ỹ, x̃−ỹ, d/s, dv, v2, 2x̃, (2�x̃)v, ((2�x̃)�v)(v�v), e1/3, a+(e1�3) ∈
R and (1� 8)� (x̃⊕ ỹ) = (x̃⊕ ỹ)/8. We further assume (1− c2)(1 + c3/(1 + c3)), (1 + c3)(1−
c2/(1− c2) > 1 and K1, K2 < 1, K3 > 1. Then we have

erel

(
(x− y)2

x+ y
+ 2x

(
x− y
x+ y

)3

/3, a⊕ (e1 � 3)

)
≤ (1 + u)(1 +

K4

1−K−13

+
K5

K3 − 1
)− 1

If c1 = 0, c2 = 2−25, c3 = 2−18, Mathematica yields

(1 + u)

(
K4

1−K−13

+
K5

K3 − 1

)
+ u < 1.95 · 10−2

Proof. From Lemma 2.36 we have erel(x+y, x̃⊕ ỹ) ≤ K1 and from Lemma 2.33 we have x 6= y
and erel(x− y, x̃	 ỹ) ≤ K2. From Lemma 2.29 we get

|x− y| ≤ |x̃	 ỹ|/(1−K2)

x+ y ≥ (x̃⊕ ỹ)/(1 +K1)

We further have

|x̃	 ỹ| < (1� 10)� (x̃⊕ ỹ) < (1� 8)� (x̃⊕ ỹ) = (x̃⊕ ỹ)/8

and therefore |x̃	ỹ|
x̃⊕ỹ < 1/8. We therefore have

|x− y|
x+ y

≤ |x̃	 ỹ|(1 +K1)

(1−K2)(x̃⊕ ỹ)
≤ 1 +K1

8(1−K2)

50



and hence ∣∣∣∣∣∣∣
(x−y)2
x+y

2x
(
x−y
x+y

)3
/3

∣∣∣∣∣∣∣ =
3(x+ y)2

2x|x− y|
≥ 3(x+ y)

2|x− y|
≥ 12

1−K2

1 +K1

= K3

From Lemma 3.4 we have

erel(
(x− y)2

x+ y
, s) ≤ K4

erel(2x

(
x− y
x+ y

)3

/3, e1 � 3) ≤ K5

Therefore, by Lemma 2.38 we get the proposition.

Lemma 3.6. Let s, t ∈ N with 4t+ 8 ≤ 2s−1. Let ⊕ = ⊕s,t, � = �s,t, 	 = 	s,t, � = �s,t. Let
n ∈ N with {1, . . . , 2n+ 1} ⊆ Cs,t, i.e. with 2n+ 1 ≤ 2t+1, x̃, ỹ ∈ ]0,∞[ ∩Cs,t with x̃ 6= ỹ. We
assume x̃ ≥ 1, ỹ ≥ 1/2 and x̃, ỹ ≤ 2t+1 and |x̃ 	 ỹ| < 2−3 � (x̃ ⊕ ỹ). We define s := x̃ ⊕ ỹ,
d := x̃ 	 ỹ, v := d � s. Let s0 := d � v, e0 := (2 � x̃) � v and ej := ej−1 � (v � v), zj :=
ej � (2j + 1), sj := sj−1 ⊕ zj for j ∈ {1, . . . , n}.
Then for k ∈ {1, . . . , n} we have sk−1 + zk ∈ Rs,t and if 6k ≥ t+ 11 also sk = sk−1.

Proof. Because of x̃ 6= ỹ we have |d| ≥ εt/2 = 2−t−1. Furthermore because of |s| ≤ 2t+2 we
have 2−2t−3 ≤ |v| ≤ 2−3. To prove the proposition we first consider the case of d < 0. In this
case we use the inequality

e0 = (2� x̃)� (d� s) ≥ (2� x̃)� (d� x̃) ≥ 2d(1 + ut)
2 ≥ 2d(1 + 2−3)2 ≥ 3d

which is valid if t ≥ 2, and the inequality e0 ≥ (2 � x̃) � (d � x̃) = 2d ≥ 3d if t = 1. Let
m1,m2 ∈ Z with−2m1+1 ≤ d < −2m1 and−2m2+1 ≤ v < −2m2 . Then we get e0 ≥ −3 · 2m1+1

and v � v ≤ 22(m2+1) and thus

e1 ≥ −3 · 2m1+1+2(m2+1)

z1 = e1 � 3 ≥ e1/2 ≥ −3 · 2m1+2(m2+1)

and by induction

ek ≥ −3 · 2m1+1+2k(m2+1)

zk = ek � (2k + 1) ≥ 2−2ek ≥ −2m1+1+2k(m2+1)
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for k ∈ {2, . . . , n}. Furthermore we have

s0 = d� v ≥ 2m1+m2

Because of |v| ≤ 2−3 we have m2 ≤ −4. Hence we get the inequalities

s0 + z1, s1 ≥ (2m1+m2 − 3 · 2m1+2(m2+1))(1− ut)
≥ (2m1+m2 − 3 · 2m1+2(m2+1))/2

= 2m1+m2−1(1− 3 · 22+m2)

≥ 2m1+m2−1(1− 3 · 2−2)
= 2m1+m2−3

and with Lemma 2.27

sk−1 + zk ≥ 2m1+m2−3 −
∞∑
j=2

2m1+2+2j(m2+1)

= 2m1+m2−3 − 2m1+2+4(m2+1)

∞∑
j=0

22j(m2+1)

= 2m1+m2−3 − 2m1+2+4(m2+1)/(1− 22(m2+1))

= 2m1+m2−3(1− 29+3m2/(1− 22(m2+1)))

≥ 2m1+m2−3(1− 2−3/(1− 2−6))

≥ 2m1+m2−4

for k ∈ {2, . . . , n}. Because of |v| ≥ 2−2t−3 and |d| ≥ 2−t−1 we have m1 ≥ −t − 1 and
m2 ≥ −2t− 3. Hence we get 2m1+m2−4 ≥ 2−3t−8 ≥ 22−2s−1 . Because of sk−1 ≥ 2m1+m2−4 and
|zk| ≤ 2m1+1+2k(m2+1) we get sk−1 ⊕ zk = sk−1 if 6k ≥ t + 11. Obviously, in case of d < 0 we
also have the inequality sk ≤ s0 and hence sk−1 + zk ∈ Rs,t for every k ∈ {1, . . . , n}.
Now we consider the case d > 0 where we have sk ≥ s0 for k ∈ {1, . . . , n}. Because of
s0 ≤ 2−3d ≤ 2−6s ≤ 2t−4, e0 ≤ 2t−1 and v � v ≤ 2−6 we also get zk ≤ 2t−2−6k and hence
with Lemma 2.26 we get sk ≤ 2t−3 and sk−1 + zk ≤ 2t−2 ≤ 22s−1−1 for k ∈ {1, . . . , n}. Let
m1,m2 ∈ Z with 2m1 ≤ d ≤ 2m1+1 and 2m2 ≤ v ≤ 2m2+1. Then we have sk−1 ≥ s0 = d� v ≥
2m1+m2 and e0 = (2 � x̃) � (d � s) ≤ (2 � x̃) � (d � x̃) ≤ 2d(1 + ut)

2 ≤ 4d ≤ 2m1+2 and
zk ≤ 2m1+1+2k(m2+1). From this, if 6k ≥ t+ 7 we get sk−1 ⊕ zk = sk−1.

Now we are able to prove the main result about the deviance part bd0(k, np) in case of |x−np| <
0.1 ∗ (k + np) and erel(k, x̃) ≥ c.

Theorem 3.7. Let s, t ∈ N with 4t + 8 ≤ 2s−1. Let ⊕ = ⊕s,t, � = �s,t, 	 = 	s,t, � = �s,t.
Let n ∈ N with {1, . . . , 2n + 1} ⊆ Cs,t, i.e. with 2n + 1 ≤ 2t+1, i.e. with n < 2t, y, x ∈ ]0,∞[
and ỹ, x̃ ∈ ]0,∞[∩Cs,t, c1, c2 ∈ [0, 1/2], c3 ∈ ]0,∞[ with x̃ 6= ỹ and erel(x, x̃) ≤ c1, erel(y, ỹ) ≤
c2, erel(x, ỹ) ≥ c3. We assume x, x̃ ≥ 1 and y, x, ỹ, x̃ ≤ 2t+1 and |x̃ 	 ỹ| < 2−3 � (x̃ ⊕ ỹ).
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We define s := x̃ ⊕ ỹ, d := x̃ 	 ỹ, v := d � s. Let s0 := d � v, e0 := (2 � x̃) � v and
ej := ej−1� (v� v), zj := ej � (2j + 1), sj := sj−1⊕ zj for j ∈ {1, . . . , n}. We further assume
(1−c2)(1+c3/(1+c3)), (1+c3)(1−c2/(1−c2) > 1 and (1+c1)(1+K3)

2m+3(1+ut)
2m+5−1 < 1.

Let

K1 := (1 + max(c1, c2))(1 + ut)− 1

K2 := (1 + u)(1 +
c1

(1− c2)(1 + c3/(1 + c3))− 1
+

c2
(1 + c3)(1− c2/(1− c2))− 1

)− 1

K3 :=
1 +K2

1−K1

(1 + ut)− 1

Let δ = 28−2s−1+4t+r1+r2 where r1, r2 ∈ N with 2n + 1 ≤ 2r1 and r1 ≤ 2t + 2s−1 − 10 and
1/(2− (1 + c1)(1 +K3)

2n+1(1 + ut)
2n+3) ≤ 2r2 . Then∣∣∣∣∣(x− y)2

x+ y
+ 2x

n∑
j=1

(
x− y
x+ y

)2j+1/(2j + 1)− sn

∣∣∣∣∣
≤

(
(x− y)2

x+ y
+ 2x

n∑
j=1

∣∣∣∣x− yx+ y

∣∣∣∣2j+1

/(2j + 1)

)
((1 + c1)(1 +K3)

2n+1(1 + ut)
3n+3 − 1)

+2(n+ 1)δ(1 + ut)
n

Furthermore we have sj = sj−1 for every j ∈ {1, . . . , n} with 6j ≥ t+ 11.

Proof. Because of 4t + 8 ≤ 2s−1 we have s ≥ 5 and therefore 2−3 � z = 2−3z for every
z ∈ Fs,t with z ≥ 1 and z 	 3/4 = z − 3/4 for every z ∈ Fs,t with 2t−1 ≥ z ≥ 1. From
|x̃	 ỹ| < 2−3 � (x̃⊕ ỹ) and x̃ ≥ 1 we get ỹ > 3/4 because otherwise would

|x̃	 ỹ| ≥ x̃	 3

4
≥ x̃	 x̃

2
= x̃/2 ≥ x̃/4 = 2−3 � (x̃⊕ x̃) ≥ 2−3 � (x̃⊕ ỹ)

if x̃ ≥ 3/2 and

|x̃	 ỹ| ≥ x̃	 3

4
= x̃− 3

4
≥ x̃/4 ≥ 2−3 � (x̃⊕ ỹ)

if x̃ < 3/2.

Hence with c2 ≤ 1/2 we get y ≥ 1/2. We have 2, 3 ∈ Cs,t, 1 ≤ x̃ + ỹ, x̃ ⊕ ỹ ≤ 2t+2,
2−t−1 = εt/2 ≤ |x̃− ỹ| ≤ 2t+2, 2−t−1 ≤ |x̃	 ỹ| < 2−3(x̃⊕ ỹ) ≤ 2t−1, 2−2t−3 ≤ |d/s|, |v| ≤ 2−3,
2−3t−4 ≤ dv ≤ 2t−4,2−4t−6 ≤ v2 ≤ 2−6, 2 ≤ 2x̃ = 2 � x̃ ≤ 2t+2, 2−2t−2 ≤ |(2 � x̃)v| ≤ 2t−1.
The proof of these inequalities is mostly very easy. For example the inequality |v| ≤ 2−3 is valid
because −2−3 ≤ d ≤ 2−3s and hence −2−3 = (−2−3s) � s ≤ v ≤ (2−3s) � s = 2−3. From
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all these inequalities we get x̃+ ỹ, x̃− ỹ, d/s, dv, v2, 2x̃, (2� x̃)v ∈ ±[22−2s−1
, 22s−1−1] ⊆ Rs,t.

Hence we can use Lemma 3.4 and get

erel(
(x− y)2

x+ y
, d� v) ≤ (1 +K2)(1 +K3)(1 + ut)− 1

erel(

(
x− y
x+ y

)2

, v � v) ≤ (1 +K3)
2(1 + ut)− 1

erel(2x
x− y
x+ y

, (2� x̃)� v) ≤ (1 + c1)(1 +K3)(1 + ut)
2 − 1

Lemma 3.6 yields sk−1 + zk ∈ Rs,t for k ∈ {1, . . . , n}. We want to apply Lemma 2.40 and
therefore now want to show that there exists m ∈ {0, . . . , n} with

ej−1 · (v � v), ej/(2j + 1) ∈ Rs,t for j ∈ {1, . . . ,m}

and

|zj|, |2x
(
x− y
x+ y

)2j+1

/(2j + 1)| ≤ δ for j ∈ {m+ 1, . . . , n}

At first, we remark that the values |ej|, |ej/(2j + 1)|, |zj| and
∣∣∣2x(x−y

x+y
)2j+1)/(2j + 1)

∣∣∣ are de-
creasing when j increases. From that we get that all of these values for every j ∈ {1, . . . , n}
are bounded from above by 22s−1−1 ≤ max Fs,t. Let γ := δ2−r2 . Then γ ≥ 22−2s−1

=
min Ranges,t ∩ ]0,∞[ and hence in case of |ej−1|(v � v), |ej|/(2j + 1) ≥ γ for every j ∈
{1, . . . , n}, we are done. Otherwise let m ∈ {0, . . . , n−1} with |ej−1|(v� v), |ej|/(2j+ 1) ≥ γ
for j ∈ {1, . . . ,m} and with |em|(v � v) < γ or |em+1|/(2m + 3) < γ. As |em|(v � v) ≤ γ
implies |em+1| ≤ γ, we then have |em+1|/(2m+ 3) < γ too. Thus |zm+1| ≤ γ ≤ δ. It remains to
show that

∣∣∣2x(x−y
x+y

)2m+3)/(2m+ 3)
∣∣∣ ≤ δ. We have |em| ≥ γ. If m ∈ {1, . . . , n− 1} we get this

from |em−1|(v�v) ≥ γ, if m = 0 we get this with r1 ≤ 2t+ 2s−1−10 and |e0| ≥ 2−2t−2. Hence
we have |em+1| = |em � (v � v)| ≥ γ · 2−4t−6 = 22−2s−1+r1 and |em+1|/(2m + 3) ≥ 22−2s−1 .
Hence em+1/(2m+ 3) ∈ Rs,t and with Lemma 2.36 and Lemma 2.35 we get

erel

(
2x(

x− y
x+ y

)2m+3)/(2m+ 3), zm+1

)
≤ (1 + c1)(1 +K3)(1 + ut)

2(1 +K3)
2m+2(1 + ut)

m+1(1 + ut)
m+2 − 1

= (1 + c1)(1 +K3)
2m+3(1 + ut)

2m+5 − 1

From that we get

|2x(
x− y
x+ y

)2m+3)/(2m+ 3)| ≤ |zm+1|/(2− (1 + c1)(1 +K3)
2m+3(1 + ut)

2m+5) ≤ γ2r2 = δ
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because of (1 + c1)(1 +K3)
2m+3(1 + ut)

2m+5 − 1 < 1.

Thus we are allowed to apply Lemma 2.40 which because of K3 ≥ K2 and hence

max
(
(1 +K2)(1 +K3)(1 + ut), (1 + c1)(1 +K3)

2n+1(1 + ut)
2n+3

)
= (1 + c1)(1 +K3)

2n+1(1 + ut)
2n+3

yields the proposed bound.

An Example for the bounds which the last Theorem yields:

Example 3.8. If c1 = 0, c2 = 2−25, c3 = 2−18, Mathematica yields

K2 = 0.00787, K3 = 0.00787, (1 +K3)
100 − 1 = 1.190918

Hence, the relative error bound unfortunately is rather big.

We could improve the bound which the last Theorem yields if we used Lemma 2.40 with k0 = 2

instead of k0 = 1 and with a = (x−y)2
x+y

+ 2x(x−y
x+y

3
/3 and the error bound for a which is stated in

Lemma 3.5.

The following lemma states an upper bound for the number of cycles that the “for” loop in
Loader’s algorithm takes until it quits.

Lemma 3.9. Let s, t ∈ N with 4t + 8 ≤ 2s−1. Let ⊕ = ⊕s,t, � = �s,t, 	 = 	s,t, � = �s,t.
Let n ∈ N with {1, . . . , 2n + 1} ⊆ Cs,t, i.e. with 2n + 1 ≤ 2t+1, i.e. with n < 2t, y, x ∈ ]0,∞[
and ỹ, x̃ ∈ ]0,∞[∩Cs,t, c1, c2 ∈ [0, 1/2], c3 ∈ ]0,∞[ with x̃ 6= ỹ and erel(x, x̃) ≤ c1, erel(y, ỹ) ≤
c2, erel(x, ỹ) ≥ c3. We assume x, x̃ ≥ 1 and y, x, ỹ, x̃ ≤ 2t+1 and |x̃ 	 ỹ| < 2−3 � (x̃ ⊕ ỹ).
We define s := x̃ ⊕ ỹ, d := x̃ 	 ỹ, v := d � s. Let s0 := d � v, e0 := (2 � x̃) � v and
ej := ej−1 � (v � v), zj := ej � (2j + 1), sj := sj−1 ⊕ zj for j ∈ {1, . . . , n}. Then sj+1 = sj
for every j ∈ N with 6j ≥ 5t+ 8.

For example, if t = 52, we have 5t + 8 = 268 and hence 6j > 5t + 8 iff j ≥ 45. If t = 23, we
have 5t+ 8 = 123 and therefore 6j > 5t+ 8 iff j ≥ 21.

Proof. For every j ∈ N0 we have sj ≥ 2−3t−8 and hence sj ⊕ α = sj for every α ∈ Cs,t with
|α| ≤ 2−3t−8−(t+2) = 2−4t−10. We further have |zj| ≤ 2t−2−6j for j ∈ N and hence |zj| ≤ 2−4t−10

and hence sj = sj−1 ⊕ zj = sj−1 if 6j ≥ 5t+ 8.

3.5 Absolute error bounds for the deviance part bd0(x, np) in
case of erel(x, np) ≤ c

If erel(x, np) is very small, then the function bd0 computes 0 as result because the computations
leave the range of the number system. Then, we do not get the bound for the relative error we
derived in the last section but have to derive a bound for the absolute error instead.
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We derive an estimation for the function bd0, which is based on the monotonicity of the computer-
functions.

Theorem 3.10. Let s, t ∈ N with s ≥ 4 and jmax ∈ N with {1, . . . , 2jmax + 1} ⊆ Cs,t. Let
x, y ∈ ]0,∞[ ∩ Cs,t with x, y ≤ 22s−1−2 and |x 	 y| < 2−3 � (x ⊕ y). Let z := x ⊕ y, d :=
x	 y, v := d� z, s0 := d� v, e0 := (2� x)� v and ej := ej−1 � (v � v), zj := ej � (2j + 1)
and sj := sj−1 ⊕ zj for j ∈ {1, . . . , jmax}. Then we have sj ≥ 0 for every j ∈ {0, . . . , jmax}.

Proof. Because of x, y ≤ 22s−1−2 we have |d| ≤ 22s−1−2. If d ≥ 0 or v � v = 0 then obviously
sj ≥ 0 for every j ∈ {0, . . . , jmax}. Let d < 0 and v� v > 0, and therefore v < 0. From Lemma
2.21 we further have 2x ∈ Cs,t and therefore 2�x = 2x. Let m,n ∈ Z with x ∈ ]2m−1, 2m], y ∈
]2n−1, 2m]. We have m ≤ n and 2m, 2n ∈ Cs,t. If we assume n ≥ m+ 2 then we get 2n−2 ≥ 2m

and therefore 2n−2 ∈ Cs,t and we get

2−3 � z ≤ 2−3 � 2n+1 = 2n−2 = −(2n−2 	 2n−1) ≤ −d = |d|

which is a contradiction to |d| < 2−3 � z. Therefore we have n ≤ m + 1. We now show
the inequality e0 ≥ 2d. Let k ∈ Z with |d|/(2x) ∈ ]2k−1, 2k]. Because of v 6= 0 we have
21−2s−1−t ≤ |d|/z ≤ |d|/(2x). Because of v � v 6= 0 we further have 21−2s−1−t 6= |d|/z.
Therefore k ≥ 2 − 2s−1 − t. Because of 0 < |d| < 2−3 � z we have 23−2s−1−t ≤ 2−3 � z ≤
2−3 � 2n+1 and therefore 2−32n+1 > 22−2s−1−t and therefore |d| < 2−3 � 2n+1 = 2n−2 and
|d|/(2x) ≤ 2n−2/2m ≤ 2m−1/2m = 2−1. We get k ≤ −1 and therefore −2k ∈ Cs,t. Because of
d/(2x) ≥ −2k with Lemma 2.3 we get d�(2x) ≥ −2k ≥ d/x and therefore 2d ≤ (2x)(d�(2x)).
Because 2d ∈ Cs,t we get

2d ≤ (2x)�(d�(2x)) ≤ (2x)�(d�z) ≤ e0

Now we show the inequality 2−3� z ≤ 2−2z. Let k1 ∈ Z with 2−3z ∈ ]2k1−1, 2k1 ]. We get 2k1 ∈
Cs,t because of 2−3z ≤ z ≤ 22s−1−1 and 2−3 � z > |d| > 0 and therefore 2−3 � z ≥ 23−2s−1−t

and therefore 2−3z ≥ 22−2s−1−t. From 2−3z ≤ 2k1 we get 2−3�z ≤ 2k1 ≤ 2−2z and therefore
|d| < 2−3 � z ≤ 2−2z. This implies |v| ≤ 2−2 and v � v ≤ 2−4.

In case of |v| ≥ 24−2s−1 with Lemma 2.21 we get v � v ≤ v � (−2−2) = 2−2|v|, while in case
of |v| ≤ 24−2s−1 because of s ≥ 4 we get |v| ≤ 2−4 and therefore v � v ≤ 2−2|v|. We get
2d(v � v) ≥ −2−1dv and therefore e1 ≥ (2d)� (v � v) ≥ −(d� v) = −s0.
Let r := s0/2. In case of s0 ≥ 23−2s−1 with Lemma 2.21 we get s0 � 2 = r ∈ Cs,t and therefore
s1 ≥ s0 ⊕ (−r) = r. In case of s0 ≤ 23−2s−1 we get s0 ⊕ z1 = s0 + z1 ≥ r.

With v � v ≤ 2−4 we get ej ≥ −2−3(j−1)e1 for j ∈ {1, . . . , jmax}. We further get

s2 ≥ r ⊕ (−2−3r) ≥ (r − 2−3r)/2 ≥ r/4

and if j ∈ {2, . . . , jmax} with sj ≥ 2−2(j−1)r we get

sj+1 ≥ (sj + zj+1)/2 ≥ (2−2(j−1) − 2−3(j−1))r/2 ≥ 2−2jr

Therefore we inductively get sj ≥ 2−2(j−1)r for j ∈ {2, . . . , jmax} and therefore the proposition.
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Theorem 3.11. Let s, t ∈ N, n ∈ {1, . . . , t} with 3n > t+ 5 and jmax ∈ N with {1, . . . , 2jmax +
1} ⊆ Cs,t . Let ` ∈ {1, . . . , n} and x ∈ [2`−1, 2`] ∩ Cs,t. Let y ∈ [x− 2−n+`, x + 2−n+`] ∩ Cs,t.
Then with v := (x	 y)� (x⊕ y), s0 := (x	 y)� v, e0 := (2� x)� v and ej := ej−1� (v� v)
and sj := sj−1 ⊕ (ej � (2j + 1)) for j ∈ {1, . . . , jmax} we have

sj ≤ 2−2n+`+1 ⊕ 2−3n+`+1

for every j ∈ {0, . . . , jmax}.

Proof. We have x⊕ y ≥ x ≥ 2`−1.

In case of y ≥ x we have x 	 y ≤ 0, hence v ≤ 0 and hence ej ≤ 0 and sj ≤ s0 for every
j ∈ {0, . . . , jmax}. As 0 ≥ x 	 y ≥ −2−n+` and x ⊕ y ≥ 2`−1, we get v ≥ −2−n+`−1 �
2`−1 = −2−n+1, therefore s0 = (x 	 y) � v ≤ 2−2n+`+1 and hence sj ≤ 2−2n+`+1 for every
j ∈ {0, . . . , jmax}.
In case of y ≤ x we have 0 ≤ x 	 y ≤ x 	 (x − 2−n+`) = 2−n+` and hence 0 ≤ v ≤
2−n+` � 2`−1 = 2−n+1. From that we get e0 ≤ 2−n+`+2. From that and v � v ≤ 2−2n+2 we get
ej ≤ 2(−2n+2)j−n+`+2 and hence ej � (2j + 1) ≤ 2(−2n+2)j−n+`+1 for every j ∈ {0, . . . , jmax}.
For j ∈ {2, . . . , jmax} we have (2−2n+`+1 ⊕ 2−3n+`+3) ⊕ 2(−2n+2)j−n+`+1 = 2−2n+` ⊕ 2−3n+`

because of 2−2n+`+1 ⊕ 2−3n+`+3 ≥ 2−2n+`+1 and 2(−2n+2)j−n+`+1 ≤ 2−5n+`+5 < 2−2n+`−t. As
s0 = (x	 y)� v ≤ 2−2n+`+1 we get the proposition.

Lemma 3.12. Let K = R, x, y ∈ ]0,∞[, c ∈ [0, 1[ with erel(y, x) ≤ c, which means y ∈
]x/(1 + c), x/(1− c)[. Then we have x log(x/y)− x+ y ≥ 0 and

x log(x/y)− x+ y ≤ max{x log(1− c)− x+ x/(1− c), x log(1 + c)− x+ x/(1 + c)}

Proof. For fixed x the function f : [x/(1 + c), x/(1− c)]→ R defined by f(y) := x log(x/y)−
x + y has derivatives f ′(y) = 1 − x/y and f ′′(y) = x/y2. Therefore f has a local minimum at
y = x with f(y) = 0 for y = x. Further the function f takes its maximal values at the boundary
of its domain [x/(1 + c), x/(1− c)].

3.6 Error bounds for the deviance part bd0(k, np) in case of
|k − np| ≥ 0.1 ∗ |k + np|

In this section we examine the error propagation in the evaluation of bd0(k, np) in case of |k −
np| ≥ 0.1 ∗ |k + np|. In this case the function evaluates the formula x*log(x/np)+np-x, using
an approximation log of the logarithm.

In the rest of this section let f : ]0,∞[ → K with f(x · y) = f(x) + f(y) for x, y ∈ ]0,∞[ and
f̃ : C∩]0,∞[→ C, v ∈ [0,∞[ with f̃(x) ∈ K and erel(f(x), f̃(x)) ≤ v for every x ∈ C∩]0,∞[
with f(x) ∈ R.
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Theorem 3.13. Let x ∈ ]0,∞[, x̃ ∈ C ∩ ]0,∞[ and c ∈ [0, 1[ with f(x̃) ∈ R and erel(x, x̃) ≤ c.
Let M ∈ [0,∞[ with |f(1− ε)| ≤M for every ε ∈ [−c, c]. Then

erel(f(x), f̃(x̃)) ≤ v +
(1 + v)M

|f(x)|

Proof. Let ε := x−x̃
x

. We have

|f(x̃)| = |f(x(1− ε))| ≤ |f(x)|+ |f(1− ε)| ≤ |f(x)|+M

and hence

|f(x)− f̃(x̃)| = |f(x̃/(1− ε))− f̃(x̃)|
≤ |f(x̃)− f̃(x̃)|+ |f(1− ε)|
≤ v|f(x̃)|+M

≤ v|f(x)|+ (1 + v)M

Theorem 3.14. Let y ∈ ]0,∞[, x, ỹ, α ∈ C∩]0,∞[ with x/ỹ, x−ỹ, x+ỹ, f(x�ỹ), α(x⊕ỹ) ∈ R
and c ∈ [0, 1[ with erel(y, ỹ) ≤ c and (1 + u)/(1 − c) < 2. Let M1,M2,M2 ∈ [0,∞[ with
|f(t)| ≤ M1 for every t ∈ ]0,∞[ with |1− t| ≤ (1 + u)/(1− c)− 1 and |f(t)| ≤ M2 for every
t ∈ ]0,∞[ with |1 − t| ≤ c and |f(t)| ≥ M3 for every t ∈ ]0,∞[ with |1 − t| ≥ α (1−u)2

1+u
. Let

|x	 ỹ| ≥ α� (x⊕ ỹ) and M3 > M2. Then

erel

(
f(x/y), f̃(x� ỹ)

)
≤ v +

(1 + v)M1

M3 −M2

In particular, if K = R with usual order ≤ and f = log we get

erel

(
log(x/y), f̃(x� ỹ)

)
≤ v + (1 + v)

∣∣log
(
2− 1+u

1−c

)∣∣
log
(

1 + α (1−u)2
1+u

)
− | log(1− c)|

if log
(

1 + α (1−u)2
1+u

)
> | log(1− c)|.

Proof. From 2.35 we get erel(x/y, x� ỹ) ≤ (1 + u)/(1− c)− 1. With that, from 3.13 we get

erel

(
f(x/y), f̃(x� ỹ)

)
≤ v +

(1 + v)M1

|f(x/y)|

With η := x−ỹ−(x	ỹ)
x−ỹ we get |x	 ỹ| = |(x− ỹ)(1− η)| ≤ |x− ỹ|(1 + u) and hence∣∣∣∣1− x

ỹ

∣∣∣∣ =
|x− ỹ|
ỹ

≥ α� (x⊕ ỹ)

ỹ(1 + u)
≥ α(x⊕ ỹ)(1− u)

ỹ(1 + u)
≥ α

(
1 +

x

ỹ

)
(1− u)2

1 + u
≥ α

(1− u)2

1 + u

58



We get f(x/ỹ) ≥M3. Let ε := y−ỹ
y

. We have

|f(x/y)| = |f(x/ỹ) + f(1− ε)| ≥ |f(x/ỹ)| − |f(1− ε)| ≥M3 −M2

Therefore we get

erel

(
f(x/y), f̃(x� ỹ)

)
≤ v +

(1 + v)M1

M3 −M2

The inequality for K = R, f = log follows from

| log(t)| ≤ | log(1− s)| for s ∈ [0, 1[, t ∈ ]0,∞[ with |1− t| ≤ s

| log(t)| ≥ log(1 + s) for s, t ∈ ]0,∞[ with |1− t| ≥ s

3.7 Approximative evaluation of Stirling’s Series

In Appendix C we described approximations of the function µ : ]0,∞[→ R

µ(x) = log

(
Γ(x+ 1)(
x
e

)x√
2πx

)
by Stirling’s Series. Loader’s algorithm for the binomial density utilizes the function stirlerr,
which we displayed in Appendix D.3, to compute approximative values for µ(x). Depending
on how large x is, the function stirlerr approximatively evaluates one of the following four
partial sums of Stirling’s Series:

1

12x
− 1

360x3
, if x > 500

1

12x
− 1

360x3
+

1

1260x5
, if 80 < x ≤ 500

1

12x
− 1

360x3
+

1

1260x5
− 1

1680x7
, if 35 < x ≤ 80

1

12x
− 1

360x3
+

1

1260x5
− 1

1680x7
+

1

1188x9
, if 15 < x ≤ 35

If x ∈ {1, . . . , 15} the function stirlerr returns a value which is stored in an internal table.
In this section we derive an error bound for the approximation of µ(x) by the computed value
stirlerr(x) for x ∈ {16, . . . , nmax} depending on nmax ∈ N.

In the first lemma of this section we examine the error propagation of an algorithm that alternates
division and subtraction, which we will apply to approximately evaluate Stirling’s Series.
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Lemma 3.15. Let m ∈ N, a1, . . . , am ∈ [0,∞[, b1, . . . , bm ∈ [0,∞[ ∩ C and c ∈ [0,∞[ with
erel(a1, b1), . . . , erel(am, bm) ≤ c. Let y1, . . . , ym ∈ ]0,∞[, z1, . . . , zm ∈ ]0,∞[∩C, e1, . . . , em ∈
[0, 1[ with erel(y1, z1) ≤ e1, . . . , erel(ym, zm) ≤ em. Let d1 := b1, q1 := d1�z1 and dk := bk	qk−1
and qk := dk � zk for k ∈ {2, . . . ,m}. We assume

(3.6) b1/z1 ∈ R, bk − qk−1, dk/zk ∈ R for k ∈ {2, . . . ,m− 1}, bm − qm−1 ∈ R

Then we have
(3.7)∣∣∣∣∣

m∑
i=1

(
(−1)m−iai/

m−1∏
j=i

yj

)
− dm

∣∣∣∣∣ ≤
(

(1 + c)(1 + u)2m−2/
m−1∏
i=1

(1− ei)− 1

)
m∑
i=1

ai/

m−1∏
j=i

yj

and, if dm/zm ∈ R
(3.8)∣∣∣∣∣

m∑
i=1

(
(−1)m−iai/

m∏
j=i

yj

)
− qm

∣∣∣∣∣ ≤
(

(1 + c)(1 + u)2m−1/
m∏
i=1

(1− ei)− 1

)
m∑
i=1

ai/
m∏
j=i

yj

Proof. In case of m = 1 the proposition follows from Lemma 2.35. Let m ≥ 2. Let η1 :=
b1/z1−q1
b1/z1

, ε1 := 0, ηk := dk/zk−qk
dk/zk

and εk := bk−qk−1−dk
bk−qk−1

for k ∈ {2, . . . ,m}. We have

q1 = b1/z1(1− η1)

and

qk = (bk − qk−1)/zk(1− ηk)(1− εk) for k ∈ {2, . . . ,m}

By induction we get

qm =
m∑
i=1

(
(−1)m−ibi

m∏
j=i

((1− εj)(1− ηj))/
m∏
j=i

zj

)

and

dm = qmzm/(1− ηm) =
m∑
i=1

(
(−1)m−ibi(1− εm)

m−1∏
j=i

((1− εj)(1− ηj))/
m−1∏
j=i

zj

)
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Hence, with γi := ai−bi
ai

and δi := yi−zi
yi

for i ∈ {1, . . . ,m} we get∣∣∣∣∣
m∑
i=1

(
(−1)m−iai/

m∏
j=i

yj

)
− qm

∣∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

(
(−1)m−iai/

m∏
j=i

yj

(
1− (1− γi)

m∏
j=i

(1− εj)(1− ηj)/(1− δj)

))∣∣∣∣∣
≤

m∑
i=1

ai/

m∏
j=i

yj

∣∣∣∣∣1− (1− γi)
m∏
j=i

((1− εj)(1− ηj)/(1− δj))

∣∣∣∣∣
≤

m∑
i=1

ai/

m∏
j=i

yj

(
(1 + c)(1 + u)2m−1/

m∏
i=1

(1− ei)− 1

)

and ∣∣∣∣∣
m∑
i=1

(
(−1)m−iai/

m−1∏
j=i

yj

)
− dm

∣∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

(
(−1)m−iai/

m−1∏
j=i

yj

(
1− (1− γi)(1− εm)

m−1∏
j=i

(1− εj)(1− ηj)/(1− δj)

))∣∣∣∣∣
≤

m∑
i=1

ai/
m−1∏
j=i

yj

∣∣∣∣∣1− (1− γi)(1− εm)
m−1∏
j=i

((1− εj)(1− ηj)/(1− δj))

∣∣∣∣∣
≤

m∑
i=1

ai/
m−1∏
j=i

yj

(
(1 + c)(1 + u)2m−2/

m−1∏
i=1

(1− ei)− 1

)

To be able to practically apply the previous lemma, we have to replace the occuring conditions
(3.6) and dm/zm ∈ R by formulas which are easily verfiable in the concrete case of C = Cs,t.
This will be done in the next lemma.

Lemma 3.16. Let m ∈ N with m ≥ 2, a1, . . . , am ∈ ]0,∞[, b1, . . . , bm ∈ ]0,∞[ ∩ C, c ∈ [0, 1[
with erel(a1, b1), . . . , erel(am, bm) ≤ c. Let x ∈ [1,∞[ and z1, . . . , zm ∈ [1,∞[ ∩ C and e, f ∈
[0, 1[ with erel(x

2, z1), . . . , erel(x
2, zm−1) ≤ f, erel(x, zm) ≤ e. Let d1 := b1, q1 := d1 � z1 and

dk := bk 	 qk−1 and qk := dk � zk for k ∈ {2, . . . ,m}. Let A,B ∈ ]0,∞[ with [A,B] ⊆ R and

(3.9) a1(1 + c) ≤ B

(3.10) a1(1− c)/(x2(1 + f)) ≥ A

(3.11) ak+1(1− c)− ak/x2 − h ≥ A for k ∈ {1, . . . ,m− 1}
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(3.12) ak+1(1 + c) + h ≤ B for k ∈ {1, . . . ,m− 1}

(3.13) (ak+1 − ak/x2 − h)/(x2(1 + f)) ≥ A for k ∈ {1, . . . ,m− 2}

(3.14) (am − am−1/x2 − h)/(x(1 + e)) ≥ A

with a0 := 0 and h := ((1 + c)(1 + u)2m−1/(1−max{e, f})m − 1)
∑m

i=1 ai. We define e1, . . . , em−1 :=
f, em := e and y1, . . . , ym−1 := x2, ym := x. Then with s :=

∑m
i=1 ai we have (3.7) and (3.8).

Proof. At first, we inductively show that for k ∈ {1, . . . ,m} the following inequalities are valid

(3.15)
k∑
j=1

(−1)k−j
aj

x2(k−j)

{
≥ ak − ak−1

x2

≤ ak

(3.16)
k∑
j=1

(−1)k−j
aj

x2(k−j+1)

{
≥ 0
≤ ak

x2

The case k = 1 is trivial. If the above inequalities hold for k ∈ {1, . . . ,m− 1}, then

k+1∑
j=1

(−1)k+1−j aj
x2(k+1−j) = ak+1 −

k∑
j=1

(−1)k−j
aj

x2(k−j+1)

{
≥ ak+1 − ak

x2

≤ ak+1

From ak+1(1− c)− ak/x2 − h ≥ A we get ak+1 − ak
x2
≥ 0. Thus

k+1∑
j=1

(−1)k+1−j aj
x2(k+2−j) =

(
k+1∑
j=1

(−1)k+1−j aj
x2(k+1−j)

)
/x2

{
≥ (ak+1 − ak

x2
)/x2 ≥ 0

≤ ak+1

x2

Thus the induction is complete. We define

gk :=

(
(1 + c)(1 + u)2k−2/

k−1∏
i=1

(1− ei)− 1

)
k∑
i=1

ai

hk :=

(
(1 + c)(1 + u)2k−1/

k∏
i=1

(1− ei)− 1

)
k∑
i=1

ai

for k ∈ {1, . . . ,m}. Then gk, hk ≤ h for k ∈ {1, . . . ,m}. Now we inductively show that for
k ∈ {1, . . . ,m} we have

bk − qk−1, dk/zk ∈ R
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with q0 := 0. The base of the induction b1, d1/z1 ∈ R is valid because of

A ≤ a1(1− c)/(x2(1 + f)) ≤ d1/z1 ≤ b1 ≤ a1(1 + c) ≤ B

Let k ∈ {1, . . . ,m − 1} with b1 − q0, d1/z1, . . . , bk − qk−1, dk/zk ∈ R. Then Lemma 3.15 and
(3.16) yield

qk

{
≥ −hk
≤ ak/x

2 + hk

Hence

bk+1 − qk
{
≥ bk+1 − ak/x2 − hk ≥ ak+1(1− c)− ak/x2 − hk ≥ A
≤ bk+1 + hk ≤ ak+1(1 + c) + hk ≤ B

Hence bk+1 − qk ∈ R and Lemma 3.15 and (3.15) yield

dk+1

{
≥ ak+1 − ak

x2
− gk+1

≤ ak+1 + gk+1 ≤ B

Hence

dk+1/zk+1

{
≥ (ak+1 − ak

x2
− gk+1)/zk+1 ≥ A

≤ dk+1 ≤ B

and therefore dk+1/zk+1 ∈ R. Thus, the induction is complete. Now we are allowed to apply
Lemma 3.15 which yields the proposition.

Now we examine the approximative evaluation of Stirling’s Series in the number systemCs,t. We
define γ1 := 1/12, γ2 := 1/360, γ3 := 1/1260, γ4 := 1/1680, γ5 := 1/1188, γ6 := 691/360360
and Sn(x) :=

∑n
k=1(−1)k−1γk/x

2k−1 and hn(x) :=
∑n

k=1 γk/x
2k−1 for n ∈ {1, . . . , 5} and

x ∈ ]0,∞[. If s ≥ 5 we have γ1, . . . , γ6 ∈ Fs,t.

Corollary 3.17. Let s, t ∈ N with s ≥ 5, t ≥ 15 and b1, . . . , b5 ∈]0,∞[∩Cs,t with
erel(γ1, b1), . . . , erel(γ5, b5) ≤ ut. Let x ∈ [2, 22s−2−8], y ∈ [1,∞[ ∩ Cs,t and e ∈ [0, 2−17[ with
erel(x, y) ≤ e. Let z := y�y. Then with f := (1+e)2(1+ut)−1 and g := (1+ut)

10/(1−f)5−1
we have

|S2(x)− ((b0 	 b1 � z)� y)| ≤ gh2(x)

|S3(x)− ((b0 	 (b1 	 b2 � z)� z)� y)| ≤ gh3(x)

|S4(x)− ((b0 	 (b1 	 (b2 	 b3 � z)� z)� z)� y)| ≤ gh4(x)

|S5(x)− (b0 	 (b1 	 (b2 	 (b3 	 b4 � z)� z)� z)� z)� y| ≤ gh5(x)

63



Proof. From Lemma 2.34 we get erel(x
2, z) ≤ f . Because of t ≥ 15 and e < 2−17 with

Mathematica we get (γ4 − γ5/4 − g)/(1 + f) > 2−14 and γ4(1 − ut) − γ5/4 − g > 2−14 and
γ1− γ2/4− g > 2−4. We have [A,B] ⊆ Rs,t with A = 22−2s−1 and B = 22s−1−1. Now we apply
Lemma 3.16 four times, the first time with m = 2 and (a1, a2) = ( 1

360
, 1
12

), the second time with
m = 3 and (a1, a2, a3) = ( 1

1260
, 1
360
, 1
12

), and so on. We need to verify conditions (3.9)- (3.14)
with c = ut and h = g. We use that 2−11 ≤ γ1, . . . , γ5 ≤ 1.

Verification of (3.9):

a1(1 + c) ≤ 2a1 ≤ 2 ≤ B

Verification of (3.10):

a1(1− c)/(x2(1 + f)) ≥ 2−11 · 2−1/(22s−1−16 · 2) = 23−2s−1 ≥ A

Verification of (3.11):

ak+1(1− c)− ak/x2 − h ≥ γ4(1− 2−16)− γ5/4− h ≥ 2−14 ≥ A

Verification of (3.12):

ak+1(1 + c) + h ≤ 2 + 1 ≤ B

Verification of (3.13):

(ak+1 − ak/x2 − h)/(x2(1 + f)) ≥ (γ4 − γ5/4− h)/(1 + f)216−2s−1 ≥ A

Verification of (3.14)

(am − am−1/x2 − h)/(x(1 + e)) ≥ (γ1 − γ2/4− h)/(22s−2−8 · 2) ≥ 23−2s−2 ≥ A

Lemma 3.16 yields the proposed inequalities.

In the rest of this section let K = R. We now compare the approximative evaluation of Stirling’s
series to the value µ(x).

Corollary 3.18. Let s, t ∈ N with s ≥ 5, t ≥ 15. Let b1, . . . , b5 ∈]0,∞[∩Cs,t with
erel(γ1, b1), . . . , erel(γ5, b5) ≤ ut. Let xmin, x ∈ [2, 22s−2−8] with x ≥ xmin and y ∈ [1,∞[ ∩ Cs,t
and e ∈ [0, 2−17[ with erel(x, y) ≤ e. Let z := y�y. Then with g := (1+ut)

10/(2− (1+e)2(1+
ut))

5 − 1 and L := S2(xmin) we have

erel (µ(x), (b0 	 b1 � z)� y)) ≤
(
gh2(xmin) + γ3x

−5
min

)
/L

erel (µ(x), (b0 	 (b1 	 b2 � z)� z)� y)) ≤
(
gh3(xmin) + γ4x

−7
min

)
/L

erel (µ(x), (b0 	 (b1 	 (b2 	 b3 � z)� z)� z)� y)) ≤
(
gh4(xmin) + γ5x

−9
min

)
/L

erel (µ(x), (b0 	 (b1 	 (b2 	 (b3 	 b4 � z)� z)� z)� z)� y)) ≤
(
gh5(xmin) + γ6x

−11
min

)
/L
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Proof. We have

erel(µ(x), (b0 	 b1 � z)� y) =
|µ(x)− (b0 	 b1 � z)� y|

µ(x)

≤ |µ(x)− S2(x)|+ |S2(x)− (b0 	 b1 � z)� y|
S2(x)

≤ gh2(x) + γ3x
−5

S2(x)

and analogously

erel (µ(x), (b0 	 (b1 	 b2 � z)� z)� y)) ≤
(
gh3(x) + γ4x

−7) /S2(x)

erel (µ(x), (b0 	 (b1 	 (b2 	 b3 � z)� z)� z)� y)) ≤
(
gh4(x) + γ5x

−9) /S2(x)

erel (µ(x), (b0 	 (b1 	 (b2 	 (b3 	 b4 � z)� z)� z)� z)� y)) ≤
(
gh5(x) + γ6x

−11) /S2(x)

When x increases, the right sides of these inequalities are decreasing because

h2(x)/S2(x) = 1 + 2γ2/(x
3S2(x))

and x3S2(x) is increasing. Therefore we get the proposed inequalities.

Example 3.19. Let s, t ∈ N with s ≥ 5, t ≥ 15 and b1, . . . , b5 ∈]0,∞[∩Cs,t with
erel(γ1, b1), . . . , erel(γ5, b5) ≤ ut. Let x ∈ [2, 22s−2−8]∩Cs,t and z := x�x. Then from Corollary
3.18 and verifications with Mathematica we get the following inequalities.

If (s, t) = (11, 52):

erel (µ(x), (b0 	 b1 � z)� x)) ≤ 2−42, if x > 500

erel (µ(x), (b0 	 (b1 	 b2 � z)� z)� x)) ≤ 2−44, if x > 80

erel (µ(x), (b0 	 (b1 	 (b2 	 b3 � z)� z)� z)� x)) ≤ 2−47, if x > 35

erel (µ(x), (b0 	 (b1 	 (b2 	 (b3 	 b4 � z)� z)� z)� z)� x)) ≤ 2−44, if x > 15

If (s, t) = (8, 23):

erel (µ(x), (b0 	 b1 � z)� x)) ≤ 2−20, if x > 500

erel (µ(x), (b0 	 (b1 	 b2 � z)� z)� x)) ≤ 2−20, if x > 80
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erel (µ(x), (b0 	 (b1 	 (b2 	 b3 � z)� z)� z)� x)) ≤ 2−20, if x > 35

erel (µ(x), (b0 	 (b1 	 (b2 	 (b3 	 b4 � z)� z)� z)� z)� x)) ≤ 2−20, if x > 15

If (s, t) = (15, 63):

erel (µ(x), (b0 	 b1 � z)� x)) ≤ 2−42, if x > 500

erel (µ(x), (b0 	 (b1 	 b2 � z)� z)� x)) ≤ 2−45, if x > 80

erel (µ(x), (b0 	 (b1 	 (b2 	 b3 � z)� z)� z)� x)) ≤ 2−47, if x > 35

erel (µ(x), (b0 	 (b1 	 (b2 	 (b3 	 b4 � z)� z)� z)� z)� x)) ≤ 2−44, if x > 15

Corollary 3.20. Let s, t ∈ N. Let xmax ∈ [1,∞[ and x1, x2 ∈ Cs,t ∩ [1, xmax], y1, y2, y3 ∈
Cs,t, c ∈ [0, 1[ with erel(µ(x1), y1), erel(µ(x2), y2), erel(µ(x1 − x2), y3) ≤ c and x1 ≥ x2 + 1. We
assume S1(xmax) − S2(xmax − 1) + c(S1(1) + S2(1)) ≤ −22−2s−1

. Then with
q := S2(xmax − 1)/S1(xmax) and d := 1/(q − 1) + 1/(1− q−1) we have the inequalities

erel(µ(x1)− µ(x2), y1 	 y2) ≤ (1 + ut) (1 + dc)− 1

erel(µ(x1)− µ(x2)− µ(x1 − x2), (y1 	 y2)	 y3) ≤ (1 + ut)
2 (1 + dc)− 1

Proof. The condition y1 − y2 ∈ [−22s−1−1,−22−2s−1
] ⊆ Rs,t is fullfilled because of

y1 − y2 ≥ −y2 ≥ −µ(x2)(1 + c) ≥ −(1 + c) ≥ −2 ≥ −22s−1−1

and

y1 − y2 ≤ µ(x1)(1 + c)− µ(x2)(1− c)
≤ S1(x1)(1 + c)− S2(x2)(1− c)
≤ S1(x1)(1 + c)− S2(x1 − 1)(1− c)
≤ S1(xmax)− S2(xmax − 1) + c(S1(1) + S2(1))

≤ −22−2s−1

In the second last step we used that the function ]2,∞[ 3 x 7→ S1(x)− S2(x− 1) is increasing.
We apply Lemma 2.31 and get that

erel(µ(x1)− µ(x2), y1 	 y2)

≤ (1 + ut)

(
1 + c

(
1

|1− µ(x2)/µ(x1)|
+

1

|1− µ(x1)/µ(x2)|

))
− 1

66



We have µ(x2)/µ(x1) ≥ S2(x2)/S1(x1) ≥ S2(x1 − 1)/S1(x1). The function ]2,∞[ 3 x 7→
S2(x− 1)/S1(x) is decreasing. Hence we get µ(x2)/µ(x1) ≥ q and µ(x1)/µ(x2) ≤ q−1. There-
fore we get the first of the proposed inequalites. The second we again get from Lemma 2.31
which this time we are allowed to apply because

(y1 	 y2)− y3 ≥ (0	 1)− 1 = −2 ≥ −22s−1−1

(y1 	 y2)− y3 ≤ y1 	 y2 ≤ −22−2s−1

and hence (y1 	 y1)− y3 ∈ Rs,t.

Remark. As the proof shows, in Corollary 3.20 we could also use the weaker precondition

S1(xmax)(1 + c)− S2(xmax − 1)(1− c) ≤ −22−2s−1

instead of

S1(xmax)− S2(xmax − 1) + c(S1(1) + S2(1)) ≤ −22−2s−1

In order to do that, we had to derive monotonicity of the function S1(x1)(1+c)−S2(x1−1)(1−c)
on an interval depending on c. Using the weaker precondition would allow us to increase xmax

given c and s.

Example 3.21. Let s = 11, t = 52, c = 2−42, xmax = 220. Then with Mathematica we verify
S1(xmax)− S2(xmax − 1) + c(S1(1) + S2(1)) ≤ −22−2s−1 and therefore from Corollary 3.20 we
get

erel(µ(x1)− µ(x2), y1 	 y2) ≤ 2−21

for x1, x2 ∈ Cs,t ∩ [1, 220[.

Let s = 15, t = 63, c = 2−42, xmax = 221. The range condition is not fulfilled.

Let s = 15, t = 63, c = 2−42, xmax = 220. We get

erel(µ(x1)− µ(x2), y1 	 y2) ≤ 2−21

for x1, x2 ∈ Cs,t ∩ [1, 220[.

3.8 Computation of the value “lc” in Loader’s algorithm

In this section we examine the follwowing function lc.

double lc(double x, double n, double p){

double q = 1-p;

return stirlerr(n)-stirlerr(x)-stirlerr(n-x)-bd0(x,n*p)-bd0(n-x,n*q);

}
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We derive a lower bound for |µ(x1)− µ(x2)− µ(x1 − x2)|.

Lemma 3.22. Let xmax ∈ [2,∞[ and x1, x2 ∈ [1, xmax] with x1 ≥ x2 + 1. Then

µ(x1)− µ(x2)− µ(x1 − x2) ≤ S1(xmax)− 2S2(xmax/2)

which means the following lower bound for |µ(x1)− µ(x2)− µ(x1 − x2)|

|µ(x1)− µ(x2)− µ(x1 − x2)| ≥ −(S1(xmax)− 2S2(xmax/2))

Proof. We have

µ(x1)− µ(x2)− µ(x1 − x2) ≤ S1(x1)− S2(x2)− S2(x1 − x2)

Differentiation shows that the function [1, x1 − 1] 3 x 7→ S1(x1) − S2(x) − S2(x1 − x) has a
local maximum at x = x1/2 and at most two further points in [1, x1 − 1] where its derivative is
0, one of these being smaller than x1/2 and the other one being larger than x1/2. Hence

µ(x1)− µ(x2)− µ(x1 − x2) ≤ max (S1(x1)− 2S2(x1/2), S1(x1)− S2(1)− S2(x1 − 1))

Now differentiation shows that the functions [2, xmax] 3 x 7→ S1(x)− 2S2(x/2) and [2, xmax] 3
x 7→ S1(x)− S2(1)− S2(x− 1) are increasing. Therefore we get

µ(x1)− µ(x2)− µ(x1 − x2) ≤ S1(xmax)−min(2S2(xmax/2), S2(1) + S2(xmax − 1))

With f : [2,∞[→ R, f(x) := 720− 2160x− 3240x2 + 15480x3− 17415x4 + 7965x5− 1305x6

the inequality 2S2(xmax/2) ≤ S2(1) + S2(xmax − 1) is equivalent to f(xmax) ≤ 0. We have
f(xmax) ≤ 0 because of f(2) = 0, f ′(2) = 0, f ′′(2) < 0, f ′′′(2) < 0 and f ′′′′(x) < 0 for every
x ∈ [2,∞[. Therefore we get min(2S2(xmax/2), S2(1)+S2(xmax−1)) = 2S2(xmax/2) and with
that the proposition.

The following rather easy inequality could be the foundation of the main theorem of this section.

Lemma 3.23. Let a, b, ã, b̃, δ1, δ2 ∈ K with ab ≤ 0 and b ∈ [0, δ1], b̃ ∈ [0, δ2]. Let c ∈ [0, 1[ with
erel(a, ã) ≤ c. Then

erel(a− b, ã− b̃) ≤ c+ max{δ1, δ2}/|a|

Proof. We have |b − b̃| ≤ max{δ1, δ2} and |a − b − (ã − b̃)| ≤ |a − ã| + |b − b̃|. We get
|a− b− (ã− b̃)| ≤ |a− ã|+ max{δ1, δ2} and with |a− b| ≥ |a| we get the proposition.

In an example we now want to show how Lemma 3.23 can be used to obtain bounds for the
relative error for the value “lc” in Loader’s algorithm. In this example we only consider the
special case of erel(x, n� p̃) ≤ c.
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Example 3.24. Let s = 11 and t = 52 so Cs,t = IEEEDouble. Let nmax = 212 and n ∈
{2, . . . , nmax}, x ∈ {1, . . . , n − 1}, p ∈ ]0, 1[, p̃ ∈ ]0, 1[ ∩ Fs,t with erel(p, p̃) ≤ 2−28 =: c. We
further assume the condition erel(x, n� p̃) ≤ 2−20 is fulfilled. From Example 3.19 we get that the
function stirlerr yields y1, y2, y3 ∈ Cs,t with erel(µ(n), y1), erel(µ(x), y2), erel(µ(n−x), y3)) ≤
2−42. From this, with Corollary 3.20 and a := µ(n)− µ(x)− µ(n− x) and ã := (y1 	 y2)	 y3
we get erel(a, ã) ≤ 2 · 10−9. Lemma 3.22 yields |a| ≥ 6 · 10−5.

Let jmax ∈ N with {1, . . . , 2jmax + 1} ⊆ Cs,t. Let y := n � p̃, v := (x 	 y) � (x ⊕ y), s0 :=
(x 	 y) � v, e0 := (2 � x) � v and ej := ej−1 � (v � v) and sj := sj−1 ⊕ (ej � (2j + 1)) for
j ∈ {1, . . . , jmax}.
Let ` ∈ {1, . . . , 20} with x ∈ [2`−1, 2`]. Because of erel(x, n � p̃) ≤ 2−20 we have n � p̃ ∈
[x− 2−20+`, x+ 2−20+`].

Let α := 2−40+`+1 ⊕ 2−60+`+1. From Lemmas 3.10, 3.11 we get

0 ≤ sj ≤ α

for j ∈ {1, . . . , jmax}. From x ≤ 212 we get ` ≤ 12 and therefore α ≤ 2−27 ⊕ 2−47 ≤ 8 · 10−9.
Because of erel(p, p̃) ≤ c and erel(x, n�p̃) ≤ 2−20 from Lemma 2.29 we get (n�p̃)/x ≤ 1+2−20

and therefore

erel(x, np) ≤ erel(x, n� p̃) + |np− (n� p̃)|/x
≤ erel(x, n� p̃) + (n� p̃)(1/((1− c)(1− ut))− 1)/x

≤ 2−20 + (1 + 2−20)(1/((1− c)(1− ut))− 1)

From Lemma 2.28 we get

erel(np, x) ≤ erel(x, np)/(1− erel(x, np))

With this bound and x ≤ 212 from Lemma 3.12 with f(x, y) := x log(x/y)− x+ y we get

0 ≤ f(x, y) ≤ 2 · 10−9

We use Lemma 3.23 and get

erel(a− f(k, np), ã− sjmax) ≤ 2 · 10−9 +
8 · 10−9

6 · 10−5
≤ 2 · 10−4

Now we further assume the condition erel(n − x, n � (1 	 p̃)) ≤ 2−20 and repeat the above
calculations with n−x instead of x and n� (1	 p̃) instead of n� p̃. Let y := n� (1	 p̃), w :=
((n−x)	y)�((n−x)⊕y), σ0 := ((n−x)	y)�v, f0 := (2�(n−x))�v and fj := fj−1�(v�v)
and σj := σj−1 ⊕ (fj � (2j + 1)) for j ∈ {1, . . . , jmax}. Then again with Lemma 3.23 we get

erel(a− f(k, np)− f(n− k, n(1− p)), ã− sjmax − σjmax) ≤ 2 · 10−4 +
8 · 10−9

6 · 10−5
≤ 4 · 10−4
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Conclusion

We conclude that we derived intermediate results in the derivation of an accuracy bound for
Loader’s algorithm for the binomial density. We derived a relative error bound for µ(x1) −
µ(x2) − µ(x1 − x2), a lower bound for |µ(x1) − µ(x2) − µ(x1 − x2)| and and upper bound for
bd0(x, np) in case of erel(x, np) ≤ c. These results can be combined using the Lemma 3.23.

3.9 Computation of the value “lf” in Loader’s algorithm

In this section letK = R, v ∈ [0, 1[ and ` : ]0,∞[∩C → C with `(x) ∈ R and erel(log(x), `(x)) ≤
v for x ∈ ]0,∞[ ∩ C with log(x) ∈ R ∪ {0}. Futher let `1 : ]− 1, 0[ ∩ C → C with `1(x) ∈ R
and erel(log(1 + x), `1(x)) ≤ v for every x ∈ ]− 1, 0[ ∩ C with log(1 + x) ∈ R.

We analyse the following function.

double lf(double x, double n){

return M_LN_2PI + log(x) + log1p(- x/n);

}

At first we analyse the error propagation of the function ]− 1, 0[ 3 x 7→ log(1 + x). We need
the following two lemmas.

Lemma 3.25. Let x ∈ ]− 1, 0[ and f : ]1 + 1/x,∞[→ R, f(ε) := log(1+x(1−ε))/ log(1+x).
We have f(0) = 1. By differentiation we get that f is convex and hence f(−ε) − 1 ≥ 1 − f(ε)
for every ε ∈ [0,−(1 + 1/x)[. Furthermore, f is decreasing.

Lemma 3.26. Let c ∈ [0, 1[, f : ]− 1/(1 + c), 0] → R, f(x) := log(1 + x(1 + c))/ log(1 + x).
The function f is decreasing.

Proof. Let g : ]− 1/(1 + c), 0]→ R, g(x) := (1 + c)(1 +x) log(1 +x)− (1 +x(1 + c)) log(1 +
x(1 + c)). For x ∈ ]− 1/(1 + c), 0] we have

f ′(x) =
(1 + c) log(1 + x)/(1 + x(1 + c))− log(1 + x(1 + c))/(1 + x)

log2(1 + x)

and therefore f ′(x) < 0⇔ g(x) < 0. We have g(0) = 0 and

g′(x) = (1 + c)(log(1 + x)− log(1 + x(1 + c))) < 0

and therefore g(x) < 0.

Lemma 3.27. Let δ ∈ ]0, 1/2] and x ∈ [−1 + δ,−δ], x̃ ∈ R∩C and c ∈ [0, 1[ with erel(x, x̃) ≤ c.
Let (−1 + δ)(1 + c) > −1 and [log(1 + (−1 + δ)(1 + c)), log(1− δ(1− c)] ⊆ R. Then

erel(log(1 + x), `1(x̃)) ≤ log(1 + (−1 + δ)(1 + c))

log(δ)
(1 + v)− 1
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Proof. Because of c < 1 we have x̃ < −δ(1 − c) and x̃ > (−1 + δ)(1 + c) and therefore
log(1 + x̃) ∈ R. We have | log(1 + x)− `1(x̃)| ≤ | log(1 + x)− log(1 + x̃)|+ v| log(1 + x̃)| and
with Lemma 3.25 we get

erel(log(1 + x), `1(x̃)) ≤
∣∣∣∣1− log(1 + x̃)

log(1 + x)

∣∣∣∣+ v
log(1 + x̃)

log(1 + x)

≤ log(1 + x(1 + c))

log(1 + x)
− 1 + v

log(1 + x(1 + c))

log(1 + x)

With Lemma 3.26 we get the proposition.

From the last lemma we get the following corollary.

Corollary 3.28. Let s, t ∈ N and C = Cs,t, R = Rs,t. Let ymax ∈ [2,∞[ with ymax ≤ 2t+1 and
ymax ≤ 22s−1−2. Let x, y ∈ [1, ymax] ∩ Cs,t with x ≤ y − 1. Let

(3.17) log(1 + (−1 + 1/ymax)(1 + ut)) ≥ −22s−1−1

(3.18) log(1− (1− ut)/ymax) ≤ −22−2s−1

Then we get

erel(log(1− x/y), `1(−(x� y)) ≤ log(ymax/(1− (ymax − 1)ut))

log(ymax)
(1 + v)− 1

Proof. Because of 1 ≥ x/y ≥ 1/ymax ≥ 22−2s−1 we have x/y ∈ Rs,t and therefore
erel(−x/y,−(x � y)) ≤ ut. With δ := 1/ymax ∈ ]0, 1/2] and c := ut we have δ ≥ c and
therefore (−1 + δ)(1 + c) > −1. We have −x/y ∈ [−1 + δ,−δ]. Furthermore we have

[log(1 + (−1 + δ)(1 + c)), log(1− δ(1− c)] ⊆ [−22s−1−1,−22−2s−1

] ⊆ Rs,t

Thus we are allowed to apply Lemma 3.27 which because of 1 + (−1 + δ)(1 + c) = δ− c+ cδ =
δ − c(1− δ) = 1/ymax − ut(ymax − 1)/ymax yields the proposed inequality.

Example 3.29. If nmax = 240 and ut = 2−53 then

log(1 + (−1 + δ)(1 + ut))

log(δ)
(1 + v)− 1 ≤ 1.00000441(1 + v)− 1

Lemma 3.30. Let ymax ∈ [2,∞[ and x, y ∈ [1, ymax] with x ≤ y − 1. Then∣∣∣∣ log(2πx)

log(1− x/y)

∣∣∣∣ ≥ log(2π(ymax − 1))

log(ymax)
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Proof. Let f, g : [1, y[ → R, f(t) := log(2πt)/ log(1 − t/y) and g(t) := t log(2πt) + (y −
t) log(1 − t/y). Differentiation of f yields that f ′ > 0 ⇔ g > 0. We have g′(t) = log(2πt) −
log(1 − t/y) > 0 for t ∈ [1, y[ and g(1) = log(2π) + (y − 1) log(1 − 1/y) ≥ log(2π) + (y −
1) −1/y

1−1/y = log(2π) − 1 > 0. Therefore g > 0. Hence f increases and f(x) ≤ f(y − 1) =

− log(2π(y − 1))/ log(y). Let h, k : [2, ymax] → R, h(t) := − log(2π(t − 1))/ log(t) and
k(t) := (t − 1) log(2π(t − 1)) − t log(t). Then h′ > 0 ⇔ k > 0. We have k′(t) = log(2π(t −
1)) − log(t) > 0 for t ∈ [2, ymax] and k(2) = log(2π) − log(4) > 0. Therefore h is increasing
and we get f(x) ≤ f(y − 1) = h(y) ≤ h(ymax) = − log(2π(ymax−1))

log(ymax)
≤ 0. From that we get the

proposition.

Corollary 3.31. Let s, t ∈ N, C = Cs,t, R = Rs,t. Let ymax ∈ [2,∞[ with ymax ≤ 2t+1

and ymax ≤ 22s−1−2 and x, y ∈ [1, ymax] ∩ Cs,t with x ≤ y − 1. Let a ∈ R ∩ Cs,t with
erel(log(2π), a) ≤ ut and b := a⊕ `(x). We assume (3.17), (3.18) and

(1 + ut) log(2π) + (1 + v) log(ymax − 1) ≤ 22s−1−1

Let

c1 := (1 + ut)(1 + max(v, ut))− 1

c2 :=
log(ymax/(1− (ymax − 1)ut))

log(ymax)
(1 + v)− 1

c3 := log(2π(ymax − 1))/ log(ymax)

Let c2 < 1 and

(1− c1) log(2π(ymax − 1)) + (1 + c2) log(1/ymax) ≥ 22−2s−1

Then we get

erel(log(2πx(1− x/y), b⊕ `1(−(x� y))) ≤ (1 + ut)

(
1 +

c1

1− c−13

+
c2

c3 − 1

)
− 1

Proof. Because of log(x) ≤ x ∈ Cs,t we have log(x) ∈ R∪{0} and therefore erel(log(x), `(x)) ≤
v. Because of a + `(x) ≤ (1 + ut) log(2π) + (1 + v) log(ymax − 1) ≤ 22s−1−1 we have
a+ `(x) ∈ Rs,t and with Lemma 2.36 we get erel(log(2πx), b) ≤ c1. From Corollary 3.28 we get
erel(log(1−x/y), `1(−(x�y)) ≤ c2. Therefore we have b+`1(−(x�y)) ≥ (1−c1) log(2πy)+
(1 + c2) log(1 − x/y). Now differentiation yields b + `1(−(x � y)) ≥ (1 − c1) log(2π(ymax −
1)) + (1 + c2) log(1/ymax) ≥ 22−2s−1 . Because of c2 < 1 and log(1 − x/y) < 0 we also have
`1(−(x�y)) < 0 and therefore b+`1(−(x�y)) < b ∈ R∩Cs,t. Hence b+`1(−(x�y)) ∈ Rs,t.
From Lemma 3.30 we get | log(2πx)|/| log(1 − x/y)| ≥ c3. We use Lemma 2.38 and get the
proposition.

Example 3.32. For s = 11, t = 52, v = 2−20, nmax = 240 and n ∈ {2, . . . , nmax}, x ∈
{1, . . . , n− 1} and a ∈ R ∩ Cs,t with erel(log(2π), a) ≤ ut we get

erel(log(2πx(1− x/n), (a⊕ `(x))⊕ `1(−(x� n))) ≤ 0.0001006
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3.10 Error propagation in exponentiation

In this section let K = R.

Lemma 3.33. Let c ∈ [0,∞[ and x ∈ [−c, c]. Then we have

|1− exp(x)| ≤ exp(c)− 1

Proof. Because exp has positive derivative we get exp(x) ∈ [exp(−c), exp(c)] and therefore

|1− exp(x)| ≤ max{exp(c)− 1, 1− exp(−c)}

We now show exp(c) − 1 ≥ 1 − exp(−c). Let f : [0,∞[ → R defined by f(y) := exp(y) +
exp(−y). Then f ′(y) = exp(y) − exp(−y) and we get f ′(y) = 0 ⇔ y = 0. Because of
f ′′(y) = exp(y) + exp(−y) > 0 we get that y = 0 is minimum of f and therefore exp(c) +
exp(−c) = f(c) ≥ f(0) = 2. From this we get exp(c)− 1 ≥ 1− exp(−c) and therefore

|1− exp(x)| ≤ max{exp(c)− 1, 1− exp(−c)} = exp(c)− 1

Lemma 3.34. Let f : ]−∞, 0[∩C → C and v ∈ [0, 1[ with f(x) ∈ R and erel(exp(x), f(x)) ≤
v for every x ∈ ]−∞, 0[ ∩ C with exp(x) ∈ R. Let x ∈ ]−∞, 0[, x̃ ∈ ]−∞, 0[ ∩ C, c ∈ [0, 1[
with exp(x̃) ∈ R and erel(x, x̃) ≤ c Then

erel(exp(x), f(x̃)) ≤ exp(c|x|)(1 + v)− 1

Proof. We have

| exp(x)− f(x̃)|
exp(x)

≤ | exp(x)− exp(x̃)|
exp(x)

+ v exp(x̃)/ exp(x)

= |1− exp(x̃− x)|+ v exp(x̃− x)

≤ exp(c|x|)(1 + v)− 1

In the last step |x− x̃| ≤ c|x| and Lemma 3.33 was used.

Example: If s, t ∈ N, C = Cs,t and x ≥ log(22−2s−1
)/(1 + c) then exp(x̃) ≥ 22−2s−1 and

|x| ≤ (2s−1 − 2) log(2) and therefore

exp(c|x|)(1 + v)− 1 ≤ exp(c(2s−1 − 2) log(2))(1 + v)− 1 = 2c(2
s−1−2)(1 + v)− 1

Example: If s = 11, c = 2−4, v = 2−20 then we get exp(c(2s−1 − 2) log(2))(1 + v)− 1 ≤ 0.074
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Chapter 4

Computations of rigorous bounds for
binomial, multinomial and multivariate
hypergeometrical probabilities

We still consider the computation of Scan Probabilities for Markov increments. Instead of using
the “rounding to nearest mode” to get approximate values and then use the error bounds derived
in the last chapter, we are able to compute rigorous bounds using the functions ⊕,⊕,	, . . . ,�
which we defined in chapter 2. A case study can be found in [6].

4.1 Displaying double precision floating point numbers in hex-
adecimal format and as rational expression

The following code is suitable for displaying a double precision floating point number x in C
programs in hexadecimal format.

printf("%p\n",x);

This prints a sequence of 8 hexadecimal characters which represents the floating point number.
The first 3 characters of that sequence represent the sign s and the exponent e in the representation

x = (−1)s(1 + d · 2−52)2e−1023

while the last 5 characters represent the mantissa d. The hexadecimal sequence can be converted
into a rational representation with Mathematica, which is described below. In Mathematica the
command 16^^ can be used to convert a hexadecimal number into a decimal number. For exam-
ple the hexadecimal number AA with Mathematica can be converted using the command 16^^AA

and Mathematica returns the value 170 as result. With the help of this command, a hexadecimal
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represenation of a double precision floating point number which is displayed by the C instruc-
tion printf can be converted with Mathematica into a rational representation. For example the
C instruction printf("%p\n", 0.1); displays the hexadecimal number 3FB999999999999A.

This can be converted into a rational expression with Mathematica with the following command:

x= (1 + 2^-52*16^^999999999999A)*2^(16^^3FB - 1023)

As result Mathematica provides the rational representation 3602879701896397
36028797018963968

of the floating point
number 0.1 that we entered to the function printf.

Negative double precision floating point numbers are characterised by a hexadecimal representa-
tion in which the first character is larger than or equal to 8. In negative numbers, the hexadecimal
representation of the absolute value can be obtained by subtracting the hexadecimal character 8
from the first character of the hexadecimal sequence which represents the floating point number.
For example printf("%p\n", -0.1); displays the hexadecimal number BFB999999999999A.
Here the difference of the hexadecimal value B and 8 is 3, so the hexadecimal representation of
the absolute value of -0.1 is 3FB999999999999A.

4.2 Changing the rounding mode in C programs

The rounding mode in C according to the C 99 standard can be changed using the

#include<fenv.h>

header file and the commands

fesetround(FE_DOWNWARD);

for rounding downwards, and

fesetround(FE_UPWARD);

for rounding upwards.

The following programs measure the time needed to change the rounding mode.

void measureTimeAddition(void){

double z=1.0;

double eps=pow(2,-52);

int i;

for(i=0;i<2147483647;i++){

z=z+eps;

}

}
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The execution of the program measureTimeAddition took 5.3 seconds.

void measureTimeChangeRounding(void){

double z=1.0;

double eps=pow(2,-52);

int i;

for(i=0;i<2147483647;i++){

fesetround(FE_UPWARD);

fesetround(FE_DOWNWARD);

}

}

The execution of the program measureTimeChangeRounding took 269.8 seconds.

void measureTimeNoOperation(void){

double z=1.0;

double eps=pow(2,-52);

int i;

for(i=0;i<2147483647;i++){

}

}

The execution of the program measureTimeNoOperation took 3.2 seconds.

In this experiment changing the rounding mode took about 63 times the computation time for an
addition.

4.2.1 Example: Computation of rigorous bounds for binomial probabili-
ties

The following function can be used to compute lower and upper bounds for the binomial density
bn,p(k). Input variables are n, k and a lower bound lowerp and an upper bound upperp for the
value p. If the input variable rounding is 0, then the function bin returns an upper bound for
bn,p(k), otherwise the function returns a lower bound for bn,p(k).

#include<stdio.h>

#include<fenv.h>

double bin(int n, int k, double lowerp, double upperp, int rounding){

int d=n-k;

double e;

e=1.0;
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int i;

if(rounding==0){

fesetround(FE_UPWARD);

for(i=1;i<=k;i++){

e=e*(double)(d+i)/(double)i;

e=e*upperp;

}

for(i=1;i<=d;i++){

e=e*(1-lowerp);

}

}

else{

fesetround(FE_DOWNWARD);

for(i=1;i<=k;i++){

e=e*(double)(d+i)/(double)i;

e=e*lowerp;

}

for(i=1;i<=d;i++){

e=e*(1-upperp);

}

}

return e;

}

Example: The following program computes lower and upper bounds for the binomial probability
b30,2/3(20)

int main (void){

double b=2.0;

double c=3.0;

fesetround(FE_UPWARD);

double upperp=b/c;

fesetround(FE_DOWNWARD);

double lowerp=b/c;

printf("%p\n", bin(30,20,lowerp,upperp,0));

printf("%p\n", bin(30,20,lowerp,upperp,1));

return 0;

}

The program returns the lower bound 3FC39600E4A68EB8 and the upper bound 3FC39600E4A68F0C
for the binomial probability b30,2/3(20). With Mathematica we are able to compute the rational
forms of these hexadecimal representation:
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Rational form of the lower bound 3FC39600E4A68EB8:

(1 + 2^-52*16^^39600E4A68EB8)*2^(16^^3FC - 1023)

This gives us the exact rational expression 689119392223703
4503599627370496

as lower bound for b30,2/3(20).

Rational form of the upper bound 3FC39600E4A68F0C:

(1 + 2^-52*16^^39600E4A68F0C)*2^(16^^3FC - 1023)

This gives us the exact rational expression 1378238784447427
9007199254740992

as upper bound for b30,2/3(20).

4.3 Computation of rigorous bounds for rectangle probabili-
ties for a multinomially distributed random variable

In the last section we stated functions which are suitable for computing rigorous bounds for the
binomial density. These functions can be used to further compute rigorous bounds for rectangle
probabilities for a multinomially distributed random variable. The following algorithm is an
efficient C implementation of the algorithm which was stated in the Appendix A of [5]. Here the
so called “multiplication method” which was stated in Appendix B of Loader [16] was used.

In this example, the algorithm computes a rigorous upper bound for the probability P(N1 ∈
{j1, . . . , k1}, . . . , Nd ∈ {jd, . . . , kd}) with (N1, . . . , Nd) ∼ Mn,(1/d,...,1/d) and n = 10, d =
6, j1 = . . . = jd = 0, k1 = . . . = kd = 4.

#include <stdio.h>

#include <fenv.h>

#include <stdlib.h>

#define max( a, b ) ( ((a) > (b)) ? (a) : (b) )

#define min( a, b ) ( ((a) < (b)) ? (a) : (b) )

void sum(int n, double* startadress, double* sum){

int i;

*sum=0;

for (i=0; i<n; i++){ *sum=*sum + *(startadress+i);}

}

void isum(int n, int* startadress, int* sum){

int i;

*sum=0;
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for (i=0; i<n; i++){ *sum=*sum + *(startadress+i);}

}

double upperbnp(int k,int n, double pu, double po){

fesetround(FE_UPWARD);

if (2*k>n){

double ponew,punew;

ponew=1-pu;

fesetround(FE_DOWNWARD);

punew=1-po;

return(upperbnp(n-k,n,punew,ponew));

}

double f=1.0;

int j0=0,j1=0,j2=0;

while ((j0<k)| (j1<k)|(j2<n-k))

{ if((j0<k)&& (f<1))

{j0++;

f*= (double)(n-k+j0)/(double)j0;

}

else

{if (j1<k){j1++;f*= po;}

else { j2++; f*= 1-pu;}

}

}

return(f);

}

double upperMarkovtransition (int k, int i, int j, double* pu,

double* po, int d, int n){

double so,su;

fesetround(FE_UPWARD);

sum(d-k+1,&po[k],&so);

fesetround(FE_DOWNWARD);

sum(d-k+1,&pu[k],&su);

double psu=pu[k]/so;

fesetround(FE_UPWARD);

double pso=po[k]/su;

double prob=upperbnp(j-i,n-i,psu,pso);

return prob;

}

double upperStartProb(int i,int n, double* pu, double* po){

return upperbnp(i,n,pu[0],po[0]);
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}

void upperRectangleProb(void){

int i,k;

int n = 10;

int d = 6;

double zahler=1.0;

double nenner=(double) d;

double* pu = (double*) malloc (d * sizeof(double));

double* po = (double*) malloc (d * sizeof(double));

fesetround(FE_DOWNWARD);

for (i=0;i<d;i++){ pu[i]=zahler/nenner; }

fesetround(FE_UPWARD);

for (i=0;i<d;i++){ po[i]=zahler/nenner; }

int* b = (int*) malloc (d * sizeof(int));

for (i=0;i<d;i++){ b[i]=0; }

int* c = (int*) malloc (d * sizeof(int));

for (i=0;i<d;i++){ c[i]=4; }

int* alpha = (int*) malloc ( (d-1) * sizeof(int));

int* beta = (int*) malloc ( (d-1) * sizeof(int));

int z1,z2;

for (k =1;k<d;k++){

isum(d-k,&c[k],&z1);

isum(k,&b[0],&z2);

alpha[k-1]= max(n-z1,z2);

}

for (k =1;k<d;k++){

isum(d-k,&b[k],&z1);

isum(k,&c[0],&z2);

beta[k-1]= min(n-z1,z2);

}

double* temp = (double*) malloc ( (n+1) * sizeof(double));

double* P = (double*) malloc ( (n+1) * sizeof(double));

double* R = (double*) malloc ( (n+1) * sizeof(double));

double* Q;

int j;

for (j=0;j<=n;j++){ R[j]=0; }

for (j=0;j<=n;j++){ P[j]=0; }
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for ( j=alpha[0]; j<= beta[0]; j++) { P[j]= upperStartProb(j,n,pu,po); }

int x,su,so;

for (k = 2; k<d; k++) {

Q=R;

for (x = alpha[k-1]; x <= beta[k-1]; x ++) {

su=max(x-c[k-1],alpha[k-2]);

so=min(x-b[k-1],beta[k-2]);

if (su<= so){

for (j=su;j<= so; j++) {

temp[j] = upperMarkovtransition(k-1,j,x,pu,po,d,n)*P[j];};

sum(so-su+1,&temp[su],&Q[x]);

}

}

for (j=0;j<=n;j++){ P[j]=0;}

R=P;

P=Q;

}

double result;

sum(n+1,&P[0],&result);

printf("%.20f",result);

}

int main (void){

upperRectangleProb();

return 0;

}
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4.4 Comparison of the multiplication method and Loader’s
algorithm for the binomial density

While the multiplication method for the binomial density allows the computation of rigorous
bounds when the rounding modes of the computer are changed, it is much slower in comparison
with Loader’s algorithm for the binomial density. For example, we consider the computation
of the values P(N1, . . . , Nd ≤ k) of the cumulative distribution function for a multinomially
distribed random variable (N1, . . . , Nd) ∼ Mn,p with n, d ∈ N, d ≥ 2 and p = (1/d, . . . , 1/d).
Table 4.1 lists the times needed to compute these values with the function stated in Appendix A,
when the binomial transition probabilities were computed with one of the two different methods.
All computations were done on a 3.7 GHz CPU with 4.0 GB Ram.

Table 4.1: Time needed to compute P(N1, . . . , Nd ≤ k) for (N1, . . . , Nd) ∼ Mn,p
n d k P(N1, . . . , Nd ≤ k) Time (multiplication method) Time (Loader’s algorithm)
100 100 4 0.7016461 1.0 s 0.25 s
100 100 5 0.9475989 1.3 s 0.33 s
100 100 6 0.9929082 1.6 s 0.36 s
300 250 4 0.1332788 17.5 s 1.7 s
300 250 5 0.6913766 22.6 s 2.1 s
300 250 6 0.9417305 29.2 s 2.5 s
500 250 5 0.0111244 47.3 s 2.8 s
500 250 6 0.3171264 61.1 s 3.5 s
500 250 7 0.7644753 75.6 s 4.1 s

4.5 Computation of rigorous bounds for rectangle scan prob-
abilities for a multinomially distributed random variable

Let (N1, . . . , Nd) ∼ Mn,p with n = 500, d = 365 and p = (1/d, . . . , 1/d). Let

S :=
d−2

max
k=1

(Nk +Nk+1 +Nk+2)

In Appendix B we listed an implementation of the Algorithm A from chapter 1 which computes
lower bounds and upper bounds for the values P(S ≤ k) of the cumulative distribution function
of S for k ∈ {8, . . . , 15}. These values are listed in Table 4.2.

Table 4.2: Bounds for the cumulative distribution function of the multinomial scan S
k P(S ≤ k)
8 0.0007795

0.0007796
9 0.0661

0.0662

k P(S ≤ k)
10 0.3773

0.3774
11 0.7210

0.7211

k P(S ≤ k)
12 0.9030

0.9031
13 0.9708

0.9709

k P(S ≤ k)
14 0.9920

0.9921
15 0.9979

0.9980
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4.5.1 Comparison of the accuracy of bounds in double precision and in
single precision

Following [6], we do a following case study which compares the accuracy of rigorous bounds for
multinomial scan probabilities when either the double precision number system IEEEDouble or
the single precision number system IEEESingle are used.

For a quantitative analysis of the accuracy of computed probabilities we need to consider absolute
and relative errors. For p, p̃ ∈ [0, 1] we define the absolute error

eabs(p, p̃) := |p− p̃|

and the relative error

erel(p, p̃) := max

{
eabs(p, p̃)

p
,
eabs(1− p, 1− p̃)

1− p

}
=

|p− p̃|
min(p, 1− p)

in the approximation of p by p̃, with 0
0

:= 0 and x
0

:= ∞ for x > 0. For a, b ∈ [0, 1] with a ≤ b
and p̃ ∈ [a, b] we further define the absolute error

eabs([a, b], p̃) := max
p∈[a,b]

eabs(p, p̃) = max{b− p̃, p̃− a}

and the relative error

erel([a, b], p̃) := max
p∈[a,b]

erel(p, p̃)

in the approximation of a probability which is known to lie in [a, b] by p̃. We get simple formulas
for erel([a, b], p̃) in the following two cases. If a, b ∈ [0, 1/2] or a, b ∈ [1/2, 1] we have

erel([a, b], p̃) = max{erel(a, p̃), erel(b, p̃)}

Hence, if a, b ∈ ]0, 1/2] we have

erel([a, b], p̃) = max{ p̃− a
a

,
b− p̃
b
}

and if a, b ∈ [1/2, 1[ we have

erel([a, b], p̃) = max{ p̃− a
1− a

,
b− p̃
1− b

}

For accuracy measurements in interval calculations we use the following mini-max errors.

Definition 4.1. For a, b ∈ [0, 1] with a ≤ b we define the absolute error

eabs([a, b]) := min
p̃∈[a,b]

eabs([a, b], p̃) = eabs([a, b],
a+ b

2
) =

b− a
2

and the relative error

erel([a, b]) := min
p̃∈[a,b]

erel([a, b], p̃)

in the approximation of a probability by the interval [a, b].
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Easy calculations yield the following formulas:

Theorem 4.2. If a, b ∈ [0, 1/2] we have

∀p̃ ∈ [a, b] : erel([a, b], p̃) ≤ erel([a, b],
2ab

a+ b
) =

b− a
b+ a

Hence

erel([a, b]) =
b− a
b+ a

If a, b ∈ [1/2, 1] we have

∀p̃ ∈ [a, b] : erel([a, b], p̃) ≤ erel([a, b],
a+ b− 2ab

2− a− b
) =

b− a
2− a− b

Hence

erel([a, b]) =
b− a

2− a− b

Note that the absolute error eabs([a, b]) and the relative error erel([a, b]) need not be reached
simultaneously by one of the approximators. It need not be reached at all, as the following
example illustrates.

Example 4.3. In Table 4.3 we listed the errors eabs([a, b], p̃) and erel([a, b], p̃) for [a, b] = [0.02, 0.03]
and different approximators p̃ . We see that eabs([a, b]) = 0.005 and erel([a, b]) = 1/5. If we take
the upper bound p̃ = b as approximator for the unknown probability p , neither eabs([a, b], p̃) =
eabs([a, b]) is reached, nor erel([a, b], p̃) = erel([a, b]). If, for example, the unknown probability is

Table 4.3: Errors for the interval [a, b] = [0.02, 0.03]
p̃ eabs([a, b], p̃) erel([a, b], p̃)

2ab/(a+ b) = 0.024 0.006 1/5
(a+ b)/2 = 0.025 0.005 1/4

a 0.01 1/3
b 0.01 1/2

p = (3/10)3 = 0.027, then the errors are as listed in Table 4.4.
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Table 4.4: Errors for the probability p = 0.027
p̃ eabs(p, p̃) erel(p, p̃)

0.024 0.003 3/27
0.025 0.002 2/27
a 0.007 7/27
b 0.003 3/27

Examples

For N ∼ Mn,p with n = 500, d = 365, p = (1/d, . . . , 1/d) and k ∈ {4, . . . , 32} we computed an
upper bound p and a lower bound p for the probability P(maxd−2i=1 (Ni +Ni+1 +Ni+2) ≤ k) with
the Algorithm from Appendix B . In Table 4.5 we tabulate the computed bounds p, p and analyze
their accuracy in double precision, in Table 4.6 we list the results if all computations are done
in single precision. Numbers written in typewriter font are hexadecimal. The coloumn titled
“approx” gives the known decimal digits of a value of the “probability representation number
system” T , that lies nearest to the exact value. The probability representation number system T
consists of all numbers with 7 decimal digits without leading zeros or nines. We use the notation
.0x as an abbreviation for a decimal point followed by x zeros, analogously .9x. The symbol ?
appearing in a number means that the following digits are not exactly known.

The value eabs resp. erel is the minimal upper bound for eabs([p, p]) resp. erel([p, p]) which has
the form c · 10k where c has 3 significant digits and k ∈ Z.

Thus, in Table 4.5 the line with k = 15 means that the probability P(maxd−2i=1 (Ni+Ni+1+Ni+2) ≤
15) lies in the interval [p, p] with

p = 1.fef956911fe58 · 2−1

= (1 + 15 · 16−1 + 14 · 16−2 + . . .+ 8 · 16−13) · 2−1

= 0.99799604913273309847454584087245166301727294921875

p = 1.fef95690c7eda · 2−1

= (1 + 15 · 16−1 + . . .+ 10 · 16−13) · 2−1

= 0.9979960490927297644958571254392154514789581298828125

with all equalities exact. The minimal upper bound for eabs([p, p]) which has the form c · 10k

where c has 3 significant digits and k ∈ Z is 2.01 · 10−11 and the minimal upper bound for
eabs([p, p]) which has this form is 9.99 · 10−9. A value of the number system T which is
nearest to the exact probability is 0.9979961. As the numbers of the system T in the interval
[0.001, 0.9989999] differ by 10−7, just knowing the approximate value we can infer that the ab-
solute error in this approximation is less than 10−7.

The computed probabilities can be used as p-values for tests that check data on clusters. For
example: Let n = 500 patients arrive at a clinic in d = 365 days. We compute the probability
that there exist three successive days in which together more than 15 patients arrive. From the
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Table 4.5: Upper and lower bounds p, p for P(maxd−2i=1 Ni + Ni+1 + Ni+2 ≤ k) with N ∼ Mn,p,
n = 500, d = 365, p = (1/d, . . . , 1/d) and k ∈ {4, . . . , 32}.

k p, p eabs erel approx

4 0 0 0 0

5
1.1c5df1e1a1f83 · 2−178

1.1c5df1e171043 · 2−178 5.82 · 10−65 2.01 · 10−11 .05328993

6
1.b826f22f10057 · 2−67

1.b826f22ec43c3 · 2−67 2.34 · 10−31 2.01 · 10−11 .01911651

7
1.b71c492587c97 · 2−27

1.b71c49253c2df · 2−27 2.57 · 10−19 2.01 · 10−11 .0712780

8
1.98b8351d76fbd · 2−11

1.98b8351d309cf · 2−11 1.57 · 10−14 2.01 · 10−11 .0377957

9
1.0f0230ce6f8a1 · 2−4

1.0f0230ce40e15 · 2−4 1.33 · 10−12 2.01 · 10−11 .0661642

10
1.826e2adb7befd · 2−2

1.826e2adb39686 · 2−2 7.57 · 10−12 2.01 · 10−11 .3773734

11
1.7131cf887a229 · 2−1

1.7131cf883a935 · 2−1 1.45 · 10−11 5.19 · 10−11 .7210832

12
1.ce576094ddb84 · 2−1

1.ce5760948e1f6 · 2−1 1.81 · 10−11 1.87 · 10−10 .9030104

13
1.f1162301d80ec · 2−1

1.f1162301827ae · 2−1 1.95 · 10−11 6.69 · 10−10 .9708720

14
1.fbef9498b0df9 · 2−1

1.fbef9498596d7 · 2−1 1.99 · 10−11 2.51 · 10−9 .9920622

15
1.fef956911fe58 · 2−1

1.fef95690c7eda · 2−1 2.01 · 10−11 9.99 · 10−9 .9979961

16
1.ffc1fbbfd6e58 · 2−1

1.ffc1fbbf7ecb1 · 2−1 2.01 · 10−11 4.24 · 10−8 .9352685

17
1.fff23b0d23a3c · 2−1

1.fff23b0ccb810 · 2−1 2.01 · 10−11 1.91 · 10−7 .9389495

18
1.fffd1d22cb527 · 2−1

1.fffd1d22732da · 2−1 2.01 · 10−11 9.11 · 10−7 .9477980

19
1.ffff6d5024936 · 2−1

1.ffff6d4fcc6e4 · 2−1 2.01 · 10−11 4.59 · 10−6 .9556284

20
1.ffffe4570f39a · 2−1

1.ffffe456b7146 · 2−1 2.01 · 10−11 2.44 · 10−5 .9617567

21
1.fffffb08bd13c · 2−1

1.fffffb0864ee9 · 2−1 2.01 · 10−11 1.36 · 10−4 .968520?

22
1.ffffff264f47d · 2−1

1.ffffff25f7228 · 2−1 2.01 · 10−11 7.91 · 10−4 .9774?

23
1.ffffffdc79315 · 2−1

1.ffffffdc210c0 · 2−1 2.01 · 10−11 4.83 · 10−3 .986?

24
1.fffffffa913ba · 2−1

1.fffffffa39167 · 2−1 2.01 · 10−11 3.08 · 10−2 .99?

25
1.ffffffff53a50 · 2−1

1.fffffffefb7fe · 2−1 2.01 · 10−11 2.04 · 10−1 .99?

26
1

1.ffffffffb44b7 · 2−1 1− p ∞ .910?

27
1

1.ffffffffcf373 · 2−1 1− p ∞ .910?

28
1

1.ffffffffd2fd3 · 2−1 1− p ∞ .910?

29
1

1.ffffffffd37fa · 2−1 1− p ∞ .910?

30
1

1.ffffffffd3908 · 2−1 1− p ∞ .910?

31
1

1.ffffffffd392a · 2−1 1− p ∞ .910?

32
1

1.ffffffffd392a · 2−1 1− p ∞ .910?
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Table 4.6: Upper and lower bounds p, p for P(maxd−2i=1 Ni + Ni+1 + Ni+2 ≤ k) with N ∼ Mn,p,
n = 500, d = 365, p = (1/d, . . . , 1/d) and k ∈ {4, . . . , 25}, computed in single-precision.

k p, p p, p eabs erel approx

4 0 0 0 0 0

5
1.974c00 · 2−135

0
.0403652...
0

1.83 · 10−41 1.04 · 10−2 .040?

6
1.bcc5a4 · 2−67

1.b39300 · 2−67
.0191177...
.0191152...

1.22 · 10−22 1.04 · 10−2 .01911?

7
1.bbb862 · 2−27

1.b28b40 · 2−27
.0712913...
.0712646...

1.34 · 10−10 1.04 · 10−2 .0712?

8
1.9d02a2 · 2−11

1.947834 · 2−11
.0378775...
.0377146...

8.15 · 10−6 1.04 · 10−2 .037?

9
1.11da84 · 2−4

1.0c30d0 · 2−4
.0668587...
.0654762...

6.91 · 10−4 1.04 · 10−2 .06?

10
1.867cac · 2−2

1.7e699a · 2−2
.3813349...
.3734497...

3.94 · 10−3 1.04 · 10−2 .3?

11
1.7511fc · 2−1

1.6d5b2a · 2−1
.7286528...
.7135861...

7.53 · 10−3 2.7 · 10−2 .7?

12
1.d331e6 · 2−1

1.c988cc · 2−1
.9124900...
.8936218...

9.43 · 10−3 9.7 · 10−2 .?

13
1.f64e04 · 2−1

1.ebeb16 · 2−1
.9810639...
.9607779...

1.01 · 10−2 3.49 · 10−1 .9?

14
1

1.f6a7a6 · 2−1
1

.9817478...
1− p ∞ .9?

15
1

1.f9a956 · 2−1
1

.9876200...
1− p ∞ .9?

16
1

1.fa6fe6 · 2−1
1

.9891349...
1− p ∞ .9?

17
1

1.fa9fa0 · 2−1
1

.9894990...
1− p ∞ .9?

18
1

1.faaa68 · 2−1
1

.9895813...
1− p ∞ .9?

19
1

1.faacb6 · 2−1
1

.9895989...
1− p ∞ .9?

20
1

1.faad2c · 2−1
1

.9896024...
1− p ∞ .9?

21
1

1.faad3c · 2−1
1

.9896029...
1− p ∞ .9?

22
1

1.faad40 · 2−1
1

.9896030...
1− p ∞ .9?

23
1

1.faad44 · 2−1
1

.9896031...
1− p ∞ .9?

24
1

1.faad46 · 2−1
1

.9896032...
1− p ∞ .9?

25
1

1.faad46 · 2−1
1

.9896032...
1− p ∞ .9?
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line for k = 15 in Table 4.5 on page 87, we get the approximate value 1−0.9979961 = 0.0020039
with an absolute error less than 10−7. As this probability is so small we would, if the described
event occurs, reject the hypothesis that the patients arrived independently and hence suspect that
there must be a reason for this cluster.

4.6 Computation of rigorous bounds for rectangle scan prob-
abilities for a multivariate hypergeometrically distributed
random variable

As stated in 1.3, multivariate hypergeometrically distributed random variables are Markov incre-
ments. Therefore implementations of the Algorithm A from Chapter 1 can be used to compute
rectangle scan probabilities for a multivariate hypergeometrically distributed random variable.
From [6] we take the following example, where we compute rigorous bounds for the exact prob-
abilities.

We use the following algorithm to compute the multivariate hypergeometric transition probabil-
ities, which are univariate hypergeometric. In the “rounding up” mode this algorithm calculates
an upper bound for the exact hypergeometric probability. In the “rounding down” mode this
algorithm calculates a lower bound for the exact hypergeometric probability.

double hyp(int n, int r, int b, int k){

double f=1.0;

int j0=0,j1=0,j2=0;

while ( (j0<k)| (j1<n-k) | (j2<n) ){

if(f<1 && ( (j0<k) | (j1<n-k)) ){

if (j0<k) { f*=(double)(r-j0)/(j0+1);j0++;}

else {if (j1<n-k) { f*=(double)(b-j1)/(j1+1);j1++;}

else if (j2<n) {f*=(double)(r+b-j2)/(j2+1);j2++;}}

}

else if (j2<n) { f*=(double)(j2+1)/(r+b-j2);j2++;}

}

return f;

}

Table 4.7 contains the distribution function of the random variable maxd−2i=1 (Ni + Ni+1 + Ni+2)
with N ∼ Hn,m with n = 500, d = 365 and m = (10, . . . , 10). Details on the used notation are
described in 4.5.1. The algorithm with which the values were computed is printed in Appendix
F.
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Table 4.7: Upper and lower bounds p, p for P(maxd−2i=1 Ni + Ni+1 + Ni+2 ≤ k) with N ∼ Hn,m,
n = 500, d = 365, m = (10, . . . , 10) and k ∈ {4, . . . , 26}.

k [p, p] eabs erel approx

4 0 0 0 0

5
1.94a78cce6bf78 · 2−160

1.94a78cce088a0 · 2−160 3.09 · 10−59 2.86 · 10−11 .04710815

6
1.0acc3dae78827 · 2−55

1.0acc3dae36d0e · 2−55 8.29 · 10−28 2.87 · 10−11 .01628926

7
1.591d6928456d6 · 2−20

1.591d6927f05d0 · 2−20 3.69 · 10−17 2.87 · 10−11 .0512856

8
1.40ac4ad3593a9 · 2−7

1.40ac4ad30a26f · 2−7 2.81 · 10−13 2.87 · 10−11 .0097862

9
1.df885f4b6ceae · 2−3

1.df885f4af6a55 · 2−3 1.91 · 10−11 2.87 · 10−11 .2341468

10
1.546bd869a7f5e · 2−1

1.546bd86953fe9 · 2−1 2.60 · 10−11 5.70 · 10−11 .6648853

11
1.cec1ebd5b5793 · 2−1

1.cec1ebd543545 · 2−1 2.81 · 10−11 2.70 · 10−10 .9038233

12
1.f4e8088a29393 · 2−1

1.f4e80889adab5 · 2−1 2.86 · 10−11 1.30 · 10−9 .9783328

13
1.fde26f4234a4c · 2−1

1.fde26f41b6dfc · 2−1 2.87 · 10−11 6.92 · 10−9 .9958682

14
1.ffa6780ca228e · 2−1

1.ffa6780c23f48 · 2−1 2.87 · 10−11 4.20 · 10−8 .9331693

15
1.fff314a41d498 · 2−1

1.fff314a39f023 · 2−1 2.87 · 10−11 2.91 · 10−7 .9401433

16
1.fffe5ec7c001c · 2−1

1.fffe5ec741b7c · 2−1 2.87 · 10−11 2.31 · 10−6 .9487566

17
1.ffffd2049693f · 2−1

1.ffffd20418497 · 2−1 2.87 · 10−11 2.10 · 10−5 .958629?

18
1.fffffb9535338 · 2−1

1.fffffb94b6e8e · 2−1 2.87 · 10−11 2.18 · 10−4 .96868?

19
1.ffffffa1dc0a3 · 2−1

1.ffffffa15dbfb · 2−1 2.87 · 10−11 2.61 · 10−3 .978?

20
1.fffffff9717b1 · 2−1

1.fffffff8f330a · 2−1 2.87 · 10−11 3.63 · 10−2 .99?

21
1.ffffffffd3bf1 · 2−1

1.ffffffff55749 · 2−1 2.87 · 10−11 5.88 · 10−1 .910?

22
1

1.ffffffffbb782 · 2−1 1− p ∞ .910?

23
1

1.ffffffffc0de3 · 2−1 1− p ∞ .910?

24
1

1.ffffffffc11b4 · 2−1 1− p ∞ .910?

25
1

1.ffffffffc11d9 · 2−1 1− p ∞ .910?

26
1

1.ffffffffc11d9 · 2−1 1− p ∞ .910?
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4.7 Calling C-functions from R and changing the rounding
mode in R

In R there exists the option to call C-functions. In order to do this, with the C-Compiler first a
shared library has to be created that contains the functions which shall be called in R. The shared
library, which is located in a file with the file extension .so, then can be included into R with the
dyn.load command. After having included the shared library in R, functions can be called from
that library using the interface function which is called .C.

By including C-functions it is possible to change the rounding mode in R for example in a way
that all the floating point operations +,−, ∗, / always give results which are rounded downwards
and therefore are lower bounds for the exact result.

For example, to functions that change the rounding mode in R, the following C-functions can to
be compiled into a shared library with the .so extension.

void rounddown(void){

fesetround(FE_DOWNWARD);

}

void roundup(void){

fesetround(FE_UPWARD);

}

If the shared library is called RoundingModes.so, then this shared library can be included using
the following command in R:

dyn.load("RoundingModes.so")

After the shared library is included in R, the rounding modes can be changed in R using the
following commands

.C("rounddown")

or

.C("roundup")

Further information on including C code in R can be found in “Writing R Extensions” at the R
project webpage https://cran.r-project.org/manuals.html

A different reason for using C code in R, besides the use of alternate rounding modes, could be
the following. Loops in R are said to be slower than in C.
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Appendix A

An algorithm for the multinomial range

The following R script prints the values of the cumulative distribution function of the Range

D =
d

max
i=1

Ni −
d

min
i=1

Ni

for a multinomially distributed random variable D ∼ Mn,p with n = 1000, d = 6 and p =
(1/d, . . . , 1/d). These values are listed in Table 1.1.

rm(list = ls(all = TRUE))

n=1000;

d=6;

p=array(1/d,d)

startprob<- function(i){dbinom(i,n,p[1]) }

markovTransition<- function(k,i,j){

prob=numeric(length(i));

for ( l in 1:length(i)) { prob[l]=dbinom(j-i[l],n-i[l],p[k]/sum(p[k:d])) };

prob

}

multiRectangleProb<- function(n,b,c){

alpha=numeric(d-1)

beta=numeric(d-1)

for (k in 1:(d-1)) alpha[k]=max(n-sum(c[(k+1):d]),sum(b[1:k]))

for (k in 1:(d-1)) beta[k]=min(n-sum(b[(k+1):d]),sum(c[1:k]))

P=numeric(n+1)
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for (j in alpha[1]:beta[1]) P[j+1]=startprob(j)

for (k in 2:(d-1)) {

Q=numeric(n+1)

for (x in alpha[k]:beta[k]) {

su=max(x-c[k],alpha[k-1])

so=min(x-b[k],beta[k-1])

if(su<=so) Q[x+1]=sum(markovTransition(k,su:so,x)*P[su:so+1])

}

P=Q

}

sum(P)

}

CDFMultiRange<- function(k){

x=0

for (h in 0:(n-k)) {x=x+multiRectangleProb(n,array(h,d),array(h+k,d))}

for (h in 0:(n-k-1)) { x=x-multiRectangleProb(n,array(h+1,d),array(h+k,d))}

x

}

for (k in 1:68) {print(k); print(CDFMultiRange(k))}
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Appendix B

An algorithm for the cumulative
distribution function of a scan statistic of a
multinomially distributed random variable

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <fenv.h>

#define max( a, b ) ( ((a) > (b)) ? (a) : (b) )

#define min( a, b ) ( ((a) < (b)) ? (a) : (b) )

void sum(int n,int s, double* startadress, double* sum){

int i;

*sum=0;

for (i=0; i<n; i++){ *sum=*sum + *(startadress+i*s);}

}

double bnp(int k, int n, double p, double q){

if (2*k>n) return(bnp(n-k,n,q,p));

double f=1.0;

int j0=0,j1=0,j2=0;

while ( (j0<k) | (j1<k)| (j2<n-k) )

{

if( (j0<k) && (f<1) ) {
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j0++;

f*= (double)(n-k+j0)/(double)j0;}

else {

if(j1<k) {j1++; f*= p;}

else {j2++; f*= q;}

}

}

return f;

}

void ComputeTransitionProbs(int d, double* pu, double* po,

double* psu, double* pso, double* qsu, double* qso){

double* sumu = (double*)malloc(8*d);

double* sumo = (double*)malloc(8*d);

sumu[d-1]=pu[d-1];

sumo[d-1]=po[d-1];

fesetround(FE_DOWNWARD);

int i;

for (i=d-1;i>1;i--){

sumu[i-1]= sumu[i]+pu[i-1];

}

fesetround(FE_UPWARD);

for (i=d-1;i>1;i--){

sumo[i-1]= sumo[i]+po[i-1];

}

psu[d-1]=1;

pso[d-1]=1;

psu[0]=pu[0];

pso[0]=po[0];

fesetround(FE_DOWNWARD);

for (i=1;i<d-1;i++){

psu[i]=pu[i]/sumo[i];

if(psu[i]>1){psu[i]=1;}

}

fesetround(FE_UPWARD);

for (i=1;i<d-1;i++){

pso[i]= po[i]/sumu[i];
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if(pso[i]>1){pso[i]=1;}

}

fesetround(FE_DOWNWARD);

for (i=0;i<d;i++){

qsu[i]=1-pso[i];

}

fesetround(FE_UPWARD);

for (i=0;i<d;i++){

qso[i]=1-psu[i];

}

free(sumu);

free(sumo);

return;

}

void Mult3ScanRectangleProb(int d,int l, int n, double* ps,

double* qs, int* b, int* c, int* m, int* M){

int nn=(n+1)*(n+1);

//Initialize memory

double* P=(double*)malloc(8*(n+1)*(n+1)*(n+1));

double* R=(double*)malloc(8*(n+1)*(n+1)*(n+1));

double* Q;

int i,j,k;

int index;

for(i=0;i<=n;i++){

for(j=i;j<=n;j++){

for(k=j;k<=n;k++){

index=i*nn+j*(n+1)+k;

*(P+index)=0;

*(R+index)=0;

}}}
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//Compute starting probabilities

int ma= min(M[0],n);

int mi= min(m[0],n);

for(i=mi;i<=ma;i++){

for(j=i;j<=ma;j++){

for(k=j;k<=ma;k++){

*(P+i*nn+j*(n+1)+k)

=bnp(i,n,ps[0],qs[0])*bnp(j-i,n-i,ps[1],qs[1])*bnp(k-j,n-j,ps[2],qs[2]);

}}}

//Use recursion to fill the array of probabilities

int nu;

int su,so;

for (nu=2;nu<=d-l+1;nu++){

Q=R;

ma=min(M[nu-1],n);

mi=min(m[nu-1],n);

for(i=mi;i<=ma;i++){

for(j=i;j<=ma;j++){

for(k=j;k<=ma;k++){

su=max(k-c[nu-1],m[nu-2]);

so=min(k-b[nu-1],min(i,M[nu-2]));

index=i*nn+j*(n+1)+k;

if(j<= M[nu-2] && su<= so){

sum(so-su+1,nn,P+su*nn+i*(n+1)+j,Q+index);

*(Q+index)*=bnp(k-j,n-j,ps[nu+1],qs[nu+1]);

}else{*(Q+index)=0;}

}}}

for(i=0;i<=n;i++){

for(j=i;j<=n;j++){

for(k=j;k<=n;k++){

*(P+i*nn+j*(n+1)+k)=0;

}}}

R=P;

P=Q;

}
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//Sum up the relevant entries of the last row of the array

//of probabilities. This yields the result.

double result=0;

ma= min(M[d-l],n);

mi= min(m[d-l],n);

for( i= mi;i<= ma;i++){

for(j=i;j<=ma;j++){

for(k=j;k<=ma;k++){result = result+ *(P+i*nn+j*(n+1)+k);

}}}

printf("%p ",result);printf("%.20f\n",result);

free(P);

free(R);

return;

}

void Mult3ScanRectangleWrapper(int* D,int* L, int* N,

double* pu, double* po, int* b, int* c, int* m, int* M){

int d=*D;

int l=*L;

int n=*N;

int nn=(n+1)*(n+1);

//Compute the transition probabilities

double* psu = (double*)malloc(8*d);

double* pso = (double*)malloc(8*d);

double* qsu = (double*)malloc(8*d);

double* qso = (double*)malloc(8*d);

ComputeTransitionProbs(d,pu,po,psu,pso,qsu,qso);

//Compute lower and upper bound for the exact rectangle scan probability

fesetround(FE_DOWNWARD);

Mult3ScanRectangleProb(d,l,n,psu,qsu,b,c,m,M);

fesetround(FE_UPWARD);

Mult3ScanRectangleProb(d,l,n,pso,qso,b,c,m,M);

}

void computation(int d, int l, int n, int k){

double* pu = (double*)malloc(8*d);

double* po = (double*)malloc(8*d);
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int i,j;

for (i=0;i<d;i++){

fesetround(FE_DOWNWARD);

pu[i]=1/(double)d;

fesetround(FE_UPWARD);

po[i]=1/(double)d;

}

int* b=(int*)malloc(4*(d-2));

int* c=(int*)malloc(4*(d-2));

int* m=(int*)malloc(4*(d-2));

int* M=(int*)malloc(4*(d-2));

for(i=0;i<d-l+1;i++){b[i]=0;}

for(i=0;i<d-l+1;i++){c[i]=k;}

for(i=0;i<d-l+1;i++){m[i]=0;}

M[0]=k;

for(i=0;i<d/l-1;i++){

for(j=1;j<=l;j++){M[i*l+j]=k*(i+2);}

}

for(j=1;j<=d-l*(d/l);j++){M[d-l+1-j]=k*(d/l+1);}

double zeit=clock();

Mult3ScanRectangleWrapper(&d,&l, &n, pu, po, b, c, m, M);

printf("%.2f ",(clock()-zeit)/CLOCKS_PER_SEC);printf("%c\n",'s');

return;

}

int main (void){

int d=365;

int l=3;

int n=500;

int k;

for(k=8;k<=15;k++){

printf("%i\n",k);

computation (d,l,n,k);

}

return 0;

}
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Appendix C

Stirling’s Series

Definition C.1. We define the Bernoulli Numbers b1, b2, b3, . . . ∈ R in the following way as the
coefficients in the series

x

ex − 1
= 1− x

2
+ b1

x2

2!
− b2

x4

4!
+ . . .

which according to [8] converges for every x ∈ R with |x| < 2π.

Definition C.2. We define Stirling’s Series (Sn)n∈N by

Sn(x) :=
n∑
k=1

(−)k−1bk
2k(2k − 1)

1

x2k−1

for x ∈ ]0,∞[ and n ∈ N.

Example C.3. We have S6(x) = 1
12x
− 1

360x3
+ 1

1260x5
− 1

1680x7
+ 1

1188x9
− 691

360360x11
for x ∈ ]0,∞[.

Let µ : ]0,∞[→ R

µ(x) := log

(
Γ(x+ 1)

xx+
1
2 e−x
√

2π

)
where Γ : ]0,∞[→ R is the Gamma-Function which is defined by the conditions

Γ(x+ 1) = x · Γ(x) for x ∈ ]0,∞[

Γ(1) = 1

log(Γ) is convex

From [18] we know the following theorem which states approximations of µ by Stirling’s series.
The theorem is proven with the help of results from [23].
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Theorem C.4. For x→∞ we have the asymptotic expansion

µ(x) ∼ (Sn(x))n∈N

That means, that for every n ∈ N we have

µ(x)− Sn(x) = o(Sn(x)− Sn−1(x)) for x→∞

Moreover, for every x ∈ ]0,∞[ the series (Sn(x))n∈N is enveloping the value µ(x), which means
that we have the inequalities

Sn−1(x) ≥ µ(x) ≥ Sn(x)

for every n ∈ N which is even.

Example C.5. We have

(C.1) S(x) ≤ 1

12x

and

(C.2) S(x) ≥ 1

12x
− 1

360x3

and therefore ∣∣∣∣S(x)− 1

12x

∣∣∣∣ ≤ 1

360x3

for every x ∈ ]0,∞[, and therefore the relative error

|S(x)− 1
12x
|

|S(x)|
≤ 1

360x3( 1
12x
− 1

360x3
)

=
1

30x2 − 1

for every x ∈ ] 1√
30
,∞[.
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Appendix D

Loader’s algorithm for the binomial
density

This is a print of the files dbinom.c, bd0.c and stirlerr.c, called from the folder http://svn.r-
project.org/R/trunk/src/nmath/ on October 9th 2014. These files contain the program code for
the function dbinom, that the R version 3.1.0 (2014-04-10) uses to compute the binomial den-
sity. Uwe Ligges [15] wrote an article that describes how the C-Code of every built-in R-function
can be displayed. We assume that the C code is written according to the C Standard [2]. This al-
gorithm for the binomial density is a slightly modified version of the algorithm described in [16].

D.1 Print of the file dbinom.c

/*

* AUTHOR

* Catherine Loader, catherine@research.bell-labs.com.

* October 23, 2000.

*

* Merge in to R and further tweaks :

* Copyright (C) 2000-2014 The R Core Team

* Copyright (C) 2008 The R Foundation

*

* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of
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* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program; if not, a copy is available at

* http://www.r-project.org/Licenses/

*

*

* DESCRIPTION

*

* To compute the binomial probability, call dbinom(x,n,p).

* This checks for argument validity, and calls dbinom_raw().

*

* dbinom_raw() does the actual computation; note this is called by

* other functions in addition to dbinom().

* (1) dbinom_raw() has both p and q arguments, when one may be represented

* more accurately than the other (in particular, in df()).

* (2) dbinom_raw() does NOT check that inputs x and n are integers. This

* should be done in the calling function, where necessary.

* -- but is not the case at all when called e.g., from df() or dbeta() !

* (3) Also does not check for 0 <= p <= 1 and 0 <= q <= 1 or NaN's.

* Do this in the calling function.

*/

#include "nmath.h"

#include "dpq.h"

double attribute_hidden

dbinom_raw(double x, double n, double p, double q, int give_log)

{

double lf, lc;

if (p == 0) return((x == 0) ? R_D__1 : R_D__0);

if (q == 0) return((x == n) ? R_D__1 : R_D__0);

if (x == 0) {

if(n == 0) return R_D__1;

lc = (p < 0.1) ? -bd0(n,n*q) - n*p : n*log(q);

return( R_D_exp(lc) );

}

if (x == n) {

lc = (q < 0.1) ? -bd0(n,n*p) - n*q : n*log(p);

return( R_D_exp(lc) );
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}

if (x < 0 || x > n) return( R_D__0 );

/* n*p or n*q can underflow to zero if n and p or q are small.

This used to occur in dbeta, and gives NaN as from R 2.3.0. */

lc = stirlerr(n) - stirlerr(x) - stirlerr(n-x)

- bd0(x,n*p) - bd0(n-x,n*q);

/* f = (M_2PI*x*(n-x))/n; could overflow or underflow */

/* Upto R 2.7.1:

* lf = log(M_2PI) + log(x) + log(n-x) - log(n);

* -- following is much better for x << n : */

lf = M_LN_2PI + log(x) + log1p(- x/n);

return R_D_exp(lc - 0.5*lf);

}

double dbinom(double x, double n, double p, int give_log)

{

#ifdef IEEE_754

/* NaNs propagated correctly */

if (ISNAN(x) || ISNAN(n) || ISNAN(p)) return x + n + p;

#endif

if (p < 0 || p > 1 || R_D_negInonint(n))

ML_ERR_return_NAN;

R_D_nonint_check(x);

if (x < 0 || !R_FINITE(x)) return R_D__0;

n = R_forceint(n);

x = R_forceint(x);

return dbinom_raw(x, n, p, 1-p, give_log);

}

D.2 Print of the file bd0.c

/*

* AUTHOR

* Catherine Loader, catherine@research.bell-labs.com.
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* October 23, 2000.

*

* Merge in to R:

* Copyright (C) 2000, The R Core Team

*

* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program; if not, a copy is available at

* http://www.r-project.org/Licenses/

*

*

* DESCRIPTION

* Evaluates the "deviance part"

* bd0(x,M) := M * D0(x/M) = M*[ x/M * log(x/M) + 1 - (x/M) ] =

* = x * log(x/M) + M - x

* where M = E[X] = n*p (or = lambda), for x, M > 0

*

* in a manner that should be stable (with small relative error)

* for all x and M=np. In particular for x/np close to 1, direct

* evaluation fails, and evaluation is based on the Taylor series

* of log((1+v)/(1-v)) with v = (x-M)/(x+M) = (x-np)/(x+np).

*/

#include "nmath.h"

double attribute_hidden bd0(double x, double np)

{

double ej, s, s1, v;

int j;

if(!R_FINITE(x) || !R_FINITE(np) || np == 0.0) ML_ERR_return_NAN;

if (fabs(x-np) < 0.1*(x+np)) {

v = (x-np)/(x+np); // might underflow to 0

s = (x-np)*v;/* s using v -- change by MM */
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if(fabs(s) < DBL_MIN) return s;

ej = 2*x*v;

v = v*v;

for (j = 1; j < 1000; j++) { /* Taylor series; 1000: no infinite loop

as |v| < .1, v^2000 is "zero" */

ej *= v;// = v^(2j+1)

s1 = s+ej/((j<<1)+1);

if (s1 == s) /* last term was effectively 0 */

return s1 ;

s = s1;

}

}

/* else: | x - np | is not too small */

return(x*log(x/np)+np-x);

}

D.3 Print of the file stirlerr.c

/*

* AUTHOR

* Catherine Loader, catherine@research.bell-labs.com.

* October 23, 2000.

*

* Merge in to R:

* Copyright (C) 2000, The R Core Team

*

* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program; if not, a copy is available at

* http://www.r-project.org/Licenses/

*
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*

* DESCRIPTION

*

* Computes the log of the error term in Stirling's formula.

* For n > 15, uses the series 1/12n - 1/360n^3 + ...

* For n <=15, integers or half-integers, uses stored values.

* For other n < 15, uses lgamma directly (don't use this to

* write lgamma!)

*

* Merge in to R:

* Copyright (C) 2000, The R Core Team

* R has lgammafn, and lgamma is not part of ISO C

*/

#include "nmath.h"

/* stirlerr(n) = log(n!) - log( sqrt(2*pi*n)*(n/e)^n )

* = log Gamma(n+1) - 1/2 * [log(2*pi) + log(n)] - n*[log(n) - 1]

* = log Gamma(n+1) - (n + 1/2) * log(n) + n - log(2*pi)/2

*

* see also lgammacor() in ./lgammacor.c which computes almost the same!

*/

double attribute_hidden stirlerr(double n)

{

#define S0 0.083333333333333333333 /* 1/12 */

#define S1 0.00277777777777777777778 /* 1/360 */

#define S2 0.00079365079365079365079365 /* 1/1260 */

#define S3 0.000595238095238095238095238 /* 1/1680 */

#define S4 0.0008417508417508417508417508/* 1/1188 */

/*

error for 0, 0.5, 1.0, 1.5, ..., 14.5, 15.0.

*/

const static double sferr_halves[31] = {

0.0, /* n=0 - wrong, place holder only */

0.1534264097200273452913848, /* 0.5 */

0.0810614667953272582196702, /* 1.0 */

0.0548141210519176538961390, /* 1.5 */

0.0413406959554092940938221, /* 2.0 */

0.03316287351993628748511048, /* 2.5 */

0.02767792568499833914878929, /* 3.0 */
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0.02374616365629749597132920, /* 3.5 */

0.02079067210376509311152277, /* 4.0 */

0.01848845053267318523077934, /* 4.5 */

0.01664469118982119216319487, /* 5.0 */

0.01513497322191737887351255, /* 5.5 */

0.01387612882307074799874573, /* 6.0 */

0.01281046524292022692424986, /* 6.5 */

0.01189670994589177009505572, /* 7.0 */

0.01110455975820691732662991, /* 7.5 */

0.010411265261972096497478567, /* 8.0 */

0.009799416126158803298389475, /* 8.5 */

0.009255462182712732917728637, /* 9.0 */

0.008768700134139385462952823, /* 9.5 */

0.008330563433362871256469318, /* 10.0 */

0.007934114564314020547248100, /* 10.5 */

0.007573675487951840794972024, /* 11.0 */

0.007244554301320383179543912, /* 11.5 */

0.006942840107209529865664152, /* 12.0 */

0.006665247032707682442354394, /* 12.5 */

0.006408994188004207068439631, /* 13.0 */

0.006171712263039457647532867, /* 13.5 */

0.005951370112758847735624416, /* 14.0 */

0.005746216513010115682023589, /* 14.5 */

0.005554733551962801371038690 /* 15.0 */

};

double nn;

if (n <= 15.0) {

nn = n + n;

if (nn == (int)nn) return(sferr_halves[(int)nn]);

return(lgammafn(n + 1.) - (n + 0.5)*log(n) + n - M_LN_SQRT_2PI);

}

nn = n*n;

if (n>500) return((S0-S1/nn)/n);

if (n> 80) return((S0-(S1-S2/nn)/nn)/n);

if (n> 35) return((S0-(S1-(S2-S3/nn)/nn)/nn)/n);

/* 15 < n <= 35 : */

return((S0-(S1-(S2-(S3-S4/nn)/nn)/nn)/nn)/n);

}
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Appendix E

Computation of the Poisson density

With the help of a rounding error estimate for the functions stirlerr and bd0 also a rounding
error estimate for the following algorithm for the computation of the Poisson density

pλ(x) :=
λx

x!
e−λ

can be done. This algorithm is proposed by Loader [16], Appendix A, and is used by the sta-
tistical software R to compute the poisson density. It was called from the folder https://svn.r-
project.org/R/trunk/src/nmath/ on July 17 2016.

#include "nmath.h"

#include "dpq.h"

double attribute_hidden dpois_raw(double x, double lambda, int give_log)

{

/* x >= 0 ; integer for dpois(), but not e.g. for pgamma()!

lambda >= 0

*/

if (lambda == 0) return( (x == 0) ? R_D__1 : R_D__0 );

if (!R_FINITE(lambda)) return R_D__0;

if (x < 0) return( R_D__0 );

if (x <= lambda * DBL_MIN) return(R_D_exp(-lambda) );

if (lambda < x * DBL_MIN) return(R_D_exp(-lambda

+ x*log(lambda) -lgammafn(x+1)));

return(R_D_fexp( M_2PI*x, -stirlerr(x)-bd0(x,lambda) ));

}

double dpois(double x, double lambda, int give_log)
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{

#ifdef IEEE_754

if(ISNAN(x) || ISNAN(lambda))

return x + lambda;

#endif

if (lambda < 0) ML_ERR_return_NAN;

R_D_nonint_check(x);

if (x < 0 || !R_FINITE(x))

return R_D__0;

x = R_forceint(x);

return( dpois_raw(x,lambda,give_log) );

}
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Appendix F

An algorithm for the cumulative
distribution function of a scan statistic of a
multivariate hypergeometrically
distributed random variable

The following algorithm computes the probability P(maxd−2i=1 (Ni + Ni+1 + Ni+2) ≤ k) for a
multivariate hypergeometrically distributed random variable N ∼ Hn,m with n = 500, d =
365,m = (10, . . . , 10) ∈ Rd and k ∈ {4, . . . , 26}.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <fenv.h>

#define max( a, b ) ( ((a) > (b)) ? (a) : (b) )

#define min( a, b ) ( ((a) < (b)) ? (a) : (b) )

#define sumw(n,s,startadresse,summe)

*summe=0;for(lindex=0;lindex<n;lindex++)

{*summe+=*(startadresse+lindex*s);}

void sum(int n, double* startadresse, double* sum){

int i;

*sum=0;

for (i=0; i<n; i++){ *sum+=*(startadresse-i);}

}

double hyp(int n, int r, int b, int k){

if( (k<max(0,n-b)) | (k>min(n,r)) | (n>r+b) ) {return 0.0;}

if(b==0){ if(r>=n && k==n){return 1.0;} else {return 0.0;}}
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double f=1.0;

int j0=0,j1=0,j2=0;

while ( (j0<k)| (j1<n-k) | (j2<n) ){

if(f<1 && ( (j0<k) | (j1<n-k)) ){

if (j0<k) { f*=(double)(r-j0)/(j0+1);j0++;}

else {if (j1<n-k) { f*=(double)(b-j1)/(j1+1);j1++;} else if (j2<n)

{f*=(double)(r+b-j2)/(j2+1);j2++;}}

}

else if (j2<n) { f*=(double)(j2+1)/(r+b-j2);j2++;}

}

return f;

}

void computeTransitionProb(int d, int* p, int* q){

q[d-1]=0;

q[d-2]=p[d-1];

int i;

for (i=d-1;i>0;i--){

q[i-1]= q[i]+p[i-1];

}

return;

}

double Hyper3ScanRectangleProb(int D, int L, int N, int* p, int* q,

int* B, int* C, int* mini, int* maxi){

unsigned int d=(unsigned int)D;

unsigned int l=(unsigned int)L;

unsigned int n=(unsigned int)N;

unsigned int* b=(unsigned int*)B;

unsigned int* c=(unsigned int*)C;

unsigned int* m=(unsigned int*)mini;

unsigned int* M=(unsigned int*)maxi;

unsigned int lindex;

unsigned int n1=n+1;

unsigned int n2=n1*n1;
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size_t w=(size_t)n;

w=sizeof(double)*(w+1)*(w+1)*(w+1);

//Initialize memory

double* P=(double*)malloc(w);

double* R=(double*)malloc(w);

double* Q;

unsigned int i,j,k;

unsigned int index;

for(i=0;i<=n;i++){

for(j=i;j<=n;j++){

for(k=j;k<=n;k++){

index=i*n2+j*n1+k;

*(P+index)=0;

*(R+index)=0;

}}}

//Compute starting probabilities

unsigned int ma= min(M[0],n);

unsigned int mi= m[0];

for(i=mi;i<=ma;i++){

for(j=i;j<=ma;j++){

for(k=j;k<=ma;k++){

*(P+i*n2+j*n1+k)=hyp(n,p[0],q[0],i)*hyp(n-i,p[1],q[1],j-i)

*hyp(n-j,p[2],q[2],k-j);

}}}

//Use recursion to fill the array

unsigned int nu;

unsigned int su,so;

unsigned int jo,ko;

for (nu=2;nu<=d-l+1;nu++){

Q=R;

ma=min(M[nu-1],n);

mi=m[nu-1];

for(i=mi;i<=ma;i++){

jo=min(ma,M[nu-2]);

ko=min(ma,c[nu-1]+i);
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for(j=i;j<=jo;j++){

for(k=j;k<=ko;k++){

su=(c[nu-1]<k)?max(m[nu-2],k-c[nu-1]):m[nu-2];

so=(b[nu-1]<k)?min(k-b[nu-1],min(i,M[nu-2])):min(i,M[nu-2]);

if(su<=so){

index=i*n2+j*n1+k;

sumw(so-su+1,n2,P+su*n2+i*n1+j,(Q+index));

*(Q+index)*= hyp(n-j,p[nu+1],q[nu+1],k-j);

}

}}}

ma=min(M[nu-2],n);

for(i=m[nu-2];i<=ma;i++){

for(j=i;j<=ma;j++){

for(k=j;k<=ma;k++){

*(P+i*n2+j*n1+k)=0;

};}}

R=P;

P=Q;

}

//Sum up the relevant entries of the last row of the array. This yields the result.

double result=0;

ma= min(M[d-l],n);

mi= m[d-l];

for( i= mi;i<= ma;i++){

for(j=i;j<=ma;j++){

for(k=j;k<=ma;k++){result += *(P+i*n2+j*n1+k);

}}}

free(P);

free(R);

return result;

}
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int main(void){

double time;

double upperbound, lowerbound;

int n=500;

int d=365;

int l=3;

int k=6;

int* p=malloc(d*sizeof(int));

int* q=malloc(d*sizeof(int));

int* b=malloc(d*sizeof(int));

int* c=malloc(d*sizeof(int));

int i,j;

for(i=0;i<d;i++){

*(p+i)=10;

}

computeTransitionProb(d,p,q);

for(k=4;k<27;k++){

for(i=0;i<d-l+1;i++){

*(b+i)=0;*(c+i)=k;

}

int* mini=(int*)malloc((d-2)*sizeof(int));

int* maxi=(int*)malloc((d-2)*sizeof(int));

for(i=0;i<d-l+1;i++){mini[i]=0;}

maxi[0]=k;

for(i=0;i<d/l-1;i++){

for(j=1;j<=l;j++){maxi[i*l+j]=k*(i+2);}

}

for(j=1;j<=d-l*(d/l);j++){maxi[d-l+1-j]=k*(d/l+1);}

printf("%i\n",k);

fesetround(FE_DOWNWARD);

time=clock();

lowerbound=Hyper3ScanRectangleProb(d,l,n,p,q,b,c,mini,maxi);

printf("%.2f ",(clock()-time)/CLOCKS_PER_SEC);printf("%c\n",'s');
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printf("%p\n",lowerbound);

fesetround(FE_UPWARD);

time=clock();

upperbound=Hyper3ScanRectangleProb(d,l,n,p,q,b,c,mini,maxi);

printf("%.2f ",(clock()-time)/CLOCKS_PER_SEC);printf("%c\n",'s');

printf("%p\n",upperbound);

printf("%.60f\n",lowerbound);

printf("%.60f\n",upperbound);

printf("\n");

}

return 0;

}
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Appendix G

An enumerative algorithm for multinomial
rectangle scan probabilities

#include <stdio.h>

#include <time.h>

double bnp(unsigned int n, double p, unsigned int k){

double result=1;

int i;

for(i=1;i<=k;i++){

result=result * (double)(n-k+i)/(double)i * p;

}

for(i=1;i<=n-k;i++){

result= result * (1-p);

}

return result;

}

double mult12(unsigned int n, unsigned int i1, unsigned int i2,

unsigned int i3, unsigned int i4, unsigned int i5, unsigned int i6,

unsigned int i7, unsigned int i8, unsigned int i9, unsigned int i10,

unsigned int i11, unsigned int i12){

return bnp(n,1/(double)12,i1)*bnp(n-i1,1/(double)11,i2)

*bnp(n-i1-i2,1/(double)10,i3)*bnp(n-i1-i2-i3,1/(double)9,i4)

*bnp(n-i1-i2-i3-i4,1/(double)8,i5)*bnp(n-i1-i2-i3-i4-i5,1/(double)7,i6)

*bnp(n-i1-i2-i3-i4-i5-i6,1/(double)6,i7)

*bnp(n-i1-i2-i3-i4-i5-i6-i7,1/(double)5,i8)

*bnp(n-i1-i2-i3-i4-i5-i6-i7-i8,1/(double)4,i9)

*bnp(n-i1-i2-i3-i4-i5-i6-i7-i8-i9,1/(double)3,i10)
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*bnp(n-i1-i2-i3-i4-i5-i6-i7-i8-i9-i10,1/(double)2,i11)

*bnp(n-i1-i2-i3-i4-i5-i6-i7-i8-i9-i10-i11,(double)1,i12);

}

int main (void){

unsigned int n = 20;

unsigned int d = 12;

unsigned int k = 9;

double result = 0;

double time=clock();

unsigned int i,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12;

for( i1=0; i1<= k; i1++){

for( i2=0; i2<= k; i2++){

for( i3=0; i3<= k; i3++){

for( i4=0; i4<= k; i4++){

for( i5=0; i5<= k; i5++){

for( i6=0; i6<= k; i6++){

for( i7=0; i7<= k; i7++){

for( i8=0; i8<= k; i8++){

for( i9=0; i9<= k; i9++){

for( i10=0; i10<= k; i10++){

for( i11=0; i11<= k; i11++){

for( i12=0; i12<= k; i12++){

if(i1+i2+i3+i4+i5+i6+i7+i8+i9+i10+i11+i12==n && (i1+i2+i3<=k) && (i2+i3+i4<=k)

&& (i3+i4+i5<=k) && (i4+i5+i6<=k) && (i5+i6+i7<=k) && (i6+i7+i8<=k)

&& (i7+i8+i9<=k) && (i8+i9+i10<=k)&& (i9+i10+i11<=k) && (i10+i11+i12<=k)){

result=result+mult12(n,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12);

}

}}}}}}}}}}}}

printf("%.2f ",(clock()-time)/CLOCKS_PER_SEC);printf("%c\n",'s');

printf("%f\n",result);

return 0;

}
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