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CHAPTER 1

Introduction

A large part of the mathematical optimization theory deals with the problem of
detecting a reah-dimensional pointz belonging to a sef/ C IR™ such that a
real-valued functiory attains its minimum ovef/ at this point, i.e., one tries to
solve the general problem

min f(z)

r e M. (GP)

The functionf : A — IR is usually defined on a suitable sétsatisfyingA > M.
In the field of global optimization we are interested in poiat& M satisfying
f(@) < f(z), forall z € M, i.e., we are looking for thglobal minimumof
Problem (GP). In contrast to this, the local optimization is satisfied if a poit\/
with the propertyf(z) < f(x), forallz € M N N, has been detected, whe¥eis
some neighborhood df, i.e., it suffices to determinelacal minimumof (GP).

In general, Problem (GP) is not solvable. In order to obtain practicable solution
approaches for this problem we need some knowledge about the structure of the
objective functionf as well as of the set/. The main interest in Problem (GP) is
motivated by real applications and, fortunately, there are a lot of such applications
leading to problems of type (GP) with a special usable structure.

In the present thesis we examine minimization problems, where the objective
function is a quadratic function and where the feasible regioa IR" is described
by a finite set of quadratic and linear constraints. These problems will be edlied
guadratic optimization problems. They are given in the following way

min 27 Q% + (d®)Tx
eTQlx + (d) Tz +c <0 I=1,...,p (QP)
x € P,
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where@! (I = 0,...,p) are realn x n matrices,d' (I = 0,...,p) are real
n-dimensional vectors and (I = 1, ... , p) are real numbers. The set

P ={xeR": Az < b}

is a polyhedron described by a realx n matrix A = (aq,... ,a,,)T and a real

m-dimensional vectob. We assume that the matric@$ (I = 0, ... , p) are sym-

metric. This is not a restriction to the generality of the considered problems of type

(QP). Indeed, ifQ! (I € {0,...,p}) is not symmetric, then we obtain a symmet-

ric matrix by settingQ' = 1(Q' + (Q")) with the propertyz” Q'z = 7 Q'x

(x € IR™). Therefore, we can replace in (QP) the matpixby the matrixQ’ with-

out altering the function values of the corresponding quadratic function. In view

of this symmetry assumption we know that the eigenvalue@'ofl = 0, ... ,p)

are real-valued (see, e.g., [JRA93]). Apart from the symmetry of the matrices

Q' (I =0,...,p) we assume furthermore that the polyhedfois a non-empty,

full-dimensional and bounded set. This is a slight restriction to the generality of

the considered problems of type (QP). However, the non-emptiness of tiit set

can easily be verified. Use, for example, the first phase of the Simplex-Algorithm,

which is the well-known solution method developed by DantzigNiB 3] for lin-

ear programs, i.e., for problems of type (GP) whérs a linear function and/

Is a polyhedron. The assumption tifats full-dimensional is not really needed for

the theory in this dissertation, but is nevertheless made in order to reduce the tech-

nical effort. The fact thaP is a polytope, i.e., that this set is bounded, cannot be

guaranteed in general. However, this assumption is satisfied for many applications.
Throughout the present work we denote by

F={zeP:z1Qu+d)Tz+d<0,l=1,...,p}

the feasible region of Problem (QP). Note that this set can be empty since we do
not require the existence of a feasible point for (QP).

With respect to the difficulty of detecting global minima of Problem (QP) and
the treatment of this problem in the literature we can distinguish some subclasses
of (QP). If all quadratic functions in the formulation of (QP) are convex, then it is
known that each local minimum of (QP) is a global minimum (see, e.gAN 4]
or [HPT95, Chapter 1)), i.e., there is no gap between the local and the global min-
imization of this problem. Moreover, it is known that such problems can be solved
in polynomial time up to a certain precision, if some assumptions are fulfilled (see,
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e.g., [HER94] and references therein). Several solution methods for this particu-
lar case of (QP) are available. Apart from the schemes developed only for convex
all-quadratic problems (see, for examplepP66] for problems with one qua-
dratic constraint, and [BrR72, EN75, RiH82] for arbitrary convex all-quadratic
problems) any algorithm for minimizing arbitrary convex functions under convex
constraints can be used (see, e.g., [FM68, GMW81]). Among these more gen-
eral approaches the class of so-caliei#rior point methodseceived a great deal

of attention during the last decade. These methods, first developed for linear prob-
lems, show numerically an efficient behavior, in particular for large scale problems.
Moreover, these efficient methods are applicable to special classes of convex op-
timization problems, for example in the fully convex all-quadratic case (see, e.g.,
[NN94, AR96] and references therein).

The convexity of a quadratic function can be checked easily. It is a known fact
[HPT95, Theorem 1.12] that a functign: C — IR, which is twice differentiable
on an open convex sét C IR", is convex if and only if its HessiaW?g(x) is pos-
itive semidefinite at each elemenbf the setC'. In order to verify the convexity of
the quadratic functions involved in (QP) we hence have to examine the eigenvalues
of the matrice€)’ ¢ R"*" (I = 0,... ,p). If one of these matrices has at least one
negative eigenvalue, the equivalence between the local and the global minima is not
guaranteed anymore, and we cannot expect to solve such problems in polynomial
time (see [PS88]). Actually it is known that even a problem with a quadratic objec-
tive function, whose describing matrix has one negative eigenvalue, and with a
feasible set determined by linear constraintd/i®-hard (see [PV91] or [HPT95,
Section 2.4)).

Apart from the fully convex all-quadratic problems there is another subclass of
problems of type (QP), which was already treated extensively in the literature. In
the so-calledyeneral quadratic programming probleme is interested in the min-
imization of an arbitrary quadratic objective function with respect to linear con-
straints, i.e., problems of type (QP) with= 0 are considered. For information
about the theory, algorithms and applications of this type of all-quadratic prob-
lems we refer to the survey [FV95] and to more recent works [HPT95, IKAT96
DAPT97, Bom97, AT98, YF98] and references therein.

In the present dissertation we will examine the most general case of Problem
(QP), which has not been explored as widely in the literature as the fully convex
all-quadratic problem or the general quadratic programming problem. We are in-
terested in global minima of all-quadratic optimization problems with an arbitrary,
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in particular nonconvex, quadratic objective function and with at least one non-
convex quadratic constrainp (> 1). These problems have at first glance still a
nice structure. Only quadratic and affine functions are involved. However, such
problems have a nonconvex objective function and a feasiblé sethich is in
general not convex and, maybe, even not connected. This means that there is a gap
between the local and the global optimization of such problems and taking the pre-
vious considerations into account we know that these problems cAfifbeard.
Nevertheless, nonconvex all-quadratic global optimization problems have a wide
variety of applications.

1.1. Applications

Each n-dimensional all-quadratic problem can be easily transformed to a
2n-dimensional bilinear problem, as it is done, for example, in [AK92, HJ92].
In [HJ92] a strategy for reducing the necessary dimension of the resulting bilinear
program is also proposed. However, on the other hand bilinear optimization prob-
lems are nothing else than a special instance of Problem (QP). Pooling problems
in petrochemistry [FV98], the modular design problem introduced ini&b 3],
in particular the multiple modular design problemviE70, AK92] or the more
general modularization of product sub-assemblies [RS71], and special classes of
structured stochastic games [FS87] are only some examples of the wide range of
applications of bilinear programming problems.

Another large class of optimization problems are problems with linear or qua-
dratic functions additionally involving Boolean variables, i.e., variables IR
with the constraint; € {0, 1}. Since each Boolean variable can be represented by
a concave quadratic constraint

z; € {0,1} & 27—z >0,2;€[0,1],

i —

such integer programming problems can be transformed to (QP). An example of
this class of optimization problems is the so-calégtichronization sequence prob-
lem (SSP) resulting from an application in the satellite industry. In this problem
one is interested in an-dimensional integer vectar € {—1,1}" such that the
maximal value of the absolute values of the cyclic autocorrelation functions

g"(z) = ;xix[i+k]
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(k =1,...,n — 1) becomes minimal wherg + k| = i + k(modn). Problem
(SSP) can be formulated as
min ¢
k
r) <t
g'le) = k=1.... n—1 (SSP)
—g*(x) < —t

€ {-1,1} i=1,...,n,

and by using the substitutiony = 2y; — 1 (: = 1,... ,n) one obtains an integer
program with Boolean variablese {0, 1}".

The problem of packing € IN equal circles in a square, which can be trans-
formed to a (QP), is another problem widely explored in the literature. One looks
for the maximum radius of n non-overlapping circles contained in the unit square.
This problem is equivalent to an all-quadratic problem with a linear objective func-
tion and concave quadratic constraints. It can be formulated as

max t
t—|lzi —ayll3 <0 1<i<j<n (PP)
z; € [0,1)? i=1,....n.

How the optimal value* of (PP) and the optimal radiug are related is discussed

in Chapter 5 of the present research study. This chapter will deal extensively with
Problem (PP). A related class of global optimization problems are minimax loca-
tion problems [AH82], which also lead to quadratic constraints.

Production planning and portfolio optimization are examples where so-called
chance constraineihear programs occur (see, e.g. HI®82, WV91, DT92)).
These are problems, looking similar to linear programs. However, the matrix de-
scribing the linear constraints of such problems is not deterministic, it is a stochastic
one. Under certain restrictive assumptions it is possible to transform these stochas-
tic constraints to deterministic quadratic constraints (see agaiH§2, WV91)),
such that in general a problem of type (QP) is obtained.

In [AKHP92] it is shown thanonconvex all-quadratic problems can be used
for the examination of special instances of nonlinear bilevel programming prob-
lems. Other applications of (QP) include the fuel mixture problem encountered
in the oil industry [PTA94] and also placement and layout problems in integrated
circuit design (see [AKLV95, AKV96] and references therein).
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Hence there are many applications of the nonconvex all-quadratic optimiza-
tion problem (QP). Whether Problem (QP) is in practice applicable for solving,
for example, problems resulting from integer programming problems, depends on
the numerical efficiency of the solution method for (QP) that is used. Up to now
only few methods for solving the considered general case of Problem (QP) were
proposed in the literature. Most of them result from methods being developed for
other more general problem classes. In Section 1.3 we will shortly discuss some of
these solution methods. Before this we will sketch some basic concepts in global
optimization. These concepts are used in all solution approaches mentioned in this
dissertation.

1.2. Basic Concepts and Notations

In the field of deterministic global optimization there are at least two basic
schemes for solving a general problem of type (GP).

1.2.1. Outer Approximation Approaches. Outer approximation (cutting
plane) approaches use the following basic concept (see, e.g., [B] TCtapter
2]). Determine a supersét/ of M, which has a simple structure, for example a
polyhedron, and try to minimize the functigrwith respect to this bigger set. If the
minimization of f with respect to the simpler saf is still too complex, determine
a simpler functionf, which underestimategon the set\/, and solve the problem

min f(_x) P
xe M.
Problem GP) delivers a lower bound for the optimal value of (GP). Such problems
are usually calledelaxationsof the original problem. IfGP) is a linear program,
it is called anLP-relaxation of (GP). If the detected solutianh € M of (GP) is not
contained in the set/, then one tries to determine a functién IR" — IR such
that the set

M := Mn{zeR":{(z)<0} D M

has still a simple structure, but does not contain the pepiahymore. If/ is an
affine function, we call the sef = {z € IR" : /(x) = 0} acutting plane, since
the pointz is cut away by the hyperplari€. By solving the problenmin__ ,; f(x)
one obtains hopefully a better lower bound for the optimal value of (GP) and a new
solution# € M. This process is successively applied until a painge M has
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been calculated. If coincides withf at this point, thert is o?viously an optimal
solution of (GP). Otherwise one has to refine the functfoand to repeat the
described process.

1.2.2. Branch-and-Bound ApproachesAnother concept for treating global
optimization problems are branch-and-bound methods (see, e.g., g1 CH@pter
4]). These schemes start analogously to the outer approximation algorithms with
a relaxationV/® > M of the feasible regiod/ of (GP). This relaxation is cho-
sen such that a lower as well as an upper bound for the optimal value of Problem
(GP) can be determined. According to a so-caletddivision rule one splits in
subsequent steps the parthdf still of interest into more and more refined saf$
(branching. For these sets new hopefully improved bounds are calculbtadh@-
ing). If a setM* considered in the branch-and-bound tree has a lower bound, which
exceeds the current best known value for (GP), then this set is eliminated from fur-
ther considerationgfuning). Such sets cannot contain feasible points of Problem
(GP) with a smaller objective function value than the best value known so far.
Using these strategies one hopes that the algorithm concentrates the search for
a global minimum of Problem (GP) on a small portion of the feasible redion
One expects that a large part bf, which does not contain a global minimum of
(GP), isprunedfrom further considerations at an early stage of the examination of
the optimization problem by the branch-and-bound algorithm, which is applied for
the solution of this problem.

1.2.3. Subdivision SetsThe sets, which are mostly used in branch-and-
bound methods, are conesdimensional rectangles er-simplices. Throughout
this dissertation we use only rectangles and simplicesaAlimensional rectangle
R, which we would like to call dnyperrectangle is uniquely determined by two
vectorsl, L ¢ IR"

R = {xE]Rn:liSxSLi,izl,...,n}.

A simplex is the convex hull of an affine independent set of points, which form the
vertices of this simplex. Lefuvy, ... ,vx} C IR™ (k € IN) be an arbitrary set. Then

we denote by
k

k
[UO,... ,Uk] = {ZEEIR”ZﬁZ Z)\ﬂ)l , )\EIR]_T__Fl , Z)\@ = 1}
=0 1=0
the convex hull of the pointsvy, ... , vk, wherelRy := {A € R : A > 0} de-
notes the positive orthant. If the poinig, . .. , v, areaffine independent i.e., for
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an arbitrary, but fixed index € {0,...,k}, there holds that the s¢t; — v; :

j €1{0,...,k}\ {i}}is linear independent, the$ = [vy, ... ,vx] IS ak-dimen-
sional simplex, a so-calleklsimplex. For example, &-simplex is a triangle and a
3-simplex is a tetrahedron.

Hyperrectangles and-simplices are of course polytopes. Tiaeetsof these
sets are easy to determine, where the facet of-dimensional polytope” is de-
fined as ani, — 1)-dimensional intersection aP with a supporting hyperplane,
l.e., a (@ — 1)-dimensionafaceof P (see, e.qg., [HPT95, Chapter 1]). In the case
of ann-simplexS = vy, ... ,v,] there are the: + 1 facets

S'I: = [v())"'7Ui—17vi—|—17---7vn] i:O,...,n,

which are f — 1)-simplices. For a hyperrectangle= {x € IR" : [ < z < L} the

2n facets are given by
Rl={reR":I<z<L,x=1}
1=1,...,n.

In the branch-and-bound methods, which we will consider in this thesis, the
used subdivision set& c IR" are split into a finite number of subsets (i € I,
I finite index set) forming @artitionof Z.

DEFINITION 1.2.1.([HPT95, Definition 3.3])Let Z C IR" be a polyhedron
satisfyingintZ # (), and let] be a finite set of indices. A fami{yZ; : i € I} of
subpolyhedra of satisfying, for each € I, intZ; # () is called apartition of 7,

if Uz = 7
=

and, for each, j € I with: # j, there holds
ntZ; N intZ; = 0.
Simplices are usually subdivided using a so-calidial subdivision

DEFINITION 1.2.2.([HPT95, Definition 3.4])Let S = [vg,...,v,] be an

n-simplex and let a point € S\ {vo, ... ,v,} be given, which is uniquely repre-
sented by its barycentric coordinates, i.e.,
w = Z)\ZUZ
=0

with A € R S0 A = 1.
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Denote, for eacti € {j € {0,...,n} with \; > 0}, by S; then-simplex, which is
obtained by replacing the vertex of S by w, i.e.,

Sz’ = [Uo,... sy Vi—1, W, Vj41y--- ,Un] .

The subdivision of into then-simplicesS; (i € {j € {0,... ,n} with \; > 0})
is called aradial subdivisionof S with respect tav.

It is known [HPT95, Proposition 3.7] that the radial subdivision ofrasimplex

S = |vg, ... ,v,] With respect to an arbitrary point € S \ {vg,...,v,} forms a
partition of S. The choice of the pointy depends on the used subdivision (parti-
tioning) rule.

It is not reasonable to apply the concept of radial subdivisions also for the
partitioning of a hyperrectanglg, since the resulting polytopes do not necessarily
have a rectangular structure anymore. If a painE R is given, which does not
belong to the set of vertices dt, then a subdivision of? is usually defined via
hyperplanes parallel to the facets®f This strategy leads to a partition &finto
up to 2" hyperrectangles, where the number of the resulting subhyperrectangles
depends on the choice of.

1.2.4. Convex Envelopeln outer approximation as well as in branch-and-
bound methods we often need a simpler functforvhich underestimates the ex-
amined functionf with respect to a given set/. Since convex functions lead —
from a theoretical point of view — to easily solvable problems, the so-cabtlegex
envelopeof an arbitrary functiory is a concept frequently used for determining the
desired functiory.

DEFINITION 1.2.3. Letg : C — IR be a lower-semicontinuous function de-
fined on a non-empty convex getC IR". Theconvex envelopef g on the set”
is a functiony : IR"™ — IR with the properties

(i) ¢ is convex on the sét;
(i) p(x) < g(x), forall z € C;
(i) if 7 : C — IR is a convex function satisfying, for eacte C, 7(z) < g(x),
then there holds, for alt € C, 7(z) < ¢(z).

Hence, the convex envelogeof a functiong on a setC is the best convex
underestimating function fay on the given set. For an overview of the properties
of the convex envelope we refer to [HPT95, Section 1.3]. Unfortunately, in gen-
eral the construction of a convex envelgpés a problem, which might be harder



10 INTRODUCTION

to solve than the considered optimization problem itself. For some instances, how-
ever, the explicit form of the convex envelope is known. For example,isfa
concave function and' is a polytope with given vertex s&t(C') = {v1,... , v},

the convex envelopg of g with respect ta” is given by [HPT95, Theorem 1.21]

k k k
gp(x) = min{Z)\ig(vi) = Z)\Z‘Uz‘, A E IRk , Z)\Z = 1} .
=1 =1 =1

This implies that the convex envelope of a concave funggiovith respect to an
n-simplexS = [vg, ... ,v,] is the uniquely determined affine function, which co-
incides in then + 1 vertices ofS with g [HPT95, Theorem 1.22].

In some cases an overestimating function for a given fungtiamh respect
to a setC' is needed additionally. In this situation the analogous concept of the
so-calledconcave envelope can be applied.

DEFINITION 1.2.4. Letg : C — IR be an upper-semicontinuous function
defined on a non-empty convex 6etC IR". Theconcave envelopef g on the set
C'is a functiony : R™ — IR such that—+ is the convex envelope efg on the
setC.

Hence, the concave envelopgeof a functiong is the best concave overesti-
mating function ofg on the setC". Obviously, the concave envelope of a convex
function g with respect to am-simplex.S is also the uniquely determined affine
function, which coincides in the vertices 8fwith g.

1.2.5. Further Notations and Conventions.Throughout the present thesis
we interpret am-dimensional vector: € IR", as usual, as a column vector, i.e.,

X1
:L.TL

Consequently, a matrid € IR™*"™ is given as a connection af m-dimensional
vectors, i.e.,

Am1l *°° Amn
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We use the superscrifft for identifying the corresponding transposed vectors and
matrices, i.e.,

ail - Gmi1
2l = (v1,...,2,) € R and AT =| : D e RV,

Aln - Qmn

As a measure for the distance of twedimensional points we use tt&uclidean

norm| - |2 : IR" — R
n , 3
lalls = (z 24 )
=1

orthelo,-norm|| - || : R" — IR

[#][oc = max |z;].
=1

ceey

The abbreviation
intM = {x € M :3e > 0with B(x,¢e) C M}

denotes thenterior of an arbitrary set\/ C IR", whereB(z,¢) = {y € R" :
|z — y||2 < €} describes the sphere centered atith radiuse. The notation

clM = {r e M :Ve>03y € B(x,e) N M}
is used for theslosureof M and
OM = cIM \ intM

denotes théoundary of M.
Finally, a constraint of the form

g(z) < 0
with a concave functiog : IR — IR is called areverse convexconstraint (see,
e.g., [HPT95, Chapter 4]).
1.3. Solution Approaches
For brevity we define (using® = 0), for eachl € {0,... ,p},
¢'(x) = 2" Qw+ (d) Tz + .

As mentioned before, most of the solution methods in the literature for Problem
(QP) were developed for more general problem classes.
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1.3.1. D.C. Optimization. Using the fact that the functiorng (I = 0, ... , p)
can be written as so-calletic. functions (see Section 3.2), i.e., as a difference of
two convex functions, Problem (QP) can be interpreted as a general d.c. problem.
Therefore, one possible approach for solving (QP) is the application of algorithms
developed for solving general d.c. global optimization problems. See, for example,
[HPT95, Chapter 4] and the surveyy¥95] for the framework of d.c. optimiza-
tion. INn[PTA94] a special d.c. algorithm is proposed and applied to a quadratically
constrained optimization problem resulting from the fuel mixture problem.

1.3.2. Semidefinite Programming.Another class of optimization problems,
which can be used for the examination of all-quadratic problems and which has
received a great deal of attention in recent times, is the so-csdimtefinite pro-
gramming problem (SDP). This class of problems is a generalization of linear
programs and can also be solved in polynomial time. In contrast to a linear program
the variabler to optimize in an (SDP) belongs to the space of positive semidefi-
nite symmetric matrices and not to thedimensional real space. An (SDP) can be
written in the following way (see, e.g., [A95])

min C e X
X =0,
whereX,C, A; €¢ R™™" (: = 1,...,m), X is symmetric,e denotes the inner

product of matrices (see Section 2.1) axid- 0 means tha¥ is positive semidef-
inite.

Each all-quadratic problem of type (QP) can be transformed to an (SDP) with
an additional rank-one constraintAR 93]. Omitting this additional constraint one
obtains the widely explored SDP-relaxation of (QP) (see, e.g0f5, PRW95,
FK97, $H098]). The properties of this relaxation were examined in the literature
(see, e.g., [FK97, Hs98]) and improvements of this relaxation were discussed
(for example, [@KRT98]). However, to the author’s knowledge there was only
one report about the global optimization of (QP) via (SDP). Ramama[$3]
presented a cutting plane approach using this SDP-relaxation for solving (QP) (see
also [HR98] and Chapter 2, respectively, for an extension of this approach). Note
that in the fully convex case an all-quadratic problem can be solved by an (SDP)
since the rank-one constraint is not necessary in this case (see, e.g., [VB96]).



1.3. SOLUTION APPROACHES 13

1.3.3. Bilinear Programming. As mentioned in the context of the applica-
tions, each problem of type (QP) can be transformed to a bilinear program. Hence,
solution methods developed for bilinear programs can be applied to the noncon-
vex all-quadratic optimization problem. For example, Floudas and Visweswaran
[FV90B, FV93B] propose an algorithm for solving problems belonging to a more
general class, which contains in particular general bilinear programs. They solve
such problems through a series of primal and relaxed dual problems. The solution
of the primal problem provides an upper bound on the global minimum of the con-
sidered problem and delivers additionally the corresponding Lagrange multipliers.
These multipliers are then used to formulate a Lagrange function that is used in
the dual subproblem. Making use of several properties of the considered problem,
the proposed algorithm solves the dual problem also through a series of subprob-
lems that, taken together, provide a lower bound on the optimal value. Iterating this
process leads to an approach, which is reported to deliver in finite time an approx-
imate solution [FV93B8]. In [FV93A] it is shown that it is possible to enhance the
computational performance of this algorithm in the case of bilinear programs. The
subproblems are considerably more tractable in this special case.

Another method for solving bilinear programs was developed by Sherali and
Tuncbilek. In[ST92] (see also [SA99]) they present an algorithm for solving poly-
nomial programming problems, i.e., for optimization problems with a polynomial
objective function and polynomial constraints, and hence especially for bilinear
programs. Under the assumption that additional box constraints for the variables
are known they generate nonlinear implied constraints, which are then included in
the original problem. After that they linearize each nonlinear function involved
in the resulting problem by defining new variables, one for each distinct nonlinear
term (see [SA92] for the reformulation-linearizationtechnique in the bilinear case).
The solution of the linear program generated by this reformulation-linearization
technique is then a lower bound of the considered problem with respect to the used
box constraints. By embedding this reformulation-linearization technique in a rect-
angular branch-and-bound scheme they obtain a convergent algorithm. Hence, the
resulting algorithm for solving polynomial global optimization problems combines
a linear outer approximation of the feasible set with a branch-and-bound scheme.

1.3.4. Direct Solution Methods. There exist only a few approaches in the
literature, which consider Problem (QP) directly and not as a special instance of
a more general class. The first approach mentioned in the literature for solving



14 INTRODUCTION

(QP) was developed by ReevesHE/'5]. However, this approach is restricted to
all-quadratic problems, where the matric@s(l = 0, ..., p) are simultaneously
diagonalizable, i.e., his algorithm is only able to manage separable quadratic func-
tions. Extending an idea introduced by Falk and Soland [FS&®,73%] for op-
timizing problems with nonconvex separable functions, Reeves{R] presents

a rectangular branch-and-bound method for solving a problem of type (QP) with
separable quadratic functions and additional box constraints. For this special type
of quadratic functions the convex envelope with respect to a hyperrectangle can
be easily derived such that — using the convex envelope concept — lower bounds
for (QP) on the considered hyperrectangles can be calculated. Reeves refines the
branch-and-bound algorithm by applying additionally a local search procedure in
order to obtain feasible points. Moreover, he developed a strategy for identifying
neighborhoods of local solutions, where these solutions are even global, such that
these neighborhoods can be eliminated from further considerations.

Using the same basic concepts as Reeves, Al-Khayyal et al. [AKLV95],
[AKV96] propose a rectangular branch-and-bound scheme for general problems
of type (QP) with the additional property that box constraints for the variables are
known. By substituting) = Q'z ¢ IR” (I = 0,...,p) each functiong!(z)
is first interpreted as a bilinear functigf(z,y'). In order to obtain a lineariza-
tion of the feasible region of the resulting bilinear program, each bilinear term
vyt i = 1,...,n; 1 = 0,...,p) is bounded from below by its convex enve-
lope and from above by the corresponding concave envelope. Since the convex
envelope of the two-dimensional bilinear functiop on a rectangle is the maxi-
mum of two affine functions [AKF83], they obtain by introducingi 1) auxiliary
n-dimensional vectorg' (I = 0,...,p) an LP-relaxation of the examined bilin-
ear program in the variablasy®, ... ,y?,t%, ... ,t*. The resubstitutiof)!z = v*
(l=0,...,p)results in an LP-relaxation of the original problem with the variables
z,t%, ... ,t?. This LP-relaxation is then used in a rectangular branch-and-bound
scheme for calculating lower bounds for the optimal value of (QP) with respect to
the considered hyperrectangle. As in Sherali and Tuncbilek’s approach for poly-
nomial programs, Al-Khayyal et al. obtain a solution method for (QP), which is
a combination of a successively refined outer approximation of the feasible region
with a rectangular branch-and-bound scheme.
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1.4. Overview

The main aim of the present dissertation is the development and the theoretical
as well as the numerical examination of solution methods for the nonconvex all-
quadratic optimization problem (QP).

In Chapter 2 we discuss an indirect approach for solving (QP). We do not de-
velop an algorithm to determine an optimal solution of Problem (QP). We present
several approaches for solving certain so-calledry problemsEach problem of
type (QP) is equivalent to a unary problem, as we will see in this chapter. Thus, we
can use algorithms for solving unary problems in order to detect optimal solutions
of quadratic problems. This idea is due to RamanaMR3, Chapter 7] and is
related to the semidefinite programming approach for all-quadratic problems men-
tioned before (see Subsection 1.3.2). Since the outer approximation (cutting plane)
algorithm introduced by Ramana for solving unary problems cannot be guaran-
teed to be convergent, we present new approaches overcoming this theoretical de-
ficiency. The resulting algorithms are combinations of linear outer approximations
and branch-and-bound like subdivisions of the feasible region of the considered
unary problem. In Chapter 2 we give, in particular, an explicit formulation of a
so-calledregularn-simplex with all its vertices on the boundary of the unit sphere
B = {zx € R" : ||z|]] < 1}. The theoretical properties of such arsimplex
were known before, but — to the author’s knowledge — such a set has not yet been
constructed. Unfortunately, we have to recognize that this indirect solution method
for (QP) is not applicable in practice. Only small dimensional all-quadratic prob-
lems can be solved with acceptable computational effort via the solution of the
equivalent unary problem.

Chapter 3 deals with a direct approach for solving (QP). This method shows
a significantly better performance than the foregoing indirect one. The develop-
ment of the proposed new algorithm was motivated by the work of Al-Khayyal et
al. [AKLV95]. The branch-and-bound method for solving problems of type (QP)
introduced in [AKLV95] is based on a rectangular subdivision of the feasible re-
gion of (QP) and exploits the convex and concave envelopes of the two-dimensional
bilinear functionzy on a rectanglé® c IR?, as described in Subsection 1.3.4. By
using a simplicial partitioning strategy and the convex envelope of a concave func-
tion on ann-simplex (see Subsection 1.2.4), we obtain a simplicial branch-and-
bound scheme involving mainly linear programming subproblems. The numerical
comparison of our new approach with the rectangular branch-and-bound method
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by Al-Khayyal et al. shows that the simplex algorithm often outperforms the rect-
angular algorithm.

In the definition of the simplicial branch-and-bound algorithm in Chapter 3
we use the so-callebisectionfor subdividing ann-simplex. Because of the spe-
cial property of this subdivision strategy, it is a so-calkdaustivesubdivision
rule, the convergence of the presented approach can be ensured. The convergence
IS meant in the sense that each accumulation point of a sequence generated by
the proposed algorithm is an optimal solution of Problem (QP). Some authors fa-
vor another subdivision rule in simplicial branch-and-bound methods, the so-called
w-subdivision ruleThis strategy is not necessarily exhaustive, and the convergence
of an algorithm using this rule was still an open question.

In Chapter 4 we give an answer to this question. We consider a generalization
of Problem (QP). We assume that the nonlinear functions involved in the global
optimization problem under examination are d.c., not necessarily quadratic. After
presenting an algorithm, which is a generalization of the simplicial branch-and-
bound method introduced in Chapter 3 and which is applicable to the generalized
problem class, we examine the convergence of this approach with respect to differ-
ent subdivision rules. The convergence of the simplicial branch-and-bound scheme
using thew-subdivision rule can only be guaranteed for optimization problems with
a d.c. objective function and with concave constraints. We present in Chapter 4 a
counterexample, which shows that the presented method using this rule does not
converge in general. In view of our theoretical results we are non the less able to
develop a new convergent subdivision strategy — combighsgibdivision and bi-
section. The numerical performance of some variants of this mixed strategy will be
examined. The convergence concept, which we use in Chapter 4 in connection with
the examination of the-subdivision, is — from a theoretical point of view — weaker
than the one used in Chapter 3. We will not prove that each accumulation point of a
sequence generated by the variant of our approach ussupdivisions is optimal.

We will only show that this method determines in finite time either an approximate

solution or the emptiness of the feasible region of the considered problem. As we
will see in Chapter 4 — from a practical point of view — this convergence concept

has non the less the same quality as the stronger concept mentioned above.

We conclude the more theoretically oriented Chapter 4 with a finiteness re-
sult. We prove that a simplicial branch-and-bound algorithm, which employs only
w-subdivisions and which is applied to the minimization of a concave function
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with respect to linear constraints, is even finite, if two additional assumptions are
fulfilled.

In Chapter 5 we close our consideration of Problem (QP) by examining an ap-
plication of this class of global optimization problems. This chapter deals with the
problem of packing: equal circles of maximal radius into the unit square, which
we will call packing problemUnfortunately, the solution methods, which we de-
veloped for general problems of type (QP), are not able to solve the optimization
problem resulting from this application. At least they are not able to solve the prob-
lem for a high enough number of circles. Therefore, we develop a special global
optimization algorithm for solving this problem.

We start in Chapter 5 with a study of the packing problem from a theoretical
point of view. Some properties, which have to be satisfied by at least one solu-
tion of this problem, are introduced. These properties state the intuitive fact that
as many circles as possible should touch the boundary of the unit square. Sub-
sequently we propose a basic rectangular branch-and-bound algorithm and derive
special bounds exploiting the structure of the packing problem. We introduce some
tools with respect to the subdivision and the possible refinement of the considered
hyperrectangles, which again exploit the special structure of the packing problem.
They use in particular the theoretical properties of some solutions mentioned above.
Applying these tools in the rectangular branch-and-bound algorithm we obtain an
efficient algorithm.

In the literature good solutions of the packing problem with upGaircles
are known. However, the quality of these solutions with respect to their optimality
Is mostly not known — at least for the packing problem with more @taaircles.

The new approach developed in this thesis is able to guaranteeoghtemality of
determined solutions of this problem. We will see, furthermore, that the implemen-
tation of our solution method showed a really good numerical performance for the
packing problem with up t@7 circles. Moreover, we were also able to solve this
problem approximately with up t81 circles. This means that global optimization
problems with a dimension of up &3 can be solved up to a certain accuracy.

1.5. Test Examples

Throughout this thesis several algorithms are presented, which can be applied
for solving nonconvex all-quadratic optimization problems. In order to test the nu-
merical performance of these approaches, particularly to compare the numerical
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performance of different variants, we used a randomly generated set of test ex-
amples. Since the same set of test examples will be used for the examination of
the approaches presented in Chapter 2, 3 and 4, we complete the introduction of
this dissertation with a short description of these examples. For each combina-
tion of the dimensiom € {2,...,8,10} and the number of quadratic constraints
p € {1,...,2n} we constructed fifty test problems with the general form of (QP)
according to the following specifications.

First a polytopeP with a non-empty interior was constructed. Starting with a
randomly generated dense matrdxe IR?"*™ with integer entries between10
and 10 we obtained a non-empty polyhedréh = {z € R" : Az < b} by
choosing an appropriate right-hand side veétar IR*". In order to ensure the
boundedness of the sé& we intersected the polyhedrdn with the n-simplex
Sn = [0,neq,... ,ne,|, wheree; (i = 1,...,n) denotes the-th unit vector.
The polytopeP = P N S,, is then described by &% + 1)xn matrix A and a
(3n + 1)-dimensional vectob. We iterated the construction of the polyhedi@n
until the interior of the resulting polytopE was not empty, and a poifit € int P
= {z € R" : Az < b} was found. In order to avoid in our numerical tests
excessive running-times for problems with higher dimensions we used only such
polytopesP, which could be circumscribed by ansimplex with a diameter not
bigger thanl 0.

In the next step dense x n matricesQ’ and n-dimensional vectors!
(Il = 0,...,p) were randomly generated also with integer entries betwelh
and10. The coefficientg! (I = 1, ..., p) for the quadratic constraints were chosen
such thatg'(z) = z7Q'z + (d")Tz + ¢! < —§ < 0 holds for the known point
T € intP and a prespecified value This strategy guaranteed that we obtained
all-quadratic optimization problems of type (QP) with

intF #£ ).

The average values, the standard deviations and sometimes also the medians
of the effort, which a proposed solution approach needs for solving the fifty test
examples for a combination of the dimensiore {2,...,8,10} and the number
of quadratic constraings € {1, ... ,2n}, will serve as a measure of the numerical
performance of this approach.



CHAPTER 2

Convergent Outer Approximation Algorithms for
Solving Unary Problems

The first solution method for the all-quadratic Problem (QP), which we propose in
detail in the present dissertation, is an indirect one. Instead of solving (QP) directly
we determine an optimal solution of a certain so-called unary problem, which is
equivalent to (QP). Equivalence between (QP) and this unary problem holds in the
sense that each solution of the unary problem yields a unique solution of the (QP)
and vice versa.

This chapter deals with solution methods for general unary problems. These
approaches are derived from an outer approximation scheme introduced by Ra-
mana [RAM93]. Since the convergence of his approach cannot be guaranteed, it
Is the purpose of this chapter to develop solution methods which overcome this
theoretical deficiency.

2.1. Introduction

In order to introduce the class of unary problems we first have to clarify the
concept of unary matrices.

DEFINITION 2.1.1. A real symmetric matrixy € IR"*" is called aunary
matrix, if and only if there exists a vectore IR™ with

U = vl .
Denote by
S, = {Se€R"": S symmetric}
the space of real symmetnicx n matrices and by
U, = {U €S, :Uunary}

19
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the subset ofS,, consisting of all unary matrices. Moreover, &t € S,
(i = 0,...,d) be given and let/ : R? — S,, be an affine matrix mapping de-
fined by

d
U(z) = U+ ) _zU", (2.1.1)

=1

A unary problem is then defined as follows.

DEFINITION 2.1.2. Given U* € S, (i = 0,...,d) and h € TRY
A= (ay,...,a,)T € R™™% bcR™, the optimization problem

min At z
Az < b (UP)
U(z) eUy,,zecR?

Is called aunary problem

REMARK 2.1.1. Itis obvious (see Lemma 2.3.1) that thelebf unary ma-
trices consists of all positive semidefinite matridése S,, with the additional

property
rank(U) = 1.

Therefore, Problem (UP) can also be formulated as a semidefinite program with
an additional rank constraint (for related discussion, see agaio§%, RAM93,
PRW95, VB96, FK97] and Subsection 1.3.2).

As we will see in Section 2.2 it is possible to transform an all-quadratic prob-
lem of type (QP) to an equivalent unary problem where the polyhedron

P := {zcR%: Az <b}

Is bounded, i.e.P is a polytope. Even though we discuss in this chapter solution
methods for general problems of type (UP), our interest in Problem (UP) is only
motivated by such problems which are equivalent transformations of all-quadratic
problems. Regarding the intention of this dissertation it is thus not a restriction to
assume thaP is always bounded, as we have done in the sequel.

The equivalence between (QP) and a special problem of type (UP) is one of
the interesting observations proposed without proof in the dissertation of Ramana
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[RAM93, Chapter 7], which was our main motivation for considering unary prob-
lems. In Section 2.2 a detailed proof of this equivalence is given. A second ob-
servation suggested in Ramana’s research study is based on eigenvalue inequalities
due to Weyl: given an optimal vertex solutierof the LP-relaxatiomin,cp h’ 2

of (UP) satisfyingU (z) ¢ U,,, and given the eigenvalues bf(z), a linear con-
straint/(z) < 0 can be constructed satisfyirigz) > 0 and, for allz € R?

with U(z) € U, ¢(z) < 0. Therefore, by adding successively such valid cuts
¢(z) < 0 to LP-relaxations of (UP), one obtains an outer approximation (or cut-
ting plane) algorithmic approach for solving (UP). Several variants of this cutting
plane approach together with some preliminary numerical results, which are really
promising, are proposed in fR193]. In Section 2.3 we compile some prelimi-
naries underlying the basic ideas of this outer approximation approach and present
Ramana’s algorithm.

A serious deficiency of this algorithmic approach, however, consists in the fact
that cuts can possibly become very shallow. Therefore, the convergence of the
sequence of optimal solutions of the outer approximations to an optimal solution
of (UP) cannot be guaranteed. A similar deficiency was observed in other cutting
plane methods for certain global optimization problems (see, e.g., [H,TOBap-
ter 6]). By proposing alternative outer approximation algorithms for solving (UP),
which are convergent in the sense that each accumulation point of the sequence of
optimal solutions of the outer approximations is an optimal solution of (UP), we
overcome the above deficiency.

As we will see in Section 2.4, it suffices in Problem (UP) with (2.1.1) to con-
sider matrice¢/* € S,, (i € {1, ... ,d}), which form an orthonormal system with
respect to the inner produet S, x S, — IR :

BeC = tx(BTC) = Y bjcij, (2.1.2)

1,7=1

whereB = (bij)lgz‘,jgn andC = (Cij)lgi,jgn, andtr(A) = Z?:l ai; denotes

the traceof a matrixA € IR"*™. Using this observation we derive in Section 2.4 a
valid quadratic cut. This is a reverse convex constraint. For each optimal solution
z of an LP-relaxation of (UP) satisfying(z) ¢ U, it cuts a sufficiently large ball
(with respect to the Euclidean norm) centered att of the feasible region of this
LP-relaxation of (UP) without eliminating a feasible point of (UP), i.e., without
affecting the unarity.
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If this cut is used directly in an outer approximation scheme, the convergence
of such a method can be guaranteed. Unfortunately, the direct use of this cut would
lead to relaxations of (UP), which are as hard to solve as (UP) itself. If a suffi-
ciently large polytope inscribed in the Euclidean norm ball is known, then we can
cut this polytope out of the feasible region instead of the balls. Though the result-
ing subproblems are still hard to solve, using the fact that a polytope is described
by a finite number of linear constraints, we obtain a convergent and practicable al-
gorithm by building up this polytope by successive cutting planes. The basic idea
of this approach is presented in Section 2.5. The proposed algorithm is not a pure
outer approximation scheme. It is a combination of an outer approximation and a
successive subdivision of the feasible region of (UP).

In Section 2.6 we propose three possible ways to construct polytopes contain-
ing a sufficiently large part of the intersection of the feasible region of an arbitrary
LP-relaxation of (UP) and the relevant Euclidean norm ball. Each one of these
types of polytopes can then be used in order to obtain an implementable solution
scheme for (UP). In each iteration of these new algorithms we have to split a given
polytope into a fixed number of subsets, and then we have to examine each of these
subsets — as it is the case in branch-and-bound methods (see, e.g. g HCh@fter
4]). From a numerical point of view this can lead to excessive storage requirements.
In order to reduce the number of necessary splits and, thus, in order to reduce the
number of generated polytopes, we develop in Section 2.7 a convergent algorithm
which does not subdivide each considered polytope. The resulting method com-
bines the cuts introduced by Ramana, a new cut introduced in Section 2.6 and the
subdivision strategy developed in Section 2.5. Most of the theoretical results of
Section 2.2 up to Section 2.6 were published in [HR98].

In the final Section 2.8 we discuss the numerical performance of the proposed
new approaches. Since we are interested in solution methods for all-quadratic prob-
lems we tried to solve the unary problems resulting from the equivalent transfor-
mation of the problems belonging to our test set (see Section 1.5). Even though
a slight modification of the algorithms leads to a significant improvement of their
numerical performance, our numerical results in Section 2.8 show that the practical
application of the unary problem approach to all-quadratic problems of type (QP)
is limited to very small sizes.
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2.2. Unary Problems and All-Quadratic Optimization Problems

In this section it is shown that an arbitrary all-quadratic problem of type (QP) in
n variables is equivalent to a unary problemilia- (”‘2”) +n variables. By reasons
which will become evident in Section 2.4, we choose a transformation which yields
a unary problem, where the matridés(i = 1, ... , d) form an orthonormal system
with respect to the inner matrix product (2.1.2).

As usual we have used in the formulation of (QP) as well as in the formulation
of (UP) the lettersA andb, respectivelyP for describing the linear constraints. In
order to avoid ambiguities we add the supersaypfif a letter is related to Problem
(QP), and the superscript otherwise.

Consider an arbitrary all-quadratic problem of type (QP), i.e., consider the
problem

min 7 Q% + (d°)Tx
eTQlx+ (d)Tz+c <0 I=1,...,p (QP)
A < b9, 2z e R"
Wherte = (qgj)lgi,jgn € Sn, d eR"” (l =0,... ,p), deR (l =1,... ,p),
A = (@¥%,...,a?)T € R™™ andb? e RR™. Since we assumed that

P? = {z € R" : A%z < b?} is a polytope we know that there exists a hyper-
rectangleR® = {z ¢ R" : [9 <z < L9} with [?, L9 ¢ IR" satisfying

P? c RY,

Let e; € IR""! denote thei-th unit vector { = 1,...,n + 1), and let
Ei; € RMHD*(n+1) he the elementary matrix with enttyat position(i, j) and0
at any other position. The equivalent transformation of Probl@R)(leads to the
following unary problem

min h' z
AYz < Y (UP)
vV <z < LY
n+1
Uz) €Uy, z e RUT)HT
. . T
in the variable: = (211, e 3 R1ny R1,n415222y - -+ 322 041+ 5 Rnny Zn,n—l—l) )

where, fori = 1,... ,n,
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hi,n—H \/§dz s al (2 ntl) — \}—dl (l = 1, .. ,p),

af.ﬁz (i,n+1) — \/_a’lz (=1,....,m),

zn+1 le ngn—}—l \/ﬁLz '

1Y = max{(min{L¥,0})?, (max{I?,0})2} , LY = max{I®I?, LYLY},

1 1)

and forl <i<j <n,
\/_qm,al” \/_q”(l—l . ),agﬂ,ij:()(l:l,...,m),
= \me{l?l?,z%@ L?l?,LQLj?},

— QR 1QrQ 7Q;Q rQrQ
—ﬂmax{lz Ly, LEly  LELY )

The right-hand sidéV of the linear constraints is given by

b=~ (l=1,....p), 00, = b7 (l=1,....m),

and the affine matrix mapping itUP) is defined as follows

U(Z):Uo—i—zn:ziiUii—l— Z ZijUij

i=1 1<i<j<n+1

with UO = En—i—l,n—i—l’ U” = F;; (Z =1,... ,n) andU” = %(EZJ + Eji)
1<i<ji<n+1).

A guadratic function consists of three different terms of variables. There are
lineartermsg;,i = 1,... ,n), pure quadratictermsf,i = 1,... ,n) and bilinear
terms @;z;, 1 < i < j < n). In the formulation of UP) each of these terms is
replaced by a new variable such that all functions involved in the formulation of
(QP) can be transformed to linear functions. The additional unarity condition in
(UP) guarantees that each feasible pointd) coincides with a feasible point of
(QP). For that reason the postulated equivalence between the all-quadratic problem
(QP) and the unary probleryP) holds in the sense of the following theorem.



2.2. UNARY PROBLEMS AND ALL-QUADRATIC OPTIMIZATION PROBLEMS 25

THEOREM2.2.1. Let z* be an optimal solution of Problen®QP) and letz*
be an optimal solution of ProblenuP). If we set

22'7”4_1 = \/556: , Zig = (I:)2 (Z = 1, ,n) , 22']' = \/Ex:x; (1 <1 <j < TL) ,
and

T; =

1 :
ﬁzi*,wrl (t=1,...,n),

thenz is a feasible solution of ProblenuP), z is a feasible solution of Problem
(QP) and

(2)TQZ + (d”)Tz = ()T Q%> + (d®)Ta* = hTz = hT2* . (2.2.2)

PROOF Straightforward calculation shows that

*

v = (7)) (@),

and hencd/(z) € U, 1. By the definition ofil” and LY and the fact that* is
contained inR® it follows immediately

v <z < LY,

For thel-th rOWalU of the matrixAY we obtain, forl = 1,... , p,
1<i<j<n i=1 ,j=1
= ( ) Qla:*+(dl)T < =d =07,
and, forl =1,...,m,

U > _ E U ..
Ap+1% = E :ap+l (i,n+1)Zin+1 T Apt1,i5~ij
1<i<5<n

- (a’lQ)Tx* < bQ = bp-|-l1

i.e., z is a feasible solution of ProblenP). Similar direct calculations show that
hTZ — (SC*)TQOQT* + (dO)TSC* ,

and hence, since satisfies the constraints dfP) andz* is an optimal solution of
(UP), we obtain

h/TZ* S (.Z’*)TQO$*+(dO)TLU*
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Analogously one easily obtains that is feasible for QP) and h7z* =
(2)TQ°z + (d)Tz, which implies that
hTZ* > (zL’*)TQoiE*—I—(dO)TZC*. .

REMARK 2.2.1. As mentioned in Remark 2.1.1, Problem (UP) can also be
interpreted as a special semidefinite program. Using the semidefinite programming
notations a short formulation of the previous theorem is available along the lines
given, e.g., in [AM93, PRW95, VB96, FK97]. In order to avoid the introduction
of these semidefinite programming notations we decided to use the presented more
technical version of the equivalence result.

Example. We conclude this section with a simple example. Consider the
one-dimensional all-quadratic problem
min 22 +
—2°+1 <0 (QPE)
x€[-2,2].

The feasible regiod@ of (QPE) is given by the two disjoint intervals-2, —1]
and|1, 2], and the optimal solutiom* is —1 (see Figure 2.1(a)) with optimal value
0. Using the described transformation we obtain the following unary problem

min 217 + \%212
—z11 < —1
0<21<4

—2V2 < 215 < 2V2

00 10 0 —
(0 1)+211<0 O)+Z12< 1 ‘6§> € U .
V2
The optimal value of (UPE) is aldband is attained at the unique solution point
z* = (1, —+/2)T belonging to the feasible regidi” of (UPE) given by
FU = {zeR?:1< 21 <4, —2V2< 2150 <2V2, 2%, = 2211}

(see the two disjoint arcs in Figure 2.1(b)). We will use Problem (UPE) throughout
this chapter in order to illustrate the proposed solution methods.

(UPE)

Note that in the following sections we consider only unary problems. There-
fore, the superscridf is not necessary any more.
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FIGURE 2.1. Feasible regions of (QPE) and (UPE)

b
L
1 1, & 1 Xo-----°
211 + %212 = -1
FQ
(a) (QPE) (b) (UPE)

2.3. Preliminaries and Ramana’s Approach

The following results taken from [Rv93] are needed for the new cutting
plane algorithms discussed in the subsequent sections. Even though the knowl-
edge of Ramana’s outer approximation scheme, in particular the knowledge of the
cutting planes introduced by Ramana, is not necessary for developing these new ap-
proaches we repeat his algorithm in this section. There are at least two reasons for
doing that. First of all, the overcome of the theoretical deficiency of the unknown
convergence of Ramana’s algorithm was the main motivation for developing new
algorithms for solving (UP). Another reason is that the combination of the cuts
defined by Ramana with our methods results — from a numerical point of view — in
a more efficient solution scheme for unary problems, as we will see in Sections 2.7
and 2.8.

In this and the following sections we assume that the dimensicasdd of
(UP) are not smaller thal. The simple example (UPE) in the previous section
shows that even the transformation of a one-dimensional (QP) leads to a (UP) with
these dimensions.

The following first result characterizes unary matrices by means of their eigen-
values.
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LEMMA 2.3.1. LetU € S,,, and let\;(U) (: = 1, ... ,n) be the eigenvalues
of U indexed in increasing order. Then the following assertions are equivalent:

(i) U € Up;

(i) NU) =0,1=1,...,n—1;
(iiiy M(U) > 0 and A, 1(U) < 0;
(iv) M(U) > 0 and t(U) < A\, (U).

PROOFE The above equivalences follow readily from the well-known facts
that a matrixU € IR™*" is unary if and only if it is positive semidefinite and
rank(U) = 1, and that, for each real x n matrix A, there holdstr(A) =
S Ai(A) (see, e.g., [LIR64, §13)). |

The second lemma describes now a relation between the eigenvalues of the
sum of symmetric matrices and the sum of the eigenvalues of these matrices.

LEMMA 2.3.2. LetE, F' € S, with eigenvalues;(E), \;(F) (i=1,... ,n)

be indexed in the same order as above. Then, for éae{ 1, ... ,n}, there holds
M(E) +Me(F) < M(E+F) < M(EB) + Ma(F) (2.3.1)
PROOF. See, e.g., [HJ85]. |

This result is due to Hermann Weyl. Therefore, we will denote the inequal-
ities (2.3.1) adlVeyl’'s inequalities. Using the result of the last lemma a relation
between the eigenvalues of the affine matrix mappifig and the eigenvalues of
the matriced/? (i = 0, ... ,n) forming U (-) was derived in [RM93].

COROLLARY 2.3.3. LetU : R? — S, be an affine matrix mapping defined
asin(2.1.1). Then, for every nonnegative ]Ri andk € {1,... ,n}, there holds

d
A(U(y) < Ae(U°) + ) yida(UY)

=1

and

d
A(U(y) = MU + )y (U,

=1

where all eigenvalues;(-) (: = 1, ... ,n) are indexed in ascending order.
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PROOF. The results follow by successive application of Weyl's inequalities
(Lemma 2.3.2) and the fact that, for edé¢he S,,, u > 0andi € {1,... ,n}, there
holds\; (/JU) = /L)\@(U) |

Consider now the LP-relaxation
min ALz

UPL
Az < b ( )

of (UP), which arises from (UP) by omitting the unary conditiofx) € U,,. Given
a vertex optimal solutior of (UPL) and the affine matrix mapping defined in
(2.1.1),\(U(2)) = 0and\,_1(U(2)) = 0 implies thatz is an optimal solution
of (UP) because of Lemma 2.3.1. Otherwise, one must havE (z)) < 0 or
M—1(U(Z)) > 0 (or both). In this case, however, Corollary 2.3.3 allows one
to construct an additional linear constraitit) < 0 which, when added to the
constraints of (UPL), is violated bybut satisfied by all feasible solutions of (UP).
Since z is a vertex solution of a linear program it is known thais the
unique solution of a nonsingular x d system of linear equations binding at
which — following the standard terminology in simplex algorithms — will be called
a nonsingular basic system corresponding t@. Simplex-type algorithms pro-
vide such a system automatically. In order to derive the linear cuts introduced in
[RAMO93] let Bz < r be the corresponding nonsingular basic systenzfsatis-
fying Bz = r. By the definition of the corresponding nonsingular basic system
we know that each point € P = {z € IR? : Az < b} is contained in the cone
C :={z € R?: Bz < r} (C is the smallest of such cones containiRgand
uniquely determined whenis a non-degenerate vertexBj. Choose an arbitrary
pointz € P and set

y == r—Bz.

The pointy is a nonnegative element B?, and for the affine matrix mappirig(-)
at the point: we obtain

d
Uz) = U(@—B—ly) = U(Z)JrZyi (U°—UB e)), (23.2)

=z

wheree; € IR? denotes again theth unit vector { = 1, ... ,d). The right-hand
side of (2.3.2) is an affine matrix mapping with the form given in (2.1.1). Therefore,
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Corollary 2.3.3 is applicable, and we obtain

d
Mc1(U(2)) 2 A1 (U(2) + Dy (U° = U(B ™ ey))
and =

MUR) < MUEN)+Y . v MU -UBe)) .

It follows that, for each point € P with U(z) € U, the cut
d
> (r=Bz)i\ (U= U(B ') + Au-1(U(2) < 0 (2.3.3)
=1
is valid. However, for the point with \,_, (U (z)) > 0, (2.3.3) is violated.
An analogous result is true for the linear constraint
d
D (Bz—1)i A (U= U(B 'e;)) — M(U(2) < 0. (2.3.4)
=1
Adding these cuts to the linear constraints descrildthge obtain a better outer
approximation of the feasible region of (UP) and we can calculate a new, maybe
better, vertex solution of this new LP-relaxation of (UP). Continuing in this way,
a polyhedral outer approximation (or cutting plane) approach is obtained which,
in each iteration, requires only solving linear programs and eigenvalue calcula-
tions. Based on the above arguments, Ramamav[83] proposed the following
approach.

ALGORITHM 2.1 (Ramana’s Algorithm for Solving (UP)).

Initialization
P? — {zeR%: Az < b}, STOP— Falsg k — 0

While STOP =False Do

If P* =( Then
STOP— True (PN{ze R*:U(z) e Uy,} = 0)
Else

Solve the linear optimization problemin, . p» h’ 2 to obtain a vertex
solutionz* and a corresponding nonsingular basic sysi#im < r*
satisfyingB* 2% = r*,
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Compute the eigenvalues bf(z*) indexed in increasing order.
If A (U(2*)) > 0AND \,_1(U(z¥)) <0 Then
STOP«— True (z* is an optimal solution of (UP))
Else
If \,_1(U(2%)) > 0 Then
(ab)F — -\ (UO — U((Bk)_lei)) ,i=1,....,d
(BYF = =Aa-1(U(2Y))
P¥ — PFn{zeR?: ((a")")TB*2 < ((a")*)TB*zF 4 (B1)F}
EndIf
If A\1(U(2%)) < 0Then
(@®)f =X, (U =U((B*)e;)) ,i=1,...,d
(B2)F = M(U(="))
P — P n{zeR?: (a®)*)TB*2 < ((a®)F)TB*2F + (32)F}
EndIf
Pkl PE ke k41
EndIf
EndIf
EndWhile

Example. Consider again Problem (UPE). The first vertex solutifris ob-
viously given by(1, —21/2)T (see Figure 2.1(b)). The corresponding nonsingular

basic system is
-1 0 211 < —1
0 -1 212 o 2\/§ '

For the eigenvalues @f (-) at 2" we obtain
MUEY) = A (U°) = 1.
The linear cut (2.3.4) is hence defined by

—211 — \%212 <0,

and for the new outer approximatidft of the feasible region of (UPE) it follows
Pl = {Z € ]R2 1 < z11 <14, —2\/5 < 219 < 2\/5, —Z11 — %212 < O} (See
Figure 2.2).
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FIGURE 2.2. Ramana’s cut for (UPE)

212

11

If Algorithm 2.1 stops after a finite number of iterations with a paifit re-
spectively by detecting the emptinessrf, then it is obvious in view of the pre-
vious considerations that® is an optimal solution of (UP), respectively that the
feasible region of (UP) is empty. Up to now it is an open question, whether Algo-
rithm 2.1 is convergentin the sense that each accumulation poafthe sequence
{z"} e satisfiesz* € {z € R? : Az < b,U(2) € U,}. Since the sequences
{((a")*)T B*}rew (4 = 1,2) might fail to be bounded, it does not seem that the

convergence of Algorithm 2.1 can be guaranteed. For a related convergence theory

of cutting plane algorithms in global optimization we refer to [HB.6

REMARK 2.3.1. By applying another cutting plane for the case that the small-
est eigenvalue of/(z*) is smaller tharD, Ramana was able to derive at least a
partial convergence result. Let* be a normalized eigenvector 6f(z*) corre-
sponding to the smallest eigenvalue of this matrix. The linear cut

d
(w™)T Z UMW) 2 + (w)TUWE > 0 (2.3.5)
=1
is applicable, since there holds*)TU (z*)w* = X\ (U(z*)) < 0, and, for each
z € R? with U(z) € U, it follows (w*)TU(z)w* > 0. Note that each matrix

U € U, must be positive semidefinite. If in Algorithm 2.1 the cut (2.3.5) is used
instead of (2.3.4) and if the casg_(U(z*)) > 0 occurs only a finite number of
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times, then itis provable (see pfr1 93, pages 93f]) that this algorithm is convergent
in the required sense.

It is the aim of the subsequent sections to overcome the above theoretical defi-
ciency of Algorithm 2.1 by developing other in each case convergent outer approx-
imation approaches for solving (UP).

2.4. Valid Cuts for Convergent Outer Approximation Algorithms

A first step towards convergent outer approximation algorithms for solving
(UP) consists in requiring that in the affine matrix mapping (2.1.1)

d
U:R' =S, 10 U()=U"+> U,

=1
the matriced/* (i = 1,...,d) form an orthonormal system (ONS) with respect
to the inner product (2.1.2). This is not a real restriction for the generality of the
considered problems of type (UP). Each unary problem of this type is equivalent
to another unary problem which fulfills this additional condition. This is the result
of the following lemma.

LEMMA 2.4.1. Let an arbitrary unary problem
min h'z
Az < b (UP1)
U(z) cU,,zecR?
with h € RY, A € R™*?andU : R? — S, U(z) = U° + %, 2,07 be
given. Then there exist a dimensidr< d, vectorshy € IR, hy € RY™?, matrices

A; e R™4, Ay € R™ (9 and an ONJU?,i = 1, ... ,d} with respect to the
inner producte defined in (2.1.2) such that the optimization problem

min hix + hiy

Alx—l—Agy <b
d . upP2
U(x):UOJeriUZeL{n ( )

1=1
recR, y e R

is equivalent to (UP1).
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PrRoOOF Determine a maximal linearly independent subset
{U%,j=1,...,d} c {Ui=1,...,d}

(so that the two linear spaces generated by(therespectively thé/¢ have equal
dimension). Assume, for ease, that there hdlds. .. ,is} = {1,...,d}. The
matricesU’ (j € {d + 1,...,d}) are contained in the linear space generated by
the matriced/ (i = 1, ... ,d). Therefore, there exists, for eaghe {1,... ,d—d},

a vector)’ € IR? with

SetL = (\,... 2% 4) ¢ R™(@=9  Use now the Gram-Schmidt procedure
(see, e.g., [GVL89, Chapter 5]) in order to generate fldii,s = 1,...,d} a
corresponding ONSU*,i = 1,... ,d}. Let, fori € {1,... ,d}, i’ € R? be the
unique vector satisfying

d
Ut = Zﬂ;Uj.
j=1

Since the function which maps tié’ onto theU7 (j = 1,...,d) is a homeo-
morphism we know that the matrix/ = (u*,...,u?) € R s regular. Let
z = (2,27 with z € R andz € IR?"“ be an arbitrary element dR“. Let,
furthermore, the matrid € IR™*“ be given by4d = (A4, A) with A € R™*% and
A e R™*(4=9 andthe vectoh € IR? be given byh = (1, h)T € R (@~ Set

r = M(Z+Lz2) , y =2

A, = AM™Y Ay, = A— AL
and
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d d
) = 04 a0 3 50 = 00h S (5e 3 ) o
=1

i=d+1 j=d+1

:UO+Z Z,u}zqu ZZJA] Ul = Ulx).

j=d+1

. -

:(M(Z-f—Lé))L =x;

Since the matrix\/ is regular the previous calculations demonstrate a one-to-one
relation between the feasible points of (UP1) and (UP2). This shows the equiva-
lence of both problems. |

Even though Problem (UP2) has a more general form than Problem (UP) we
will develop the following theory and solution methods only for unary problems of
type (UP). This is motivated on the one hand by the fact that the transformation
presented in Section 2.2, which links the all-quadratic problems of type (QP) to
equivalent problems of type (UP), yields an ONB*,1 < i < j < n+ 1} in
(2.2.1). Sinceitis the purpose of this research study to develop solution methods for
(QP) it is, therefore, sufficient to consider the more restricted form (UP) of unary
problems instead of (UP2). On the other hand, the following theory and solution
methods can be extended by slight changes to problems of type (UP2). However,
this leads to increasing technical effort, what we would like to avoid.

The following lemma shows the postulated fact that the matrigés
(1 <i<j<n+1)definedin (2.2.1) form an ONS with respect to the inner
product given by (2.1.2).

LEMMA 2.4.2. Let E;; = ejel € RWTDX(HD) (G5 — 9 0 4 1) be
given as in Section 2.2. Then the matnces

U% = E; ,i=1,...,n
UY = S5(Eij+Ep) ,1<i<j<n+l

form an ONS with respect to the inner prodeatefined in (2.1.2).

PROOFE This result can be verified by straightforward calculations. B
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With the orthonormal property of the sgt/*,i = 1, ... ,d} we are now able
to derive a relation between the Euclidean distance of two peirtsc IR¢ and
the distancebetween the two corresponding matriéés:) andU(z). In order to
measure thealistancebetween two matrices we use a suitable matrix norm. Let
|A|lF = VAe A (A € S,) denote the norm induced by the inner product (2.1.2)
— the so-calledrrobenius-norm.

LEMMA 2.4.3. Let{U*,i =1,...,d} C S, form an ONS with respect to the
inner producte defined in (2.1.2). Then, for eaehz € IR?, there holds

d

1> (z=2Ulr = |z~ 22 (2.4.1)

1=1

PROOF By the orthonormality of U%,i = 1, ... ,d} we know that, for each
i,5 € {1,...,d}, there holds

R o 1 ,ifi=j
AVE 341 - 7 7 )
tr (U U) = Ul = {0 , otherwise

Thus, for each, z € RY, it follows

d d d
I Z(Z -2 U'|% = tr ((Z(z - 2,00 (> (= - Z)z'Ui)>
i=1 A i=1

. (z—2)i(z — 2), tr ((Ui)TUj)

2,

&
Il

(2 =27 = l=—2l3.

1 |

-

2

The combination of (2.4.1) with Weyl's inequalities (2.3.1) allows us to prove
that for arbitrary points;, z € IR? the distance between the eigenvalue®/¢f)
andU (z) is at least as big as the Euclidean distance between these points. With this
result of the following theorem we will develop a valid cut for a convergent outer
approximation algorithm.

THEOREM?2.4.4. Let{U% i =1,...,d} C S, form an ONS with respect to
the inner produce defined in (2.1.2), and léf : RY — S,, be an affine matrix
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mapping of the form

d
2= Ux) = U0+ )l
1=1
with U? € S,,. Assume that the eigenvalues of the matrices involved are indexed in
an increasing order. Then, for eachz € IRY, there holds

Mot (U(2)) = At (U(Z)) = ||z — 2|12 (2.4.2)
and
MU(2) < MUE) +z— 2|2 (2.4.3)

PROOFE Since the Frobenius norm is an upper bound for the spectral radius
p(S) = max{|\|, A eigenvalue o5} (S € S,,) (see, e.g., [EIR64]), one obtains
by means of Lemma 2.3.2

A1(U(2) = M1(U(z—2)+U(2) - U°) = )\n_l(i(z—z)iU"+U(2))
d 1=1
> A-1(U(2 ))+)\1(§(2—Z) )

d
> A1 (U(2)) — || Z(z = 2iU'lF = Aa-1(U(2) = ||z — 2|2 -
Similarly, inequality (2.4.3) foIIows from

MU() = MU 2) + U(E) U9 = M(E (- 20" + U(2))

= >\1(U(5))+|\i(2—5)iUi|\F = MUZ)) + [z - 22
_

REMARK 2.4.1. The result of Theorem 2.4.4 can also be derived by a combi-
nation of Lemma 2.4.3 and the Hoffman-Wielandt inequality given in [HW53].
Indeed, letA, B € S,, be two arbitrary matrices with eigenvalues,... ,a,
andgy,..., 3, indexed in increasing order. The Hoffman-Wielandt inequality in
[HW53] says that there is a permutation {1,... ,n} — {1,... ,n} satisfying

> i = Ba* < A= Bl%. (2.4.4)

=1
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If we denote bylI the set of all permutations dfl, ... ,n}, then (2.4.4) is equiva-
lent to

i = Bao)? < |1A—-B|%.
min ;\az Brpl? < 1A~ B

Seta = (ai,...,a,)T and3 = (B1, ..., B,)T. It can be proven by an induction
with respect to the dimensionthat there holds

n
_ T
IT{lgﬁ( . 1Oézﬂw(z') = a f.
1=

Using this fact we obtain

n n
min Y i = Bep)* = llall3 + 1813 - 2 max > B
1=1 1=1

mell 4
= Jla—2l3.
and in view of (2.4.4) it follows, for eache {1,... ,n},
la; = Bi| < |A=BllF. (2.4.5)

If we apply this relation to the situation of Theorem 2.4.4, the use of Lemma 2.4.3
yields the inequalities (2.4.2) and (2.4.3).

As in the description of Ramana’s cuts introduced in the previous section, let
z € IR be an optimal solution of an LP-relaxation of (UP) satisfylitg) ¢ U4,,.
In view of Lemma 2.3.1(iii) we know that

€(z) = max{\,—1(U(2)),—\(U(2))}

must be greater thal From Theorem 2.4.4 it follows that each pointc IR?
contained in a ball (with respect to the Euclidean norm), which has a radius equal
to ¢(Z) and is centered at cannot be feasible for (UP). Therefore, we see that

0.(2) = €(Z)— ||z —Z|]s < 0 (2.4.6)

is a valid cut, i.e., we knowi;(z) > 0, and, for each: € IR? with U(z) € U,
there holdgz(z) < 0.

Example. In the situation of Problem (UPE) we know that= (1, —2/2)7
is an optimal solution of an LP-relaxation of this problem with) = 1 (see page
31). In view of the above arguments it follows that each point contained in the
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FIGURE 2.3. First quadratic cut for (UPE)

circle C centered at with radiusl (see Figure 2.3) is not feasible for (UPE).

If we replace in Ramana’s Algorithm 2.1 the linear cuts used there by
¢, (z) < 0, then we obtain a convergent outer approximation algorithm for solving
(UP), as the following theorem shows.

THEOREM2.4.5. Let {z*},ev be a sequence of points in the polytope
P ={ze R?: Az < b} satisfying, for eaclt, i € IN with k < 1,

0. (2") < 0. (2.4.7)
Then every accumulation point of {2*} e satisfies/ (2*) € U,,.

PROOF Let z* be an accumulation point of the sequereé} e and let
{z*4} v be a subsequence convergingto From (2.4.7) it follows that, for each
q € IN, we know that

kg (qu"'l) < 0.

Sincel|zFa+t — zFa |y — 0 (¢ — o0), this relation implies — in view of (2.4.6) and
because ofnax{\, _1(U(z%)), —A\1(U(z%))} > 0 (¢ € IN) — that there holds

max {\,—1(U(z")), =\ (U("))} — 0 (¢ — o0).
From this ensues
MU((Y) = A1 (U(z7) = 0
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by the continuity of the eigenvalue functionals, \,,_1 : S, — IR. This is equiv-
alent toU (z*) € U,, because of Lemma 2.3.1 and completes the proof. W

We have now a convergent outer approximation approach for solving (UP).
However, the possible cut is nonlinear, in particular reverse convex, such that an
algorithm using this cut directly induces difficult subproblems. In the next three
sections we will discuss ways to overcome this practical difficulty.

2.5. Basic ldea for Convergent Implementable Algorithms

In order to apply the results of the previous section we assume in this and in
the subsequent sections that the matrigés i = 1,...,d} defining the matrix
mapping in (UP) form an orthonormal system with respect to the inner preduct
defined in (2.1.2). We assume furthermore that the polytope{z ¢ RY: Az <
b} is not empty, what can be tested by the first phase of the Simplex-Algorithm.

Let P be the feasible set of an arbitrary LP-relaxation of (UP). If a point
z € P satisfyingU(z) ¢ U, is given, then we have seen in Section 2.4 that it
is possible to cut an Euclidean norm ball centered at with radiuse(z) =
max{\,_1(U(%)), -1 (U(2))} out of the polytopeP without affecting the unar-
ity.

LetQ: = {z e R?: 72 < &,i=1,...,1} be apolyhedronf € R,
¢; € R,i=1,... 1) with the properties

PNQ: ¢ PNB; (2.5.1)
and, foreach € {1,... [},
d(z,H(q;,¢i)) = pe(z) (2.5.2)

whered(z, H(g;, ¢;)) denotes the Euclidean distance of the hyperplg, ¢;) =

{z € R%: ¢z = ¢} to the pointz, andp € (0,1] is a positive real number. In
view of (2.5.1) we see thap; can be cut out of the polytope without eliminat-

ing a feasible point of (UP). Actually, the sétN @ is an inner approximation
polytope of the part of3; belonging toP and contains no element &flying out-

side the ballB;. Property (2.5.2) guarantees, furthermore, that each point located
within P\ @Q: has a distance greater tha#(z) to the pointz. If it is possible to
construct such a polyhedron for each infeasible pagititen we are able to develop

a convergent algorithm for solving (UP). How this can be done is the content of the
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present section. In the next section we will propose three different possibilities for
constructing appropriate polyhedra.

Assume now that for each poisitbelonging to a polytop# C P and satis-
fying U(z) ¢ U,, a polyhedrony; with Properties (2.5.1) and (2.5.2) is known.
Of course we cannot cut the s@t out of P in one step. The closure @} \ Qz
IS not necessarily a polytope and, thus, an algorithm doing this would induce diffi-
cult subproblems, as it is the case by using the quadratic cut directly. However, in
contrast to the Euclidean norm b&lk the polyhedror); is described by a finite
number of linear constraints. If we constrietew polytopes?; (i = 1,...,1) by
adding one of the constraints describiflg to the constraints describing, then
we know that the union of th&,’s (i = 1, ... ,[) contains no point of the interior
of Q, but all feasible elements d?. Applying this strategy the algorithm is as
follows.

ALGORITHM 2.2 (Basic Convergent Algorithm for Solving (UP)).
Initialization
Choosep € (0,1] andl € IN, and setP® «— {z € R¢ : Az < b}.
Solve the linear optimization problem (LRjin,c po h' 2z, and letz® be an
optimal solution with optimal valug po = h72°.
10— ppo, P — {PO}, STOP— False k — 0

While STOP =False Do
Compute the eigenvalues &f(2*) indexed in increasing order.
If A (U(2%)) > 0AND M\,_1(U(2*)) < 0 Then (SC1)
STOP«— True (z* is an optimal solution of (UP))
Else
€(2*) — max{ A1 (U(2")), =M1 (U(2*))}
Construct a polyhedro@”® = {z e R?: (¢"*)T2<cF,i=1,...,1}

satisfying

PFnQF c PPn{zeR?: ||z — 2F|]s < e(2F)} (PR1)
and, foreach € {1,...,l},

(=, H (g} of)) = M=ol > pe(2"), (PR2)

PF— PFn{zecR®: (¢")T2 > cF}

2

If PF =0 Then
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Solve the LPmin, . px h' 2, and letz} be an optimal solution
with optimal value,ul;k = hT 2k,
P—PU{PF}
EndIf
EndFor
P —P\{P*}
If P=0 Then (SC2)
STOP— True (P°N{z e R*:U(z) €U,} = 0)
Else
pFt — minpep pp
ChooseP**! ¢ P andz**! € P! with pf+! = ppress = AT 2L,
EndIf
EndIf
k—k+1
EndWhile

REMARK 2.5.1.

(a) Itis known that the Euclidean distané€s, H) of an arbitrary hyperplane
H={zeR?: ¢"z=¢} (g € R? c € R) to apointz € IR? is given by

¢z — ¢

lqll2

(b) The choice op € (0,1] and! € IN depends on the the used polyhedra, as
we will see in the next section.

(c) Algorithm 2.2 is not a pure outer approximation scheme — in contrast to
Algorithm 2.1. In each iteration we combine a better outer approximation
of the feasible region of (UP) with a subdivision of this feasible set. Notice
that — from a numerical point of view — this subdivision process can lead
to excessive storage requirements, since in each iteration we eliminate only
one polytope from the collectioR, but we add up téd new sets.

d(z,H) = (2.5.3)

Example. In order to illustrate Algorithm 2.2 let us consider again Problem
(UPE). The initialization polytopeP® is given by the set{z ¢ R?

1 < 211 < 4, -2v2 < 25 < 2V/2} and the first optimal solution is® =

(1, -2v2)T with ¢(z°) = 1 andu® = —1. Since the squar® with edge-length
V2 and centered at® is contained in the circl€ with radius1 (compare with
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Figure 2.3), we can usk as the necessary polytog¥. Thus, the first subdivision
of the feasible region of (UPE) leads to the polytopes

P) = P'n{zeR?: 2, >1+0.5V2}
P = PPn{ze€R?:2,<1-05V2} =10
P = P'n{zeR?: 215 > —1.5V2}
P? = POn{zeR?: 25, < -25V2} =0
(see Figure 2.4). We obtain the new solutiafis= (1 + 0.5v/2, —2v/2)T with
FIGURE 2.4. First iteration of Algorithm 2.2 applied for (UPE)

211

objective function value-1 + 0.5v/2 and 2§ = (1, —1.5v/2)T with value —0.5.
Hence, the new polytope for iteratiaris P! = PY with u! = —0.5.

In order to guarantee the correctness of Algorithm 2.2 we first prove that in
iterationk € IN each feasible point of Problem (UP) is contained in at least one of
the polytopes belonging to the current collectidn

LEMMA 2.5.1. Let P be the collection of polytopes at iteratidgn € IN of
Algorithm 2.2 and denote by = {z € IR? : Az < b, U(z) € U,,} the feasible set
of (UP). Then there holds

UJPoF. (2.5.4)
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PROOF We show this result by an induction with respect to the iteration
counterk.
Fork = 0, there hold$? = {P°} with P° = {z € R¢ : Az < b}, and hence
(2.5.4) is fulfilled. Assume that (2.5.4) holds at the beginning of iteratioifhen
it suffices to show that
l
P > FnpP~. (2.5.5)
=1

Let 2 be an element of’ N P*. From Theorem 2.4.4 we know that
A—1(U(2) = Xt (U(ZR)) = |12 = 28|12
and
MUZ) < MUER)+112- 252

Since z is a feasible point of (UP), Lemma 2.3.1 tells us that there holds
M—1(U(2)) = A1 (U(2)) = 0, and hence

12— 2"2 > max{A,—1(U(z")), =M (U ("))} = e(2¥) . (2.5.6)
The polytopesPF (i = 1,. .. ,1) are constructed such that

l
UPZ.’“ = PP\{zeR*: (¢"HTz<cr,i=1,... 1} = PF,

=1
and regarding Property (PR1) of the polyhedé@nwe know, furthermore, that
PF o> PPn{zeRY: ||z — 2%y > e(z¥)} .

The point? is an element ofP*. Therefore, we obtain in view of (2.5.6) that
l
ze PPnfzeR: z- 2. > ez} c | JPF,
=1
which proves (2.5.5). |

If Algorithm 2.2 stops withP = (), it follows immediately by (2.5.4) that the
feasible region of (UP) is empty. Moreover, Relation (2.5.4) implies tfia at
each iterationk € IN a lower bound for the optimal value of (UP), i.e., for each
k € IN, there holds

uk < LréighTz. (2.5.7)
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Therefore, we know that, if Algorithm 2.2 terminates with a paifitthenz* is an
optimal solution of Problem (UP). Indeed, in view of the stopping criterion (SC1)
the pointz* must be feasible for (UP) (see Lemma 2.3.1) and with (2.5.7) we obtain
uk = plk < mi;l Tz < hTk, (2.5.8)
ze

which shows the optimality of”.

For the case that Algorithm 2.2 does not stop after a finite number of iterations,
the following theorem guarantees the convergence of our approach in the required
sense.

THEOREM2.5.2. If Algorithm 2.2 generates an infinite point sequence
{zF} e, then each accumulation point of this sequence is an optimal solu-
tion of Problem (UP).

PROOF Let z* be an accumulation point of the sequereé} e and let
{2*},en be a subsequence converging:to By passing to a subsequence, if
necessary, we can assume that the corresponding sequehdg of polytopes
Is decreasing, i.e., for eaghe IN, there holds

Pkavr  pka (2.5.9)

and, moreover, thaP*«+1 has been generated by adding constraints to the set of
inequalities describing*«. In view of Relation (2.5.7) it suffices to show thatis
a feasible point of (UP), i.ez* € F (see also Relation (2.5.8)). Because of (2.5.9)
we know that, for each € IN, there is an index € {1,... 1} with
Pkat1 ¢ Pkan{z e R?: (qfq)Tz > qu} :
Using Property (PR2) of the hyperplanes describing the polyh@lra(g € IN)
we see that, for eache IN,
|2Fatt — 2Ra||y > pe(zFa) > 0. (2.5.10)
With the definition ofe(z%¢) (¢ € IN) and the continuity of the eigenvalue func-
tionals it follows
0 < max{A—1(U(zF)), —M(U(2"))} < Slleha—zhar|,
| | Ll (g—00)
0 < max{A,—1(U(z*)) , =\ (U(z*)) } < %H 2¥— z* |2 = 0.
This implies in view of Lemma 2.3.1 the feasibility of. H
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REMARK 2.5.2. As the previous considerations show, it is not necessary that
in the formulation of Algorithm 2.2 the numbérc IN and the positive real value
p are chosen independent of the iteration couhtefs long as there is a number
L € N with [* < L (k € IN) and a constant > 0 with p* > ¢ (k € IN) the
correctness of this solution method for (UP) can be proven.

Under the assumption that appropriate polyhe@fa(k € IN) can be con-
structed we have now a convergent algorithm with linear subproblems for solving
unary problems of type (UP). In order to obtain implementable algorithms we still
have to specify, how such polyhedra can be determined. In the next section we
present three possibilities for the choice of such sets.

2.6. Appropriate Polyhedra for Algorithm 2.2

Let z*¥ (k € IN) be the current point at iteratiok of Algorithm 2.2 with
e(z%) = max{\,_1(U(zF)), = 1 (U(z¥))} > 0, and letB,« be the corresponding
Euclidean norm ball with radiug 2*) centered at*. There exists of course an infi-
nite number of polyhedr@* ¢ IR? satisfying the required properties sifc (0, 1]
and/ € IN are chosen accordingly. In order to obtain an efficient algorithm such
polyhedra should satisfy some criteria apart from the necessary properties (PR1)
and (PR2). First of all these sets should be easy to construct. Moreover, such a
polyhedron should have as few describing hyperplanes as possible in order to re-
duce the storage requirements (see Remark 2.5.1(c)). And, a third criterion is, that
the intersection of this polyhedron with the eliminable ball should have the biggest
possible volume. Unfortunately, these criteria are conflictive. For example, the
less hyperplanes we use to describe the polyhedra the less volume of the resulting
intersection sets we can expect.

The first type of polyhedra, which we present in this section, is a hypercube.
These sets are really easy to construct and are a relative good choice with respect
to the third criterion. However, they do not pay so much attention to our second
criterion. Therefore, we propose furthermore two possible polyhedra which base
ond-simplices and are described by oy 1 respectivelyl hyperplanes, instead
of the 2d hyperplanes in the case of the hypercubes. The first simplex, which we
propose in Subsection 2.6.2, is also easy to construct. In order to obtain a better set
with respect to the volume criterion we modify this simplex in Subsection 2.6.3.
However, the construction of this modifidesimplex will need more effort.
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2.6.1. Hypercubes.Using the fact that, for eache IR, there holds
d d
I213 = X 1=1* < > lelk = dll=l%, (2.6.1)
=1 =1

we immediately see, that tlfe,-norm ball centered at* with radiuse%) IS con-

tained in the Euclidean norm ball with radieis*). This/..-norm ball is a hyper-
cube centered at* with edge-lengti2 6\;2) and can be described by

RF = {zeR¥: (¢") T2 < cFi=1,...,2d} (2.6.2)
where, fori =1, ... ,d,
(T2 =2 and c; =z + =~

and,fori=d+1,...,2d,

()" 2= —zi—a and cl=—z 4+ e(jﬁ) .

The hypercube&® (k € IN) fulfill Property (PR1) (see (2.6.1)) and in view of the
definition of the hyperplaned (¢¥,c) (i = 1,... ,2d; k € IN) we know

(@)2* —cf] 1

d<zk7H(qfaC§)) - - E(Zk) .
[P Vd
Choosing = 2d andp = ﬁ in the initialization of Algorithm 2.2 the hypercube

R" is an appropriate choice for the necessary polyhe@o(k < IN). If we apply
Algorithm 2.2 using these hypercubes for solving our example problem, then the
first iteration of this approach looks like it is described on page 43 (see, in particular,
Figure 2.4).

REMARK 2.6.1. If the hypercube&” are used in Algorithm 2.2 for)”
(k € IN), the number of inequalities describing a polytdpe P can be bounded
by m + 2d. Note that the normalg’ (i = 1,...,2d; k € IN) of the constraints
describingR” do not depend on the iteration counter, and, thus, only the right-hand
sidesc? (i = 1,... ,2d; k € IN) of the constraints change.

The hypercube®” (k € IN) are really easy to construct and fulfill thus the
postulated first criterion. However, the numierof generated new polytopes in
each iteration of the algorithm is already rather large. In order to reduce this number
we develop now an inner approximation polytope for the bgll, which can be
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described byl + 1 hyperplanes. This choice is hence better — regarding our second
criterion.

2.6.2. Regulard-Simplices. A d-simplex is the set among altdimensional
polytopes, which can be described by the least number of linear constraints. We
present now a-simplex contained in the Euclidean norm b&ll., whose vertices
lie on the boundary of this ball. It is known that among@&iimplices contained
in such a ball the so-callaggular simplices, i.e., the simplices where the distance
between each pair of vertices is equal, are the largest ones with respect to the vol-
ume (see [BE69] for a proof). In view of the third criterion we choose, therefore,

a regulard-simplex contained i3« .

In order to simplify the presentation we start with the description of a regular
d-simplex centered at the origin and with vertices on the boundary of the unit ball
B = {z € R?: ||z||» < 1}. This simplex can later be easily transformed to the
requiredd-simplex lying in the relevant bal .

Assume, at first, that a reguldrsimplex S = [vo, ... ,v4] centered at the
origin and with all its vertices on the boundary Bfis given. Then it is known
from the literature that the edge-length®fi.e., the Euclidean distance between
each pair of vertices, is given by

2(d+1)

d
(see, e.g., [BM29, GKL95]). Moreover, it is elementary to show that=
ﬁ Z?:o v;, I.e., the origin is the barycenter 8f and that the radius of the largest
Euclidean ball, which can be inscribed inigis

0,5 €0,... d}withi # j (2.6.3)

|vi —vjll2 =

r = -. (2.6.4)

The number- is also the distance of each facet®fo the origin. Furthermore,
we can use the fact that, for eaghe {0, ... ,d}, the vertexv; is orthogonal to
the facetS; = [vo, ... ,vj_1,vj41,... ,v4] Of S, and hence the hyperplan&s;,
generated bys; can be described by

Hg, = {z¢ R : o7 (v; — 2) =0} (2.6.5)

J

with an arbitrary, but fixed indexe {0,... ,d}\ {j}.
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These are known results about the properties of a regusamplex centered
at the origin and with all its vertices on the boundary of the unit Balllo the au-
thor's knowledge there is, unfortunately, no explicit construction of such a simplex
in the literature — except of [HR98]. In order to derive an implementable algorithm
we need an explicit formulation of the hyperplanes describing such a simplex and,
thus, in view of (2.6.5) we need an explicit formulation of its vertices. This will be
done in the following. For reasons which will become evident later in this section
we construct a regularsimplex withr € IN. Set

vo = aoer ,
v = \/G2;€r—; — ]é1MGT_<j_1) ,i=1,...,r—1, (2.6.6)
=~ — SV
where
ap = 1,
a; = { ai—1/(r — 131)2 ’?“:Odd vi=1,...,2(r—1), (2.6.7)
Ai—o — Aj_1 , If 7 even
ande; € IR" is thei-th unit vector. The-simplexS = [vg, ... ,v.], which is gen-

erated by these vertices, is a regular simplex with the edge-length (2.6.3), and all its
vertices belong to the boundary of the unit b&lic IR". This will be the result of
Theorem 2.6.2. At first, however, a technical lemma is needed in order to establish
this theorem.

LEMMA 2.6.1. Leta; (i € {0,...,2(r —1)}) be defined as in (2.6.7). Then,
foreachi =1,...,r — 1, there holds

(2.6.8)

PROOFE We prove this result by an induction with respeci.tdhe assertion
Is obviously correct foi = 0. Assume that it holds far= j — 1 with j > 1. Then
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it follows by definition ofa; (I € {0,...,2(r —1)})

r—g+1 r—j+1( )
— Q9 = ———— (A9 — Ao._
T’—j 27 T—j 27—2 27—1
r—j+1 agj—2

_ —7:?——<a%—2_(r—j%-n2>

T T (1
r—g+2 r+1
= —— A9_ _= ,
r—g+1 2=2 r
which is the required result far= j. |

With the technical result of Lemma 2.6.1 the postulated properties of the sim-
plex generated by the vertices defined in (2.6.6) can now be shown.

THEOREM2.6.2. LetS = v, ... ,v,] be ther-simplex with the vertices;
(: =0,...,r)constructed as in (2.6.6). Then the following assertions are true.
(i) Each vertex ofS belongs to the boundary of thedimensional unit ball
B={zecR":|z]2 <1},i.e., foreach € {0,...,r}, there holds
[vil2 = 1.

(i) The distance between each pair of vertices is equal. Moreover, for each
i,7 €40,...,r}withi #£ j, there holds

loi —vjll2 = /2

(compare with (2.6.3)).

PROOF In view of the definition ofe; for I € {0,...,2(r — 1)} even we
obtain, for eachi € {0,... ,r — 1},
ao;, = 1-— Zagj_l . (269)
j=1
Hence, for eachi € {0,... ,r — 1}, it follows
lill3 = azi + Y azj—1 = 1.
j=1

Using the fact that,- andwv,._; have by definition the same distance to the origin,
assertion (i) is proven.
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Lemma 2.6.1 yields

r—(r—1)+1 2(r+1)
r—(r—1) G2(r-1) = T

and by using additionally (2.6.9) we obtain, forj € {0,... ,r} withi < 5 and

1< r—1,

H'Ur—l_vr”g = 4a2(r—1) = 2

J 2
lvi —v5]l5 = a2; + Y. au—1+ (Vaz + /azit1)
l i+2

= 1—Za2l 1+ Z as|— 1+(\/a27,+\/a/21-|—1)
=1 l=i+2

141

= 1- Za2l 1+ a2 + agir1 + 24/a2i\/a2i+1
1
— 2@21 + 2«/@2“ / (7" Z)Q 20,27; + 2a2i’l“ —

_ o7 i+ 1 0 — +1) |
r—1 r
which shows assertion (ii) and completes the proof. |

As a direct consequence of the previous theorem, we obtain that the inner
product of each pair of vertices of the simplg€x= [vg, ... ,v,] IS equal—%.

COROLLARY 2.6.3. Under the assumptions of Theorem 2.6.2 there holds, for
eachi,j € {0,... ,r} withi # j,

vlv;, = —1. (2.6.10)

T

PROOF, From result (i) of Theorem 2.6.2 we know that, for each
i,7 € {0,...,r}with i # j, there holds

2L = lo; — (I3 = Nlwill3 + [l ll5 — 207 v; -

Using assertion (i) of this theorem we obtain
2l = 220wy,

which implies (2.6.10). |
In view of the previous results the construction (2.6.6) wita: d yields the

needed explicit formulation of a regulérsimplexS = [v, . .. , v4] centered at the
origin, whose vertices lie on the boundary of the unit ball. Assume now that we are
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again in the situation of Algorithm 2.2 and that a paifitce P = {z ¢ IR? : Az <
b} is given satisfyind/ (2*) ¢ U,,, i.e.,
e(z") = max{\,_1(U("), =\ (U(")} > 0.
It could be verified by straightforward calculations that the polyhedron
Sk = {zG]Rd:—v;‘Fzg@—v?zk,izo,...,d} (2.6.11)
with v; (i = 0,...,d) defined as in (2.6.6) is a reguldssimplex centered at*
(compare with (2.6.5)). The vertices 8f aree(z*)v; + 2% (i = 0,... ,d), which

lie on the boundary of the ba}. .. For the Euclidean distance of the paifitto the
hyperplanes describing® we obtain regarding (2.5.3), for eacke {0,... ,d},

(")
d
(compare with (2.6.4)). Thus, choosihg= d + 1 andp = é in the initialization

of Algorithm 2.2, the regulag-simplicesS* are also an appropriate choice for the
polyhedraQ” (k € IN) needed in this approach.

d(zk, H(—v;, G(Zk) — fUZTz"’)) —

(2.6.12)

REMARK 2.6.2. If the regulat-simplices defined in (2.6.11) are used in Al-
gorithm 2.2 forQ* (k € IN), the number of inequalities describing a polytope
P € P can be bounded by: + d + 1. As in the case of the hypercubes (see Re-
mark 2.6.1), the normalg’ = —v; (i = 0,... ,d; k € IN) do not depend on the
iteration countek.

Example. If we choose in Algorithm 2.2 this reguldrsimplex for subdivid-
ing the feasible region of Problem (UPE), then we obtain in the first iteration the
following polytopes (see also page 43).

P = PPn{zeR?: —212 > L +2V2} = 0
P) = P'n{zeR?: 1(—V3z11 + 212) > L (1 - V3 - 2v2)}
P) = P'n{zeR”: L(V3z11 + 212) > (1 + V3 - 2V2)}
This situation is illustrated in Figure 2.5. The new solutions are giveaSby-

(1,1 -2v2)" with optimal value—> — 1 andzg = (1 + —=, —2v/2)" with value

\/% — 1. The polytopeP! for iteration1 is hencePy with u! = —0.4226.

The presented-simplex.S* is an inner approximation polytope for the whole
ball B, which can be cut out of the relevant feasible B&t In Section 2.5 we
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FIGURE 2.5. Firstiteration of Algorithm 2.2 with a regular sim-
plex applied for (UPE)

212

only require that the intersection of the polyhedé@hwith P* is an inner approxi-
mation of the intersection d?* with the ballB... Therefore, by constructing a set
based on anothérsimplex, which contains a bigger partBf N B, x, i.e., a bigger
part of the set which can really be eliminated, we obtain — taking our third criterion
for appropriate polyhedr@®” (k € IN) into account — a better choice. Note, in
particular, that all points oP* belonging toB.» must lie in a half-ball ofB3, .

2.6.3. A Better Polyhedron Based on a Modified/-Simplex. The regular
d-simplexS* defined in (2.6.11) does not depend on the current polyitperhe
construction of these sets only use the peihaind the corresponding valaé:*).
In the following we present a polyhedron derived frona-gimplex, which also
recognize the bearing of the polytop¥ with respect to the point*. For this
aim we need, as in Ramana’s approach (see Section 2.3);*tiet vertex of the
current polytopeP”. This is always satisfied, if we use the Simplex-Algorithm for
solving the linear subproblems in Algorithm 2.2.

Let 2% be a vertex of”* (k € IN) and letB*z < r*, with B* = (b%,... ,b8)T
regulard x d matrix, be the nonsingular basic system correspondia§ {oompare
with Section 2.3, in particular page 29). Let, furthermore,

C* = {zeR%: B*2 <+¥}
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be the cone defined by this system. Each ofdtextremal directions? ¢ R?
(i =1,...,d) of C* is a nontrivial solution of the system

MYTwrf =0  j=1,...,i—1,i+1,...,d

B Twk < 0.

2

Let, fori € {1,...,d}, the vectorw? ¢ IR? denote the intersection point of the
ray

{zEIRd:z:szrﬂwf,BZO}
with the boundary of the bal_x, i.e.,

wf = 2F 4 €(2") H;U;M
(see Figure 2.6). Let, furthermore,
HY = H(a*b*) = {z e R?: (a")T2 = bk} (2.6.13)

with o* € RY, b* € IR be the uniquely determined hyperplane containing each of
these intersection points? (i = 1,... ,d) and satisfyinga*)? 2% > b*. SinceP*

is a subset of* and in view of the quadratic cut (2.4.6) we know that no feasible
point of (UP) belongs to the set

HY (a0 = {z e R*: (a*)T2 > b*}
(see again Figure 2.6). This means that the linear constraint

FIGURE 2.6. The hyperplan&? in the case of Problem (UPE)

Azlz wg

\ | I i T 211
VZTN I

H*(a% b?)
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(a®)Tz < VP (2.6.14)
is a valid cut for (UP).

REMARK 2.6.3. The cut (2.6.14) could be used in order to derive an outer
approximation method for solving (UP), as we did in Section 2.3 with the cuts
introduced by Ramana (see Algorithm 2.1). However, since the definitiafi of
(k € IN) depends on the current nonsingular basic sygkém < r* corresponding
to z*, such an algorithm can — similar to Ramana’s original approach — fail to
converge. Nevertheless, as we will see in Section 2.7, each known valid cut can be
used for accelerating the convergence of our solution scheme for (UP).

If we take ad-simplex.S*, which is the convex hull of the intersection point
a® of theray{z € R? : z = z¥ — Ba*, 3 > 0} with the boundary of3,. and a
regular ¢ — 1)-simplex contained in the intersection B with the ballB.«, then
we obtainS* ¢ B, N{z € R?: (a*)Tz < b*} (S* is contained in the shaded re-
gion in Figure 2.6). The polyhedrap® described by thé hyperplanes, which are
induced by just the facets ¢f* containinga”, obviously fulfills Property (PR1).
And, moreover, we can expect that the Euclidean distance of the hyperplanes de-
scribingQ* to the pointz* is bigger than the distance of the facets of the regular
d-simplex introduced in the previous subsection (see (2.6.11)). The two possible
choices ofQ* in Algorithm 2.2 proposed until now are fully contained in the ball
B.x. The polyhedrorQ*, which we present below, does not have this property.
Only the intersection of)* with the current polytopé®” will be contained in this
ball. Therefore, we can hope, that a bigger parfPéfis cut out of this set by
applying the polyhedro®* instead ofS* or maybe even instead &f*.

As mentioned before, the construction of the new polyhedybiis based on
a d-simplex. Let us first describe the construction of simplex. In order to
simplify the presentation we assume again fat is the unit ballB and thatH*
is a hyperplane parallel tpz € R? : z; = 0}, i.e., H* = H = {z ¢ R" :
—el'z = —§}, whered € [0, 1) denotes the Euclidean distanceféfto the origin.
After the derivation of the required-simplex for this situation we describe, how
this "standard simplex can be transformed to the general cas&of and H*
defined as in (2.6.13).

The intersection ofd with the unit ball is a (d-1)-dimensional sphere with
radiuse = /1 — 62 and centered afe;. Letvg,...,vq—1 be the vertices of a
regular ¢ — 1)-simplex constructed as in (2.6.6). Assume that these vertices are
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imbedded in the spadB® by adding one dimension. Set now, foe 0,... ,d—1,

U; = €v; + dey
and

Vd ‘— €4.

It follows immediately that the vertices; (i = 1,...d — 1) are contained in
the hyperplanegd. From Theorem 2.6.2 and the construction of the points
(:=0,...d) we see that

[vill2 =1 ,ie{l,...,d},

17 — 0ill2 = &/ 7% i,j€{0,...,d—1}withi 7,

|0; — Ballz = V1—-062+(1—-0)2 ,ie{0,...,d—1}.

In order to use the simpleg = [y, ... , 4] for the construction of an ap-
propriate polyhedro®” (k € IN) for Algorithm 2.2, we have to derive, for each
i € {0,...,d—1}, arepresentation of the hyperpladés generated by the facets

Si = [0y, Vim1,Vix1,- - ,Vd]

of S. Note thatH is the hyperplane induced by the facgt The following lemma
delivers this representation.

LEMMA 2.6.4. Letvg, ... ,v4_1 € IR? be the vertices of a regularl(— 1)-
simplex defined as in (2.6.6). Set, for eaeh{0,...,d — 1},
“ T
V; = U 1 (¥
with
T = ”11__(;52 > 1. (2.6.15)

Then, for eachi € {0,... ,d — 1}, the hyperpland?z, generated by the face&t;
of thed-simplexS can be described by

Hg = {zeR: %]z =10]v4}. (2.6.16)

PROOF Since, for each € {0,... ,d — 1}, we know

d—1
Hg, = {z€R%:2=10,4+ Z#%’(@j—@d%% € R4},
=0,
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it suffices to show that; is orthogonal to each directidn; —v4) (j =0, ... ,d—1;
j # 1) of Hg. and, thus, orthogonal tdl 5. itself. I.e., we have to prove, for each
7€{0,...,d—1}\{i},

~

ol (v, —v4) = 0. (2.6.17)

2

Choose an arbitrary, but fixed indgx {0,...,d — 1} \ {i}. Applying Corollary
2.6.3 and the fact that, for ea¢he {0,...,d — 1}, thed-th component of; is
zero we obtain

T
’lA);-T(@J* — @d) = (1)7; — %led) (@Uj + deq — ed)
€

= € viv; +(0—1)vieq — L elv; +% eleg
—— ——~ ——
d—1
_ T(1-9)
_dil + == 0,
which shows (2.6.17) and finishes the proof. |

The polyhedron, which we derive from the simplgxwill be determined by
the d hyperplanes described in the last lemma. By construction we know that this
polyhedron fulfills Property (PR1). In order to guarantee that this polyhedron also
satisfies Property (PR2) we need the Euclidean distance of the hyperplanes
(i = 0,...,d — 1) to the pointz*, i.e., in the considered situation to the origin.
Moreover, we have postulated that the polyhedron, which we develop in this sub-
section, cuts a bigger part out of the unit kalthan the regulad-simplexS derived
in Subsection 2.6.2. This would be satisfied, if the distance of the hyperpignes
(:=0,...,d—1)is bigger thanclj (compare with (2.6.4)).

THEOREM2.6.5. Let Hg (i = 0,...,d — 1) be the hyperplanes defined in
Lemma 2.6.4. Then, for ea¢ke {0, ... ,d — 1}, the Euclidean distancé(0, Hg, )
of these hyperplanes to the origin is

T 1
40, Hs,) = Ja—ipio  d

(2.6.18)

with 7 given as in (2.6.15).

PROOE From
72 _(d— 1)2 + 72

1. 2 _— _—
HUzH2 1+ (d—1)2 (d—1)2
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we obtain by using (2.5.3), for eaéke {0,... ,d — 1},

o1 v d—1
a0, Hg) = vl T s

loille ~ d—1 /d—1)2+72 Jd-1)2+72
The functiono : IR — 1R, o(7) =

\/ﬁﬁ IS monotonously decreasingliiR .
and, additionally, there holdg(1) > %. Therefore, it follows thap(7) is bigger

7
than% for eachr > 1, which shows in view of (2.6.15) the right-hand side of Re-

lation (2.6.18). |

In view of the previous result we know that the polyhedron
Q= {zeR: o]z < 5}

cuts a bigger part out of the unit ball than the regulad-simplex introduced in
the previous subsection. Note thidtv, coincides with—-= (1 =0,... ,d —1).
The construction of) and.S, respectively, depends on the hyperpldhe There-
fore, we cannot transforrfi to the interesting situation dB.. and H* by simply
multiplying the relevant values with(z*), as it was the case for the previous two
choices of the polyhedrof”. We will need more effort.

Let{yF,...,y% |} be anorthonormal basis of the linear subspéée- { ~*}.
Such a basis could be developed by applying the Gram-Schmidt method or an-
other orthonormalization procedure (see, again, [GVL89]) to thd ®&t— w*,

i = 2,...,d}, which forms by construction a basis &f* — {z*} (see page 54).
Let

AF = (y’f, ,yg_l,—ak)

be thed x d matrix with the columng?, ... 4% | and—ad*. If a* is normalized,

it is obvious that this matrix is orthogonal, i.e., there hqld$)? A* = E, where

E denotes thel-dimensional identity matrix. In view of this property we see that
the transformation

TF R - R? & TH2) = e(zF)AFz+ 2F
yields, for anyz, 2 € R?,
IT5(2) = 2%lla = e(zF)llzll2 and  [[T"(z) = T*(2)[la = e(z")|lz = 22

The affine functiodl™* maps the unit balB and the hyperplan& = {z € R? :
—el'z = —¢§} to the current balB,» and the current hyperpladé®. Applying the
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inverse functionT*)~! we can hence transform the situation of the current itera-
tion k to the just examinedtandardsituation. In order to construct the simpléx
in thestandardsituation we need the Euclidean distance of the resulting hyperplane

H = {zeR*:T*z2) e H*} = {z e R*: (a")TT"(2) = b*}
to the origin. This is given by

ENT Jk bk‘
P G 2.6.19
) ( )

(compare with (2.5.3) and note th@t*)? A* = —e,). Transforming the simplex
S = [vo, ... , 4] Of thestandardsituation to the current situation in iteratiérwe

obtain with
S = [T*(%o),...,T"(vq)]
ad-simplex contained in the set
B, N{zeR*: ("2 <bF}.

It can be verified by straightforward calculations that the hyperplanes induced
by the facetsSF (i = 0,...,d — 1) of the simplexS* containing the point
a* = z* — e(z¥)a* are given by

T
HS']? = {ZE]Rd: (Ak (dfled_vi)> (Z_Zk) = d:ﬁ%}

K2

with # = Y22CD% and withwy, ... ,v,_1 defined as in (2.6.6) for = d — 1.
Moreover, it follows that, for each € {0,... ,d — 1}, the Euclidean distance of
these hyperplanes to the poittis

Tk:

d(zF, Haw) = e(2F 2.6.20
G ) = ) s (2.6.20)
1
> ¢(2F .
= €l=) V(d—-1)2+1
- . . 1 . . ., . . - .
Choosingl = d andp = JanT in the initialization of Algorithm 2.2 the

polyhedra

_ T € Zk Tk
QF = {zeR": (Ak (dT—_kled - Uz)) (2 —2") < (d—)l ’
i=0,...,d—1} (2.6.21)
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are the third possible choice for the s€Xs (k € IN) needed in this approach.

Example.  Consider once again Problem (UPE). The nonsingular basic

system corresponding t& = (1, —2v/2)7 is given by B° = ( _01 _01 ) and

r0 = (2?/15) (see page 31). For the hyperplaki€ we obtain
H® = {Zemzi—%zn—%zu = 2—\/5}.

The pointa® is (% +1, —%)T, and the distancé® of H° to the pointz° is given

by \/% Thus, we have® = 1 + /2 and using the matrix® = \/% ( _11 } ) the

subdivision of P° leads to the two polytopes
P10 = POQ{ZE]];{d : (1+\/§)211+212 > 2}
on = Poﬂ{ZEIRd2211+(1+\/§)212 > —2—\/5}
(see Figure 2.7). The new solutions ate= (2, —2+v/2)7 with optimal value)

FIGURE 2.7. Subdivision ofP° with the polyhedrorQ® in Al-
gorithm 2.2 applied for Problem (UPE)

212

£ !___._.:

C1pp

211

- 50
L..|P2

andz9 = (1,1 —2v/2)7 with value% — 1. The polytopeP! for the next iteration

of Algorithm 2.2 is therefore”) with ' = —0.2929.
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Among the presented possibilities for the construction of the polyh@dra
(k € IN) for Algorithm 2.2 the last one leads to the least number of new polytopes
in each iteration. However, the construction of these sets is, on the other hand,
the most expensive one. Moreover, in contrast to the other two possibilities (see
Remark 2.6.1 and 2.6.2), the number of the constraints describing an elément
of the collectionP cannot be bounded. Note that the normals of the linear con-
straints determining)” (k¢ € IN) depend on the iteration countér Therefore,
even though the last approach leads to deeper cuts, at least in comparison to the
regulard-simplex introduced in Subsection 2.6.2, it is not definitely clear, which
approach leads to a more efficient algorithm for solving unary problems of type
(UP). Before discussing the numerical performance of these three possibilities we
propose in the next section a still convergent variant of Algorithm 2.2, which does
not need a subdivision of the current polytape (k € IN) in each iteration.

2.7. A Variant of Algorithm 2.2

Throughout the previous sections we proposed four possible valid linear cuts
(see (2.3.3), (2.3.4), (2.3.5) and (2.6.14)) for the considered unary problem. For
an algorithm using only these cuts the convergence cannot be guaranteed. Nev-
ertheless, the use of any valid cut can accelerate the convergence of Algorithm
2.2. If we use in Algorithm 2.2 for the definition of the subdivision polytop¥s
(:=1,...,1) also some of these cuts, then the resulting approach is of course still
convergent. And, moreover, we can hope that this method needs less iterations for
solving (UP). For example, in Problem (UPE) the additional use of cut (2.3.5) leads
to a termination of Algorithm 2.2 after one step.

For the convergence of Algorithm 2.2 it is essential that for a decreasing se-
quence{ P*},cv of polytopes we know that the corresponding point sequence
{2F} e satisfies

|25 = 2|2 > pe(F) . (2.7.1)

The use of the subdivision process guarantees this property (see the necessary Prop-
erty (PR2) of the hyperplanes describing the polyhéfia As long as this relation
holds also ifP**! results fromP* by adding some other cuts, the convergence can
be ensured even without the subdivisionfdf.
The following algorithm uses this consideration. As long as a relation similar
to (2.7.1) holds by adding only valid cuts we do not subdivide the curre®’set
If this relation fails, we enforce (2.7.1) by splittirigf*.
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ALGORITHM 2.3 (Another Convergent Algorithm for Solving (UP)).

Initialization
Choosep € (0,1] andl € IN, and setP? «— {z € R% : Az < b}.

Solve the linear optimization problem (LB)in. po h' 2, and letz° be an

optimal solution with optimal valug po = h7 2°.
Vpo «— {2°}, zpo « 20,
p? — ppo, P — {PY}, STOP+ Falsg k «— 0

While STOP =False Do
Compute the eigenvalues bf(z*) indexed in increasing order.
If A (U(2%)) > 0AND \,_1(U(z¥)) <0 Then
STOP«— True (z* is an optimal solution of (UP))
Else
e(2") « max {A,—1(U(z")), =M (U ("))}

Determine affine functiong : R - R (i = 1,... ,¢" € IN) satisfying

¢;(2*) > 0 and, for eachr € P* with U(z) € U, £;(z) <0
PF— PPA{zeR:1;(2)<0,i=1,...,¢"}

If P =1( Then
P — P \ {Pk}
Else

Solve the LPmin, . p+ h7 z and letz* be an optimal solution.

If min {||z* — 2| — pe(2)} < 0 Then
ZGVPk

Chooses € Vpr satisfying||2F — 2|2 — pe(2) < 0.
Construct a polyhedro@”* = {z ¢ R : (¢*)T2<cF,i=1,...

satisfying
PFNnQFc PPn{zeR: ||z — 2|2 < e(2)}
and, foreach € {1,... ,l},

(2, H(gf, b)) = Meeil > pe(2).
For i =1 To [ Do l
PF— PFn{zecR®: (¢¥)T2 > cF}
Vpr = Vpe \ {2}, zpr < 2p
If PF£¢ Then
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Solve the LPmin, . px k' 2, and letz¥ be an optimal solution
with optimal valueu;k = hT 2k
P—PuU{PH
EndIf
EndFor
P — P\ {P*}
Else
Vpr «— Vpr U {Zk}, Zpk z*, Upk < hTzk
EndlIf
EndIf
If P =10 Then (SC2)
STOP— True (P°N{ze R*:U(z) eU,} = 0)
Else
pF ! — minpep pp
ChooseP**! € P andz**1 € PF+1 with p*+! = pprsr = RT 2R,
EndIf
EndIf
k—k+1
EndWhile

REMARK 2.7.1.

(@) If A1 (U(z%)) is smaller thar®, we can use the cuts (2.3.4) and (2.3.5) intro-
duced by Ramana. KX, _;(U(z*)) is greater thaf, the cut (2.3.3) fulfills
the valid cut property (VCP), and in both cases the new cut (2.6.14) pre-
sented in the previous section is usable.

(b) If additional cuts satisfying (VCP) are used, then the number of inequalities
describing a seP € P cannot be bounded anymore. This does not depend
on the used polyhed@” (k € IN) (compare with Remarks 2.6.1 and 2.6.2).

(c) Ifthe setVpx is empty, then the subdivision criterion (SDC) is not fulfilled.
By convention, there holdsiin, .y f(z) = co.

(d) The valueg(z) = max{A,—1(U(2)), —A1(U(2))} (see (SDC)) have been
calculated for each element B+ (k € IN) at an earlier stage of the algo-
rithm.

(e) The Algorithm 2.3 does not coincide with Algorithm 3 presented in [HR98].



64 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

If Algorithm 2.3 terminates after a finite number of iterations either by detect-
ing the emptiness of the feasible region of (UP) or by yielding an optimal solution
z* of this problem, then the correctness of these results follows by the same argu-
mentation as in the case of Algorithm 2.2. The result of Lemma 2.5.1 is obviously
true also for this approach. Thus, we know that, for each IN, 1* is a lower
bound for the optimal value of Problem (UP) (compare with (2.5.7)).

In order to guarantee the convergence of Algorithm 2.3 without a subdivision
of P* in each iteratiork € IN we have introduced the new séfs. (k € IN) and
the pointszpr (k € IN). The subdivision criterion (SDC) shows that only such
pointsz* € P* are added to the s&l.«, which fulfill, for eachz € Vpr,

|2 — 2|2 > pe(z) . (2.7.2)

There holds furthermore that in each iteration either a point is addeégd:t@r one
point is eliminated from this set and that the eliminationzoE Vp. leads to a
subdivision of P*. In the elimination case it follows, moreover, that each point
contained in a polytop®& < P — P be the collection of the relevant polytopes in
an iterationk > k —, which is a subset aP* must have a distance greater than
pe(2) to the pointz, i.e., fulfills (2.7.2) forz. These special properties of the set
Vpr enable us to prove the convergence of Algorithm 2.3. However, we will not
show the convergence of Algorithm 2.3 in the sense of Theorem 2.5.2. We prove
that each accumulation poiat of the sequencézp: } e, Which is a special
subsequence dfz*} <, leads to a unary matri/ (z*) and is hence optimal for
(UP).

For this purpose we first have to show that the elements of the sequence
{zpr } ke change infinitely often.

LEMMA 2.7.1. Assume that Algorithm 2.3 generates an infinite sequence
{P*} e of polytopes. Le{ P}, be a subsequence §*} e with the
properties that, for eacly ¢ IN, P*«+1 is a subset ofP*s and, moreover, that
PFa+1 is generated by adding linear inequalities to the list of constraints describ-
ing P*s. Denote byl = {q € IN : z,4,, # zpr, } the set of all indiceg € IN,
wherez .k, is different from its successor in the sequefegr, },ew. Then the
following assertions are true.

(i) The setl contains an infinite number of elements, i|é|,= oc.
(i) Foreachq € I, there holds

|‘2qu+1 — Zpkg|l2 = pe(zpry) (2.7.3)
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PROOR Assume, first, that the decreasing sequejieé: } .. has an addi-
tional property. Let, for each € IN, P*s+1 be adirect childof P*4, i.e., assume
that, for eacly € IN, there holds

qu+1 = quﬂ{ZE]Rd:fz‘(Z)§07i217---7qkq} (274)
or
Pratt = Pran{zeR?: 4(2) <0,i=1,...,q"%}

(2.7.5)
N{zeR?: (qfq)Tz > qu} ;

wheret; : R* - IR (i = 1,...,¢") are affine functions satisfying (VCP) with
respect taz*« andj is an element of 1,... ,{}. In view of the definition of Algo-
rithm 2.3 we know that the point,x,,, is only different toz ., , if (2.7.4) holds.
In order to prove assertion (i) assume, by contradiction, ff@ntains only a
finite number of elements, i.e., there is an ingdgx IN such that, for each > ¢,

ZPk:q — ZszqO .

It follows that P*s+1 results fromP*« (¢ > qo) by adding valid cuts and executing
a subdivision (see (2.7.5)). Then we obtain, for eachq,

‘Vpkq+1‘ = [Vpra| = 1.

SinceVpr, (¢ € IN) contains only a finite number of points, this is a contradiction
and proves (i), in particular, it shows thats not empty.

Choose next an arbitrary, but fixed indgx I. It follows thatP*«+1 is given
by (2.7.4), and, moreover, that:,,, = z*« and (SDC) is not fulfilled fog*«. We

prove now that, for each € {0, ... , ¢}, there holds
HZPkr — Zpkq+1 ”2 Z pG(Zpkr) , (2.7.6)
which is a stronger result than (2.7.3). Chopse{0,... ,q}andletr €¢ IN,7 < r

be the index such thatp., = z*7, i.e., zpx, Was set in iteratiork. Each point
used for updating p« is added to the sdtp. and, thus, we havep:, € Vir,, .
We distinguish two cases.

If zpx, is still an element o/ ,x, , then we obtain

0 < min qz- 2y = pe(2)} < |lzpre = 2proia 2 = pe(zpr )

pra

since the subdivision criterion (SDC) is not fulfilled fof«. This shows (2.7.6) in
this case.
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If zpr. is Not an element of ., , then we know that there is an index IN,
T <l < gsuchthatpkr. € Vpr, andzpe, ¢ Vpr,, . Thisimplies that in iteration
k; a polyhedronQ® satisfying (PR1) and (PR2) with respectio= zp:, was
constructed. In view of (PR2) it follows that, for eachke P*+1, there holds

[z = zpr[l2 = pe(zpr.) -

PFa+1 is by assumption a subset Bf+1. Thus, (2.7.6) follows also in this case.

Let now { P*s} v be an arbitrary sequence of polytopes with the properties
given in the formulation of the lemma. In view of (2.7.6) we know that each up-
date ofzx,,, by z* leads to a point, which is different from all, (I < ¢).
Therefore, assertion (i) follows immediately by the facts that the special sequence
considered first in the present proof has this property and{th&t} ;v is a sub-
sequence of such a special sequence. We obtain, furthermore, that (2.7.6) implies
(2.7.3). H

With the results of the previous lemma we are now able to prove the postulated
convergence of Algorithm 2.3.

THEOREM2.7.2. Assume that Algorithm 2.3 does not terminate after a finite
number of iterations. Then there holds that each accumulation pgoimdf the
sequencé zpr e IS an optimal solution of Problem (UP).

PROOF Let z* be an accumulation point of the sequereg: } e and let
{zprq }qew e @ subsequence converging:to By passing to a subsequence, if
necessary, we can assume that the corresponding sequehde v of polytopes
is decreasing and, moreover, tiilt-+! is generated by adding linear constraints to
the list of constraints describing*s (¢ € IN). In view of Lemma 2.7.1(i) we can,
in addition, assume that each element of the sequgnee },c is different from
its successor, i.e., there holds, for egch IN,

Pkar1 < pka
and
< pkgt1 7& Z pkq -
From Relation (2.7.3) (Lemma 2.7.1(ii)) we obtain, for egch IN,
l2press = 2prallz > pe(zpry) -

Using the definition ot(z 5+, ) (¢ € IN) and the continuity of the eigenvalue func-
tionals this relation implies, as in the proof of Theorem 2.5.2, the feasibility of
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for (UP). Furthermore, for eache IN, we know that

hTszq < hlke = WUpky = pke < milg W'z < BTz~
zE
wherefF" denotes the feasible region of(UP). This shows the optimality oNote
thatz«, is the optimal solution ofnin, . 5 hT 2 for a polytopeP > P*.  ®

At first glance this convergence result is weaker than the one obtained for Al-
gorithm 2.2 (see Theorem 2.5.2). We only prove the convergence of a subsequence
of {z*}1ew. However, a direct consequence of Lemma 2.7.1 is that at the begin-
ning of an infinite number of iterations we have the situation that the current point
2% coincides with the pointp.. In view of Theorem 2.7.2 this implies that the
values|\1 (U(2%))| and|\,_1 (U (z%))| (k € IN) become arbitrarily small. Thus,
Algorithm 2.3 is also well defined.

We cannot expect that either Algorithm 2.2 or Algorithm 2.3 stop with an
optimal solution of Problem (UP) after a finite number of iterations. In order to
obtain finite algorithms we have to be satisfied wHapproximate solutions of this
problem, i.e., with points € P satisfying

max {\_1(U(2)), ~\(U(2))} < e (2.7.7)

for a given tolerance > 0. If we replace the stopping criterion (SC1) in Algorithm
2.2 and in Algorithm 2.3 by

If A1 (U(2%)) > —e AND \,_1(U(2%)) < e Then, (2.7.8)

then we obtain by considering Theorem 2.5.2, respectively by taking the previous
considerations into account, in both cases a finite approach. From this point of
view, both convergence results — Theorem 2.5.2 as well as Theorem 2.7.2 — have a
comparable quality.

We finish the discussion of solution methods for unary problems of type (UP)
with some numerical results. In the next section we examine, in particular, the nu-
merical applicability of the presented algorithms for solving all-quadratic problems
of type (QP), since this is the main scope of this dissertation.

2.8. Computational Results

Algorithm 2.3 was encoded in C++ with management of the colleckoof
relevant polytopes by so-called AVL-trees. The linear subproblems were solved by
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using the Simplex-Algorithm base@PLEX-5.0code. After solving the first LP-
relaxation of (UP) in the initialization phase of Algorithm 2.3 each new subproblem
results from a previous one by adding some new constraints or by changing some
right-hand sides. For that reason we solved only the initial problem by applying the
primal Simplex-Algorithm. The solution of each subsequent subproblem was de-
termined with the dual Simplex-Algorithm, which is supported by @LEX-5.0

code. This strategy reduced the running-time for solving the subproblems. How-
ever, on the other hand, we needed more storage, since all necessary information
about the current solution, like the dual variables, the slacks and so on, had to be
stored for each polytopE € P. Otherwise, we would not be able to start the dual
version of the Simplex-Algorithm without additional effort.

Apart from the solution of linear optimization problems, other classical prob-
lems can occur in Algorithm 2.3. First of all, we have to calculate eigenvalues of
different matrices. For the construction of the cuts introduced by Ramana we have
to determine the inverse of a matrix (see Section 2.3). In order to obtain a repre-
sentation of the polyhed@” (k € IN) (see Subsection 2.6.3) we need solutions
of linear equations and we need an orthonormal basis describing the linear space
H* — {z*}. In the implementation of the algorithm all these problems were solved
by applying appropriate routines from théAG C-library.

With respect to the choice of possible linear constraints satisfying the valid cut
property (VCP) and in view of the three types of polyhe@’a(k € IN) proposed
In Section 2.6 there is a large number of implementable variants of Algorithm 2.3.
Before discussing the numerical performance of some selected variants we present
a slight modification of the subdivision process, which can lead to a substantial
improvement of the numerical performance of our approach.

2.8.1. A Slight Modification of the Subdivision ProcessIn the subdivision
process in Algorithm 2.3 we construct each new polytBpdi = 1,... ,1; k € IN)
by adding one of the constraints describ{f to the list of constraints describing
P*. Independent of the choice of the polyhed@f this strategy can lead to
overlapping regions, i.e., there can hold

int P NintPF #

forsomei, j € {1,...,l} (seethe Figures 2.4, 2.5and 2.7). This is not reasonable,
since parts of the feasible region of (UP) are examined more than once by using this
strategy. For the correctness of Algorithm 2.3 and Algorithm 2.2, respectively, it
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is sufficient, if the new polytope®® (i = 1,...,l) form a partition of the set
Pi\{zeR*: (¢")Tz<cF,i=1,...,1},ie., if there holds

l
UPF = PP\{zeR: (¢))T2<c,i=1,...,1} D P"\B..

1=1
and, foreach, j € {1,... 1} with i # j,
int P NintPf = 0 (2.8.1)

(see Definition 1.2.1). Property (2.8.1) can be achieved by a slight modification of
the definition of the polytopeB}. If we set, for each indexe {1,... 1},

PkHPkﬂ{zERd:(qf)Tzch,(qf)ngc’;,jzl,...,i—l},

(3

then we obtain that the union of the sé&t§ (i = 1, ... ,[) is the same set as by only
adding the constrainfy*)? z > c¥. And, moreover, these sets fulfill the additional
property (2.8.1) (see Figure 2.8). In Remark 2.6.1 and Remark 2.6.2 we pointed out
that the normals of the hyperplanes describing the hyperdabasd the regulad-
simplicesS*, respectively, do not depend on the iteration couhtdrhus, if one of
these two sets is used in Algorithm 2.3 for the polyhedpénthe subdivision of”

leads only to a change of the right-hand sides of some constraints. Therefore, the
proposed modification is — from a numerical point of view — not expensive and does
not lead to new storage requirements. It does not really matter whether one right-
hand side is changed or up2d. In the case of the third presented polyhedron this
new subdivision strategy leads to growing storage requirements and is numerically
more expensive, since the number of constraints describing a polytopeP is
growing faster. However, in each case we can expect that the elimination of the
overlapping parts results in a more efficient approach for solving (UP).

We applied Algorithm 2.2, i.e., Algorithm 2.3 without additional cuts, for solv-
ing our example problem, where we used the subdivision process with and without
the modification. If we used the hyperculi®sor the polyhedrod)* based on the
modifiedd-simplex, then in both cases the algorithm needed the same number of it-
erations and the same number of linear subproblems had to be solved. For these two
cases the modification led only to a slight increase in the running-time, especially
in the case of)*. Note that by adding more than one constraint in an iteration the
effort for solving the resulting linear subproblems increases faster than by adding
only one constraint. Table 2.1 shows the effort for solving (UPE) with these two
choices of the polyhedro@”. The execution of Algorithm 2.2 was terminated,
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FIGURE 2.8. Modification of the subdivision process applied for (UPE)

iPY

(a) Hypercube R° (compare (b) Regular 2-simplex S°
with Figure 2.4) (compare with Figure 2.5)

T
211

—. 0
=2

(c) Better polyhedronQ® (compare
with Figure 2.7)

if the e-approximate stopping criterion (2.7.8) with= 10~* was satisfied. The
fourth column of this table showing the maximal number of polytopes, which had
to be stored at an iteration of Algorithm 2.2 in the g&tillustrates the storage

requirements of the different approaches.
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TABLE 2.1. Effort for solving (UPE) with Algorithm 2.2

Polyhedron®* Number of Numberof Maximal number Tinde’
iterations solved LP’s ofelementsin  (in sec.)

RF 27 71 28 0.18 (0.18)

QF 16 33 17 0.17 (0.18)

%run on aSUN SPARC 20norkstation
brunning-time for Algorithm 2.2 with modification is given in brackets

That the modification of the subdivision process in Algorithm 2.2 does not
result in an improvement, if we use the hypercubeor the polyhedror)*, de-
pends on the special structure of Problem (UPE). An examination of the iterations
of Algorithm 2.2 without the modification shows that each optimal solutibof
a linear subproblem does not belong to a part of the current poly@pevhich
could be eliminated at an earlier stage of the method by applying the modification.
Therefore, as well with as without the modification, the same work has to be done
in order to solve Problem (UPE).

If we apply the regulad-simplexS*, the numerical performance depends sig-
nificantly on the subdivision strategy used in Algorithm 2.2, as it is displayed in
Table 2.2. In view of the first iteration of Algorithm 2.2 with the polyhedron

TABLE 2.2. Effort for solving (UPE) by applying*

Subdivision Number of Number of Maximal number Time

strategy iterations solved LP’s of elementdin (in sec.)
no modification 1708 5125 1709 16.09
modification 68 183 47 0.56

2run on aSUN SPARC 20w~orkstation

S* this result is not surprising. In Figure 2.5 we see that the optimal solution
z* = (1,—+/2)T belongs to the two non-empty polytop2$ and P{. Therefore,

we know that Algorithm 2.2 without the modified subdivision strategy must gener-
ate at least two sequences of polytopé¥«} ., one starting withPY and one
starting withP, such that the corresponding point sequedegs, },cwv converge

to z*. If we apply the modification;* is contained in only one polytope (see Figure
2.8(b)).
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Taking the large performance difference of Algorithm 2.2 with and without
the modification in the above case into account, we can expect that on average the
modification of the subdivision strategy results in an improvement of the numeri-
cal performance. The extra work we have to do, especially in the ca3é,afan
lead to a substantial reduction of the number of iterations and, hence, of the total
time for solving unary problems. For that reason we examine in the next subsec-
tion the numerical performance only of variants of Algorithm 2.3, which apply the
described modification of the subdivision strategy.

2.8.2. Applicability to All-Quadratic Problems. In the following we dis-
cuss the numerical applicability of Algorithm 2.3 to all-quadratic problems of type
(QP). We saw in Section 2.2 that for each problem of type (QP) there is an equiv-
alent unary problem of type (UP), and, thus, we can solve arbitrary all-quadratic
problems by applying the approaches presented so far. We tried to solve the unary
problems, which result from the previously described transformation (see Section
2.2) of the all-quadratic problems belonging to our randomly generated test set (see
Section 1.5).

At the end of Section 2.7 we pointed out that we have to be satisfied with
e-approximate solutions in order to obtain a finite algorithm. &#approximate
stopping criterion (2.7.8) is usable for arbitrary unary problems. However, if we
apply this stopping criterion, we know nothing about the quality of the determined
solutionz*, in particular, we do not know how far away from the optimal value lies
the calculated valug® = h7z*. If we solve the transformations of all-quadratic
problems, we are able to formulate a stopping criterion such that this quality of
the determined solution with respect to the original quadratic problem can be es-
timated. Before discussing the numerical performance of our approaches, we pro-
pose first this special stopping criterion.

Assume that an all-quadratic problem of type (QP), i.e., a problem with the
form

min 27 Q% + (d°)Tx
2P Qx4+ (d)Tz 4+ <0 l=1,...,p
A9z < b9 (QP)
9 <x<L¢
r € R"
IS given.
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Let, furthermore,
min ht 2
AV < WY
vV <z < LY
n+1 n
Uz) € Upsr , ze RUT)T

(UP)

be the equivalent unary problem resulting from the transformatiorQ#¥) (de-
scribed in Section 2.2. The superscriptand( respectively are used in the same
way as in Section 2.2, and the dimensions of all involved matrices and vectors are
the same as there (see, in particular, pages 23f.).

Set
) 1 1
d := min{ =1,...,p}e, (2.8.2)
[2ll2 " flafll2
wheree is a given tolerance greater thapanda? (I = 1,... ,p) denotes thé-th

row of the matrixAY. Let z* (k € IN) be the current point at the beginning of
iterationk of Algorithm 2.3. Determine an-dimensional point* by setting

TP = sz (2.8.3)

(compare with the definition af in Theorem 2.2.1). I1£* is feasible for UP), then
we know by the same arguments as in the proof of Theorem 2.2.%/thatist be
feasible for QP). Determine, furthermore, d & (”‘QH) + n)-dimensional point
2% indexed in the same mannerzi‘”sby setting

1n—{—1 = \/_xz y Rig (CE?)2 (7’:17 7”)7

(2.8.4)
2y, :\/_xf:c"f (1<i<j<n)

(compare with the definition of in Theorem 2.2.1). Ifc* is feasible for QP),
we know (see again the proof of Theorem 2.2.1) tais feasible for UP), and,
moreover, that the points® and 2* coincide. If we replace the-approximate
stopping criterion (2.7.8) by the following

If |2¥ — 2¥|| < & Then (2.8.5)

with ¢ defined as in (2.8.2), then we obtain a solution method for all-quadratic
problems, which detects in finite time either the emptiness of the feasible region
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of (QP), or delivers a point* such that the corresponding poirft defined as in
(2.8.3) has the properties

(T Qa + (d)Tah + ¢ < e [=1,...,p
A9x < ¥ (2.8.6)
9 <z <L@.

If this pointz* is additionally feasible for@P), it even follows, that the calculated
valueu* and the optimal value ofgP) have a distance not bigger than

Indeed, by replacing the stopping criterion (2.7.8) with (2.8.5) the resulting
algorithm is, first of all, still well defined. In view of Theorem 2.7.2 we know
that each accumulation point of the sequencézp: } e is a feasible point for
(UP). Thus2* defined as in (2.8.4) is equal td. As mentioned at the end of the
previous section we know, furthermore, that in an infinite number of iterations there
holds that the points® andz . coincide. Therefore, we achieve that the Euclidean
distance betweeg® andz* becomes arbitrarily small, i.e, (2.8.5) will be fulfilled
after a finite number of iterations.

If Algorithm 2.2 or Algorithm 2.3 detects the emptiness of the feasible region
of (UP), then the emptiness of the feasible set@®P) follows by the equivalence
between both problems. If one of these algorithms terminates with a gossit-
isfying (2.8.5), it is clear that” defined as in (2.8.3) fulfills the linear constraints
of (QP). This follows by the construction of?, bV, [V and LY. Moreover, by
the special definition of* we achieve, as in the proof of Theorem 2.2.1, that there
holds

(*)TQl* + (@) Tak + ¢ = (P)T2F -V  1=1,...,p (2.8.7)
and
("7 Q%% + (d*) Tk = nTzk. (2.8.8)
The relation (2.8.7) and the feasibility of with respect to the linear constraints of
(UP) imply, for each € {1,... ,p},
(¢9)7 Q" + (d")Ta* + ¢! < (o )T (2F = 2%) < laf|2ll2" = 22 < €.

Hence,z"* fulfills (2.8.6). If ¥ is additionally feasible for@P), it follows with
(2.8.8)

BT — ()T Qh — (d)Ta*| < [hflafl=* — 22 < e



2.8. COMPUTATIONAL RESULTS 75

and

hTZk _ /Jk < Iélll:,% hTZ < hT,ék — ($k)TQO$k + (dO)Txk ’
whereFY denotes the feasible region &J®). This means that® is e-optimal for
Problem QP). With the foregoing considerations we have shown that the stopping
criterion (2.8.5) is a more reasonable criterion than (2.7.8), when we solve all-
quadratic problems of type (QP) via unary problems. If we use (2.8.5), then we
know something about the quality of the calculated paihtwith respect to the
quadratic problem, which we would like to solve.

REMARK 2.8.1. The point* (k € IN) defined as in (2.8.4) leads to a unary
matrix U (2%). Therefore, we know taking Lemma 2.3.1 and Theorem 2.4.4 into
account that there holds

max {A-1(U(2")), =M (U ()} < [l2% = 282 .

This shows that with respect to the definitiondofve need, in comparison with
the stopping criterion (2.7.8), a higher accuracy for the vayes (U(z*)) and
A1 (U(2%)) in order to satisfy (2.8.5).

Our main motivation for considering unary problems were the results of Ra-
mana’s dissertation [RM93, Chapter 7], in particular, his really promising pre-
liminary numerical results. He solved with Algorithm 2.1 large unary problems
with acceptable running-times. However, the affine functibn R? — S,
which he used, had a simple structure. By applying Algorithm 2.1 for solving
unary problems, which result from the transformation of all-quadratic problems
and which, thus, have a complex affine function, this pure outer approximation ap-
proach showed a really bad performance in our computational tests. Even small
unary problems resulting fror@-dimensional quadratic problems could not be
solved in acceptable times. Moreover, this approach induced numerical problems.
In many test problems the algorithm seemed to stick in a point away from an
e-approximate solution. Since the hyperplanes used in this scheme becafta¢ too
the algorithm made small progress and the numerical problems increased. Note
that tooflat hyperplanes can lead to ill-conditioned matrid&’s such that we can
obtain increasing numerical errors, if we do not invest additional effort.

Even though an algorithm based only on the cuts introduced by Ramana showed
a bad performance, his linear constraints can be used in Algorithm 2.3 in order to
accelerate the convergence of this approach. The fact that the use of additional cuts
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in Algorithm 2.3 led to a more efficient solution method for unary problems, was
the first result of our numerical tests. We compared different combinations of the
four valid cuts presented in this chapter. The new cut (2.6.14) did not accelerate
the convergence of Algorithm 2.3 in the most cases, when we used the cuts (2.3.3)
and (2.3.5). The cut (2.3.5) was mostly better than (2.3.4). Consequently, the most
efficient combination of the possible four cuts in our numerical tests was the cut
(2.3.3) for the cas@,,_1 (U(z*)) > 0 and (2.3.5) for\, (U (2*)) < 0.

In the following we compare the numerical performance of Algorithm 2.3 ap-
plying these two cuts with the numerical performance of Algorithm 2.2, i.e., of
Algorithm 2.3 without any additional valid cut. In both approaches we used the hy-
percubesk” developed in Subsection 2.6.1 for subdividing thef2&tif necessary.

The execution of the algorithms was terminated, if the appropriate stopping crite-
rion (2.8.5) was satisfied with defined as in (2.8.2) for a prespecified tolerance

e > 0. Remember that the all-quadratic problems belonging to our test set have
always a non-empty feasible region (see Section 1.5). In order to avoid excessive
storage requirements, and, thus, also in order to avoid excessive running-times we
restricted the maximal number of polytopEs which had to be stored at an iter-
ation in the collectiorP. In the case of Algorithm 2.2 this maximal number was
100, 000. Since the storage requirements increase, when additional cuts are used,
we reduced this number &, 000 in the case of Algorithm 2.3.

TABLE 2.3. Comparison of the numerical effort for solvidg
dimensional all-quadratic problems with the accuracy 0.1

Algorithm  NuP  ANuLP MNuLP ATime MTime ACol MCol

p=1

2.2 42 142,377 52,224 103.5 38.7 24,853 18,499

2.3 50 26,914 1,304 96.9 2.63 2,931 404
p=2

2.2 42 148,956 66,168 123.9 51.7 24,708 18,901

2.3 50 14,015 497.5 51.9 1.08 1,235 145
p=3

2.2 42 98,574 95,566 83.9 79.1 23,724 19,034

2.3 50 4,787 746.5 12.2 1.54 789 199.5
p=4

2.2 41 121,551 72,285 102.8 61.1 25,688 17,744

2.3 50 7,423 1,398 19.5 2.96 1,038 294
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Table 2.3 and Table 2.4 display the numerical effort, which the two described
approaches needed in order to solveifhé-dimensional unary problems resulting
from the transformation of ou2-dimensional quadratic test problems. We use
the abbreviations NuP for the number of test problems, which could be solved
by the two methods within the given storage capacities. ANULP is used for the
average number of linear problems, which had to be solved during the execution of
each algorithm. ATime stands for the average running-time in seconds, and in the
column ACol we display the average maximal number of elements, which had to
be stored in the collectio®. The three columns with MNuULP, MTime and MCol
show the corresponding values of the medians. Note that in the calculation of the
average values and of the medians we considered only the problems, which could
be solved within the given storage capacities. All numerical test discussed here,
were run on &SUN ULTRA 60workstation.

TABLE 2.4. Comparison of the numerical effort for solvidg
dimensional all-quadratic problems with the accuracy 0.01

Algorithm  NuP  ANuLP MNuLP ATime MTime ACol MCol

p=1
2.2 34 225,822 108,570 157.2 86.4 34,896 34,749
2.3 49 56,341 2,841 197.5 6.6 5,555 768
p=2
2.2 36 173,958 138,446 143.5 109.8 34,656 34,607
2.3 49 14,699 1,007 49.0 2.11 1,473 260
p =
2.2 32 204,578 163,942 175.2 139.3 40,597 40,361
2.3 50 11,920 1,752 35.2 3.51 1,954 4015
p=4
2.2 30 150,128 126,474 131.1 1104 32,695 32,762
2.3 50 17,351 2,725 53.8 6.10 2,505 532

It is obvious that Algorithm 2.3 with the additional cuts is the more efficient
approach for determiningapproximate solutions for our test problems. In almost
all cases this approach was significantly faster and, moreover, with this algorithm
we were able to solve the most problems within the given storage capacities. Algo-
rithm 2.2 did not terminate with a solution in one third of the test problems, if an
accuracy ok = 0.01 was required. In both approaches there is a great difference
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between the average values and the medians. This makes clear — even though these
approaches, in particular Algorithm 2.3, showed a rather good performance in at
least50% of the solved test examples (see the medians) — there were some exam-
ples, where we needed a huge effort in order to determine a solution. Thus, our
approach did not show a good performance on average, particularly in comparison
with the simplicial branch-and-bound method for all-quadratic problems, which we
will develop in the next chapter.

An advantage of the presented approach is that the solution effort does not
depend on the number of quadratic constraints, as it will be the case for the
method described in the next chapter. This is due to the fact that the effort for
solving a unary problem does not depend on the number of linear constraints. The
structure of the affine matrix mapping is decisive.

Another interesting result of our numerical tests was that the subdivision pro-
cess used in Algorithm 2.3 had a regularization effect in the following sense. We
have mentioned that Algorithm 2.1 can lead to numerical problems, if the hyper-
planes used there get tdlat. In Algorithm 2.3 we used the same construction
rule for the additional cuts, but the subdivision of the current polytBpewhich
was enforced, if the additional cuts became $ballow avoided such numerical
problems. From this point of view, Algorithm 2.3 was numerically more stable.

We have seen that the additional use of valid cuts in Algorithm 2.3 is reason-
able, since we obtain a significant speedup of our solution method. Our numerical
experience also showed, that on average the additional cuts (2.3.4) and (2.6.14)
only increased the running-time of Algorithm 2.3. It is hence not cogent that each
affine function satisfying (VCP) accelerate the convergence of this approach. An
appropriate combination of valid cuts is decisive. This should be considered, when
new cuts are developed in order to improve the performance of Algorithm 2.3.

We still have to examine, which choice of the polyhed@h leads to the
most efficient algorithm. For this aim we also tried to solve 2hdimensional all-
quadratic test problems using the regulasimplex S* and using the polyhedron
Q". The corresponding results together with the effort of Algorithm 2.3 using
the hypercubegt”* are presented in Table 2.5 and Table 2.6. We use the same
abbreviations as in the foregoing tables. The additional columns ACon and MCon
display the average and the median of the maximal number of linear constraints,
which were needed for describing an elemé&nof P. These facts together with
the columns corresponding to the maximal number of elements contairiéd in
give us more insight into the real storage requirements. The more constraints we
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TABLE 2.5. Comparison of the numerical effort for solvidg
dimensional all-quadratic problems with the accuracy 0.1

QF NuP  ANuLP MNuLP ATime MTime ACol MCol ACon MCon

R 50 26914 1,340 969 263 2,931 404 61 54
Sk 45 37,721 22237 266 9.36 2578 323 151 164
QF 46 27,273 2980 226 1342 3226 643 159 156

RF 50 14,015 497.5 51.9 1.08 1,235 145 54 43.5
Sk 48 12,612 814.5 89.5 3.09 1,034 1475 1326 1135
QF 49 15,421 1,176 133 4.11 1,631 300 146 111

RF 50 4,787 746.5 12.2 1.54 789  199.5 49 50.5
Sk 50 13,622 1530 98.8 5.74 1,343 1935 134 126.5
QF 50 11,756 1,319 80.3 5.28 1,689 299 124 126

RF 50 7,423 1,398 195 2.96 1,038 294 58 56
Sk 49 14,796 1,804 93.8 8.08 1,522 330 154 149
QF 50 14,668 1,915 96.4 8.44 1,963 341 155 161

need for the description of a polytogéthe more storage is used by this set. As
in the runs of Algorithm 2.3 using the hypercubies, we restricted the maximal
number of elements belonging @. By applying S* or Q* we usep = 1 or

1 in the subdivision criterion (SDC). These numbers are smaller

P = Ja—nzt1

than Ld, which is used fop in the case ofR*. Thus, we know that subdivisions

are more rarely enforced and that the number of constraints describing an element
of P and consequently the storage size of such an element can increase faster. For
that reason we restricted the maximal number of polytopé3 ia 20, 000, when

using the regulad-simplex.S* or the polyhedroi)” in Algorithm 2.3.

The numerical results presented in the Tables 2.5 and 2.6 definitely show that
Algorithm 2.3 using the hypercubd®" is more efficient than the same approach
usingS* or Q*, at least with respect to our test problems. This seems to depend on
the fact that by using* a bigger part of the current polytog? can be eliminated.

Note that the volume aR* ¢ IR¢ is given by
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TABLE 2.6. Comparison of the numerical effort for solvidg
dimensional all-quadratic problems with the accuracy 0.01

QF NuP  ANuLP MNuLP ATime MTime ACol MCol ACon MCon
p=1

RF 49 56,341 2,841 1975 6.60 5,555 768 74 71

Sk 40 45,923 2,600 3724 135 2,632 4585 167 1705

QF 40 28,680 3,501 261.6 17.3 3,178 807 174 1745
p=2

RF 49 14,699 1,007 49.0 211 1,473 260 64 55

Sk 48 26,494 2,209 2216 856 2,010 343 168 144

QF 48 25035 2,645 149.8 1094 2,578 491 191 1505
p=3

RF 50 11,920 1,752 35.2 351 1,954 4015 64 62

Sk 48 22,820 2,930 177.2 120 2,441 3935 160 1655

QF 48 18,217 2,088 1359 9.54 2,764 457 163 1735

RF 50 17,351 2,725 53.8 6.10 2,505 532 75 72.5
Sk 47 25,994 3,801 207.7 16.2 2,805 554 192 195
QF a7 22,226 4,382 191.7 25.5 3,114 809 201 213

whereas the volume of the regutasimplexS* is

Vid+1 d+1 ‘ e\ (VAT 1)+
Vst = g e | = (E/g) !

(see, e.g., [GKL9I5]). This implies that the volume$f is smaller than/ (R*)

and, moreover, that’ (S*) is decreasing faster with respect to the dimension
thanV (RF). The advantage of the larger volume ®f seems to be greater than

the disadvantage of the higher number of hyperplanes, which are necessary for
describingRF.

Whether the use of the regular simplgx or the use of the theoretically better
polyhedronQ” (see Theorem 2.6.5) leads to a more efficient approach cannot be
answered definitely. Even though Algorithm 2.3 usipywas always faster on av-
erage — except fgr = 2 ande = 0.1 — a comparison of the corresponding medians
does not show a unique result. The same is true for the number of subproblems,
which had to be solved during the execution of our method. Note that the average
values as well as the medians were calculated with respect to the number of solved
problems. Thus, these values are not directly comparable, when different numbers
of problems were solved. For example, in the case 4 ande = 0.1 (see Table
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2.5) we obtain foiQ* an average number afl, 743 LP’s and an average running-
time of 76.13, considering only thd9 test problems, which were also solved with
Sk,

With respect to the storage requirements we see that Algorithm 2.3 85iisg
a better solution scheme. We needed less polytépaisd we needed additionally
less constraints for describing these sets. Note that by $4imgd the correspond-
ing value forp the subdivision criterion (SDC) is more seldomly satisfied, such that
less splittings ofP”* are necessary. Note, furthermore, that by ug¥ighe number
of constraints determining a polytog®* increases also i* is subdivided. By
using R* and S* this number only grows, when the additional cuts are used (see
Remark 2.6.1 and Remark 2.6.2).

Using S* andQ* the numerical results show again a high difference between
the average values and the medians. The reason is the same as in theR%ase of
In at least50% of the test problems both approaches showed an acceptable per-
formance. However, there were numerical outliers, which destroyed the average
performance of our algorithm. In view of the presented computational results we
have to recognize that the use of the polyhegfadid not have the expected suc-
cess. The extra work for determining a better inner approximation polytope for the
eliminable part ofP* did not result in a substantial improvement of the numerical
performance of Algorithm 2.3. The easiest set, i.e., the hyper®ibshowed the
best numerical results.

Comparing the presented results with the numerical performance of the solu-
tion method for (QP), which we develop in the next chapter, Algorithm 2.3 is —
even withR* — not a good approach for solving all-quadratic problems. For an ac-
curacy ofe = 0.01 and quadratic problems of size= 2 andp = 4 we needed on
average3.8 seconds. This bad performance boosted, if we tried to solve higher di-
mensional problems. In Figure 2.9 the numbers of3damensional all-quadratic
problems are displayed, which could not be solved within the given storage capac-
ities by Algorithm 2.3 using the three discussed possibilitiesfbrand the poor
accuracy = 0.5. The transformed unary problems had the dimenSiofihere-
fore, we reduced the maximal number of polytopes, which could belong to the set
P. When usingR*, we allowed20, 000 elements. In the cases 8f andQ* we
restricted this number td0, 000. The corresponding minimal running-times, i.e.,
the fastest time after which Algorithm 2.3 was terminated since the storage capac-
ity was exceeded, are given in seconds in Table 2.7. Considering this table it is
not reasonable to increase the storage capacities in order to solve more problems.
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FIGURE 2.9. Number of3-dimensional all-quadratic test prob-
lems where Algorithm 2.3 exceeded the given storage capacity

used
Tk polyhedron

Number of quadratic constraints

TABLE 2.7. Minimal running-times of unsolvegidimensional
all-quadratic problems with = 0.5

p=1 p=2 p=3 p=4 p=5 p=6
RF 1259 122.2 139.9 147.2 303.8 433.7
Sk 503.6 473.1 440.4 431.8 549.4 586.9
QF 280.1 3345 301.2 321.7 348.3 4145

A running-time of at leas2 minutes for one of the still unsolvegidimensional
quadratic test problems is indeed not acceptable.

The last computational results demonstrate the, maybe, biggest disadvantage
of the attempt to solve all-quadratic problems of type (QP) via unary problems. The
transformation of the quadratic problems leads tcegplosionof the dimension
of the resulting (UP). Even for &dimensional (QP) we obtain &dimensional
unary problem. If we recognize, furthermore, that the numerical applicability of
general global optimization methods based on cutting planes or on branch-and-
bound techniques is limited to problems in small spaces, it is not surprising that
Algorithm 2.3 is not able to solve all-quadratic problems in dimensions higher than
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3, at least that Algorithm 2.3 is not able to solve such problems with acceptable
effort.

Algorithm 2.3 has still a lot of features, which could be changed. We could try
to develop new valid cuts. We could use other valueg of (SDC) (see Remark
2.5.2) in order to change the number of subdivisions or instead we could look for
other polyhedra. Nevertheless, in view of the previous considerations, it is unlikely
that the solution of all-quadratic problems by using unary problems is a practicable
way. In the next chapter we will see that a direct solution method for all-quadratic
problems can have a significantly better numerical performance.
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CHAPTER 3

A Simplicial Branch-and-Bound Method for Solving
Nonconvex All-Quadratic Problems

In this chapter we will discuss a direct approach for solving nonconvex all-quadratic
problems of type (QP). In the introduction (see Section 1.3) we pointed out that the
most solution approaches for Problem (QP) proposed in the literature were devel-
oped for more general problem classes containing (QP) as a special instance. To the
author’s knowledge there is up to now only one approach considering directly the
general nonconvex all-quadratic problem. This approach presented by Al-Khayyal
et al. [AKLV95] is a rectangular branch-and-bound scheme.

The simplicial branch-and-bound method for solving (QP), which we will in-
troduce and examine throughout the present chapter, use the same basic concepts
as this rectangular scheme. This new solution method shows a significantly bet-
ter computational performance than the indirect scheme presented in the foregoing
chapter. Moreover, this simplicial branch-and-bound algorithm often also outper-
forms the rectangular approach by Al-Khayyal et al.

3.1. Introduction

As in the introduction of this thesis we define (usidty = 0), for each
1 €{0,...,p}andz € R",

¢'(z) == 27 Q'z + (d)Tx + ',

such that (QP) can be written as

0 [=1,...,p (QP)

85
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Apart from the general assumptions for Problem (QP), like the symmetéy of

(Il =0,...,p) and the boundedness of P, we assume in this chapter that, for each
| € {0,...,p}, realn x n matricesC’ and D' are known with the following
properties

C' is positive semidefinite,

D' is negative semidefinite
and
Q' =C'+D'.

If we denote by
p(B) = max{|\|, A eigenvalue oB}

the spectral radiusf a realn x n matrix B, then it is easy to see that := p'E

andD! := Q' —p'E (1 € {0, ... ,p})is a possible choice for these matrices, where

E is then-dimensional identity matrix ang is a real value not smaller thaQ?).

Note that matrix norms like the Frobenius norm (see Section 2.4 0r$4]) are

upper bounds for the spectral radius, and hence we can use such norms for the

calculation ofo’ (I € {0,...,p}). Another possible way in order to obtain matrices
C' and D' with the required properties is the spectral decomposition (see, e.g.,
[JRA93)).

As mentioned before, the simplicial branch-and-bound algorithm to be intro-
duced in this chapter uses the same basic concepts as the rectangular approach
proposed in [AKLV95]. For a given hyperrectangle Al-Khayyal et al. construct
an LP-relaxation of (QP) by applying the known convex envelope [AKF83] of
the two-dimensional bilinear functiomy on a rectangle (for details we refer to
[AKLV95], see also Subsection 1.3.4). The resulting relaxations are linear pro-
grams withn + (p + 1)n variables and.(p + 1)n + p + m constraints.

If an n-simplex is used instead of a hyperrectangle, it is possible to construct
an LP-relaxation of (QP) with respect to this simplex having onlariables and
p—+m+n+ 1 constraints. How this can be done, is described in Section 3.2. Using
this LP-relaxation of (QP) we derive in Section 3.3 a simplicial branch-and-bound
method for solving (QP). This approach has the same theoretical properties as
Al-Khayyal et al.’s rectangular scheme. In Section 3.4 we show that our method
stops after a finite number of steps, if no feasible point exists. For thefcas®
the subsequent convergence theorem guarantees that each accumulation point of
the point sequence generated by our approach is an optimal solution of Problem
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(QP). By accepting approximate solutions for Problem (QP) this convergence result
enables us to ensure finiteness of our simplicial branch-and-bound approach. We
complete the examination of our new method in Section 3.5 by reporting on results
on a computational comparison of our simplicial algorithm with the rectangular
algorithm of Al-Khayyal et al. The content of the present chapter was published in
[RAB98], except the numerical results and the new feature in Subsection 3.5.3.

3.2. A Linear Programming Relaxation over ann-Simplex

LetS = [vo,...,v,] C IR" be ann-simplex with the property that the inter-
section of this simplex with the polytogeof Problem (QP) is not empty. Consider
now the all-quadratic problem (QP) with the additional constraint that each feasible
point belongs ta, i.e., consider the problem

min ¢°(z)
d(x) <0 I=1,...,p (QP)
rePNS.

Denote byiVs then x n matrix with the columns:; — vg) (: = 1,... ,n) and let

B" :={AeRY : >, \; <1} be astandard-simplex. For each € S there
Is a uniquely determined elemekt B™ such thatc can be represented by

r = vg+ WgA. (3.2.1)
Using this substitution fox € S we can rewrite Problem (G as

min (Ws )T Q WeA + (d)T W + 2
(WsNT QWA+ (d)TWsh+cs <0 1=1,....,p
AW < b— Avg
A€ B,

QP

where, forl € {0, ... ,p},
dy = d +2Q, ¢ R"
and

cy =+ v Qo+ (d) vy € R.
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In view of the properties of the matricég andD' (I € {0, ..., p}) we know that,
for eachl € {0, ... ,p}, the functionz : B® — IR

5(\) = (WsN)T QWA + (ds)T We + ¢
can be split into a convex and a concave part
s(N) = WsA)TD'WA + (d5) "W + ck + (WsA)TC'We .

concave omB™ convex onB™

We are interested in an affine functiﬁp : B" —= R (I € {0,...,p}), which
underestimateg,, on then-simplexB™. As in the rectangular branch-and-bound
algorithm in [AKLV95] we use the concept of the convex envelope. It is known
(see Subsection 1.2.4 or [HPT95, Theorem 1.22]) that the convex envelope of
a concave functiog on ann-simplex.S is the uniquely determined affine func-
tion, which coincides in the vertices 6f with g. Therefore, we obtain, for each
1 €{0,...,p}, that the linear functiopl, : B — IR

n

Ps(A) = Y Ai(vi —v0)T D (v — o)

1=1

is the convex envelope of the concave functjdiis \)” D!Ws\ on then-simplex

B™. Using the properties of the convex envelope (see Definition 1.2.3) and the
positive semidefiniteness of the matric€s (I = 0, ... ,p) it follows, for each

A€ B"andl € {0, ... ,p}, that

cjlg()\) = (Ws)\)TDlWS)\ + (dg)TWS)\ + CZS + (Ws)\)TClWS)\

> 0 (N) + (d)TWsA + ¢k + 0 = I5(N) .
|.e., neglecting the convex part @f and underestimating its concave part with the
convex envelope we obtain the required affine functign/ = 0,...,p). Us-

ing these affine underestimating functions we obtain an LP-relaxation of Problem
@)
min £%(\)
(N <0 I=1,...,p (F)g)
AWgA <b— Avg
A € B".
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REMARK 3.2.1. If we do not omit the convex part of the functiogls
(I=0,...,p), then we obtain, for eache {0,... ,p}, with
gs(\) = ¢s(N) + (ds) " WsA+ cg + (WsA) " C' WA
a convex quadratic function, which also underestimagfesn the set3”. The use

of these functions would lead to a convex relaxation of Prob@—ﬁﬁgﬁ. Simplicial
branch-and-bound algorithms using convex relaxations instead of LP-relaxations
will be considered in Chapter 4.

The matrixWy is regular, by construction. Using the resubstitution
A= W§1(33 — )
we see that Problenh__PS) IS equivalent to
min £%(z)
() <0 1=1,...,p (LP%)
rePNS§S,
where, for each € {0, ... ,p}, the functiontl, : R™ — IR

ls(x) = Y (W5t (z —w0)), (vi — vo) " D' (v — vo) + (dis)" (& — vo) +
=1
Is the convex envelope of the concave quadratic function
ql(x)-—-(x-—-UO)T(lex-—-vo).
Note that the convex envelope of the sum of an arbitrary fungtiand an affine

function/ on a convex set’ is justp + ¢, whereyp is the convex envelope gfwith
respect to the seft.

REMARK 3.2.2.

(a) From an implementational point of view the previous resubstitution is not
reasonable. Problenﬁ(’s) is easier to solve, since we do not need to cal-
culate the inverse off’s and the constraints describirgf* are explicitly
given, wherea$' is only described by its vertices. Therefore, in the imple-
mentation of the algorithm presented in Section 3.3 we used Proﬁé%) (
in order to determine a lower bound for the optimal value of {RAProb-
lem (LP°), i.e., a formulation of the LP-relaxation of (QFin the z-space,
is only needed for the subsequent theoretical analysis.
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(b) The LP-relaxation (LP) of (QP°®) is not uniquely determined, since it de-
pends on the numbering of the vertices of theimplex.S. Note that the
function ¢ and the affine underestimating functié (I € {0,...,p})
coincide in the vertex, of S.

(c) Let S = [dg,...,0,] be ann-simplex contained in the:-simplex
S = [vo,...,vn]. Itis a known fact [HPT95, Theorem 1.23] that the
function values of the convex envelope of an arbitrary functiory on the
set S must be greater than or equal to the function values of the convex
envelopepgs of g with respect to the larger sét If there holdsyy = vy,

then, for eacth € {0, ... ,p}, we know that?fé, and/’, are convex envelopes
of the functiong!(z) — (z — vo)¥ C'(z — vo) and thus it follows, for each
x €S,

Ui(z) > ls(x) . (3.2.2)

In this case we know that the optimal value of é.)FPs not smaller than the
optimal value of (LP). If the vertexo, does not coincide withy, Relation
(3.2.2) is no longer guaranteed, and we do not know how the optimal values
of (LP®) and (LF®) are related.

In order to prove the convergence of the simplicial branch-and-bound method
introduced in the next section we will need a relation betweerstheof a given
n-simplex.S and the maximal distance between the functiband the underes-
timating function¢y, (I € {0,...,p}) on this simplex. The subsequent lemma
shows that this maximal distance is bounded from above by a term depending on
the diameter of the simpleX.

LEMMA 3.2.1. Let d%(S) denote the squared diameter of thesimplex
S = [vo,...,vn), i.e.,d*(S) = max{||v; — vj||3 : 4,5 € {0,...,n}}, and let
p(CY) andp(D') be the spectral radius @’ and D', respectivelyl(c {0,... ,p}).
Then, for eacli € {0, ... ,p}, there holds
max |¢'(x) — Cs(z)] < d*(S) (p(C") + p(DY)) . (3.2.3)
PROOF Choose an arbitrary, but fixed indéxe {0,...,p} and an arbi-
trary, but fixed element of S. Then there exists a uniquely determinegde B™
(see (3.2.1)) withy! (z) = ¢5(\*) and/l(x) = ¢5(A\®). In Subsection 1.2.4 we
pointed out that the concave envelope of a convex function am-simplex.S is
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the uniquely defined affine function coinciding with this convex function in the ver-
tices of S. Therefore, we know that the linear functigfy : B” — IR, ¢L()\) =
S Ai(vi—v0)T C(v;—wy) is the concave envelope (/s A\) T C'Wg A on then-
simplexB", and hence there holds thal is an overestimator fqiVs \) T C!Ws A

on the setB™. Using the negative semidefinitenesg¥fit follows

' (@) = Ls(@)] = gs(A") — L5 (A7)
= (WsA")"C'WeA" + (WsA")T D' Wi X* —ls(X*)

\ -

~

<yl (A7) <0
< Z)\f(vi — UO)T(C'l — Dl)(vi — ) .
i=1

The spectral radius is a matrix norm on the sp&geof symmetric reahn x n
matrices. Moreover, this spectral radius norm is compatible with the Euclidean
vector norm. Using these facts we, furthermore, obtain

' (z) = £s(2)] < Y AFflvi —voll2p(C" = DY)l = voll2

1=1

IN

P(S)p(C ~ DY) oA

——
<1

< &) (p(C) + p(D") -

Sincez is an arbitrary element &, Relation (3.2.3) follows readily. |

As a direct consequence of this lemma we know that the maximal distance be-
tweeng' and/s, (I € {0, ... ,p}) tends ta), if the simplexS shrinks to a singleton.
This is not surprising sinc¢ and¢}, coincide by construction at least in the vertex
vo of S (see Remark 3.2.2(b)).

REMARK 3.2.3. Ifthe matrice€ andD! (I = 0, ... , p) were constructed by
a spectral decomposition af)!, then it is possible to prove that, for each
[ € {0,...,p}, there holds

p(C' = D') = p(Q").
In this special case we can replace, for eaeh{0, ... , p}, the right-hand side of
(3.2.3) byd?(S)p(Q)).
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The simplicial branch-and-bound algorithm, which we present in the next sec-
tion, will use the LP-relaxation (LH) of (QP®) in order to calculate a lower bound
for the optimal value of (QP) with respect to a giveisimplexs.

3.3. A Simplicial Branch-and-Bound Algorithm

In the introduction of this thesis (see especially Subsection 1.2.2) we pointed
out that we need a relaxatig#® > F in order to start a branch-and-bound ap-
proach. Of course we would like to start with arsimplexS® > F. Since we as-
sumed thaf’ is a non-empty full-dimensional polytope, we know that there always
exists an-simplexS° O P (see, e.g., [HPT95, pages 145f.] for the construction
of such sets), which we can use as a start relaxatidn af P.

In the previous section we have seen, how it is possible to calculate a lower
boundy(S) for the optimal value of (QP), at least if the feasible region of (QP) is
additionally restricted to an-simplexS. Upper bounds for the optimal value can
be obtained as usual by considering feasible painds F', which were generated,
for example, during the solution of the LP-relaxation f)PThe function value of
¢ at each feasible point ¢ F is obviously an upper bound for the optimal value
of (QP).

Apart from the start relaxatiof® > F and the knowledge of the construction
of lower and upper bounds with respect to the used subdivision sets, we need finally
in order to formulate a branch-and-bound scheme (see again Subsection 1.2.2) a
rule for refining a considered-simplex. We use the so-calléasection, where an
n-simplex.sS is split into two subsimplice§:, So C S by a radial subdivision with
respect to the midpoint of the longest edgeSofas we will see in the formulation
of the algorithm (see also Definition 1.2.2). This subdivision rule was introduced
in [HoR76] for branch-and-bound algorithms based on simplices and will ensure
In connection with the result of Lemma 3.2.1 the convergence of the presented
approach. The following algorithm is formulated according to the guidelines of a
basic branch-and-bound scheme given in [HPT95, Algorithm 3.5].

ALGORITHM 3.1 (Simplicial Branch-and-Bound Algorithm for (QP) ).
Initialization
Determine am-simplexS® = [v, ... ,v2] with S > P.
FLPgo — {z € S'NP:l(x)<0,l=1,...,p}
If F'LPso = () Then
STOP« True (F = ()
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Else
Solve the linear optimization problem (LB)in e rzp,, £%0(2). Letw(S°)
be an optimal solution and(S°) = (%, (w(S)) be the optimal value.
p° — u(S%), P — {S°}

If w(S° € F Then
Q — {w(S)} 0" — ¢®(W(SY)), 5 — w(SY)

Else
Q0,1 « oo
EndIf
STOP«+— False k& +— 0
EndIf
While STOP= False Do
If n* = pu* Then (SC)
STOP« True (z is an optimal solution of (QP))
Else
Determine indices$, i; € {0, ... ,n} satisfying
loh, — ok 13 =, max o} —of|3
and set
Sk =k, ... ,vﬁ)_l,mk,v,ﬁ)Jrl,... , k],
S§ = [vlg, . ,Ufl_l,mk,vflJrl, . ,vfl]

with m* = S (vF +0F ), i.e., splitS* into S} and.S% by bisection.
For =1 To 2 Do
FLPgx —{z e SiynP:l,(x)<0,l=1,...,p}
If FLPg. # 0 Then
Solve the LPninzcrrp,, E%? (). Letw(Sj’:") be an optimal solution

J

andfi(S}) = E?s*;? (w(S})) be the optimal value.
u(S%) — max{u(s"). a(S})) (LBR)
If w(SF) e F Then Q — QU {w(SF)}
P — PU{Sk}
EndlIf
EndFor
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P —P\{S"}
If @ +#( Then
n* !« mingeq ¢° (), chooser; € Q with n*+1 = ¢%(zy)
Else
ket
EndIf
P—P\{Se€P:ulS) >nktt} (PR)
If P #0 Then
pFtt — mingep p(S), chooseS 1 ¢ P with pFt! = p(Sk+1)
Else
If Q+#0 Then
s k1
Else
STOP« True (F = ()
EndIf
EndIf
k—k+1
EndIf
EndWhile

<—T/k

0

REMARK 3.3.1.

(a) We know by construction that(.S) is a lower bound for the minimal value
of ¢° on the setF" N S. n* (k € IN) is constructed such that this value is an
upper bound for® on the whole feasible sét. Therefore, there holds that
a simplexS € P with the property:(S) > n**! cannot contain a feasible
pointz € F satisfyingq"(z) < ¢°(x¢), and hence we can eliminate each
of these simplices in theruning rule(PR).

(b) The pruning rule (PR) can only be successful, if the(@as not empty,
since otherwise we would havg™ = co > u(S) (S € P). Note that it
Is possible that after a finite number of steps Algorithm 3.1 never detects a
feasible point, what means th@tcould always be empty.

(c) If the partitionP is empty after the execution of (PR) andJfis not empty,
then it is obvious that the upper boun®! < oo is also a lower bound for
the optimal value of (QP).
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(d) Because of the formulation of the pruning rule (PR) with''instead of
">"there holds at the beginning of iteratiénfor eachS € P, u(S) < n*
and hence* < n*. This implies that the stopping criterion (SC) can only
be fulfilled in iterationk > 2, if P is empty and?) is not empty at the end
of iterationk — 1.

(e) In view of Remark 3.2.2(c) we do not know whether the optimal value

A(S%) = 9, (w(S%) (k € IN; j = 1,2) of Problem (LP?) is in each
case not smaller than the lower boynd*). However, by setting

p(S7) = max{p(S*), a(sy)}
in the lower bounding rule (LBR) in Algorithm 3.1 we obtain a value, which

is of course also a lower bound for (éﬁ:) (k € IN; 57 = 1,2). Moreover,
these values satisfy, for eaghe IN,

min{ u(SY) , p(93)} > u(S*). (3.3.1)
This guarantees that the sequefigé} . is non-decreasing.

The polytoped’ L Pg are relaxations of the portion of the feasible Baif (QP)
contained in the simpleX. Algorithm 3.1 can stop by detecting the emptiness’of
only, if all considered simpliceS lead to empty relaxation8 L Ps. Thus we know
that F' is really empty in this case, since we start withragimplexS® > F. The
construction ofu* (k¥ € IN) as the minimal value of the lower boungdéS) of all
n-simplicesS € P, which were not pruned till iteratioh — 1, guarantees that this
value is a lower bound for the optimal valueg@fwith respect to the whole feasible
regionF'. If Algorithm 3.1 stops after a finite number of steps with a solutign
we obtain hence

(z5) = 7" = pF < ming’(z) < ¢°(xy),
xEF

showing the optimality ofc ¢ for Problem (QP). It follows that Algorithm 3.1 is
well defined, as long as this approach terminates after a finite number of iterations.
The proof of the correctness of our method in the infinite case is the content of the
next section.

3.4. Convergence

In Algorithm 3.1 we used bisection as a subdivision rule for the current simplex
S* at iterationk € IN. This rule has the property that, for each infinite nested
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sequencég S?},cv of simplices generated by using this rule, there holds
d*(SY) — 0 (¢ — o0) (3.4.1)

(see, e.g., [R76, KEAT8]). This special property of the bisection in connection
with the result of Lemma 3.2.1 enables us to prove that in the infinite case each
accumulation point of the sequenfe(S*)} e generated by Algorithm 3.1 is

an optimal solution of Problem (QP). This will be the result of the Convergence
Theorem 3.4.2. At first, however, we need an additional lemma in order to establish
this convergence result. In this lemma we show that the feasible réga(QP)
cannot be empty, if Algorithm 3.1 does not stop after a finite number of iterations.

LEMMA 3.4.1. Algorithm 3.1 stops after a finite number of iterations, if no
feasible point for Problem (QP) exists, i.e. Fif= (.

PROOF Assume thaf is empty and define the functidn: R” — IR by

F(x) = l:rgle.ljgpql(a:) :

F'is a continuous function and hence attains its minimum over the compaet set
SinceF = {z € P: F(z) < 0} is empty we know that there exists a positive real
valued satisfying

in F'(z) > 6. 4.
rmneljrle(x) > 4 (3.4.2)

Assume now, by contradiction, that Algorithm 3.1 generates an infinite sequence
{S*} e of n-simplices. It follows that there must exist an infinite subsequence
{S*a} e of {S*} e With the properties that, for eaghe IN, there holds

Shat1 < Gha (3.4.3)
and
FLPg, # 0.

In view of Property (3.4.1) of the bisection, we obtain from (3.4.3)
d?(S*) — 0 (@ — 00) . (3.4.4)

Choose a real valugwith
- 1
0<d<d )
max_(p(CT) + (D))

l=1,...,p




3.4. CONVERGENCE 97

From (3.4.4) we see that there must be an ingex IN such that, for each > qq,
there holds

d?(Sk1) < 4.

Due to Lemma 3.2.1 we hence obtain, for each> ¢o, | € {1,...,p} and
x € FLPgi,,

¢'(z) = ¢'(z) = lgu, (x) + Ly, (2)
<0

< d*(S%) (p(C") + p(D")) < 5 (p(C") +p(D")) < 4.

We know thatF'L Pgr, (¢ > qo) is not empty and, moreover, that each element of
this set belongs t@. Thus, from the previous relation it follows, for eagh> qq
andz € F'LPgx,,

F(z) < 6,

contradicting — in view of (3.4.2) — the emptiness assumptiofor |

If Algorithm 3.1 does not stop after a finite number of iterations, then we know
in view of the previous lemma that the feasible regionf (QP) is not empty and
hence that a finite optimal value of Problem (QP) exists. With this result we are
now able to prove the convergence result mentioned before.

THEOREM 3.4.2. If Algorithm 3.1 generates an infinite sequed&& } e of
simplices, then every accumulation paint of the corresponding point sequence
{w(S*)}ren is an optimal solution of Problem (QP).

PROOF. Due to Lemma 3.4.1 we know that there exists an optimal solution
of Problem (QP) with optimal valug’ (z*). Since the current simple%* (k € IN)
is chosen such that*