
Nonconvex All-Quadratic Global
Optimization Problems:

Solution Methods, Application and Related Topics

Dissertation

zur Erlangung des akademischen
Grades eines Dr. rer. nat.

Dem Fachbereich IV der Universität Trier
vorgelegt von

Ulrich Raber

Trier, 1999

Eingereicht am 31. Mai 1999

1. Berichterstatter: Prof. Dr. Reiner Horst
2. Berichterstatter: Prof. Dr. Immanuel Bomze

Tag der mündlichen Prüfung: 14. September 1999

Acknowledgments

At this place I would like to thank my family, friends and colleagues, who have
contributed to a successful completion of this thesis.

First of all I am very indebted to Prof. Dr. Reiner Horst. He proposed the topic of
this thesis to me, and advised and supported me in many ways.

A particular thank is due to Dr. Marco Locatelli from the University of Florence.
Significant parts of Chapters 4 and 5 result from a joined work with him.

Furthermore, I would like to thank the people, who helped proofreading parts of
the manuscript, especially Dr. habil. Florian Jarre, Pia Leister and Prof. Dr. Nguyen
Van Thoai.

Moreover, I like to thank Dr. Michael Nast for his general branch-and-bound frame-
work written in C++, which was used in the implementation of our branch-and-
bound algorithms.

Last but not least I would like to thank my family and, especially, my girlfriend
Claudia. Their support provided essential motivation to keep up in writing this
thesis.

Contents

Chapter 1. Introduction 1
1.1. Applications 4
1.2. Basic Concepts and Notations 6

1.2.1. Outer Approximation Approaches 6
1.2.2. Branch-and-Bound Approaches 7
1.2.3. Subdivision Sets 7
1.2.4. Convex Envelope 9
1.2.5. Further Notations and Conventions 10

1.3. Solution Approaches 11
1.3.1. D.C. Optimization 12
1.3.2. Semidefinite Programming 12
1.3.3. Bilinear Programming 13
1.3.4. Direct Solution Methods 13

1.4. Overview 15
1.5. Test Examples 17

Chapter 2. Convergent Outer Approximation Algorithms for Solving
Unary Problems 19

2.1. Introduction 19
2.2. Unary Problems and All-Quadratic Optimization Problems 23
2.3. Preliminaries and Ramana’s Approach 27
2.4. Valid Cuts for Convergent Outer Approximation Algorithms 33
2.5. Basic Idea for Convergent Implementable Algorithms 40
2.6. Appropriate Polyhedra for Algorithm 2.2 46

2.6.1. Hypercubes 47
2.6.2. Regulard-Simplices 48

I

II CONTENTS

2.6.3. A Better Polyhedron Based on a Modifiedd-Simplex 53
2.7. A Variant of Algorithm 2.2 61
2.8. Computational Results 67

2.8.1. A Slight Modification of the Subdivision Process 68
2.8.2. Applicability to All-Quadratic Problems 72

Chapter 3. A Simplicial Branch-and-Bound Method for Solving Nonconvex
All-Quadratic Problems 85

3.1. Introduction 85
3.2. A Linear Programming Relaxation over ann-Simplex 87
3.3. A Simplicial Branch-and-Bound Algorithm 92
3.4. Convergence 95
3.5. Computational Results 100

3.5.1. Implementational Details 101
3.5.2. Numerical Comparison 104
3.5.3. A Modification of Algorithm 3.1 109

Chapter 4. On the Convergence of Simplicial Branch-and-Bound
Methods 113

4.1. Introduction 113
4.2. Simplicial Algorithms for (DCP) 117
4.3. Convergence with Exhaustive Subdivision Rules 126
4.4. Convergence with theω-Subdivision Rule 130
4.5. A Counterexample 144
4.6. Numerical Comparisons 152

4.6.1. Comparison of Algorithm 4.1 Based on Bisection with
Algorithm 3.1 153

4.6.2. A Convergent Subdivision Rule Based on (GWSR) 158
4.6.3. Comparison of Different Subdivision Strategies Based on

(MGWSR) 167
4.7. A Finiteness Result 178

Chapter 5. Packing Equal Circles in a Square 187
5.1. Introduction 188
5.2. Theoretical Results 192

5.2.1. Properties of an Optimal Solution at each Vertex 192
5.2.2. Properties of an Optimal Solution along each Edge 202

CONTENTS III

5.3. The Algorithm 209
5.4. Upper Bounds 218
5.5. Subdivision Strategies 230

5.5.1. Basic Strategy 230
5.5.2. Special Features 232

5.6. Size Reduction Strategies 247
5.6.1. Corner Rules 249
5.6.2. Edge Rules 254
5.6.3. Volume Reduction 255

5.7. Computational Results 262
5.8. Improvements of Algorithm 5.1 270

5.8.1. Another Basic Partitioning Strategy 271
5.8.2. Altered Decision Criterion 273
5.8.3. Solutions of Problem (PP) with more than 27 Points 275

Chapter 6. Conclusion 281

Appendix A. Proofs for Section 4.4 289
A.1. Proof of Lemma 4.4.2 for (DCP1) and (DCP2) 292
A.2. Proof of Lemma 4.4.3 for (DCP1) and (DCP2) 293
A.3. Proof of Lemma 4.4.5 295
A.4. Proof of Lemma 4.4.7 298
A.5. Proof of Lemma 4.4.8 306

Appendix B. Solution Methods for (DCPS) 315
B.1. The Kelley-Cheney-Goldstein Cutting-Plane Approach 316
B.2. Another Approach for Obtaining an (ε, δ, 0)-solution 320

Bibliography 327

List of Tables 333

List of Figures 335

CHAPTER 1

Introduction

A large part of the mathematical optimization theory deals with the problem of
detecting a realn-dimensional point̄x belonging to a setM ⊂ IRn such that a
real-valued functionf attains its minimum overM at this point, i.e., one tries to
solve the general problem

min f(x)

x ∈M .
(GP)

The functionf : A→ IR is usually defined on a suitable setA satisfyingA ⊃ M .
In the field of global optimization we are interested in pointsx̄ ∈ M satisfying
f(x̄) ≤ f(x), for all x ∈ M , i.e., we are looking for theglobal minimumof
Problem (GP). In contrast to this, the local optimization is satisfied if a pointx̄ ∈M
with the propertyf(x̄) ≤ f(x), for all x ∈M ∩N , has been detected, whereN is
some neighborhood of̄x, i.e., it suffices to determine alocal minimumof (GP).

In general, Problem (GP) is not solvable. In order to obtain practicable solution
approaches for this problem we need some knowledge about the structure of the
objective functionf as well as of the setM . The main interest in Problem (GP) is
motivated by real applications and, fortunately, there are a lot of such applications
leading to problems of type (GP) with a special usable structure.

In the present thesis we examine minimization problems, where the objective
function is a quadratic function and where the feasible regionM ⊂ IRn is described
by a finite set of quadratic and linear constraints. These problems will be calledall-
quadratic optimization problems. They are given in the following way

min xTQ0x+ (d0)Tx

xTQlx+ (dl)Tx+ cl ≤ 0 l = 1, . . . , p

x ∈ P ,

(QP)

1

2 INTRODUCTION

whereQl (l = 0, . . . , p) are realn × n matrices,dl (l = 0, . . . , p) are real
n-dimensional vectors andcl (l = 1, . . . , p) are real numbers. The set

P = {x ∈ IRn : Ax ≤ b}

is a polyhedron described by a realm × n matrixA = (a1, . . . , am)T and a real
m-dimensional vectorb. We assume that the matricesQl (l = 0, . . . , p) are sym-
metric. This is not a restriction to the generality of the considered problems of type
(QP). Indeed, ifQl (l ∈ {0, . . . , p}) is not symmetric, then we obtain a symmet-
ric matrix by settingQ̄l = 1

2 (Ql + (Ql)T) with the propertyxTQlx = xT Q̄lx

(x ∈ IRn). Therefore, we can replace in (QP) the matrixQl by the matrixQ̄l with-
out altering the function values of the corresponding quadratic function. In view
of this symmetry assumption we know that the eigenvalues ofQl (l = 0, . . . , p)
are real-valued (see, e.g., [JRA93]). Apart from the symmetry of the matrices
Ql (l = 0, . . . , p) we assume furthermore that the polyhedronP is a non-empty,
full-dimensional and bounded set. This is a slight restriction to the generality of
the considered problems of type (QP). However, the non-emptiness of the setP

can easily be verified. Use, for example, the first phase of the Simplex-Algorithm,
which is the well-known solution method developed by Dantzig [DAN63] for lin-
ear programs, i.e., for problems of type (GP) wheref is a linear function andM
is a polyhedron. The assumption thatP is full-dimensional is not really needed for
the theory in this dissertation, but is nevertheless made in order to reduce the tech-
nical effort. The fact thatP is a polytope, i.e., that this set is bounded, cannot be
guaranteed in general. However, this assumption is satisfied for many applications.

Throughout the present work we denote by

F := {x ∈ P : xTQlx+ (dl)Tx+ cl ≤ 0 , l = 1, . . . , p}

the feasible region of Problem (QP). Note that this set can be empty since we do
not require the existence of a feasible point for (QP).

With respect to the difficulty of detecting global minima of Problem (QP) and
the treatment of this problem in the literature we can distinguish some subclasses
of (QP). If all quadratic functions in the formulation of (QP) are convex, then it is
known that each local minimum of (QP) is a global minimum (see, e.g., [MAN94]
or [HPT95, Chapter 1]), i.e., there is no gap between the local and the global min-
imization of this problem. Moreover, it is known that such problems can be solved
in polynomial time up to a certain precision, if some assumptions are fulfilled (see,

INTRODUCTION 3

e.g., [HER94] and references therein). Several solution methods for this particu-
lar case of (QP) are available. Apart from the schemes developed only for convex
all-quadratic problems (see, for example, [VDP66] for problems with one qua-
dratic constraint, and [BAR72, EN75, PHH82] for arbitrary convex all-quadratic
problems) any algorithm for minimizing arbitrary convex functions under convex
constraints can be used (see, e.g., [FM68, GMW81]). Among these more gen-
eral approaches the class of so-calledinterior point methodsreceived a great deal
of attention during the last decade. These methods, first developed for linear prob-
lems, show numerically an efficient behavior, in particular for large scale problems.
Moreover, these efficient methods are applicable to special classes of convex op-
timization problems, for example in the fully convex all-quadratic case (see, e.g.,
[NN94, JAR96] and references therein).

The convexity of a quadratic function can be checked easily. It is a known fact
[HPT95, Theorem 1.12] that a functiong : C → IR, which is twice differentiable
on an open convex setC ⊂ IRn, is convex if and only if its Hessian∇2g(x) is pos-
itive semidefinite at each elementx of the setC. In order to verify the convexity of
the quadratic functions involved in (QP) we hence have to examine the eigenvalues
of the matricesQl ∈ IRn×n (l = 0, . . . , p). If one of these matrices has at least one
negative eigenvalue, the equivalence between the local and the global minima is not
guaranteed anymore, and we cannot expect to solve such problems in polynomial
time (see [PS88]). Actually it is known that even a problem with a quadratic objec-
tive function, whose describing matrixQ0 has one negative eigenvalue, and with a
feasible set determined by linear constraints isNP-hard (see [PV91] or [HPT95,
Section 2.4]).

Apart from the fully convex all-quadratic problems there is another subclass of
problems of type (QP), which was already treated extensively in the literature. In
the so-calledgeneral quadratic programming problemone is interested in the min-
imization of an arbitrary quadratic objective function with respect to linear con-
straints, i.e., problems of type (QP) withp = 0 are considered. For information
about the theory, algorithms and applications of this type of all-quadratic prob-
lems we refer to the survey [FV95] and to more recent works [HPT95, HT96A,
DAPT97, BOM97, AT98, YF98] and references therein.

In the present dissertation we will examine the most general case of Problem
(QP), which has not been explored as widely in the literature as the fully convex
all-quadratic problem or the general quadratic programming problem. We are in-
terested in global minima of all-quadratic optimization problems with an arbitrary,

4 INTRODUCTION

in particular nonconvex, quadratic objective function and with at least one non-
convex quadratic constraint (p ≥ 1). These problems have at first glance still a
nice structure. Only quadratic and affine functions are involved. However, such
problems have a nonconvex objective function and a feasible setF , which is in
general not convex and, maybe, even not connected. This means that there is a gap
between the local and the global optimization of such problems and taking the pre-
vious considerations into account we know that these problems can beNP-hard.
Nevertheless, nonconvex all-quadratic global optimization problems have a wide
variety of applications.

1.1. Applications

Each n-dimensional all-quadratic problem can be easily transformed to a
2n-dimensional bilinear problem, as it is done, for example, in [AK92, HJ92].
In [HJ92] a strategy for reducing the necessary dimension of the resulting bilinear
program is also proposed. However, on the other hand bilinear optimization prob-
lems are nothing else than a special instance of Problem (QP). Pooling problems
in petrochemistry [FV90A], the modular design problem introduced in [EVA 63],
in particular the multiple modular design problem [EVA 70, AK92] or the more
general modularization of product sub-assemblies [RS71], and special classes of
structured stochastic games [FS87] are only some examples of the wide range of
applications of bilinear programming problems.

Another large class of optimization problems are problems with linear or qua-
dratic functions additionally involving Boolean variables, i.e., variablesxi ∈ IR
with the constraintxi ∈ {0, 1}. Since each Boolean variable can be represented by
a concave quadratic constraint

xi ∈ {0, 1} ⇔ x2
i − xi ≥ 0 , xi ∈ [0, 1] ,

such integer programming problems can be transformed to (QP). An example of
this class of optimization problems is the so-calledsynchronization sequence prob-
lem (SSP) resulting from an application in the satellite industry. In this problem
one is interested in ann-dimensional integer vectorx ∈ {−1, 1}n such that the
maximal value of the absolute values of the cyclic autocorrelation functions

gk(x) =
n∑
i=1

xix[i+k]

1.1. APPLICATIONS 5

(k = 1, . . . , n − 1) becomes minimal where[i + k] = i + k(modn). Problem
(SSP) can be formulated as

min t

gk(x) ≤ t
k = 1, . . . , n− 1 (SSP)

−gk(x) ≤ −t
xi ∈ {−1, 1} i = 1, . . . , n ,

and by using the substitutionxi = 2yi − 1 (i = 1, . . . , n) one obtains an integer
program with Boolean variablesy ∈ {0, 1}n.

The problem of packingn ∈ IN equal circles in a square, which can be trans-
formed to a (QP), is another problem widely explored in the literature. One looks
for the maximum radiusr of n non-overlappingcircles contained in the unit square.
This problem is equivalent to an all-quadratic problem with a linear objective func-
tion and concave quadratic constraints. It can be formulated as

max t

t− ‖xi − xj‖22 ≤ 0 1 ≤ i < j ≤ n
xi ∈ [0, 1]2 i = 1, . . . , n .

(PP)

How the optimal valuet? of (PP) and the optimal radiusr? are related is discussed
in Chapter 5 of the present research study. This chapter will deal extensively with
Problem (PP). A related class of global optimization problems are minimax loca-
tion problems [PHH82], which also lead to quadratic constraints.

Production planning and portfolio optimization are examples where so-called
chance constrainedlinear programs occur (see, e.g., [PHH82, WV91, DT92]).
These are problems, looking similar to linear programs. However, the matrix de-
scribing the linear constraints of such problems is not deterministic, it is a stochastic
one. Under certain restrictive assumptions it is possible to transform these stochas-
tic constraints to deterministic quadratic constraints (see again [PHH82, WV91]),
such that in general a problem of type (QP) is obtained.

In [AKHP92] it is shown thatnonconvex all-quadratic problems can be used
for the examination of special instances of nonlinear bilevel programming prob-
lems. Other applications of (QP) include the fuel mixture problem encountered
in the oil industry [PTA94] and also placement and layout problems in integrated
circuit design (see [AKLV95, AKV96] and references therein).

6 INTRODUCTION

Hence there are many applications of the nonconvex all-quadratic optimiza-
tion problem (QP). Whether Problem (QP) is in practice applicable for solving,
for example, problems resulting from integer programming problems, depends on
the numerical efficiency of the solution method for (QP) that is used. Up to now
only few methods for solving the considered general case of Problem (QP) were
proposed in the literature. Most of them result from methods being developed for
other more general problem classes. In Section 1.3 we will shortly discuss some of
these solution methods. Before this we will sketch some basic concepts in global
optimization. These concepts are used in all solution approaches mentioned in this
dissertation.

1.2. Basic Concepts and Notations

In the field of deterministic global optimization there are at least two basic
schemes for solving a general problem of type (GP).

1.2.1. Outer Approximation Approaches. Outer approximation (cutting
plane) approaches use the following basic concept (see, e.g., [HT96B, Chapter
2]). Determine a superset̄M of M , which has a simple structure, for example a
polyhedron, and try to minimize the functionf with respect to this bigger set. If the
minimization off with respect to the simpler set̄M is still too complex, determine
a simpler functionf̄ , which underestimatesf on the setM , and solve the problem

min f̄(x)

x ∈ M̄ .
(GP)

Problem (GP) delivers a lower bound for the optimal value of (GP). Such problems
are usually calledrelaxationsof the original problem. If (GP) is a linear program,
it is called anLP-relaxation of (GP). If the detected solution̄x ∈ M̄ of (GP) is not
contained in the setM , then one tries to determine a function` : IRn → IR such
that the set

M̂ := M̄ ∩ {x ∈ IRn : `(x) ≤ 0} ⊃ M

has still a simple structure, but does not contain the pointx̄ anymore. If` is an
affine function, we call the setH = {x ∈ IRn : `(x) = 0} a cutting plane, since
the pointx̄ is cut away by the hyperplaneH . By solving the problemminx∈M̂ f̄(x)
one obtains hopefully a better lower bound for the optimal value of (GP) and a new
solution x̂ ∈ M̂ . This process is successively applied until a pointx̃ ∈ M has

1.2. BASIC CONCEPTS ANDNOTATIONS 7

been calculated. If̄f coincides withf at this point, theñx is obviously an optimal
solution of (GP). Otherwise one has to refine the functionf̄ and to repeat the
described process.

1.2.2. Branch-and-Bound Approaches.Another concept for treating global
optimization problems are branch-and-bound methods (see, e.g., [HT96B, Chapter
4]). These schemes start analogously to the outer approximation algorithms with
a relaxationM0 ⊃ M of the feasible regionM of (GP). This relaxation is cho-
sen such that a lower as well as an upper bound for the optimal value of Problem
(GP) can be determined. According to a so-calledsubdivision rule one splits in
subsequent steps the part ofM0 still of interest into more and more refined setsM i

(branching). For these sets new hopefully improved bounds are calculated (bound-
ing). If a setM i considered in the branch-and-bound tree has a lower bound, which
exceeds the current best known value for (GP), then this set is eliminated from fur-
ther considerations (pruning). Such sets cannot contain feasible points of Problem
(GP) with a smaller objective function value than the best value known so far.

Using these strategies one hopes that the algorithm concentrates the search for
a global minimum of Problem (GP) on a small portion of the feasible regionM .
One expects that a large part ofM , which does not contain a global minimum of
(GP), isprunedfrom further considerations at an early stage of the examination of
the optimization problem by the branch-and-bound algorithm, which is applied for
the solution of this problem.

1.2.3. Subdivision Sets.The sets, which are mostly used in branch-and-
bound methods, are cones,n-dimensional rectangles orn-simplices. Throughout
this dissertation we use only rectangles and simplices. Ann-dimensional rectangle
R, which we would like to call ahyperrectangle, is uniquely determined by two
vectorsl, L ∈ IRn

R = {x ∈ IRn : li ≤ x ≤ Li , i = 1, . . . , n} .

A simplex is the convex hull of an affine independent set of points, which form the
vertices of this simplex. Let{v0, . . . , vk} ⊂ IRn (k ∈ IN) be an arbitrary set. Then
we denote by

[v0, . . . , vk] := {x ∈ IRn : x =
k∑
i=0

λivi , λ ∈ IRk+1
+ ,

k∑
i=0

λi = 1}

the convex hull of the pointsv0, . . . , vk, whereIR+ := {λ ∈ IR : λ ≥ 0} de-
notes the positive orthant. If the pointsv0, . . . , vk areaffine independent, i.e., for

8 INTRODUCTION

an arbitrary, but fixed indexi ∈ {0, . . . , k}, there holds that the set{vj − vi :
j ∈ {0, . . . , k} \ {i}} is linear independent, thenS = [v0, . . . , vk] is ak-dimen-
sional simplex, a so-calledk-simplex. For example, a2-simplex is a triangle and a
3-simplex is a tetrahedron.

Hyperrectangles andn-simplices are of course polytopes. Thefacetsof these
sets are easy to determine, where the facet of ann-dimensional polytopeP is de-
fined as an (n − 1)-dimensional intersection ofP with a supporting hyperplane,
i.e., a (n − 1)-dimensionalfaceof P (see, e.g., [HPT95, Chapter 1]). In the case
of ann-simplexS = [v0, . . . , vn] there are then+ 1 facets

Si = [v0, . . . , vi−1, vi+1, . . . , vn] i = 0, . . . , n ,

which are (n− 1)-simplices. For a hyperrectangleR = {x ∈ IRn : l ≤ x ≤ L} the
2n facets are given by

R1
i = {x ∈ IRn : l ≤ x ≤ L , xi = li}

i = 1, . . . , n .
R2
i = {x ∈ IRn : l ≤ x ≤ L , xi = Li}

In the branch-and-bound methods, which we will consider in this thesis, the
used subdivision setsZ ⊂ IRn are split into a finite number of subsetsZi (i ∈ I,
I finite index set) forming apartitionof Z.

DEFINITION 1.2.1. ([HPT95, Definition 3.3])LetZ ⊂ IRn be a polyhedron
satisfyingintZ 6= ∅, and letI be a finite set of indices. A family{Zi : i ∈ I} of
subpolyhedra ofZ satisfying, for eachi ∈ I, intZi 6= ∅ is called apartition ofZ,
if ⋃

i∈I
Zi = Z

and, for eachi, j ∈ I with i 6= j, there holds

intZi ∩ intZj = ∅ .

Simplices are usually subdivided using a so-calledradial subdivision.

DEFINITION 1.2.2. ([HPT95, Definition 3.4])Let S = [v0, . . . , vn] be an
n-simplex and let a pointw ∈ S \ {v0, . . . , vn} be given, which is uniquely repre-
sented by its barycentric coordinates, i.e.,

w =
n∑
i=0

λivi

with λ ∈ IRn+1
+ ,

∑n
i=0 λi = 1.

1.2. BASIC CONCEPTS ANDNOTATIONS 9

Denote, for eachi ∈ {j ∈ {0, . . . , n} with λj > 0}, bySi then-simplex, which is
obtained by replacing the vertexvi of S byw, i.e.,

Si = [v0, . . . , vi−1, w, vi+1, . . . , vn] .

The subdivision ofS into then-simplicesSi (i ∈ {j ∈ {0, . . . , n} with λj > 0})
is called aradial subdivisionof S with respect tow.

It is known [HPT95, Proposition 3.7] that the radial subdivision of ann-simplex
S = [v0, . . . , vn] with respect to an arbitrary pointw ∈ S \ {v0, . . . , vn} forms a
partition ofS. The choice of the pointw depends on the used subdivision (parti-
tioning) rule.

It is not reasonable to apply the concept of radial subdivisions also for the
partitioning of a hyperrectangleR, since the resulting polytopes do not necessarily
have a rectangular structure anymore. If a pointw ∈ R is given, which does not
belong to the set of vertices ofR, then a subdivision ofR is usually defined via
hyperplanes parallel to the facets ofR. This strategy leads to a partition ofR into
up to 2n hyperrectangles, where the number of the resulting subhyperrectangles
depends on the choice ofw.

1.2.4. Convex Envelope.In outer approximation as well as in branch-and-
bound methods we often need a simpler functionf̄ , which underestimates the ex-
amined functionf with respect to a given set̄M . Since convex functions lead –
from a theoretical point of view – to easily solvable problems, the so-calledconvex
envelopeof an arbitrary functionf is a concept frequently used for determining the
desired function̄f .

DEFINITION 1.2.3. Let g : C → IR be a lower-semicontinuous function de-
fined on a non-empty convex setC ⊂ IRn. Theconvex envelopeof g on the setC
is a functionϕ : IRn → IR with the properties

(i) ϕ is convex on the setC;
(ii) ϕ(x) ≤ g(x), for all x ∈ C;
(iii) if τ : C → IR is a convex function satisfying, for eachx ∈ C, τ(x) ≤ g(x),

then there holds, for allx ∈ C, τ(x) ≤ ϕ(x).

Hence, the convex envelopeϕ of a functiong on a setC is the best convex
underestimating function forg on the given set. For an overview of the properties
of the convex envelope we refer to [HPT95, Section 1.3]. Unfortunately, in gen-
eral the construction of a convex envelopeϕ is a problem, which might be harder

10 INTRODUCTION

to solve than the considered optimization problem itself. For some instances, how-
ever, the explicit form of the convex envelope is known. For example, ifg is a
concave function andC is a polytope with given vertex setV (C) = {v1, . . . , vk},
the convex envelopeϕ of g with respect toC is given by [HPT95, Theorem 1.21]

ϕ(x) = min {
k∑
i=1

λig(vi) : x =
k∑
i=1

λivi , λ ∈ IRk+ ,
k∑
i=1

λi = 1} .

This implies that the convex envelope of a concave functiong with respect to an
n-simplexS = [v0, . . . , vn] is the uniquely determined affine function, which co-
incides in then+ 1 vertices ofS with g [HPT95, Theorem 1.22].

In some cases an overestimating function for a given functiong with respect
to a setC is needed additionally. In this situation the analogous concept of the
so-calledconcave envelopeψ can be applied.

DEFINITION 1.2.4. Let g : C → IR be an upper-semicontinuous function
defined on a non-empty convex setC ⊂ IRn. Theconcave envelopeof g on the set
C is a functionψ : IRn → IR such that−ψ is the convex envelope of−g on the
setC.

Hence, the concave envelopeψ of a functiong is the best concave overesti-
mating function ofg on the setC. Obviously, the concave envelope of a convex
functiong with respect to ann-simplexS is also the uniquely determined affine
function, which coincides in the vertices ofS with g.

1.2.5. Further Notations and Conventions.Throughout the present thesis
we interpret ann-dimensional vectorx ∈ IRn, as usual, as a column vector, i.e.,

x =

x1

...
xn

 .

Consequently, a matrixA ∈ IRm×n is given as a connection ofn m-dimensional
vectors, i.e.,

A = (a1, . . . , an) =

a11 · · · a1n

...
...

am1 · · · amn

 .

1.3. SOLUTION APPROACHES 11

We use the superscriptT for identifying the corresponding transposed vectors and
matrices, i.e.,

xT = (x1, . . . , xn) ∈ IR1×n and AT =

a11 · · · am1

...
...

a1n · · · amn

 ∈ IRn×m .

As a measure for the distance of twon-dimensional points we use theEuclidean
norm‖ · ‖2 : IRn → IR

‖x‖2 :=
(

n∑
i=1

|xi|2
) 1

2

or the`∞-norm‖ · ‖∞ : IRn → IR

‖x‖∞ := max
i=1,... ,n

|xi| .
The abbreviation

intM := {x ∈M : ∃ε > 0 with B(x, ε) ⊂M}
denotes theinterior of an arbitrary setM ⊂ IRn, whereB(x, ε) = {y ∈ IRn :
‖x− y‖2 ≤ ε} describes the sphere centered atx with radiusε. The notation

clM := {x ∈M : ∀ε > 0 ∃y ∈ B(x, ε) ∩M}
is used for theclosureof M and

∂M := clM \ intM

denotes theboundary of M .
Finally, a constraint of the form

g(x) ≤ 0

with a concave functiong : IRn → IR is called areverse convexconstraint (see,
e.g., [HPT95, Chapter 4]).

1.3. Solution Approaches

For brevity we define (usingc0 = 0), for eachl ∈ {0, . . . , p},
ql(x) := xTQlx+ (dl)Tx+ cl .

As mentioned before, most of the solution methods in the literature for Problem
(QP) were developed for more general problem classes.

12 INTRODUCTION

1.3.1. D.C. Optimization. Using the fact that the functionsql (l = 0, . . . , p)
can be written as so-calledd.c. functions (see Section 3.2), i.e., as a difference of
two convex functions, Problem (QP) can be interpreted as a general d.c. problem.
Therefore, one possible approach for solving (QP) is the application of algorithms
developed for solving general d.c. global optimization problems. See, for example,
[HPT95, Chapter 4] and the survey [TUY95] for the framework of d.c. optimiza-
tion. In [PTA94] a special d.c. algorithm is proposed and applied to a quadratically
constrained optimization problem resulting from the fuel mixture problem.

1.3.2. Semidefinite Programming.Another class of optimization problems,
which can be used for the examination of all-quadratic problems and which has
received a great deal of attention in recent times, is the so-calledsemidefinite pro-
gramming problem (SDP). This class of problems is a generalization of linear
programs and can also be solved in polynomial time. In contrast to a linear program
the variablex to optimize in an (SDP) belongs to the space of positive semidefi-
nite symmetric matrices and not to then-dimensional real space. An (SDP) can be
written in the following way (see, e.g., [ALI 95])

min C •X
Ai •X = bi i = 1, . . . ,m

X � 0 ,

(SDP)

whereX,C,Ai ∈ IRn×n (i = 1, . . . ,m), X is symmetric,• denotes the inner
product of matrices (see Section 2.1) andX � 0 means thatX is positive semidef-
inite.

Each all-quadratic problem of type (QP) can be transformed to an (SDP) with
an additional rank-one constraint [RAM 93]. Omitting this additional constraint one
obtains the widely explored SDP-relaxation of (QP) (see, e.g., [SHO87, PRW95,
FK97, SHO98]). The properties of this relaxation were examined in the literature
(see, e.g., [FK97, NES98]) and improvements of this relaxation were discussed
(for example, [QDKRT98]). However, to the author’s knowledge there was only
one report about the global optimization of (QP) via (SDP). Ramana [RAM 93]
presented a cutting plane approach using this SDP-relaxation for solving (QP) (see
also [HR98] and Chapter 2, respectively, for an extension of this approach). Note
that in the fully convex case an all-quadratic problem can be solved by an (SDP)
since the rank-one constraint is not necessary in this case (see, e.g., [VB96]).

1.3. SOLUTION APPROACHES 13

1.3.3. Bilinear Programming. As mentioned in the context of the applica-
tions, each problem of type (QP) can be transformed to a bilinear program. Hence,
solution methods developed for bilinear programs can be applied to the noncon-
vex all-quadratic optimization problem. For example, Floudas and Visweswaran
[FV90B, FV93B] propose an algorithm for solving problems belonging to a more
general class, which contains in particular general bilinear programs. They solve
such problems through a series of primal and relaxed dual problems. The solution
of the primal problem provides an upper bound on the global minimum of the con-
sidered problem and delivers additionally the corresponding Lagrange multipliers.
These multipliers are then used to formulate a Lagrange function that is used in
the dual subproblem. Making use of several properties of the considered problem,
the proposed algorithm solves the dual problem also through a series of subprob-
lems that, taken together, provide a lower bound on the optimal value. Iterating this
process leads to an approach, which is reported to deliver in finite time an approx-
imate solution [FV93B]. In [FV93A] it is shown that it is possible to enhance the
computational performance of this algorithm in the case of bilinear programs. The
subproblems are considerably more tractable in this special case.

Another method for solving bilinear programs was developed by Sherali and
Tuncbilek. In [ST92] (see also [SA99]) they present an algorithm for solving poly-
nomial programming problems, i.e., for optimization problems with a polynomial
objective function and polynomial constraints, and hence especially for bilinear
programs. Under the assumption that additional box constraints for the variables
are known they generate nonlinear implied constraints, which are then included in
the original problem. After that they linearize each nonlinear function involved
in the resulting problem by defining new variables, one for each distinct nonlinear
term (see [SA92] for the reformulation-linearization technique in the bilinear case).
The solution of the linear program generated by this reformulation-linearization
technique is then a lower bound of the considered problem with respect to the used
box constraints. By embedding this reformulation-linearization technique in a rect-
angular branch-and-bound scheme they obtain a convergent algorithm. Hence, the
resulting algorithm for solving polynomial global optimization problems combines
a linear outer approximation of the feasible set with a branch-and-bound scheme.

1.3.4. Direct Solution Methods.There exist only a few approaches in the
literature, which consider Problem (QP) directly and not as a special instance of
a more general class. The first approach mentioned in the literature for solving

14 INTRODUCTION

(QP) was developed by Reeves [REE75]. However, this approach is restricted to
all-quadratic problems, where the matricesQl (l = 0, . . . , p) are simultaneously
diagonalizable, i.e., his algorithm is only able to manage separable quadratic func-
tions. Extending an idea introduced by Falk and Soland [FS69, SOL71] for op-
timizing problems with nonconvex separable functions, Reeves [REE75] presents
a rectangular branch-and-bound method for solving a problem of type (QP) with
separable quadratic functions and additional box constraints. For this special type
of quadratic functions the convex envelope with respect to a hyperrectangle can
be easily derived such that – using the convex envelope concept – lower bounds
for (QP) on the considered hyperrectangles can be calculated. Reeves refines the
branch-and-bound algorithm by applying additionally a local search procedure in
order to obtain feasible points. Moreover, he developed a strategy for identifying
neighborhoods of local solutions, where these solutions are even global, such that
these neighborhoods can be eliminated from further considerations.

Using the same basic concepts as Reeves, Al-Khayyal et al. [AKLV95],
[AKV96] propose a rectangular branch-and-bound scheme for general problems
of type (QP) with the additional property that box constraints for the variables are
known. By substitutingyl = Qlx ∈ IRn (l = 0, . . . , p) each functionql(x)
is first interpreted as a bilinear functionql(x, yl). In order to obtain a lineariza-
tion of the feasible region of the resulting bilinear program, each bilinear term
xiy

l
i (i = 1, . . . , n; l = 0, . . . , p) is bounded from below by its convex enve-

lope and from above by the corresponding concave envelope. Since the convex
envelope of the two-dimensional bilinear functionxy on a rectangle is the maxi-
mum of two affine functions [AKF83], they obtain by introducing (p+1) auxiliary
n-dimensional vectorstl (l = 0, . . . , p) an LP-relaxation of the examined bilin-
ear program in the variablesx, y0, . . . , yp, t0, . . . , tp. The resubstitutionQlx = yl

(l = 0, . . . , p) results in an LP-relaxation of the original problem with the variables
x, t0, . . . , tp. This LP-relaxation is then used in a rectangular branch-and-bound
scheme for calculating lower bounds for the optimal value of (QP) with respect to
the considered hyperrectangle. As in Sherali and Tuncbilek’s approach for poly-
nomial programs, Al-Khayyal et al. obtain a solution method for (QP), which is
a combination of a successively refined outer approximation of the feasible region
with a rectangular branch-and-bound scheme.

1.4. OVERVIEW 15

1.4. Overview

The main aim of the present dissertation is the development and the theoretical
as well as the numerical examination of solution methods for the nonconvex all-
quadratic optimization problem (QP).

In Chapter 2 we discuss an indirect approach for solving (QP). We do not de-
velop an algorithm to determine an optimal solution of Problem (QP). We present
several approaches for solving certain so-calledunary problems. Each problem of
type (QP) is equivalent to a unary problem, as we will see in this chapter. Thus, we
can use algorithms for solving unary problems in order to detect optimal solutions
of quadratic problems. This idea is due to Ramana [RAM 93, Chapter 7] and is
related to the semidefinite programming approach for all-quadratic problems men-
tioned before (see Subsection 1.3.2). Since the outer approximation (cutting plane)
algorithm introduced by Ramana for solving unary problems cannot be guaran-
teed to be convergent, we present new approaches overcoming this theoretical de-
ficiency. The resulting algorithms are combinations of linear outer approximations
and branch-and-bound like subdivisions of the feasible region of the considered
unary problem. In Chapter 2 we give, in particular, an explicit formulation of a
so-calledregularn-simplex with all its vertices on the boundary of the unit sphere
B = {x ∈ IRn : ‖x‖2 ≤ 1}. The theoretical properties of such ann-simplex
were known before, but – to the author’s knowledge – such a set has not yet been
constructed. Unfortunately, we have to recognize that this indirect solution method
for (QP) is not applicable in practice. Only small dimensional all-quadratic prob-
lems can be solved with acceptable computational effort via the solution of the
equivalent unary problem.

Chapter 3 deals with a direct approach for solving (QP). This method shows
a significantly better performance than the foregoing indirect one. The develop-
ment of the proposed new algorithm was motivated by the work of Al-Khayyal et
al. [AKLV95]. The branch-and-bound method for solving problems of type (QP)
introduced in [AKLV95] is based on a rectangular subdivision of the feasible re-
gion of (QP) and exploits the convex and concave envelopes of the two-dimensional
bilinear functionxy on a rectangleR ⊂ IR2, as described in Subsection 1.3.4. By
using a simplicial partitioning strategy and the convex envelope of a concave func-
tion on ann-simplex (see Subsection 1.2.4), we obtain a simplicial branch-and-
bound scheme involving mainly linear programming subproblems. The numerical
comparison of our new approach with the rectangular branch-and-bound method

16 INTRODUCTION

by Al-Khayyal et al. shows that the simplex algorithm often outperforms the rect-
angular algorithm.

In the definition of the simplicial branch-and-bound algorithm in Chapter 3
we use the so-calledbisectionfor subdividing ann-simplex. Because of the spe-
cial property of this subdivision strategy, it is a so-calledexhaustivesubdivision
rule, the convergence of the presented approach can be ensured. The convergence
is meant in the sense that each accumulation point of a sequence generated by
the proposed algorithm is an optimal solution of Problem (QP). Some authors fa-
vor another subdivision rule in simplicial branch-and-bound methods, the so-called
ω-subdivision rule. This strategy is not necessarily exhaustive, and the convergence
of an algorithm using this rule was still an open question.

In Chapter 4 we give an answer to this question. We consider a generalization
of Problem (QP). We assume that the nonlinear functions involved in the global
optimization problem under examination are d.c., not necessarily quadratic. After
presenting an algorithm, which is a generalization of the simplicial branch-and-
bound method introduced in Chapter 3 and which is applicable to the generalized
problem class, we examine the convergence of this approach with respect to differ-
ent subdivision rules. The convergence of the simplicial branch-and-bound scheme
using theω-subdivision rule can only be guaranteed for optimization problems with
a d.c. objective function and with concave constraints. We present in Chapter 4 a
counterexample, which shows that the presented method using this rule does not
converge in general. In view of our theoretical results we are non the less able to
develop a new convergent subdivision strategy – combiningω-subdivision and bi-
section. The numerical performance of some variants of this mixed strategy will be
examined. The convergence concept, which we use in Chapter 4 in connection with
the examination of theω-subdivision, is – from a theoretical point of view – weaker
than the one used in Chapter 3. We will not prove that each accumulation point of a
sequence generated by the variant of our approach usingω-subdivisions is optimal.
We will only show that this method determines in finite time either an approximate
solution or the emptiness of the feasible region of the considered problem. As we
will see in Chapter 4 – from a practical point of view – this convergence concept
has non the less the same quality as the stronger concept mentioned above.

We conclude the more theoretically oriented Chapter 4 with a finiteness re-
sult. We prove that a simplicial branch-and-bound algorithm, which employs only
ω-subdivisions and which is applied to the minimization of a concave function

1.5. TEST EXAMPLES 17

with respect to linear constraints, is even finite, if two additional assumptions are
fulfilled.

In Chapter 5 we close our consideration of Problem (QP) by examining an ap-
plication of this class of global optimization problems. This chapter deals with the
problem of packingn equal circles of maximal radius into the unit square, which
we will call packing problem. Unfortunately, the solution methods, which we de-
veloped for general problems of type (QP), are not able to solve the optimization
problem resulting from this application. At least they are not able to solve the prob-
lem for a high enough number of circles. Therefore, we develop a special global
optimization algorithm for solving this problem.

We start in Chapter 5 with a study of the packing problem from a theoretical
point of view. Some properties, which have to be satisfied by at least one solu-
tion of this problem, are introduced. These properties state the intuitive fact that
as many circles as possible should touch the boundary of the unit square. Sub-
sequently we propose a basic rectangular branch-and-bound algorithm and derive
special bounds exploiting the structure of the packing problem. We introduce some
tools with respect to the subdivision and the possible refinement of the considered
hyperrectangles, which again exploit the special structure of the packing problem.
They use in particular the theoretical properties of some solutions mentioned above.
Applying these tools in the rectangular branch-and-bound algorithm we obtain an
efficient algorithm.

In the literature good solutions of the packing problem with up to50 circles
are known. However, the quality of these solutions with respect to their optimality
is mostly not known – at least for the packing problem with more than20 circles.
The new approach developed in this thesis is able to guarantee theε-optimality of
determined solutions of this problem. We will see, furthermore, that the implemen-
tation of our solution method showed a really good numerical performance for the
packing problem with up to27 circles. Moreover, we were also able to solve this
problem approximately with up to31 circles. This means that global optimization
problems with a dimension of up to63 can be solved up to a certain accuracy.

1.5. Test Examples

Throughout this thesis several algorithms are presented, which can be applied
for solving nonconvex all-quadratic optimization problems. In order to test the nu-
merical performance of these approaches, particularly to compare the numerical

18 INTRODUCTION

performance of different variants, we used a randomly generated set of test ex-
amples. Since the same set of test examples will be used for the examination of
the approaches presented in Chapter 2, 3 and 4, we complete the introduction of
this dissertation with a short description of these examples. For each combina-
tion of the dimensionn ∈ {2, . . . , 8, 10} and the number of quadratic constraints
p ∈ {1, . . . , 2n} we constructed fifty test problems with the general form of (QP)
according to the following specifications.

First a polytopeP with a non-empty interior was constructed. Starting with a
randomly generated dense matrix̄A ∈ IR2n×n with integer entries between−10
and 10 we obtained a non-empty polyhedron̄P = {x ∈ IRn : Āx ≤ b̄} by
choosing an appropriate right-hand side vectorb̄ ∈ IR2n. In order to ensure the
boundedness of the setP we intersected the polyhedron̄P with the n-simplex
Sn = [0, ne1, . . . , nen], whereei (i = 1, . . . , n) denotes thei-th unit vector.
The polytopeP = P̄ ∩ Sn is then described by a (3n + 1)×n matrix A and a
(3n + 1)-dimensional vectorb. We iterated the construction of the polyhedronP̄
until the interior of the resulting polytopeP was not empty, and a point̄x ∈ intP
= {x ∈ IRn : Ax < b} was found. In order to avoid in our numerical tests
excessive running-times for problems with higher dimensions we used only such
polytopesP , which could be circumscribed by ann-simplex with a diameter not
bigger than10.

In the next step densen × n matricesQl and n-dimensional vectorsdl

(l = 0, . . . , p) were randomly generated also with integer entries between−10
and10. The coefficientscl (l = 1, . . . , p) for the quadratic constraints were chosen
such thatql(x̄) = x̄TQlx̄ + (dl)T x̄ + cl ≤ −δ < 0 holds for the known point
x̄ ∈ intP and a prespecified valueδ. This strategy guaranteed that we obtained
all-quadratic optimization problems of type (QP) with

intF 6= ∅ .

The average values, the standard deviations and sometimes also the medians
of the effort, which a proposed solution approach needs for solving the fifty test
examples for a combination of the dimensionn ∈ {2, . . . , 8, 10} and the number
of quadratic constraintsp ∈ {1, . . . , 2n}, will serve as a measure of the numerical
performance of this approach.

CHAPTER 2

Convergent Outer Approximation Algorithms for
Solving Unary Problems

The first solution method for the all-quadratic Problem (QP), which we propose in
detail in the present dissertation, is an indirect one. Instead of solving (QP) directly
we determine an optimal solution of a certain so-called unary problem, which is
equivalent to (QP). Equivalence between (QP) and this unary problem holds in the
sense that each solution of the unary problem yields a unique solution of the (QP)
and vice versa.

This chapter deals with solution methods for general unary problems. These
approaches are derived from an outer approximation scheme introduced by Ra-
mana [RAM 93]. Since the convergence of his approach cannot be guaranteed, it
is the purpose of this chapter to develop solution methods which overcome this
theoretical deficiency.

2.1. Introduction

In order to introduce the class of unary problems we first have to clarify the
concept of unary matrices.

DEFINITION 2.1.1. A real symmetric matrixU ∈ IRn×n is called aunary
matrix, if and only if there exists a vectorv ∈ IRn with

U = vvT .

Denote by

Sn := { S ∈ IRn×n : S symmetric}
the space of real symmetricn× n matrices and by

Un := { U ∈ Sn : U unary}
19

20 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

the subset ofSn consisting of all unary matrices. Moreover, letU i ∈ Sn
(i = 0, . . . , d) be given and letU : IRd → Sn be an affine matrix mapping de-
fined by

U(z) = U0 +
d∑
i=1

ziU
i , (2.1.1)

A unary problem is then defined as follows.

DEFINITION 2.1.2. Given U i ∈ Sn (i = 0, . . . , d) and h ∈ IRd,
A = (a1, . . . , am)T ∈ IRm×d, b ∈ IRm, the optimization problem

min hT z

Az ≤ b

U(z) ∈ Un , z ∈ IRd
(UP)

is called aunary problem.

REMARK 2.1.1. It is obvious (see Lemma 2.3.1) that the setUn of unary ma-
trices consists of all positive semidefinite matricesU ∈ Sn with the additional
property

rank(U) = 1 .

Therefore, Problem (UP) can also be formulated as a semidefinite program with
an additional rank constraint (for related discussion, see again [SHO87, RAM 93,
PRW95, VB96, FK97] and Subsection 1.3.2).

As we will see in Section 2.2 it is possible to transform an all-quadratic prob-
lem of type (QP) to an equivalent unary problem where the polyhedron

P := {z ∈ IRd : Az ≤ b}
is bounded, i.e.,P is a polytope. Even though we discuss in this chapter solution
methods for general problems of type (UP), our interest in Problem (UP) is only
motivated by such problems which are equivalent transformations of all-quadratic
problems. Regarding the intention of this dissertation it is thus not a restriction to
assume thatP is always bounded, as we have done in the sequel.

The equivalence between (QP) and a special problem of type (UP) is one of
the interesting observations proposed without proof in the dissertation of Ramana

2.1. INTRODUCTION 21

[RAM 93, Chapter 7], which was our main motivation for considering unary prob-
lems. In Section 2.2 a detailed proof of this equivalence is given. A second ob-
servation suggested in Ramana’s research study is based on eigenvalue inequalities
due to Weyl: given an optimal vertex solutionz̄ of the LP-relaxationminz∈P hT z
of (UP) satisfyingU(z̄) /∈ Un, and given the eigenvalues ofU(z̄), a linear con-
straint `(z) ≤ 0 can be constructed satisfying̀(z̄) > 0 and, for all z ∈ IRd

with U(z) ∈ Un, `(z) ≤ 0. Therefore, by adding successively such valid cuts
`(z) ≤ 0 to LP-relaxations of (UP), one obtains an outer approximation (or cut-
ting plane) algorithmic approach for solving (UP). Several variants of this cutting
plane approach together with some preliminary numerical results, which are really
promising, are proposed in [RAM 93]. In Section 2.3 we compile some prelimi-
naries underlying the basic ideas of this outer approximation approach and present
Ramana’s algorithm.

A serious deficiency of this algorithmic approach, however, consists in the fact
that cuts can possibly become very shallow. Therefore, the convergence of the
sequence of optimal solutions of the outer approximations to an optimal solution
of (UP) cannot be guaranteed. A similar deficiency was observed in other cutting
plane methods for certain global optimization problems (see, e.g., [HT96B, Chap-
ter 6]). By proposing alternative outer approximation algorithms for solving (UP),
which are convergent in the sense that each accumulation point of the sequence of
optimal solutions of the outer approximations is an optimal solution of (UP), we
overcome the above deficiency.

As we will see in Section 2.4, it suffices in Problem (UP) with (2.1.1) to con-
sider matricesU i ∈ Sn (i ∈ {1, . . . , d}), which form an orthonormal system with
respect to the inner product• : Sn × Sn → IR :

B • C = tr(BTC) =
n∑

i,j=1

bijcij , (2.1.2)

whereB = (bij)1≤i,j≤n andC = (cij)1≤i,j≤n, andtr(A) =
∑n

i=1 aii denotes
thetraceof a matrixA ∈ IRn×n. Using this observation we derive in Section 2.4 a
valid quadratic cut. This is a reverse convex constraint. For each optimal solution
z̄ of an LP-relaxation of (UP) satisfyingU(z̄) /∈ Un, it cuts a sufficiently large ball
(with respect to the Euclidean norm) centered atz̄ out of the feasible region of this
LP-relaxation of (UP) without eliminating a feasible point of (UP), i.e., without
affecting the unarity.

22 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

If this cut is used directly in an outer approximation scheme, the convergence
of such a method can be guaranteed. Unfortunately, the direct use of this cut would
lead to relaxations of (UP), which are as hard to solve as (UP) itself. If a suffi-
ciently large polytope inscribed in the Euclidean norm ball is known, then we can
cut this polytope out of the feasible region instead of the balls. Though the result-
ing subproblems are still hard to solve, using the fact that a polytope is described
by a finite number of linear constraints, we obtain a convergent and practicable al-
gorithm by building up this polytope by successive cutting planes. The basic idea
of this approach is presented in Section 2.5. The proposed algorithm is not a pure
outer approximation scheme. It is a combination of an outer approximation and a
successive subdivision of the feasible region of (UP).

In Section 2.6 we propose three possible ways to construct polytopes contain-
ing a sufficiently large part of the intersection of the feasible region of an arbitrary
LP-relaxation of (UP) and the relevant Euclidean norm ball. Each one of these
types of polytopes can then be used in order to obtain an implementable solution
scheme for (UP). In each iteration of these new algorithms we have to split a given
polytope into a fixed number of subsets, and then we have to examine each of these
subsets – as it is the case in branch-and-boundmethods (see, e.g., [HT96B, Chapter
4]). From a numerical point of view this can lead to excessive storage requirements.
In order to reduce the number of necessary splits and, thus, in order to reduce the
number of generated polytopes, we develop in Section 2.7 a convergent algorithm
which does not subdivide each considered polytope. The resulting method com-
bines the cuts introduced by Ramana, a new cut introduced in Section 2.6 and the
subdivision strategy developed in Section 2.5. Most of the theoretical results of
Section 2.2 up to Section 2.6 were published in [HR98].

In the final Section 2.8 we discuss the numerical performance of the proposed
new approaches. Since we are interested in solution methods for all-quadratic prob-
lems we tried to solve the unary problems resulting from the equivalent transfor-
mation of the problems belonging to our test set (see Section 1.5). Even though
a slight modification of the algorithms leads to a significant improvement of their
numerical performance, our numerical results in Section 2.8 show that the practical
application of the unary problem approach to all-quadratic problems of type (QP)
is limited to very small sizes.

2.2. UNARY PROBLEMS AND ALL-QUADRATIC OPTIMIZATION PROBLEMS 23

2.2. Unary Problems and All-Quadratic Optimization Problems

In this section it is shown that an arbitrary all-quadratic problem of type (QP) in
n variables is equivalent to a unary problem ind =

(
n+1

2

)
+n variables. By reasons

which will become evident in Section 2.4, we choose a transformation which yields
a unary problem, where the matricesU i (i = 1, . . . , d) form an orthonormal system
with respect to the inner matrix product (2.1.2).

As usual we have used in the formulation of (QP) as well as in the formulation
of (UP) the lettersA andb, respectivelyP for describing the linear constraints. In
order to avoid ambiguities we add the superscriptQ, if a letter is related to Problem
(QP), and the superscriptU otherwise.

Consider an arbitrary all-quadratic problem of type (QP), i.e., consider the
problem

min xTQ0x+ (d0)Tx

xTQlx+ (dl)Tx+ cl ≤ 0 l = 1, . . . , p

AQx ≤ bQ , x ∈ IRn ,

(QP)

whereQl = (qlij)1≤i,j≤n ∈ Sn, dl ∈ IRn (l = 0, . . . , p), cl ∈ IR (l = 1, . . . , p),
AQ = (aQ1 , . . . , a

Q
m)T ∈ IRm×n and bQ ∈ IRm. Since we assumed that

PQ = {x ∈ IRn : AQx ≤ bQ} is a polytope we know that there exists a hyper-
rectangleRQ = {x ∈ IRn : lQ ≤ x ≤ LQ} with lQ, LQ ∈ IRn satisfying

PQ ⊂ RQ .

Let ei ∈ IRn+1 denote thei-th unit vector (i = 1, . . . , n + 1), and let
Eij ∈ IR(n+1)×(n+1) be the elementary matrix with entry1 at position(i, j) and0
at any other position. The equivalent transformation of Problem (QP) leads to the
following unary problem

min hT z

AUz ≤ bU

lU ≤ z ≤ LU

U(z) ∈ Un+1 , z ∈ IR
(

n+1
2

)
+n

(UP)

in the variablez = (z11, . . . , z1n, z1,n+1, z22, . . . , z2,n+1, . . . , znn, zn,n+1)
T ,

where, fori = 1, . . . , n,

24 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

hi,n+1 = 1√
2
d0
i , a

U
l,(i,n+1) = 1√

2
dli (l = 1, . . . , p),

aUp+l,(i,n+1) = 1√
2
aQli (l = 1, . . . ,m),

lUi,n+1 =
√

2lQi , LUi,n+1 =
√

2LQi ,

hii = q0ii , a
U
l,ii = qlii (l = 1, . . . , p) ,

aUp+l,ii = 0 (l = 1, . . . ,m),

lUii = max{(min{LQi , 0})2 , (max{lQi , 0})2} , LUii = max{lQi lQi , LQi LQi },
and, for1 ≤ i < j ≤ n,
hij =

√
2q0ij , a

U
l,ij =

√
2qlij (l = 1, . . . , p) , aUp+l,ij = 0 (l = 1, . . . ,m),

lUij =
√

2 min{lQi lQj , lQi LQj , LQi lQj , LQi LQj },
LUij =

√
2max{lQi lQj , lQi LQj , LQi lQj , LQi LQj }.

The right-hand sidebU of the linear constraints is given by

bUl = −cl (l = 1, . . . , p) , bUp+l = bQl (l = 1, . . . ,m) ,

and the affine matrix mapping in (UP) is defined as follows

U : IR
(

n+1
2

)
+n → Sn :⇔

U(z) = U0 +
n∑
i=1

ziiU
ii +

∑
1≤i<j≤n+1

zijU
ij

(2.2.1)

with U0 = En+1,n+1, U ii = Eii (i = 1, . . . , n) andU ij = 1√
2
(Eij + Eji)

(1 ≤ i < j ≤ n+ 1).
A quadratic function consists of three different terms of variables. There are

linear terms (xi, i = 1, . . . , n), pure quadratic terms (x2
i , i = 1, . . . , n) and bilinear

terms (xixj , 1 ≤ i < j ≤ n). In the formulation of (UP) each of these terms is
replaced by a new variable such that all functions involved in the formulation of
(QP) can be transformed to linear functions. The additional unarity condition in
(UP) guarantees that each feasible point of (UP) coincides with a feasible point of
(QP). For that reason the postulated equivalence between the all-quadratic problem
(QP) and the unary problem (UP) holds in the sense of the following theorem.

2.2. UNARY PROBLEMS AND ALL-QUADRATIC OPTIMIZATION PROBLEMS 25

THEOREM 2.2.1. Let x? be an optimal solution of Problem (QP) and letz?

be an optimal solution of Problem (UP). If we set

z̄i,n+1 =
√

2x?i , z̄ii = (x?i)
2 (i = 1, . . . , n) , z̄ij =

√
2x?i x

?
j (1 ≤ i < j ≤ n) ,

and

x̄i =
1√
2
z?i,n+1 (i = 1, . . . , n) ,

thenz̄ is a feasible solution of Problem (UP), x̄ is a feasible solution of Problem
(QP) and

(x̄)TQ0x̄+ (d0)T x̄ = (x?)TQ0x? + (d0)Tx? = hT z̄ = hT z? . (2.2.2)

PROOF: Straightforward calculation shows that

U(z̄) =
(
x?

1

)
((x?)T , 1) ,

and henceU(z̄) ∈ Un+1. By the definition oflU andLU and the fact thatx? is
contained inRQ it follows immediately

lU ≤ z̄ ≤ LU .

For thel-th rowaUl of the matrixAU we obtain, forl = 1, . . . , p,

aUl z̄ =
n∑
i=1

aUl,(i,n+1)z̄i,n+1 +
∑

1≤i≤j≤n
aUl,ij z̄ij =

n∑
i=1

dlix
?
i +

n∑
i,j=1

qlijx
?
i x
?
j

= (x?)TQlx? + (dl)Tx? ≤ −cl = bUl ,

and, forl = 1, . . . ,m,

aUp+lz̄ =
n∑
i=1

aUp+l,(i,n+1)z̄i,n+1 +
∑

1≤i≤j≤n
aUp+l,ij z̄ij︸ ︷︷ ︸

=0

= (aQl)Tx? ≤ bQl = bUp+l ,

i.e., z̄ is a feasible solution of Problem (UP). Similar direct calculations show that

hT z̄ = (x?)TQ0x? + (d0)Tx? ,

and hence, sincēz satisfies the constraints of (UP) andz? is an optimal solution of
(UP), we obtain

hT z? ≤ (x?)TQ0x? + (d0)Tx? .

26 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

Analogously one easily obtains that̄x is feasible for (QP) and hT z? =
(x̄)TQ0x̄+ (d0)T x̄, which implies that

hT z? ≥ (x?)TQ0x? + (d0)Tx? .
�

REMARK 2.2.1. As mentioned in Remark 2.1.1, Problem (UP) can also be
interpreted as a special semidefinite program. Using the semidefinite programming
notations a short formulation of the previous theorem is available along the lines
given, e.g., in [RAM 93, PRW95, VB96, FK97]. In order to avoid the introduction
of these semidefinite programming notations we decided to use the presented more
technical version of the equivalence result.

Example. We conclude this section with a simple example. Consider the
one-dimensional all-quadratic problem

min x2 + x

−x2 + 1 ≤ 0

x ∈ [−2, 2] .

(QPE)

The feasible regionFQ of (QPE) is given by the two disjoint intervals[−2,−1]
and[1, 2], and the optimal solutionx? is−1 (see Figure 2.1(a)) with optimal value
0. Using the described transformation we obtain the following unary problem

min z11 + 1√
2
z12

−z11 ≤ − 1

0 ≤ z11 ≤ 4

−2
√

2 ≤ z12 ≤ 2
√

2(
0 0
0 1

)
+ z11

(
1 0
0 0

)
+ z12

(
0 1√

2
1√
2

0

)
∈ U2 .

(UPE)

The optimal value of (UPE) is also0 and is attained at the unique solution point
z? = (1,−√2)T belonging to the feasible regionFU of (UPE) given by

FU = {z ∈ IR2 : 1 ≤ z11 ≤ 4 , −2
√

2 ≤ z12 ≤ 2
√

2 , z2
12 = 2z11}

(see the two disjoint arcs in Figure 2.1(b)). We will use Problem (UPE) throughout
this chapter in order to illustrate the proposed solution methods.

Note that in the following sections we consider only unary problems. There-
fore, the superscriptU is not necessary any more.

2.3. PRELIMINARIES AND RAMANA’ S APPROACH 27

FIGURE 2.1. Feasible regions of (QPE) and (UPE)

x−1 1
x?

1

FQ

x2 + x

(a) (QPE)

z12

√
2

FU

2 z11

−√2
z?

z11 + 1√
2
z12 = −1

(b) (UPE)

2.3. Preliminaries and Ramana’s Approach

The following results taken from [RAM 93] are needed for the new cutting
plane algorithms discussed in the subsequent sections. Even though the knowl-
edge of Ramana’s outer approximation scheme, in particular the knowledge of the
cutting planes introduced by Ramana, is not necessary for developing these new ap-
proaches we repeat his algorithm in this section. There are at least two reasons for
doing that. First of all, the overcome of the theoretical deficiency of the unknown
convergence of Ramana’s algorithm was the main motivation for developing new
algorithms for solving (UP). Another reason is that the combination of the cuts
defined by Ramana with our methods results – from a numerical point of view – in
a more efficient solution scheme for unary problems, as we will see in Sections 2.7
and 2.8.

In this and the following sections we assume that the dimensionsn andd of
(UP) are not smaller than2. The simple example (UPE) in the previous section
shows that even the transformation of a one-dimensional (QP) leads to a (UP) with
these dimensions.

The following first result characterizes unary matrices by means of their eigen-
values.

28 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

LEMMA 2.3.1. LetU ∈ Sn, and letλi(U) (i = 1, . . . , n) be the eigenvalues
ofU indexed in increasing order. Then the following assertions are equivalent:

(i) U ∈ Un;
(ii) λi(U) = 0, i = 1, . . . , n− 1;
(iii) λ1(U) ≥ 0 and λn−1(U) ≤ 0;
(iv) λ1(U) ≥ 0 and tr(U) ≤ λn(U).

PROOF: The above equivalences follow readily from the well–known facts
that a matrixU ∈ IRn×n is unary if and only if it is positive semidefinite and
rank(U) = 1, and that, for each realn × n matrix A, there holdstr(A) =∑n

i=1 λi(A) (see, e.g., [ZUR64, §13]). �

The second lemma describes now a relation between the eigenvalues of the
sum of symmetric matrices and the sum of the eigenvalues of these matrices.

LEMMA 2.3.2. LetE,F ∈ Sn with eigenvaluesλi(E), λi(F) (i = 1, . . . , n)
be indexed in the same order as above. Then, for eachk ∈ {1, . . . , n}, there holds

λ1(E) + λk(F) ≤ λk(E + F) ≤ λk(E) + λn(F) . (2.3.1)

PROOF: See, e.g., [HJ85]. �

This result is due to Hermann Weyl. Therefore, we will denote the inequal-
ities (2.3.1) asWeyl’s inequalities. Using the result of the last lemma a relation
between the eigenvalues of the affine matrix mappingU(·) and the eigenvalues of
the matricesU i (i = 0, . . . , n) formingU(·) was derived in [RAM 93].

COROLLARY 2.3.3. LetU : IRd → Sn be an affine matrix mapping defined
as in (2.1.1). Then, for every nonnegativey ∈ IRd+ andk ∈ {1, . . . , n}, there holds

λk(U(y)) ≤ λk(U0) +
d∑
i=1

yiλn(U i)

and

λk(U(y)) ≥ λk(U0) +
d∑
i=1

yiλ1(U i) ,

where all eigenvaluesλi(·) (i = 1, . . . , n) are indexed in ascending order.

2.3. PRELIMINARIES AND RAMANA’ S APPROACH 29

PROOF: The results follow by successive application of Weyl’s inequalities
(Lemma 2.3.2) and the fact that, for eachU ∈ Sn, µ ≥ 0 andi ∈ {1, . . . , n}, there
holdsλi(µU) = µλi(U). �

Consider now the LP-relaxation

min hT z

Az ≤ b
(UPL)

of (UP), which arises from (UP) by omitting the unary conditionU(z) ∈ Un. Given
a vertex optimal solution̄z of (UPL) and the affine matrix mappingU defined in
(2.1.1),λ1(U(z̄)) = 0 andλn−1(U(z̄)) = 0 implies thatz̄ is an optimal solution
of (UP) because of Lemma 2.3.1. Otherwise, one must haveλ1(U(z̄)) < 0 or
λn−1(U(z̄)) > 0 (or both). In this case, however, Corollary 2.3.3 allows one
to construct an additional linear constraint`(z) ≤ 0 which, when added to the
constraints of (UPL), is violated bȳz but satisfied by all feasible solutions of (UP).

Since z̄ is a vertex solution of a linear program it is known thatz̄ is the
unique solution of a nonsingulard × d system of linear equations binding atz̄,
which – following the standard terminology in simplex algorithms – will be called
a nonsingular basic system corresponding tōz. Simplex-type algorithms pro-
vide such a system automatically. In order to derive the linear cuts introduced in
[RAM 93] letBz ≤ r be the corresponding nonsingular basic system forz̄ satis-
fying Bz̄ = r. By the definition of the corresponding nonsingular basic system
we know that each pointz ∈ P = {z ∈ IRd : Az ≤ b} is contained in the cone
C := {z ∈ IRd : Bz ≤ r} (C is the smallest of such cones containingP and
uniquely determined when̄z is a non-degenerate vertex ofP). Choose an arbitrary
pointz ∈ P and set

y := r −Bz .

The pointy is a nonnegative element ofIRd, and for the affine matrix mappingU(·)
at the pointz we obtain

U(z) = U(B−1r︸ ︷︷ ︸
=z̄

−B−1y) = U(z̄) +
d∑
i=1

yi
(
U0 − U(B−1ei)

)
, (2.3.2)

whereei ∈ IRd denotes again thei-th unit vector (i = 1, . . . , d). The right-hand
side of (2.3.2) is an affine matrix mapping with the form given in (2.1.1). Therefore,

30 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

Corollary 2.3.3 is applicable, and we obtain

λn−1(U(z)) ≥ λn−1(U(z̄)) +
d∑
i=1

yi λ1

(
U0 − U(B−1ei)

)
and

λ1(U(z)) ≤ λ1(U(z̄)) +
d∑
i=1

yi︸︷︷︸
=(r−Bz)i

λn
(
U0 − U(B−1ei)

)
.

It follows that, for each pointz ∈ P with U(z) ∈ Un, the cut

d∑
i=1

(r −Bz)i λ1

(
U0 − U(B−1ei)

)
+ λn−1(U(z̄)) ≤ 0 (2.3.3)

is valid. However, for the point̄z with λn−1(U(z̄)) > 0, (2.3.3) is violated.
An analogous result is true for the linear constraint

d∑
i=1

(Bz − r)i λn
(
U0 − U(B−1ei)

)− λ1(U(z̄)) ≤ 0 . (2.3.4)

Adding these cuts to the linear constraints describingP we obtain a better outer
approximation of the feasible region of (UP) and we can calculate a new, maybe
better, vertex solution of this new LP-relaxation of (UP). Continuing in this way,
a polyhedral outer approximation (or cutting plane) approach is obtained which,
in each iteration, requires only solving linear programs and eigenvalue calcula-
tions. Based on the above arguments, Ramana [RAM 93] proposed the following
approach.

ALGORITHM 2.1 (Ramana’s Algorithm for Solving (UP)).

Initialization
P 0 ← {z ∈ IRd : Az ≤ b}, STOP← False, k ← 0

While STOP =False Do
If P k = ∅ Then

STOP← True (P ∩ {z ∈ IRd : U(z) ∈ Un} = ∅)
Else

Solve the linear optimization problemminz∈Pk hT z to obtain a vertex

solutionzk and a corresponding nonsingular basic systemBkz ≤ rk
satisfyingBkzk = rk.

2.3. PRELIMINARIES AND RAMANA’ S APPROACH 31

Compute the eigenvalues ofU(zk) indexed in increasing order.

If λ1(U(zk)) ≥ 0 AND λn−1(U(zk)) ≤ 0 Then
STOP← True (zk is an optimal solution of (UP))

Else
If λn−1(U(zk)) > 0 Then

(a1)ki ← −λ1

(
U0 − U((Bk)−1ei)

)
, i = 1, . . . , d

(β1)k ← −λn−1(U(zk))
P k ← P k ∩ {z ∈ IRd : ((a1)k)TBkz ≤ ((a1)k)TBkzk + (β1)k}

EndIf
If λ1(U(zk)) < 0 Then

(a2)ki ← λn
(
U0 − U((Bk)−1ei)

)
, i = 1, . . . , d

(β2)k ← λ1(U(zk))
P k ← P k ∩ {z ∈ IRd : ((a2)k)TBkz ≤ ((a2)k)TBkzk + (β2)k}

EndIf
P k+1 ← P k, k ← k + 1

EndIf
EndIf

EndWhile

Example. Consider again Problem (UPE). The first vertex solutionz0 is ob-
viously given by(1,−2

√
2)T (see Figure 2.1(b)). The corresponding nonsingular

basic system is (−1 0
0 −1

)(
z11
z12

)
≤
(−1

2
√

2

)
.

For the eigenvalues ofU(·) at z0 we obtain

λ1(U(z0)) = λn−1(U(z0)) = −1 .

The linear cut (2.3.4) is hence defined by

−z11 − 1√
2
z12 ≤ 0 ,

and for the new outer approximationP 1 of the feasible region of (UPE) it follows
P 1 = {z ∈ IR2 : 1 ≤ z11 ≤ 4 , −2

√
2 ≤ z12 ≤ 2

√
2 , −z11 − 1√

2
z12 ≤ 0} (see

Figure 2.2).

32 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

FIGURE 2.2. Ramana’s cut for (UPE)

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

z12

√
2

2
z11

−√2

z0

P 1

z1

If Algorithm 2.1 stops after a finite number of iterations with a pointzk, re-
spectively by detecting the emptiness ofP k, then it is obvious in view of the pre-
vious considerations thatzk is an optimal solution of (UP), respectively that the
feasible region of (UP) is empty. Up to now it is an open question, whether Algo-
rithm 2.1 is convergent in the sense that each accumulation pointz? of the sequence
{zk}k∈IN satisfiesz? ∈ {z ∈ IRd : Az ≤ b, U(z) ∈ Un}. Since the sequences
{((aj)k)TBk}k∈IN (j = 1, 2) might fail to be bounded, it does not seem that the
convergence of Algorithm 2.1 can be guaranteed. For a related convergence theory
of cutting plane algorithms in global optimization we refer to [HT96B].

REMARK 2.3.1. By applying another cutting plane for the case that the small-
est eigenvalue ofU(zk) is smaller than0, Ramana was able to derive at least a
partial convergence result. Letwk be a normalized eigenvector ofU(zk) corre-
sponding to the smallest eigenvalue of this matrix. The linear cut

(wk)TU(z)wk =
d∑
i=1

(
(wk)TU iwk

)
zi + (wk)TU0wk ≥ 0 (2.3.5)

is applicable, since there holds(wk)TU(zk)wk = λ1(U(zk)) < 0, and, for each
z ∈ IRd with U(z) ∈ Un, it follows (wk)TU(z)wk ≥ 0. Note that each matrix
U ∈ Un must be positive semidefinite. If in Algorithm 2.1 the cut (2.3.5) is used
instead of (2.3.4) and if the caseλn−1(U(zk)) > 0 occurs only a finite number of

2.4. VALID CUTS FORCONVERGENT OUTER APPROXIMATION ALGORITHMS 33

times, then it is provable (see [RAM 93, pages 93f]) that this algorithm is convergent
in the required sense.

It is the aim of the subsequent sections to overcome the above theoretical defi-
ciency of Algorithm 2.1 by developing other in each case convergent outer approx-
imation approaches for solving (UP).

2.4. Valid Cuts for Convergent Outer Approximation Algorithms

A first step towards convergent outer approximation algorithms for solving
(UP) consists in requiring that in the affine matrix mapping (2.1.1)

U : IRd → Sn :⇔ U(z) = U0 +
d∑
i=1

ziU
i ,

the matricesU i (i = 1, . . . , d) form an orthonormal system (ONS) with respect
to the inner product (2.1.2). This is not a real restriction for the generality of the
considered problems of type (UP). Each unary problem of this type is equivalent
to another unary problem which fulfills this additional condition. This is the result
of the following lemma.

LEMMA 2.4.1. Let an arbitrary unary problem

min hT z

Az ≤ b

Ū(z) ∈ Un , z ∈ IRd̄
(UP1)

with h ∈ IRd̄, A ∈ IRm×d̄ and Ū : IRd̄ → Sn, Ū(z) = U0 +
∑d̄

i=1 ziŪ
i be

given. Then there exist a dimensiond ≤ d̄, vectorsh1 ∈ IRd, h2 ∈ IRd̄−d, matrices
A1 ∈ IRm×d,A2 ∈ IRm×(d̄−d) and an ONS{U i, i = 1, . . . , d} with respect to the
inner product• defined in (2.1.2) such that the optimization problem

min hT1 x+ hT2 y

A1x+A2y ≤ b

U(x) = U0 +
d∑
i=1

xiU
i ∈ Un

x ∈ IRd , y ∈ IRd̄−d

(UP2)

is equivalent to (UP1).

34 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

PROOF: Determine a maximal linearly independent subset

{Ū ij , j = 1, . . . , d} ⊂ {Ū i, i = 1, . . . , d̄}
(so that the two linear spaces generated by theŪ ij respectively thēU i have equal
dimension). Assume, for ease, that there holds{i1, . . . , id} = {1, . . . , d}. The
matricesŪ j (j ∈ {d + 1, . . . , d̄}) are contained in the linear space generated by
the matrices̄U i (i = 1, . . . , d). Therefore, there exists, for eachj ∈ {1, . . . , d̄−d},
a vectorλj ∈ IRd with

Ūd+j =
d∑
i=1

λji Ū
i .

SetL = (λ1, . . . , λd̄−d) ∈ IRd×(d̄−d). Use now the Gram-Schmidt procedure
(see, e.g., [GVL89, Chapter 5]) in order to generate from{Ū i, i = 1, . . . , d} a
corresponding ONS{U i, i = 1, . . . , d}. Let, for i ∈ {1, . . . , d}, µi ∈ IRd be the
unique vector satisfying

Ū i =
d∑
j=1

µijU
j .

Since the function which maps thēU i onto theU j (j = 1, . . . , d) is a homeo-
morphism we know that the matrixM = (µ1, . . . , µd) ∈ IRd×d is regular. Let
z = (z̄, ẑ)T with z̄ ∈ IRd and ẑ ∈ IRd̄−d be an arbitrary element ofIRd̄. Let,
furthermore, the matrixA ∈ IRm×d̄ be given byA = (Ā, Â) with Ā ∈ IRm×d and
Â ∈ IRm×(d̄−d), and the vectorh ∈ IRd̄ be given byh = (h̄, ĥ)T ∈ IRd+(d̄−d). Set

x = M(z̄ + Lẑ) , y = ẑ ,

A1 = ĀM−1 , A2 = Â− ĀL
and

h1 = (M−1)T h̄ , h2 = ĥ− LT h̄ .

Then it follows

hT z = h̄T z̄ + ĥT ẑ = h̄T (M−1x− Lẑ) + ĥT ẑ = hT1 x+ hT2 y ,

Az = Āz̄ + Âẑ = Ā(M−1x− Lẑ) + Âẑ = A1x+A2y ,

2.4. VALID CUTS FORCONVERGENT OUTER APPROXIMATION ALGORITHMS 35

and

Ū(z) = U0 +
d∑
i=1

z̄iŪ
i +

d̄∑
i=d+1

ẑiŪ
i = U0 +

d∑
i=1

z̄i +

d̄∑
j=d+1

ẑjλ
j
i

 Ū i

= U0 +
d∑
l=1

 d∑
i=1

µil(z̄i +
d̄∑

j=d+1

ẑjλ
j
i)

︸ ︷︷ ︸
=(M(z̄+Lẑ))l =xl

U l = U(x) .

Since the matrixM is regular the previous calculations demonstrate a one-to-one
relation between the feasible points of (UP1) and (UP2). This shows the equiva-
lence of both problems. �

Even though Problem (UP2) has a more general form than Problem (UP) we
will develop the following theory and solution methods only for unary problems of
type (UP). This is motivated on the one hand by the fact that the transformation
presented in Section 2.2, which links the all-quadratic problems of type (QP) to
equivalent problems of type (UP), yields an ONS{U ij , 1 ≤ i ≤ j < n + 1} in
(2.2.1). Since it is the purpose of this research study to develop solution methods for
(QP) it is, therefore, sufficient to consider the more restricted form (UP) of unary
problems instead of (UP2). On the other hand, the following theory and solution
methods can be extended by slight changes to problems of type (UP2). However,
this leads to increasing technical effort, what we would like to avoid.

The following lemma shows the postulated fact that the matricesU ij

(1 ≤ i ≤ j < n + 1) defined in (2.2.1) form an ONS with respect to the inner
product given by (2.1.2).

LEMMA 2.4.2. Let Eij = eie
T
j ∈ IR(n+1)×(n+1) (i, j = 1, . . . , n + 1) be

given as in Section 2.2. Then the matrices

U ii = Eii , i = 1, . . . , n

U ij = 1√
2
(Eij + Eji) , 1 ≤ i < j ≤ n+ 1

form an ONS with respect to the inner product• defined in (2.1.2).

PROOF: This result can be verified by straightforward calculations. �

36 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

With the orthonormal property of the set{U i, i = 1, . . . , d} we are now able
to derive a relation between the Euclidean distance of two pointsz, z̄ ∈ IRd and
thedistancebetween the two corresponding matricesU(z) andU(z̄). In order to
measure thedistancebetween two matrices we use a suitable matrix norm. Let
‖A‖F =

√
A •A (A ∈ Sn) denote the norm induced by the inner product (2.1.2)

– the so-calledFrobenius-norm.

LEMMA 2.4.3. Let{U i, i = 1, . . . , d} ⊂ Sn form an ONS with respect to the
inner product• defined in (2.1.2). Then, for eachz, z̄ ∈ IRd, there holds

‖
d∑
i=1

(z − z̄)iU i‖F = ‖z − z̄‖2 . (2.4.1)

PROOF: By the orthonormality of{U i, i = 1, . . . , d} we know that, for each
i, j ∈ {1, . . . , d}, there holds

tr
(
(U i)TU j

)
= U i • U j =

{
1 , if i = j

0 , otherwise
.

Thus, for eachz, z̄ ∈ IRd, it follows

‖
d∑
i=1

(z − z̄)iU i‖2F = tr

(
(
d∑
i=1

(z − z̄)iU i)T (
d∑
i=1

(z − z̄)iU i)
)

=
d∑

i,j=1

(z − z̄)i(z − z̄)j tr
(
(U i)TU j

)

=
d∑
i=1

(z − z̄)2i = ‖z − z̄‖22 .

�

The combination of (2.4.1) with Weyl’s inequalities (2.3.1) allows us to prove
that for arbitrary pointsz, z̄ ∈ IRd the distance between the eigenvalues ofU(z)
andU(z̄) is at least as big as the Euclidean distance between these points. With this
result of the following theorem we will develop a valid cut for a convergent outer
approximation algorithm.

THEOREM 2.4.4. Let {U i, i = 1, . . . , d} ⊂ Sn form an ONS with respect to
the inner product• defined in (2.1.2), and letU : IRd → Sn be an affine matrix

2.4. VALID CUTS FORCONVERGENT OUTER APPROXIMATION ALGORITHMS 37

mapping of the form

z → U(z) = U0 +
d∑
i=1

ziU
i

withU0 ∈ Sn. Assume that the eigenvalues of the matrices involved are indexed in
an increasing order. Then, for eachz, z̄ ∈ IRd, there holds

λn−1 (U(z)) ≥ λn−1 (U(z̄))− ‖z − z̄‖2 (2.4.2)
and

λ1 (U(z)) ≤ λ1 (U(z̄)) + ‖z − z̄‖2 . (2.4.3)

PROOF: Since the Frobenius norm is an upper bound for the spectral radius
ρ(S) = max{|λ|, λ eigenvalue ofS} (S ∈ Sn) (see, e.g., [ZUR64]), one obtains
by means of Lemma 2.3.2

λn−1(U(z)) = λn−1(U(z − z̄) + U(z̄)− U0) = λn−1(
d∑
i=1

(z − z̄)iU i + U(z̄))

≥ λn−1(U(z̄)) + λ1(
d∑
i=1

(z − z̄)iU i)

≥ λn−1(U(z̄))− ‖
d∑
i=1

(z − z̄)iU i‖F = λn−1(U(z̄))− ‖z − z̄‖2 .

Similarly, inequality (2.4.3) follows from

λ1(U(z)) = λ1(U(z − z̄) + U(z̄)− U0) = λ1(
d∑
i=1

(z − z̄)iU i + U(z̄))

≤ λ1(U(z̄)) + λn(
d∑
i=1

(z − z̄)iU i)

≤ λ1(U(z̄)) + ‖
d∑
i=1

(z − z̄)iU i‖F = λ1(U(z̄)) + ‖z − z̄‖2 .

�

REMARK 2.4.1. The result of Theorem 2.4.4 can also be derived by a combi-
nation of Lemma 2.4.3 and the Hoffman-Wielandt inequality given in [HW53].
Indeed, letA,B ∈ Sn be two arbitrary matrices with eigenvaluesα1, . . . , αn
andβ1, . . . , βn indexed in increasing order. The Hoffman-Wielandt inequality in
[HW53] says that there is a permutationπ : {1, . . . , n} → {1, . . . , n} satisfying

n∑
i=1

|αi − βπ(i)|2 ≤ ‖A−B‖2F . (2.4.4)

38 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

If we denote byΠ the set of all permutations of{1, . . . , n}, then (2.4.4) is equiva-
lent to

min
π∈Π

n∑
i=1

|αi − βπ(i)|2 ≤ ‖A−B‖2F .

Setα = (α1, . . . , αn)T andβ = (β1, . . . , βn)T . It can be proven by an induction
with respect to the dimensionn that there holds

max
π∈Π

n∑
i=1

αiβπ(i) = αTβ .

Using this fact we obtain

min
π∈Π

n∑
i=1

|αi − βπ(i)|2 = ‖α‖22 + ‖β‖22 − 2 max
π∈Π

n∑
i=1

αiβπ(i)

= ‖α− β‖22 ,

and in view of (2.4.4) it follows, for eachi ∈ {1, . . . , n},
|αi − βi| ≤ ‖A−B‖F . (2.4.5)

If we apply this relation to the situation of Theorem 2.4.4, the use of Lemma 2.4.3
yields the inequalities (2.4.2) and (2.4.3).

As in the description of Ramana’s cuts introduced in the previous section, let
z̄ ∈ IRd be an optimal solution of an LP-relaxation of (UP) satisfyingU(z̄) /∈ Un.
In view of Lemma 2.3.1(iii) we know that

ε(z̄) := max {λn−1(U(z̄)),−λ1(U(z̄))}
must be greater than0. From Theorem 2.4.4 it follows that each pointz ∈ IRd

contained in a ball (with respect to the Euclidean norm), which has a radius equal
to ε(z̄) and is centered at̄z, cannot be feasible for (UP). Therefore, we see that

`z̄(z) := ε(z̄)− ‖z − z̄‖2 ≤ 0 (2.4.6)

is a valid cut, i.e., we knoẁz̄(z̄) > 0, and, for eachz ∈ IRd with U(z) ∈ Un,
there holds̀ z̄(z) ≤ 0.

Example. In the situation of Problem (UPE) we know thatz̄ = (1,−2
√

2)T

is an optimal solution of an LP-relaxation of this problem withε(z̄) = 1 (see page
31). In view of the above arguments it follows that each point contained in the

2.4. VALID CUTS FORCONVERGENT OUTER APPROXIMATION ALGORITHMS 39

FIGURE 2.3. First quadratic cut for (UPE)

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

z11

z12

√
2

2

z̄
C

−√2

circleC centered at̄z with radius1 (see Figure 2.3) is not feasible for (UPE).

If we replace in Ramana’s Algorithm 2.1 the linear cuts used there by
`zk(z) ≤ 0, then we obtain a convergent outer approximation algorithm for solving
(UP), as the following theorem shows.

THEOREM 2.4.5. Let {zk}k∈IN be a sequence of points in the polytope
P = {z ∈ IRd : Az ≤ b} satisfying, for eachk, i ∈ IN with k < i,

`zk(zi) ≤ 0 . (2.4.7)

Then every accumulation pointz? of {zk}k∈IN satisfiesU(z?) ∈ Un.

PROOF: Let z? be an accumulation point of the sequence{zk}k∈IN and let
{zkq}q∈IN be a subsequence converging toz?. From (2.4.7) it follows that, for each
q ∈ IN, we know that

`zkq (zkq+1) ≤ 0 .

Since‖zkq+1 − zkq‖2 → 0 (q →∞), this relation implies – in view of (2.4.6) and
because ofmax{λn−1(U(zkq)),−λ1(U(zkq))} ≥ 0 (q ∈ IN) – that there holds

max {λn−1(U(zkq)),−λ1(U(zkq))} → 0 (q →∞) .

From this ensues

λ1(U(z?)) = λn−1(U(z?)) = 0

40 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

by the continuity of the eigenvalue functionalsλ1, λn−1 : Sn → IR. This is equiv-
alent toU(z?) ∈ Un because of Lemma 2.3.1 and completes the proof. �

We have now a convergent outer approximation approach for solving (UP).
However, the possible cut is nonlinear, in particular reverse convex, such that an
algorithm using this cut directly induces difficult subproblems. In the next three
sections we will discuss ways to overcome this practical difficulty.

2.5. Basic Idea for Convergent Implementable Algorithms

In order to apply the results of the previous section we assume in this and in
the subsequent sections that the matrices{U i, i = 1, . . . , d} defining the matrix
mapping in (UP) form an orthonormal system with respect to the inner product•
defined in (2.1.2). We assume furthermore that the polytopeP = {z ∈ IRd : Az ≤
b} is not empty, what can be tested by the first phase of the Simplex-Algorithm.

Let P̄ be the feasible set of an arbitrary LP-relaxation of (UP). If a point
z̄ ∈ P̄ satisfyingU(z̄) /∈ Un is given, then we have seen in Section 2.4 that it
is possible to cut an Euclidean norm ballBz̄ centered at̄z with radiusε(z̄) =
max{λn−1(U(z̄)),−λ1(U(z̄))} out of the polytopēP without affecting the unar-
ity.

Let Qz̄ = {z ∈ IRd : q̄Ti z ≤ c̄i , i = 1, . . . , l} be a polyhedron (̄qi ∈ IRd,
c̄i ∈ IR, i = 1, . . . , l) with the properties

P̄ ∩Qz̄ ⊂ P̄ ∩Bz̄ (2.5.1)

and, for eachi ∈ {1, . . . , l},
d(z̄, H(q̄i, c̄i)) ≥ ρε(z̄) , (2.5.2)

whered(z̄, H(q̄i, c̄i)) denotes the Euclidean distance of the hyperplaneH(q̄i, c̄i) =
{z ∈ IRd : q̄Ti z = c̄i} to the pointz̄, andρ ∈ (0, 1] is a positive real number. In
view of (2.5.1) we see thatQz̄ can be cut out of the polytopēP without eliminat-
ing a feasible point of (UP). Actually, the set̄P ∩ Qz̄ is an inner approximation
polytope of the part ofBz̄ belonging toP̄ and contains no element of̄P lying out-
side the ballBz̄ . Property (2.5.2) guarantees, furthermore, that each point located
within P̄ \ Qz̄ has a distance greater thanρε(z̄) to the pointz̄. If it is possible to
construct such a polyhedron for each infeasible pointz̄, then we are able to develop
a convergent algorithm for solving (UP). How this can be done is the content of the

2.5. BASIC IDEA FOR CONVERGENT IMPLEMENTABLE ALGORITHMS 41

present section. In the next section we will propose three different possibilities for
constructing appropriate polyhedra.

Assume now that for each pointz̄ belonging to a polytopēP ⊂ P and satis-
fying U(z̄) /∈ Un a polyhedronQz̄ with Properties (2.5.1) and (2.5.2) is known.
Of course we cannot cut the setQz̄ out of P̄ in one step. The closure of̄P \ Qz̄
is not necessarily a polytope and, thus, an algorithm doing this would induce diffi-
cult subproblems, as it is the case by using the quadratic cut directly. However, in
contrast to the Euclidean norm ballBz̄ the polyhedronQz̄ is described by a finite
number of linear constraints. If we constructl new polytopes̄Pi (i = 1, . . . , l) by
adding one of the constraints describingQz̄ to the constraints describinḡP , then
we know that the union of thēPi’s (i = 1, . . . , l) contains no point of the interior
of Qz̄, but all feasible elements of̄P . Applying this strategy the algorithm is as
follows.

ALGORITHM 2.2 (Basic Convergent Algorithm for Solving (UP)).
Initialization

Chooseρ ∈ (0, 1] andl ∈ IN, and setP 0 ← {z ∈ IRd : Az ≤ b}.
Solve the linear optimization problem (LP)minz∈P 0 hT z, and letz0 be an

optimal solution with optimal valueµP 0 = hT z0.

µ0 ← µP 0 , P ← {P 0}, STOP← False, k ← 0

While STOP =False Do
Compute the eigenvalues ofU(zk) indexed in increasing order.

If λ1(U(zk)) ≥ 0 AND λn−1(U(zk)) ≤ 0 Then (SC1)

STOP← True (zk is an optimal solution of (UP))

Else
ε(zk)← max {λn−1(U(zk)),−λ1(U(zk))}
Construct a polyhedronQk = {z ∈ IRd : (qki)

T z ≤ cki , i = 1, . . . , l}
satisfying

P k ∩Qk ⊂ P k ∩ {z ∈ IRd : ‖z − zk‖2 ≤ ε(zk)} (PR1)

and, for eachi ∈ {1, . . . , l},
d(zk, H(qki , c

k
i)) = |(qk

i)T zk−ck
i |

‖qk
i
‖2

≥ ρε(zk). (PR2)

For i = 1 To l Do
P ki ← P k ∩ {z ∈ IRd : (qki)

T z ≥ cki }
If P ki 6= ∅ Then

42 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

Solve the LPminz∈Pk
i
hT z, and letzki be an optimal solution

with optimal valueµPk
i

= hT zki .
P ← P ∪ {P ki }

EndIf
EndFor
P ← P \ {P k}
If P = ∅ Then (SC2)

STOP← True (P 0 ∩ {z ∈ IRd : U(z) ∈ Un} = ∅)
Else
µk+1 ← minP∈P µP
ChooseP k+1 ∈ P andzk+1 ∈ P k+1 with µk+1 = µPk+1 = hT zk+1.

EndIf
EndIf
k ← k + 1

EndWhile

REMARK 2.5.1.

(a) It is known that the Euclidean distanced(z̄, H) of an arbitrary hyperplane
H = {z ∈ IRd : qT z = c} (q ∈ IRd, c ∈ IR) to a pointz̄ ∈ IRd is given by

d(z̄, H) =
|qT z̄ − c|
‖q‖2 . (2.5.3)

(b) The choice ofρ ∈ (0, 1] andl ∈ IN depends on the the used polyhedra, as
we will see in the next section.

(c) Algorithm 2.2 is not a pure outer approximation scheme – in contrast to
Algorithm 2.1. In each iteration we combine a better outer approximation
of the feasible region of (UP) with a subdivision of this feasible set. Notice
that – from a numerical point of view – this subdivision process can lead
to excessive storage requirements, since in each iteration we eliminate only
one polytope from the collectionP , but we add up tol new sets.

Example. In order to illustrate Algorithm 2.2 let us consider again Problem
(UPE). The initialization polytopeP 0 is given by the set{z ∈ IR2 :
1 ≤ z11 ≤ 4 , −2

√
2 ≤ z12 ≤ 2

√
2} and the first optimal solution isz0 =

(1,−2
√

2)T with ε(z0) = 1 andµ0 = −1. Since the squareR with edge-length√
2 and centered atz0 is contained in the circleC with radius1 (compare with

2.5. BASIC IDEA FOR CONVERGENT IMPLEMENTABLE ALGORITHMS 43

Figure 2.3), we can useR as the necessary polytopeQ0. Thus, the first subdivision
of the feasible region of (UPE) leads to the polytopes

P 0
1 = P 0 ∩ {z ∈ IR2 : z11 ≥ 1 + 0.5

√
2}

P 0
2 = P 0 ∩ {z ∈ IR2 : z11 ≤ 1− 0.5

√
2} = ∅

P 0
3 = P 0 ∩ {z ∈ IR2 : z12 ≥ −1.5

√
2}

P 0
4 = P 0 ∩ {z ∈ IR2 : z12 ≤ −2.5

√
2} = ∅

(see Figure 2.4). We obtain the new solutionsz0
1 = (1 + 0.5

√
2,−2

√
2)T with

FIGURE 2.4. First iteration of Algorithm 2.2 applied for (UPE)

z112

z12

R

√
2

−√2

P 0
1

P 0
3

objective function value−1 + 0.5
√

2 andz0
3 = (1,−1.5

√
2)T with value−0.5.

Hence, the new polytope for iteration1 is P 1 = P 0
3 with µ1 = −0.5.

In order to guarantee the correctness of Algorithm 2.2 we first prove that in
iterationk ∈ IN each feasible point of Problem (UP) is contained in at least one of
the polytopes belonging to the current collectionP .

LEMMA 2.5.1. Let P be the collection of polytopes at iterationk ∈ IN of
Algorithm 2.2 and denote byF = {z ∈ IRd : Az ≤ b, U(z) ∈ Un} the feasible set
of (UP). Then there holds ⋃

P∈P
P ⊃ F . (2.5.4)

44 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

PROOF: We show this result by an induction with respect to the iteration
counterk.

Fork = 0, there holdsP = {P 0} with P 0 = {z ∈ IRd : Az ≤ b}, and hence
(2.5.4) is fulfilled. Assume that (2.5.4) holds at the beginning of iterationk . Then
it suffices to show that

l⋃
i=1

P ki ⊃ F ∩ P k . (2.5.5)

Let ẑ be an element ofF ∩ P k. From Theorem 2.4.4 we know that

λn−1(U(ẑ)) ≥ λn−1(U(zk))− ‖ẑ − zk‖2
and

λ1(U(ẑ)) ≤ λ1(U(zk)) + ‖ẑ − zk‖2 .

Since ẑ is a feasible point of (UP), Lemma 2.3.1 tells us that there holds
λn−1(U(ẑ)) = λ1(U(ẑ)) = 0, and hence

‖ẑ − zk‖2 ≥ max{λn−1(U(zk)),−λ1(U(zk))} = ε(zk) . (2.5.6)

The polytopesP ki (i = 1, . . . , l) are constructed such that

l⋃
i=1

P ki = P k \ {z ∈ IRd : (qki)
T z < cki , i = 1, . . . , l} =: P̂ k ,

and regarding Property (PR1) of the polyhedronQk we know, furthermore, that

P̂ k ⊃ P k ∩ {z ∈ IRd : ‖z − zk‖2 ≥ ε(zk)} .

The pointẑ is an element ofP k. Therefore, we obtain in view of (2.5.6) that

ẑ ∈ P k ∩ {z ∈ IRd : ‖z − zk‖2 ≥ ε(zk)} ⊂
l⋃
i=1

P ki ,

which proves (2.5.5). �

If Algorithm 2.2 stops withP = ∅, it follows immediately by (2.5.4) that the
feasible region of (UP) is empty. Moreover, Relation (2.5.4) implies thatµk is at
each iterationk ∈ IN a lower bound for the optimal value of (UP), i.e., for each
k ∈ IN, there holds

µk ≤ min
z∈F

hT z . (2.5.7)

2.5. BASIC IDEA FOR CONVERGENT IMPLEMENTABLE ALGORITHMS 45

Therefore, we know that, if Algorithm 2.2 terminates with a pointzk, thenzk is an
optimal solution of Problem (UP). Indeed, in view of the stopping criterion (SC1)
the pointzk must be feasible for (UP) (see Lemma 2.3.1) and with (2.5.7) we obtain

µk = hT zk ≤ min
z∈F

hT z ≤ hT zk , (2.5.8)

which shows the optimality ofzk.
For the case that Algorithm 2.2 does not stop after a finite number of iterations,

the following theorem guarantees the convergence of our approach in the required
sense.

THEOREM 2.5.2. If Algorithm 2.2 generates an infinite point sequence
{zk}k∈IN, then each accumulation pointz? of this sequence is an optimal solu-
tion of Problem (UP).

PROOF: Let z? be an accumulation point of the sequence{zk}k∈IN and let
{zkq}q∈IN be a subsequence converging toz?. By passing to a subsequence, if
necessary, we can assume that the corresponding sequence{P kq}q∈IN of polytopes
is decreasing, i.e., for eachq ∈ IN, there holds

P kq+1 ⊂ P kq , (2.5.9)

and, moreover, thatP kq+1 has been generated by adding constraints to the set of
inequalities describingP kq . In view of Relation (2.5.7) it suffices to show thatz? is
a feasible point of (UP), i.e.,z? ∈ F (see also Relation (2.5.8)). Because of (2.5.9)
we know that, for eachq ∈ IN, there is an indexi ∈ {1, . . . , l} with

P kq+1 ⊂ P kq ∩ {z ∈ IRd : (qkq

i)T z ≥ ckq

i } .

Using Property (PR2) of the hyperplanes describing the polyhedraQkq (q ∈ IN)
we see that, for eachq ∈ IN,

‖zkq+1 − zkq‖2 ≥ ρε(zkq) > 0 . (2.5.10)

With the definition ofε(zkq) (q ∈ IN) and the continuity of the eigenvalue func-
tionals it follows

0 ≤ max {λn−1(U(zkq)) , −λ1(U(zkq))} ≤ 1
ρ‖zkq−zkq+1‖2

↓ ↓ ↓ ↓ (q →∞)

0 ≤ max {λn−1(U(z?)) , −λ1(U(z?)) } ≤ 1
ρ‖ z?− z? ‖2 = 0.

This implies in view of Lemma 2.3.1 the feasibility ofz?. �

46 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

REMARK 2.5.2. As the previous considerations show, it is not necessary that
in the formulation of Algorithm 2.2 the numberl ∈ IN and the positive real value
ρ are chosen independent of the iteration counterk. As long as there is a number
L ∈ IN with lk ≤ L (k ∈ IN) and a constantc > 0 with ρk ≥ c (k ∈ IN) the
correctness of this solution method for (UP) can be proven.

Under the assumption that appropriate polyhedraQk (k ∈ IN) can be con-
structed we have now a convergent algorithm with linear subproblems for solving
unary problems of type (UP). In order to obtain implementable algorithms we still
have to specify, how such polyhedra can be determined. In the next section we
present three possibilities for the choice of such sets.

2.6. Appropriate Polyhedra for Algorithm 2.2

Let zk (k ∈ IN) be the current point at iterationk of Algorithm 2.2 with
ε(zk) = max{λn−1(U(zk)),−λ1(U(zk))} > 0, and letBzk be the corresponding
Euclidean norm ball with radiusε(zk) centered atzk. There exists of course an infi-
nite number of polyhedraQk ⊂ IRd satisfying the required properties, ifρ ∈ (0, 1]
andl ∈ IN are chosen accordingly. In order to obtain an efficient algorithm such
polyhedra should satisfy some criteria apart from the necessary properties (PR1)
and (PR2). First of all these sets should be easy to construct. Moreover, such a
polyhedron should have as few describing hyperplanes as possible in order to re-
duce the storage requirements (see Remark 2.5.1(c)). And, a third criterion is, that
the intersection of this polyhedron with the eliminable ball should have the biggest
possible volume. Unfortunately, these criteria are conflictive. For example, the
less hyperplanes we use to describe the polyhedra the less volume of the resulting
intersection sets we can expect.

The first type of polyhedra, which we present in this section, is a hypercube.
These sets are really easy to construct and are a relative good choice with respect
to the third criterion. However, they do not pay so much attention to our second
criterion. Therefore, we propose furthermore two possible polyhedra which base
ond-simplices and are described by onlyd+ 1 respectivelyd hyperplanes, instead
of the2d hyperplanes in the case of the hypercubes. The first simplex, which we
propose in Subsection 2.6.2, is also easy to construct. In order to obtain a better set
with respect to the volume criterion we modify this simplex in Subsection 2.6.3.
However, the construction of this modifiedd-simplex will need more effort.

2.6. APPROPRIATEPOLYHEDRA FOR ALGORITHM 2.2 47

2.6.1. Hypercubes.Using the fact that, for eachz ∈ IRd, there holds

‖z‖22 =
d∑
i=1

|zi|2 ≤
d∑
i=1

‖z‖2∞ = d‖z‖2∞ , (2.6.1)

we immediately see, that the`∞-norm ball centered atzk with radiusε(z
k)√
d

is con-

tained in the Euclidean norm ball with radiusε(zk). This`∞-norm ball is a hyper-

cube centered atzk with edge-length2 ε(z
k)√
d

and can be described by

Rk = {z ∈ IRd : (qki)
T z ≤ cki , i = 1, . . . , 2d} (2.6.2)

where, fori = 1, . . . , d,

(qki)
T z = zi and cki = zki + ε(zk)√

d
,

and, fori = d+ 1, . . . , 2d,

(qki)
T z = −zi−d and cki = −zki−d + ε(zk)√

d
.

The hypercubesRk (k ∈ IN) fulfill Property (PR1) (see (2.6.1)) and in view of the
definition of the hyperplanesH(qki , c

k
i) (i = 1, . . . , 2d; k ∈ IN) we know

d(zk, H(qki , c
k
i)) =

|(qki)T zk − cki |
‖qki ‖2

=
1√
d
ε(zk) .

Choosingl = 2d andρ = 1√
d

in the initialization of Algorithm 2.2 the hypercube

Rk is an appropriate choice for the necessary polyhedronQk (k ∈ IN). If we apply
Algorithm 2.2 using these hypercubes for solving our example problem, then the
first iteration of this approach looks like it is described on page 43 (see, in particular,
Figure 2.4).

REMARK 2.6.1. If the hypercubesRk are used in Algorithm 2.2 forQk

(k ∈ IN), the number of inequalities describing a polytopeP ∈ P can be bounded
by m + 2d. Note that the normalsqki (i = 1, . . . , 2d; k ∈ IN) of the constraints
describingRk do not depend on the iteration counter, and, thus, only the right-hand
sidescki (i = 1, . . . , 2d; k ∈ IN) of the constraints change.

The hypercubesRk (k ∈ IN) are really easy to construct and fulfill thus the
postulated first criterion. However, the number2d of generated new polytopes in
each iteration of the algorithm is already rather large. In order to reduce this number
we develop now an inner approximation polytope for the ballBzk , which can be

48 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

described byd+ 1 hyperplanes. This choice is hence better – regarding our second
criterion.

2.6.2. Regulard-Simplices. A d-simplex is the set among alld-dimensional
polytopes, which can be described by the least number of linear constraints. We
present now ad-simplex contained in the Euclidean norm ballBzk , whose vertices
lie on the boundary of this ball. It is known that among alld-simplices contained
in such a ball the so-calledregular simplices, i.e., the simplices where the distance
between each pair of vertices is equal, are the largest ones with respect to the vol-
ume (see [SLE69] for a proof). In view of the third criterion we choose, therefore,
a regulard-simplex contained inBzk .

In order to simplify the presentation we start with the description of a regular
d-simplex centered at the origin and with vertices on the boundary of the unit ball
B = {z ∈ IRd : ‖z‖2 ≤ 1}. This simplex can later be easily transformed to the
requiredd-simplex lying in the relevant ballBzk .

Assume, at first, that a regulard-simplexS = [v0, . . . , vd] centered at the
origin and with all its vertices on the boundary ofB is given. Then it is known
from the literature that the edge-length ofS, i.e., the Euclidean distance between
each pair of vertices, is given by

‖vi − vj‖2 =

√
2(d+ 1)

d
, i, j ∈ {0, . . . , d} with i 6= j (2.6.3)

(see, e.g., [SOM29, GKL95]). Moreover, it is elementary to show that0 =
1
d+1

∑d
i=0 vi, i.e., the origin is the barycenter ofS, and that the radius of the largest

Euclidean ball, which can be inscribed intoS, is

r =
1
d

. (2.6.4)

The numberr is also the distance of each facet ofS to the origin. Furthermore,
we can use the fact that, for eachj ∈ {0, . . . , d}, the vertexvj is orthogonal to
the facetSj = [v0, . . . , vj−1, vj+1, . . . , vd] of S, and hence the hyperplanesHSj

generated bySj can be described by

HSj = {z ∈ IRd : vTj (vi − z) = 0} (2.6.5)

with an arbitrary, but fixed indexi ∈ {0, . . . , d} \ {j}.

2.6. APPROPRIATEPOLYHEDRA FOR ALGORITHM 2.2 49

These are known results about the properties of a regulard-simplex centered
at the origin and with all its vertices on the boundary of the unit ballB. To the au-
thor’s knowledge there is, unfortunately, no explicit construction of such a simplex
in the literature – except of [HR98]. In order to derive an implementable algorithm
we need an explicit formulation of the hyperplanes describing such a simplex and,
thus, in view of (2.6.5) we need an explicit formulation of its vertices. This will be
done in the following. For reasons which will become evident later in this section
we construct a regularr-simplex withr ∈ IN. Set

v0 =
√
a0er ,

vi =
√
a2ier−i −

i∑
j=1

√
a2j−1er−(j−1) , i = 1, . . . , r − 1 ,

vr = −√a2(r−1)e1 −
r−1∑
j=1

√
a2j−1er−(j−1) ,

(2.6.6)

where

a0 = 1 ,

ai =

{
ai−1/

(
r − i−1

2

)2
, if i odd

ai−2 − ai−1 , if i even
, i = 1, . . . , 2(r − 1) ,

(2.6.7)

andei ∈ IRr is thei-th unit vector. Ther-simplexS = [v0, . . . , vr], which is gen-
erated by these vertices, is a regular simplex with the edge-length (2.6.3), and all its
vertices belong to the boundary of the unit ballB ⊂ IRr. This will be the result of
Theorem 2.6.2. At first, however, a technical lemma is needed in order to establish
this theorem.

LEMMA 2.6.1. Letai (i ∈ {0, . . . , 2(r − 1)}) be defined as in (2.6.7). Then,
for eachi = 1, . . . , r − 1, there holds

r − i+ 1
r − i a2i =

r + 1
r

. (2.6.8)

PROOF: We prove this result by an induction with respect toi. The assertion
is obviously correct fori = 0. Assume that it holds fori = j − 1 with j ≥ 1. Then

50 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

it follows by definition ofal (l ∈ {0, . . . , 2(r − 1)})
r − j + 1
r − j a2j =

r − j + 1
r − j (a2j−2 − a2j−1)

=
r − j + 1
r − j

(
a2j−2 − a2j−2

(r − j + 1)2

)

=
r − j + 1
r − j

(r − j + 1)2 − 1
(r − j + 1)2

a2j−2

=
r − j + 2
r − j + 1

a2j−2 =
r + 1
r

,

which is the required result fori = j. �

With the technical result of Lemma 2.6.1 the postulated properties of the sim-
plex generated by the vertices defined in (2.6.6) can now be shown.

THEOREM 2.6.2. Let S = [v0, . . . , vr] be ther-simplex with the verticesvi
(i = 0, . . . , r) constructed as in (2.6.6). Then the following assertions are true.

(i) Each vertex ofS belongs to the boundary of ther-dimensional unit ball
B = {z ∈ IRr : ‖z‖2 ≤ 1}, i.e., for eachi ∈ {0, . . . , r}, there holds

‖vi‖2 = 1 .

(ii) The distance between each pair of vertices is equal. Moreover, for each
i, j ∈ {0, . . . , r} with i 6= j, there holds

‖vi − vj‖2 =
√

2(r+1)
r

(compare with (2.6.3)).

PROOF: In view of the definition ofal for l ∈ {0, . . . , 2(r − 1)} even we
obtain, for eachi ∈ {0, . . . , r − 1},

a2i = 1−
i∑

j=1

a2j−1 . (2.6.9)

Hence, for eachi ∈ {0, . . . , r − 1}, it follows

‖vi‖22 = a2i +
i∑

j=1

a2j−1 = 1 .

Using the fact thatvr andvr−1 have by definition the same distance to the origin,
assertion (i) is proven.

2.6. APPROPRIATEPOLYHEDRA FOR ALGORITHM 2.2 51

Lemma 2.6.1 yields

‖vr−1 − vr‖22 = 4a2(r−1) = 2
r − (r − 1) + 1
r − (r − 1)

a2(r−1) =
2(r + 1)

r
,

and by using additionally (2.6.9) we obtain, fori, j ∈ {0, . . . , r} with i < j and
i < r − 1,

‖vi − vj‖22 = a2j +
j∑

l=i+2

a2l−1 +
(√
a2i +

√
a2i+1

)2
= 1−

j∑
l=1

a2l−1 +
j∑

l=i+2

a2l−1 +
(√
a2i +

√
a2i+1

)2
= 1−

i+1∑
l=1

a2l−1 + a2i + a2i+1 + 2
√
a2i
√
a2i+1

= 2a2i + 2
√
a2i

√
a2i

(r−i)2 = 2a2i + 2a2i
1

r − i
= 2

r − i+ 1
r − i a2i =

2(r + 1)
r

,

which shows assertion (ii) and completes the proof. �

As a direct consequence of the previous theorem, we obtain that the inner
product of each pair of vertices of the simplexS = [v0, . . . , vr] is equal− 1

r .

COROLLARY 2.6.3. Under the assumptions of Theorem 2.6.2 there holds, for
eachi, j ∈ {0, . . . , r} with i 6= j,

vTi vj = − 1
r . (2.6.10)

PROOF: From result (ii) of Theorem 2.6.2 we know that, for each
i, j ∈ {0, . . . , r} with i 6= j, there holds

2 r+1
r = ‖vi − vj‖22 = ‖vi‖22 + ‖vj‖22 − 2vTi vj .

Using assertion (i) of this theorem we obtain

2 r+1
r = 2− 2vTi vj ,

which implies (2.6.10). �

In view of the previous results the construction (2.6.6) withr = d yields the
needed explicit formulation of a regulard-simplexS = [v0, . . . , vd] centered at the
origin, whose vertices lie on the boundary of the unit ball. Assume now that we are

52 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

again in the situation of Algorithm 2.2 and that a pointzk ∈ P = {z ∈ IRd : Az ≤
b} is given satisfyingU(zk) /∈ Un, i.e.,

ε(zk) = max{λn−1(U(zk)),−λ1(U(zk))} > 0 .

It could be verified by straightforward calculations that the polyhedron

Sk := {z ∈ IRd : −vTi z ≤ ε(zk)
d − vTi zk , i = 0, . . . , d} (2.6.11)

with vi (i = 0, . . . , d) defined as in (2.6.6) is a regulard-simplex centered atzk

(compare with (2.6.5)). The vertices ofSk areε(zk)vi + zk (i = 0, . . . , d), which
lie on the boundary of the ballBzk . For the Euclidean distance of the pointzk to the
hyperplanes describingSk we obtain regarding (2.5.3), for eachi ∈ {0, . . . , d},

d(zk, H(−vi, ε(z
k)
d − vTi zk)) =

ε(zk)
d

(2.6.12)

(compare with (2.6.4)). Thus, choosingl = d + 1 andρ = 1
d in the initialization

of Algorithm 2.2, the regulard-simplicesSk are also an appropriate choice for the
polyhedraQk (k ∈ IN) needed in this approach.

REMARK 2.6.2. If the regulard-simplices defined in (2.6.11) are used in Al-
gorithm 2.2 forQk (k ∈ IN), the number of inequalities describing a polytope
P ∈ P can be bounded bym + d + 1. As in the case of the hypercubes (see Re-
mark 2.6.1), the normalsqki = −vi (i = 0, . . . , d; k ∈ IN) do not depend on the
iteration counterk.

Example. If we choose in Algorithm 2.2 this regulard-simplex for subdivid-
ing the feasible region of Problem (UPE), then we obtain in the first iteration the
following polytopes (see also page 43).

P 0
1 = P 0 ∩ {z ∈ IR2 : −z12 ≥ 1

2 + 2
√

2} = ∅
P 0

2 = P 0 ∩ {z ∈ IR2 : 1
2 (−
√

3z11 + z12) ≥ 1
2 (1 −

√
3− 2

√
2)}

P 0
3 = P 0 ∩ {z ∈ IR2 : 1

2 (
√

3z11 + z12) ≥ 1
2 (1 +

√
3− 2

√
2)}

This situation is illustrated in Figure 2.5. The new solutions are given byz0
2 =

(1, 1− 2
√

2)T with optimal value 1√
2
− 1 andz0

3 = (1 + 1√
3
,−2
√

2)T with value
1√
3
− 1. The polytopeP 1 for iteration1 is henceP 0

3 with µ1 = −0.4226.

The presentedd-simplexSk is an inner approximation polytope for the whole
ball Bzk , which can be cut out of the relevant feasible setP k. In Section 2.5 we

2.6. APPROPRIATEPOLYHEDRA FOR ALGORITHM 2.2 53

FIGURE 2.5. First iteration of Algorithm 2.2 with a regular sim-
plex applied for (UPE)

z112

z12

√
2

P 0
3−√2

P 0
2

S0

only require that the intersection of the polyhedronQk with P k is an inner approxi-
mation of the intersection ofP k with the ballBzk . Therefore, by constructing a set
based on anotherd-simplex, which contains a bigger part ofP k∩Bzk , i.e., a bigger
part of the set which can really be eliminated, we obtain – taking our third criterion
for appropriate polyhedraQk (k ∈ IN) into account – a better choice. Note, in
particular, that all points ofP k belonging toBzk must lie in a half-ball ofBzk .

2.6.3. A Better Polyhedron Based on a Modifiedd-Simplex. The regular
d-simplexSk defined in (2.6.11) does not depend on the current polytopeP k. The
construction of these sets only use the pointzk and the corresponding valueε(zk).
In the following we present a polyhedron derived from ad-simplex, which also
recognize the bearing of the polytopeP k with respect to the pointzk. For this
aim we need, as in Ramana’s approach (see Section 2.3), thatzk is a vertex of the
current polytopeP k. This is always satisfied, if we use the Simplex-Algorithm for
solving the linear subproblems in Algorithm 2.2.

Let zk be a vertex ofP k (k ∈ IN) and letBkz ≤ rk, withBk = (bk1 , . . . , b
k
d)
T

regulard×dmatrix, be the nonsingular basic system corresponding tozk (compare
with Section 2.3, in particular page 29). Let, furthermore,

Ck = {z ∈ IRd : Bkz ≤ rk}

54 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

be the cone defined by this system. Each of thed extremal directionswki ∈ IRd

(i = 1, . . . , d) of Ck is a nontrivial solution of the system

(bkj)
Twki = 0 j = 1, . . . , i− 1, i+ 1, . . . , d

(bki)
Twki ≤ 0 .

Let, for i ∈ {1, . . . , d}, the vectorw̄ki ∈ IRd denote the intersection point of the
ray

{z ∈ IRd : z = zk + βwki , β ≥ 0}
with the boundary of the ballBzk , i.e.,

w̄ki = zk + ε(zk) wk
i

‖wk
i
‖2

(see Figure 2.6). Let, furthermore,

Hk = H(ak, bk) = {z ∈ IRd : (ak)T z = bk} (2.6.13)

with ak ∈ IRd, bk ∈ IR be the uniquely determined hyperplane containing each of
these intersection points̄wki (i = 1, . . . , d) and satisfying(ak)T zk > bk. SinceP k

is a subset ofCk and in view of the quadratic cut (2.4.6) we know that no feasible
point of (UP) belongs to the set

H+(ak, bk) = {z ∈ IRd : (ak)T z ≥ bk}
(see again Figure 2.6). This means that the linear constraint

FIGURE 2.6. The hyperplaneH0 in the case of Problem (UPE)

��
��
��

��
��
��

(a0)T z = b0

H+(a0,b0) w0
1

w0
2z12

z11

√
2

−√2

2

2.6. APPROPRIATEPOLYHEDRA FOR ALGORITHM 2.2 55

(ak)T z ≤ bk (2.6.14)

is a valid cut for (UP).

REMARK 2.6.3. The cut (2.6.14) could be used in order to derive an outer
approximation method for solving (UP), as we did in Section 2.3 with the cuts
introduced by Ramana (see Algorithm 2.1). However, since the definition ofak

(k ∈ IN) depends on the current nonsingular basic systemBkz ≤ rk corresponding
to zk, such an algorithm can – similar to Ramana’s original approach – fail to
converge. Nevertheless, as we will see in Section 2.7, each known valid cut can be
used for accelerating the convergence of our solution scheme for (UP).

If we take ad-simplexS̄k, which is the convex hull of the intersection point
āk of the ray{z ∈ IRd : z = zk − βak , β ≥ 0} with the boundary ofBzk and a
regular (d− 1)-simplex contained in the intersection ofHk with the ballBzk , then
we obtainS̄k ⊂ Bzk ∩{z ∈ IRd : (ak)T z ≤ bk} (S̄k is contained in the shaded re-
gion in Figure 2.6). The polyhedron̄Qk described by thed hyperplanes, which are
induced by just the facets of̄Sk containingāk, obviously fulfills Property (PR1).
And, moreover, we can expect that the Euclidean distance of the hyperplanes de-
scribingQ̄k to the pointzk is bigger than the distance of the facets of the regular
d-simplex introduced in the previous subsection (see (2.6.11)). The two possible
choices ofQk in Algorithm 2.2 proposed until now are fully contained in the ball
Bzk . The polyhedronQ̄k, which we present below, does not have this property.
Only the intersection of̄Qk with the current polytopeP k will be contained in this
ball. Therefore, we can hope, that a bigger part ofP k is cut out of this set by
applying the polyhedron̄Qk instead ofSk or maybe even instead ofRk.

As mentioned before, the construction of the new polyhedronQ̄k is based on
a d-simplex. Let us first describe the construction of thisd-simplex. In order to
simplify the presentation we assume again thatBzk is the unit ballB and thatHk

is a hyperplane parallel to{z ∈ IRd : zd = 0}, i.e.,Hk = H = {z ∈ IRd :
−eTd z = −δ}, whereδ ∈ [0, 1) denotes the Euclidean distance ofH to the origin.
After the derivation of the requiredd-simplex for this situation we describe, how
this "standard" simplex can be transformed to the general case ofBzk andHk

defined as in (2.6.13).
The intersection ofH with the unit ball is a (d-1)-dimensional sphere with

radiusε̄ =
√

1− δ2 and centered atδed. Let v0, . . . , vd−1 be the vertices of a
regular (d − 1)-simplex constructed as in (2.6.6). Assume that these vertices are

56 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

imbedded in the spaceIRd by adding one dimension. Set now, fori = 0, . . . , d−1,

v̄i := ε̄vi + δed

and
v̄d := ed .

It follows immediately that the vertices̄vi (i = 1, . . . d − 1) are contained in
the hyperplaneH . From Theorem 2.6.2 and the construction of the pointsv̄i
(i = 0, . . . d) we see that

‖v̄i‖2 = 1 , i ∈ {1, . . . , d} ,

‖v̄i − v̄j‖2 = ε̄
√

2d
d−1 , i, j ∈ {0, . . . , d− 1} with i 6= j ,

‖v̄i − v̄d‖2 =
√

1− δ2 + (1− δ)2 , i ∈ {0, . . . , d− 1} .

In order to use the simplex̄S = [v̄0, . . . , v̄d] for the construction of an ap-
propriate polyhedronQk (k ∈ IN) for Algorithm 2.2, we have to derive, for each
i ∈ {0, . . . , d−1}, a representation of the hyperplanesHS̄i

generated by the facets

S̄i = [v̄0, . . . , v̄i−1, v̄i+1, . . . , v̄d]

of S̄. Note thatH is the hyperplane induced by the facetS̄d. The following lemma
delivers this representation.

LEMMA 2.6.4. Let v0, . . . , vd−1 ∈ IRd be the vertices of a regular (d − 1)-
simplex defined as in (2.6.6). Set, for eachi ∈ {0, . . . , d− 1},

v̂i := vi − τ

d− 1
ed

with

τ =
√

1− δ2
1− δ ≥ 1 . (2.6.15)

Then, for eachi ∈ {0, . . . , d − 1}, the hyperplaneHS̄i
generated by the facet̄Si

of thed-simplexS̄ can be described by

HS̄i
= {z ∈ IRd : v̂Ti z = v̂Ti v̄d} . (2.6.16)

PROOF: Since, for eachi ∈ {0, . . . , d− 1}, we know

HS̄i
= {z ∈ IRd : z = v̄d +

d−1∑
j=0,j 6=i

γj(v̄j − v̄d) , γj ∈ IR+} ,

2.6. APPROPRIATEPOLYHEDRA FOR ALGORITHM 2.2 57

it suffices to show that̂vi is orthogonal to each direction(v̄j−v̄d) (j = 0, . . . , d−1;
j 6= i) of HS̄i

and, thus, orthogonal toHS̄i
itself. I.e., we have to prove, for each

j ∈ {0, . . . , d− 1} \ {i},
v̂Ti (v̄j − v̄d) = 0 . (2.6.17)

Choose an arbitrary, but fixed indexj ∈ {0, . . . , d− 1} \ {i}. Applying Corollary
2.6.3 and the fact that, for eachl ∈ {0, . . . , d − 1}, thed-th component ofvl is
zero we obtain

v̂Ti (v̄j − v̄d) =
(
vi − τ

d−1ed

)T
(ε̄vj + δed − ed)

= ε̄ vTi vj︸︷︷︸
=− 1

d−1

+(δ − 1) vTi ed︸ ︷︷ ︸
=0

− ε̄τ
d−1 e

T
d vj︸︷︷︸
=0

+ τ(1−δ)
d−1 eTd ed︸︷︷︸

=1

= − ε̄
d−1 + τ(1−δ)

d−1 = 0 ,

which shows (2.6.17) and finishes the proof. �

The polyhedron, which we derive from the simplexS̄, will be determined by
thed hyperplanes described in the last lemma. By construction we know that this
polyhedron fulfills Property (PR1). In order to guarantee that this polyhedron also
satisfies Property (PR2) we need the Euclidean distance of the hyperplanesHS̄i

(i = 0, . . . , d − 1) to the pointzk, i.e., in the considered situation to the origin.
Moreover, we have postulated that the polyhedron, which we develop in this sub-
section, cuts a bigger part out of the unit ballB than the regulard-simplexS derived
in Subsection 2.6.2. This would be satisfied, if the distance of the hyperplanesHS̄i

(i = 0, . . . , d− 1) is bigger than1
d (compare with (2.6.4)).

THEOREM 2.6.5. LetHS̄i
(i = 0, . . . , d − 1) be the hyperplanes defined in

Lemma 2.6.4. Then, for eachi ∈ {0, . . . , d− 1}, the Euclidean distanced(0, HS̄i
)

of these hyperplanes to the origin is

d(0, HS̄i
) =

τ√
(d− 1)2 + τ2

>
1
d

(2.6.18)

with τ given as in (2.6.15).

PROOF: From

‖v̂i‖22 = 1 +
τ2

(d− 1)2
=

(d− 1)2 + τ2

(d− 1)2

58 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

we obtain by using (2.5.3), for eachi ∈ {0, . . . , d− 1},

d(0, HS̄i
) =

|v̂Ti v̄d|
‖v̂i‖2 =

τ

d− 1
d− 1√

(d− 1)2 + τ2
=

τ√
(d− 1)2 + τ2

.

The function% : IR→ IR, %(τ) = τ√
(d−1)2+τ2

is monotonously decreasing inIR+

and, additionally, there holds%(1) > 1
d . Therefore, it follows that%(τ) is bigger

than 1
d for eachτ ≥ 1, which shows in view of (2.6.15) the right-hand side of Re-

lation (2.6.18). �

In view of the previous result we know that the polyhedron

Q̄ = {z ∈ IRd : −v̂Ti z ≤ τ
d−1}

cuts a bigger part out of the unit ballB than the regulard-simplex introduced in
the previous subsection. Note thatv̂Ti v̄d coincides with− τ

d−1 (i = 0, . . . , d − 1).
The construction of̄Q andS̄, respectively, depends on the hyperplaneH . There-
fore, we cannot transform̄S to the interesting situation ofBzk andHk by simply
multiplying the relevant values withε(zk), as it was the case for the previous two
choices of the polyhedronQk. We will need more effort.

Let{yk1 , . . . , ykd−1} be an orthonormal basis of the linear subspaceHk−{zk}.
Such a basis could be developed by applying the Gram-Schmidt method or an-
other orthonormalization procedure (see, again, [GVL89]) to the set{w̄ki − w̄k1 ,
i = 2, . . . , d}, which forms by construction a basis ofHk − {zk} (see page 54).
Let

Ak = (yk1 , . . . , y
k
d−1,−ak)

be thed × d matrix with the columnsyk1 , . . . , y
k
d−1 and−ak. If ak is normalized,

it is obvious that this matrix is orthogonal, i.e., there holds(Ak)TAk = E, where
E denotes thed-dimensional identity matrix. In view of this property we see that
the transformation

T k : IRd → IRd :⇔ T k(z) = ε(zk)Akz + zk

yields, for anyz, ẑ ∈ IRd,

‖T k(z)− zk‖2 = ε(zk)‖z‖2 and ‖T k(z)− T k(ẑ)‖2 = ε(zk)‖z − ẑ‖2 .

The affine functionT k maps the unit ballB and the hyperplaneH = {z ∈ IRd :
−eTd z = −δ} to the current ballBzk and the current hyperplaneHk. Applying the

2.6. APPROPRIATEPOLYHEDRA FOR ALGORITHM 2.2 59

inverse function(T k)−1 we can hence transform the situation of the current itera-
tion k to the just examinedstandardsituation. In order to construct the simplexS̄
in thestandardsituation we need the Euclidean distance of the resulting hyperplane

H = {z ∈ IRd : T k(z) ∈ Hk} = {z ∈ IRd : (ak)TT k(z) = bk}
to the origin. This is given by

δk =
|(ak)T zk − bk|

ε(zk)
(2.6.19)

(compare with (2.5.3) and note that(ak)TAk = −ed). Transforming the simplex
S̄ = [v̄0, . . . , v̄d] of thestandardsituation to the current situation in iterationk we
obtain with

S̄k = [T k(v̄0), . . . , T k(v̄d)]

ad-simplex contained in the set

Bzk ∩ {z ∈ IRd : (ak)T z ≤ bk} .

It can be verified by straightforward calculations that the hyperplanes induced
by the facetsS̄ki (i = 0, . . . , d − 1) of the simplexS̄k containing the point
āk = zk − ε(zk)ak are given by

HS̄k
i

=
{
z ∈ IRd :

(
Ak
(
τk

d−1ed − vi
))T

(z − zk) = ε(zk)τk

d−1

}

with τk =
√

1−(δk)2

1−δk and withv0, . . . , vd−1 defined as in (2.6.6) forr = d − 1.
Moreover, it follows that, for eachi ∈ {0, . . . , d − 1}, the Euclidean distance of
these hyperplanes to the pointzk is

d(zk, HS̄k
i
) = ε(zk)

τk√
(d− 1)2 + (τk)2

(2.6.20)

≥ ε(zk)
1√

(d− 1)2 + 1
.

Choosingl = d andρ = 1√
(d−1)2+1

in the initialization of Algorithm 2.2 the

polyhedra

Q̄k = {z ∈ IRd :
(
Ak
(
τk

d−1ed − vi
))T

(z − zk) ≤ ε(zk)τk

d−1 ,

i = 0, . . . , d− 1} (2.6.21)

60 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

are the third possible choice for the setsQk (k ∈ IN) needed in this approach.

Example. Consider once again Problem (UPE). The nonsingular basic

system corresponding toz0 = (1,−2
√

2)T is given byB0 =
(−1 0

0 −1

)
and

r0 =
(−1
2
√

2

)
(see page 31). For the hyperplaneH0 we obtain

H0 = {z ∈ IR2 : − 1√
2
z11 − 1√

2
z12 = 2−

√
2} .

The point̄a0 is (1√
2

+1,− 3√
2
)T , and the distanced0 ofH0 to the pointz0 is given

by 1√
2
. Thus, we haveτ0 = 1 +

√
2 and using the matrixA0 = 1√

2

(−1 1
1 1

)
the

subdivision ofP 0 leads to the two polytopes

P 0
1 = P 0 ∩ {z ∈ IRd : (1 +

√
2)z11 + z12 ≥ 2}

P 0
2 = P 0 ∩ {z ∈ IRd : z11 + (1 +

√
2)z12 ≥ −2−

√
2}

(see Figure 2.7). The new solutions arez0
1 = (2,−2

√
2)T with optimal value0

FIGURE 2.7. Subdivision ofP 0 with the polyhedron̄Q0 in Al-
gorithm 2.2 applied for Problem (UPE)

z112

z12

H0

Q̄0

−√2

P 0
1

P 0
2

√
2

andz0
2 = (1, 1− 2

√
2)T with value 1√

2
− 1. The polytopeP 1 for the next iteration

of Algorithm 2.2 is thereforeP 0
2 with µ1 = −0.2929.

2.7. A VARIANT OF ALGORITHM 2.2 61

Among the presented possibilities for the construction of the polyhedraQk

(k ∈ IN) for Algorithm 2.2 the last one leads to the least number of new polytopes
in each iteration. However, the construction of these sets is, on the other hand,
the most expensive one. Moreover, in contrast to the other two possibilities (see
Remark 2.6.1 and 2.6.2), the number of the constraints describing an elementP

of the collectionP cannot be bounded. Note that the normals of the linear con-
straints determininḡQk (k ∈ IN) depend on the iteration counterk. Therefore,
even though the last approach leads to deeper cuts, at least in comparison to the
regulard-simplex introduced in Subsection 2.6.2, it is not definitely clear, which
approach leads to a more efficient algorithm for solving unary problems of type
(UP). Before discussing the numerical performance of these three possibilities we
propose in the next section a still convergent variant of Algorithm 2.2, which does
not need a subdivision of the current polytopeP k (k ∈ IN) in each iteration.

2.7. A Variant of Algorithm 2.2

Throughout the previous sections we proposed four possible valid linear cuts
(see (2.3.3), (2.3.4), (2.3.5) and (2.6.14)) for the considered unary problem. For
an algorithm using only these cuts the convergence cannot be guaranteed. Nev-
ertheless, the use of any valid cut can accelerate the convergence of Algorithm
2.2. If we use in Algorithm 2.2 for the definition of the subdivision polytopesP ki
(i = 1, . . . , l) also some of these cuts, then the resulting approach is of course still
convergent. And, moreover, we can hope that this method needs less iterations for
solving (UP). For example, in Problem (UPE) the additional use of cut (2.3.5) leads
to a termination of Algorithm 2.2 after one step.

For the convergence of Algorithm 2.2 it is essential that for a decreasing se-
quence{P k}k∈IN of polytopes we know that the corresponding point sequence
{zk}k∈IN satisfies

‖zk+1 − zk‖2 ≥ ρε(zk) . (2.7.1)

The use of the subdivision process guarantees this property (see the necessary Prop-
erty (PR2) of the hyperplanes describing the polyhedraQk). As long as this relation
holds also ifP k+1 results fromP k by adding some other cuts, the convergence can
be ensured even without the subdivision ofP k.

The following algorithm uses this consideration. As long as a relation similar
to (2.7.1) holds by adding only valid cuts we do not subdivide the current setP k.
If this relation fails, we enforce (2.7.1) by splittingP k.

62 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

ALGORITHM 2.3 (Another Convergent Algorithm for Solving (UP)).

Initialization
Chooseρ ∈ (0, 1] andl ∈ IN, and setP 0 ← {z ∈ IRd : Az ≤ b}.
Solve the linear optimization problem (LP)minz∈P 0 hT z, and letz0 be an

optimal solution with optimal valueµP 0 = hT z0.

VP 0 ← {z0}, zP 0 ← z0,

µ0 ← µP 0 , P ← {P 0}, STOP← False, k ← 0

While STOP =False Do
Compute the eigenvalues ofU(zk) indexed in increasing order.

If λ1(U(zk)) ≥ 0 AND λn−1(U(zk)) ≤ 0 Then (SC1)

STOP← True (zk is an optimal solution of (UP))

Else
ε(zk)← max {λn−1(U(zk)),−λ1(U(zk))}
Determine affine functions̀i : IRd → IR (i = 1, . . . , qk ∈ IN) satisfying

`i(zk) > 0 and, for eachz ∈ P k with U(z) ∈ Un, `i(z) ≤ 0 (VCP)

P k ← P k ∩ {z ∈ IRd : li(z) ≤ 0 , i = 1, . . . , qk}
If P k = ∅ Then
P ← P \ {P k}

Else
Solve the LPminz∈Pk hT z and letz̄k be an optimal solution.

If min
z∈V

P k

{‖z̄k − z‖ − ρε(z)} < 0 Then (SDC)

Choosêz ∈ VPk satisfying‖z̄k − ẑ‖2 − ρε(ẑ) < 0.

Construct a polyhedronQk = {z ∈ IRd : (qki)
T z ≤ cki , i = 1, . . . , l}

satisfying

P k ∩Qk ⊂ P k ∩ {z ∈ IRd : ‖z − ẑ‖2 ≤ ε(ẑ)} (PR1)

and, for eachi ∈ {1, . . . , l},
d(ẑ, H(qki , c

k
i)) = |(qk

i)T ẑ−ck
i |

‖qk
i
‖2

≥ ρε(ẑ). (PR2)

For i = 1 To l Do
P ki ← P k ∩ {z ∈ IRd : (qki)

T z ≥ cki }
VPk

i
← VPk \ {ẑ}, zPk

i
← zPk

If P ki 6= ∅ Then

2.7. A VARIANT OF ALGORITHM 2.2 63

Solve the LPminz∈Pk
i
hT z, and letzki be an optimal solution

with optimal valueµPk
i

= hT zki .
P ← P ∪ {P ki }

EndIf
EndFor
P ← P \ {P k}

Else
VPk ← VPk ∪ {z̄k}, zPk ← z̄k, µPk ← hT z̄k

EndIf
EndIf
If P = ∅ Then (SC2)

STOP← True (P 0 ∩ {z ∈ IRd : U(z) ∈ Un} = ∅)
Else
µk+1 ← minP∈P µP
ChooseP k+1 ∈ P andzk+1 ∈ P k+1 with µk+1 = µPk+1 = hT zk+1.

EndIf
EndIf
k ← k + 1

EndWhile

REMARK 2.7.1.

(a) If λ1(U(zk)) is smaller than0, we can use the cuts (2.3.4) and (2.3.5) intro-
duced by Ramana. Ifλn−1(U(zk)) is greater than0, the cut (2.3.3) fulfills
the valid cut property (VCP), and in both cases the new cut (2.6.14) pre-
sented in the previous section is usable.

(b) If additional cuts satisfying (VCP) are used, then the number of inequalities
describing a setP ∈ P cannot be bounded anymore. This does not depend
on the used polyhedraQk (k ∈ IN) (compare with Remarks 2.6.1 and 2.6.2).

(c) If the setVPk is empty, then the subdivision criterion (SDC) is not fulfilled.
By convention, there holdsminz∈∅ f(z) =∞.

(d) The valuesε(z) = max{λn−1(U(z)),−λ1(U(z))} (see (SDC)) have been
calculated for each element ofVPk (k ∈ IN) at an earlier stage of the algo-
rithm.

(e) The Algorithm 2.3 does not coincide with Algorithm 3 presented in [HR98].

64 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

If Algorithm 2.3 terminates after a finite number of iterations either by detect-
ing the emptiness of the feasible region of (UP) or by yielding an optimal solution
zk of this problem, then the correctness of these results follows by the same argu-
mentation as in the case of Algorithm 2.2. The result of Lemma 2.5.1 is obviously
true also for this approach. Thus, we know that, for eachk ∈ IN, µk is a lower
bound for the optimal value of Problem (UP) (compare with (2.5.7)).

In order to guarantee the convergence of Algorithm 2.3 without a subdivision
of P k in each iterationk ∈ IN we have introduced the new setsVPk (k ∈ IN) and
the pointszPk (k ∈ IN). The subdivision criterion (SDC) shows that only such
pointsz̄k ∈ P k are added to the setVPk , which fulfill, for eachz ∈ VPk ,

‖z − z̄k‖2 ≥ ρε(z) . (2.7.2)

There holds furthermore that in each iteration either a point is added toVPk or one
point is eliminated from this set and that the elimination ofẑ ∈ VPk leads to a
subdivision ofP k. In the elimination case it follows, moreover, that each point
contained in a polytopeP ∈ P – P be the collection of the relevant polytopes in
an iterationk̄ ≥ k –, which is a subset ofP k must have a distance greater than
ρε(ẑ) to the pointẑ, i.e., fulfills (2.7.2) forẑ. These special properties of the set
VPk enable us to prove the convergence of Algorithm 2.3. However, we will not
show the convergence of Algorithm 2.3 in the sense of Theorem 2.5.2. We prove
that each accumulation pointz? of the sequence{zPk}k∈IN, which is a special
subsequence of{zk}k∈IN, leads to a unary matrixU(z?) and is hence optimal for
(UP).

For this purpose we first have to show that the elements of the sequence
{zPk}k∈IN change infinitely often.

LEMMA 2.7.1. Assume that Algorithm 2.3 generates an infinite sequence
{P k}k∈IN of polytopes. Let{P kq}q∈IN be a subsequence of{P k}k∈IN with the
properties that, for eachq ∈ IN, P kq+1 is a subset ofP kq and, moreover, that
P kq+1 is generated by adding linear inequalities to the list of constraints describ-
ing P kq . Denote byI = {q ∈ IN : zPkq+1 6= zPkq } the set of all indicesq ∈ IN,
wherezPkq is different from its successor in the sequence{zPkq }q∈IN. Then the
following assertions are true.

(i) The setI contains an infinite number of elements, i.e.,|I| =∞.
(ii) For eachq ∈ I, there holds

‖zPkq+1 − zPkq ‖2 ≥ ρε(zPkq) . (2.7.3)

2.7. A VARIANT OF ALGORITHM 2.2 65

PROOF: Assume, first, that the decreasing sequence{P kq}q∈IN has an addi-
tional property. Let, for eachq ∈ IN, P kq+1 be adirect child of P kq , i.e., assume
that, for eachq ∈ IN, there holds

P kq+1 = P kq ∩ {z ∈ IRd : `i(z) ≤ 0 , i = 1, . . . , qkq} (2.7.4)

or
P kq+1 = P kq ∩ {z ∈ IRd : `i(z) ≤ 0 , i = 1, . . . , qkq}

∩ {z ∈ IRd : (qkq

j)T z ≥ ckq

j } ,
(2.7.5)

where`i : IRd → IR (i = 1, . . . , qkq) are affine functions satisfying (VCP) with
respect tozkq andj is an element of{1, . . . , l}. In view of the definition of Algo-
rithm 2.3 we know that the pointzPkq+1 is only different tozPkq , if (2.7.4) holds.

In order to prove assertion (i) assume, by contradiction, thatI contains only a
finite number of elements, i.e., there is an indexq0 ∈ IN such that, for eachq ≥ q0,

zPkq = zPkq0 .

It follows thatP kq+1 results fromP kq (q ≥ q0) by adding valid cuts and executing
a subdivision (see (2.7.5)). Then we obtain, for eachq ≥ q0,

|VPkq+1 | = |VPkq | − 1 .

SinceVPkq (q ∈ IN) contains only a finite number of points, this is a contradiction
and proves (i), in particular, it shows thatI is not empty.

Choose next an arbitrary, but fixed indexq ∈ I. It follows thatP kq+1 is given
by (2.7.4), and, moreover, thatzPkq+1 = z̄kq and (SDC) is not fulfilled for̄zkq . We
prove now that, for eachr ∈ {0, . . . , q}, there holds

‖zPkr − zPkq+1 ‖2 ≥ ρε(zPkr) , (2.7.6)

which is a stronger result than (2.7.3). Chooser ∈ {0, . . . , q} and letr̄ ∈ IN, r̄ < r

be the index such thatzPkr = z̄kr̄ , i.e., zPkr was set in iterationkr̄. Each point
used for updatingzPk is added to the setVPk and, thus, we havezPkr ∈ VPkr̄+1 .
We distinguish two cases.

If zPkr is still an element ofVPkq , then we obtain

0 ≤ min
z∈V

P
kq

{‖z − z̄kq‖2 − ρε(z)} ≤ ‖zPkr − zPkq+1 ‖2 − ρε(zPkr) ,

since the subdivision criterion (SDC) is not fulfilled forz̄kq . This shows (2.7.6) in
this case.

66 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

If zPkr is not an element ofVPkq , then we know that there is an indexl ∈ IN,
r̄ < l < q such thatzPkr ∈ VPkl andzPkr /∈ VPkl+1 . This implies that in iteration
kl a polyhedronQkl satisfying (PR1) and (PR2) with respect toẑ = zPkr was
constructed. In view of (PR2) it follows that, for eachz ∈ P kl+1 , there holds

‖z − zPkr ‖2 ≥ ρε(zPkr) .

P kq+1 is by assumption a subset ofP kl+1 . Thus, (2.7.6) follows also in this case.
Let now{P kq}q∈IN be an arbitrary sequence of polytopes with the properties

given in the formulation of the lemma. In view of (2.7.6) we know that each up-
date ofzPkq+1 by z̄kq leads to a point, which is different from allzPkl (l ≤ q).
Therefore, assertion (i) follows immediately by the facts that the special sequence
considered first in the present proof has this property and that{P kq}q∈IN is a sub-
sequence of such a special sequence. We obtain, furthermore, that (2.7.6) implies
(2.7.3). �

With the results of the previous lemma we are now able to prove the postulated
convergence of Algorithm 2.3.

THEOREM 2.7.2. Assume that Algorithm 2.3 does not terminate after a finite
number of iterations. Then there holds that each accumulation pointz? of the
sequence{zPk}k∈IN is an optimal solution of Problem (UP).

PROOF: Let z? be an accumulation point of the sequence{zPk}k∈IN and let
{zPkq }q∈IN be a subsequence converging toz?. By passing to a subsequence, if
necessary, we can assume that the corresponding sequence{P kq}q∈IN of polytopes
is decreasing and, moreover, thatP kq+1 is generated by adding linear constraints to
the list of constraints describingP kq (q ∈ IN). In view of Lemma 2.7.1(i) we can,
in addition, assume that each element of the sequence{zPkq }q∈IN is different from
its successor, i.e., there holds, for eachq ∈ IN,

P kq+1 ⊂ P kq

and
zPkq+1 6= zPkq .

From Relation (2.7.3) (Lemma 2.7.1(ii)) we obtain, for eachq ∈ IN,

‖zPkq+1 − zPkq ‖2 ≥ ρε(zPkq) .

Using the definition ofε(zPkq) (q ∈ IN) and the continuity of the eigenvalue func-
tionals this relation implies, as in the proof of Theorem 2.5.2, the feasibility ofz?

2.8. COMPUTATIONAL RESULTS 67

for (UP). Furthermore, for eachq ∈ IN, we know that

hT zPkq ≤ hT zkq = µPkq = µkq ≤ min
z∈F

hT z ≤ hT z? ,

whereF denotes the feasible region of(UP). This shows the optimality ofz?. Note
thatzPkq is the optimal solution ofminz∈P̄ hT z for a polytopeP̄ ⊃ P kq . �

At first glance this convergence result is weaker than the one obtained for Al-
gorithm 2.2 (see Theorem 2.5.2). We only prove the convergence of a subsequence
of {zk}k∈IN. However, a direct consequence of Lemma 2.7.1 is that at the begin-
ning of an infinite number of iterations we have the situation that the current point
zk coincides with the pointzPk . In view of Theorem 2.7.2 this implies that the
values|λ1(U(zk))| and|λn−1(U(zk))| (k ∈ IN) become arbitrarily small. Thus,
Algorithm 2.3 is also well defined.

We cannot expect that either Algorithm 2.2 or Algorithm 2.3 stop with an
optimal solution of Problem (UP) after a finite number of iterations. In order to
obtain finite algorithms we have to be satisfied withε-approximate solutions of this
problem, i.e., with points̄z ∈ P satisfying

max {λn−1(U(z̄)),−λ1(U(z̄))} ≤ ε (2.7.7)

for a given toleranceε > 0. If we replace the stopping criterion (SC1) in Algorithm
2.2 and in Algorithm 2.3 by

If λ1(U(zk)) ≥ −ε AND λn−1(U(zk)) ≤ ε Then , (2.7.8)

then we obtain by considering Theorem 2.5.2, respectively by taking the previous
considerations into account, in both cases a finite approach. From this point of
view, both convergence results – Theorem 2.5.2 as well as Theorem 2.7.2 – have a
comparable quality.

We finish the discussion of solution methods for unary problems of type (UP)
with some numerical results. In the next section we examine, in particular, the nu-
merical applicability of the presented algorithms for solving all-quadratic problems
of type (QP), since this is the main scope of this dissertation.

2.8. Computational Results

Algorithm 2.3 was encoded in C++ with management of the collectionP of
relevant polytopes by so-called AVL-trees. The linear subproblems were solved by

68 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

using the Simplex-Algorithm basedCPLEX-5.0 code. After solving the first LP-
relaxation of (UP) in the initialization phase of Algorithm 2.3 each new subproblem
results from a previous one by adding some new constraints or by changing some
right-hand sides. For that reason we solved only the initial problem by applying the
primal Simplex-Algorithm. The solution of each subsequent subproblem was de-
termined with the dual Simplex-Algorithm, which is supported by theCPLEX-5.0
code. This strategy reduced the running-time for solving the subproblems. How-
ever, on the other hand, we needed more storage, since all necessary information
about the current solution, like the dual variables, the slacks and so on, had to be
stored for each polytopeP ∈ P . Otherwise, we would not be able to start the dual
version of the Simplex-Algorithm without additional effort.

Apart from the solution of linear optimization problems, other classical prob-
lems can occur in Algorithm 2.3. First of all, we have to calculate eigenvalues of
different matrices. For the construction of the cuts introduced by Ramana we have
to determine the inverse of a matrix (see Section 2.3). In order to obtain a repre-
sentation of the polyhedrāQk (k ∈ IN) (see Subsection 2.6.3) we need solutions
of linear equations and we need an orthonormal basis describing the linear space
Hk−{zk}. In the implementation of the algorithm all these problems were solved
by applying appropriate routines from theNAG C-library.

With respect to the choice of possible linear constraints satisfying the valid cut
property (VCP) and in view of the three types of polyhedraQk (k ∈ IN) proposed
in Section 2.6 there is a large number of implementable variants of Algorithm 2.3.
Before discussing the numerical performance of some selected variants we present
a slight modification of the subdivision process, which can lead to a substantial
improvement of the numerical performance of our approach.

2.8.1. A Slight Modification of the Subdivision Process.In the subdivision
process in Algorithm 2.3 we construct each new polytopeP ki (i = 1, . . . , l; k ∈ IN)
by adding one of the constraints describingQk to the list of constraints describing
P k. Independent of the choice of the polyhedronQk this strategy can lead to
overlapping regions, i.e., there can hold

intP ki ∩ intP kj 6= ∅
for somei, j ∈ {1, . . . , l} (see the Figures 2.4, 2.5 and 2.7). This is not reasonable,
since parts of the feasible region of (UP) are examined more than once by using this
strategy. For the correctness of Algorithm 2.3 and Algorithm 2.2, respectively, it

2.8. COMPUTATIONAL RESULTS 69

is sufficient, if the new polytopesP ki (i = 1, . . . , l) form a partition of the set
P k \ {z ∈ IRd : (qki)

T z < cki , i = 1, . . . , l}, i.e., if there holds

l⋃
i=1

P ki = P k \ {z ∈ IRd : (qki)
T z < cki , i = 1, . . . , l} ⊃ P k \Bzk

and, for eachi, j ∈ {1, . . . , l} with i 6= j,

intP ki ∩ intP kj = ∅ (2.8.1)

(see Definition 1.2.1). Property (2.8.1) can be achieved by a slight modification of
the definition of the polytopesP ki . If we set, for each indexi ∈ {1, . . . , l},

P ki ← P k ∩ {z ∈ IRd : (qki)
T z ≥ cki , (qkj)

T z ≤ ckj , j = 1, . . . , i− 1} ,

then we obtain that the union of the setsP ki (i = 1, . . . , l) is the same set as by only
adding the constraint(qki)

T z ≥ cki . And, moreover, these sets fulfill the additional
property (2.8.1) (see Figure 2.8). In Remark 2.6.1 and Remark 2.6.2 we pointed out
that the normals of the hyperplanes describing the hypercubesRk and the regulard-
simplicesSk, respectively, do not depend on the iteration counterk. Thus, if one of
these two sets is used in Algorithm 2.3 for the polyhedronQk, the subdivision ofP k

leads only to a change of the right-hand sides of some constraints. Therefore, the
proposed modification is – from a numerical point of view – not expensive and does
not lead to new storage requirements. It does not really matter whether one right-
hand side is changed or up to2d. In the case of the third presented polyhedron this
new subdivision strategy leads to growing storage requirements and is numerically
more expensive, since the number of constraints describing a polytopeP ∈ P is
growing faster. However, in each case we can expect that the elimination of the
overlapping parts results in a more efficient approach for solving (UP).

We applied Algorithm 2.2, i.e., Algorithm 2.3 without additional cuts, for solv-
ing our example problem, where we used the subdivision process with and without
the modification. If we used the hypercubesRk or the polyhedron̄Qk based on the
modifiedd-simplex, then in both cases the algorithm needed the same number of it-
erations and the same number of linear subproblems had to be solved. For these two
cases the modification led only to a slight increase in the running-time, especially
in the case of̄Qk. Note that by adding more than one constraint in an iteration the
effort for solving the resulting linear subproblems increases faster than by adding
only one constraint. Table 2.1 shows the effort for solving (UPE) with these two
choices of the polyhedron̄Qk. The execution of Algorithm 2.2 was terminated,

70 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

FIGURE 2.8. Modification of the subdivision process applied for (UPE)

z112

z12

P 0
3

P 0
1

−√2

√
2

R0

(a) HypercubeR0 (compare
with Figure 2.4)

z112

z12

S0

−√2

√
2 P 0

2

P 0
3

(b) Regular 2-simplex S0

(compare with Figure 2.5)

z112

Q̄0

H0

P 0
2

√
2

−√2

z12

P 0
1

(c) Better polyhedronQ̄0 (compare
with Figure 2.7)

if the ε-approximate stopping criterion (2.7.8) withε = 10−4 was satisfied. The
fourth column of this table showing the maximal number of polytopes, which had
to be stored at an iteration of Algorithm 2.2 in the setP , illustrates the storage
requirements of the different approaches.

2.8. COMPUTATIONAL RESULTS 71

TABLE 2.1. Effort for solving (UPE) with Algorithm 2.2

PolyhedronQk Number of Number of Maximal number Timea b

iterations solved LP’s of elements inP (in sec.)
Rk 27 71 28 0.18 (0.18)
Q̄k 16 33 17 0.17 (0.18)

arun on aSUN SPARC 20workstation
brunning-time for Algorithm 2.2 with modification is given in brackets

That the modification of the subdivision process in Algorithm 2.2 does not
result in an improvement, if we use the hypercubeRk or the polyhedron̄Qk, de-
pends on the special structure of Problem (UPE). An examination of the iterations
of Algorithm 2.2 without the modification shows that each optimal solutionzk of
a linear subproblem does not belong to a part of the current polytopeP k, which
could be eliminated at an earlier stage of the method by applying the modification.
Therefore, as well with as without the modification, the same work has to be done
in order to solve Problem (UPE).

If we apply the regulard-simplexSk, the numerical performance depends sig-
nificantly on the subdivision strategy used in Algorithm 2.2, as it is displayed in
Table 2.2. In view of the first iteration of Algorithm 2.2 with the polyhedron

TABLE 2.2. Effort for solving (UPE) by applyingSk

Subdivision Number of Number of Maximal number Timea

strategy iterations solved LP’s of elements inP (in sec.)
no modification 1708 5125 1709 16.09

modification 68 183 47 0.56

arun on aSUN SPARC 20workstation

Sk this result is not surprising. In Figure 2.5 we see that the optimal solution
z? = (1,−√2)T belongs to the two non-empty polytopesP 0

2 andP 0
3 . Therefore,

we know that Algorithm 2.2 without the modified subdivision strategy must gener-
ate at least two sequences of polytopes{P kq}q∈IN, one starting withP 0

2 and one
starting withP 0

3 , such that the corresponding point sequences{zPkq }q∈IN converge
to z?. If we apply the modification,z? is contained in only one polytope (see Figure
2.8(b)).

72 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

Taking the large performance difference of Algorithm 2.2 with and without
the modification in the above case into account, we can expect that on average the
modification of the subdivision strategy results in an improvement of the numeri-
cal performance. The extra work we have to do, especially in the case ofQ̄k, can
lead to a substantial reduction of the number of iterations and, hence, of the total
time for solving unary problems. For that reason we examine in the next subsec-
tion the numerical performance only of variants of Algorithm 2.3, which apply the
described modification of the subdivision strategy.

2.8.2. Applicability to All-Quadratic Problems. In the following we dis-
cuss the numerical applicability of Algorithm 2.3 to all-quadratic problems of type
(QP). We saw in Section 2.2 that for each problem of type (QP) there is an equiv-
alent unary problem of type (UP), and, thus, we can solve arbitrary all-quadratic
problems by applying the approaches presented so far. We tried to solve the unary
problems, which result from the previously described transformation (see Section
2.2) of the all-quadratic problems belonging to our randomly generated test set (see
Section 1.5).

At the end of Section 2.7 we pointed out that we have to be satisfied with
ε-approximate solutions in order to obtain a finite algorithm. Theε-approximate
stopping criterion (2.7.8) is usable for arbitrary unary problems. However, if we
apply this stopping criterion, we know nothing about the quality of the determined
solutionzk, in particular, we do not know how far away from the optimal value lies
the calculated valueµk = hT zk. If we solve the transformations of all-quadratic
problems, we are able to formulate a stopping criterion such that this quality of
the determined solution with respect to the original quadratic problem can be es-
timated. Before discussing the numerical performance of our approaches, we pro-
pose first this special stopping criterion.

Assume that an all-quadratic problem of type (QP), i.e., a problem with the
form

min xTQ0x+ (d0)Tx

xTQlx+ (dl)Tx+ cl ≤ 0 l = 1, . . . , p

AQx ≤ bQ

lQ ≤ x ≤ LQ
x ∈ IRn

(QP)

is given.

2.8. COMPUTATIONAL RESULTS 73

Let, furthermore,

min hT z

AUz ≤ bU

lU ≤ z ≤ LU

U(z) ∈ Un+1 , z ∈ IR
(

n+1
2

)
+n

(UP)

be the equivalent unary problem resulting from the transformation of (QP) de-
scribed in Section 2.2. The superscriptsU andQ respectively are used in the same
way as in Section 2.2, and the dimensions of all involved matrices and vectors are
the same as there (see, in particular, pages 23f.).

Set

δ := min { 1
‖h‖2 ,

1
‖aUl ‖2

, l = 1, . . . , p} ε , (2.8.2)

whereε is a given tolerance greater than0, andaUl (l = 1, . . . , p) denotes thel-th
row of the matrixAU . Let zk (k ∈ IN) be the current point at the beginning of
iterationk of Algorithm 2.3. Determine ann-dimensional pointxk by setting

xki := 1√
2
zki,n+1 (2.8.3)

(compare with the definition of̄x in Theorem 2.2.1). Ifzk is feasible for (UP), then
we know by the same arguments as in the proof of Theorem 2.2.1 thatxk must be
feasible for (QP). Determine, furthermore, a (d =

(
n+1

2

)
+ n)-dimensional point

ẑk indexed in the same manner aszk by setting

ẑki,n+1 :=
√

2xki , ẑ
k
ii := (xki)

2 (i = 1, . . . , n) ,

ẑkij :=
√

2xki x
k
j (1 ≤ i < j ≤ n)

(2.8.4)

(compare with the definition of̄z in Theorem 2.2.1). Ifxk is feasible for (QP),
we know (see again the proof of Theorem 2.2.1) thatẑk is feasible for (UP), and,
moreover, that the pointszk and ẑk coincide. If we replace theε-approximate
stopping criterion (2.7.8) by the following

If ‖zk − ẑk‖ ≤ δ Then (2.8.5)

with δ defined as in (2.8.2), then we obtain a solution method for all-quadratic
problems, which detects in finite time either the emptiness of the feasible region

74 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

of (QP), or delivers a pointzk such that the corresponding pointxk defined as in
(2.8.3) has the properties

(xk)TQlxk + (dl)Txk + cl ≤ ε l = 1, . . . , p

AQx ≤ bQ

lQ ≤ x ≤ LQ .

(2.8.6)

If this pointxk is additionally feasible for (QP), it even follows, that the calculated
valueµk and the optimal value of (QP) have a distance not bigger thanε.

Indeed, by replacing the stopping criterion (2.7.8) with (2.8.5) the resulting
algorithm is, first of all, still well defined. In view of Theorem 2.7.2 we know
that each accumulation pointz? of the sequence{zPk}k∈IN is a feasible point for
(UP). Thus,̂z? defined as in (2.8.4) is equal toz?. As mentioned at the end of the
previous section we know, furthermore, that in an infinite number of iterations there
holds that the pointszk andzPk coincide. Therefore, we achieve that the Euclidean
distance betweenzk andẑk becomes arbitrarily small, i.e, (2.8.5) will be fulfilled
after a finite number of iterations.

If Algorithm 2.2 or Algorithm 2.3 detects the emptiness of the feasible region
of (UP), then the emptiness of the feasible set of (QP) follows by the equivalence
between both problems. If one of these algorithms terminates with a pointzk sat-
isfying (2.8.5), it is clear thatxk defined as in (2.8.3) fulfills the linear constraints
of (QP). This follows by the construction ofAU , bU , lU andLU . Moreover, by
the special definition of̂zk we achieve, as in the proof of Theorem 2.2.1, that there
holds

(xk)TQlxk + (dl)Txk + cl = (aUl)T ẑk − bUl l = 1, . . . , p (2.8.7)
and

(xk)TQ0xk + (d0)Txk = hT ẑk . (2.8.8)

The relation (2.8.7) and the feasibility ofzk with respect to the linear constraints of
(UP) imply, for eachl ∈ {1, . . . , p},

(xk)TQlxk + (dl)Txk + cl ≤ (aUl)T (ẑk − zk) ≤ ‖aUl ‖2‖zk − ẑk‖2 ≤ ε .

Hence,xk fulfills (2.8.6). If xk is additionally feasible for (QP), it follows with
(2.8.8)

|hT zk − (xk)TQ0xk − (d0)Txk| ≤ ‖h‖2‖zk − ẑk‖2 ≤ ε

2.8. COMPUTATIONAL RESULTS 75

and

hT zk = µk ≤ min
z∈FU

hT z ≤ hT ẑk = (xk)TQ0xk + (d0)Txk ,

whereFU denotes the feasible region of (UP). This means thatxk is ε-optimal for
Problem (QP). With the foregoing considerations we have shown that the stopping
criterion (2.8.5) is a more reasonable criterion than (2.7.8), when we solve all-
quadratic problems of type (QP) via unary problems. If we use (2.8.5), then we
know something about the quality of the calculated pointxk with respect to the
quadratic problem, which we would like to solve.

REMARK 2.8.1. The point̂zk (k ∈ IN) defined as in (2.8.4) leads to a unary
matrix U(ẑk). Therefore, we know taking Lemma 2.3.1 and Theorem 2.4.4 into
account that there holds

max {λn−1(U(zk)),−λ1(U(zk))} ≤ ‖zk − ẑk‖2 .

This shows that with respect to the definition ofδ we need, in comparison with
the stopping criterion (2.7.8), a higher accuracy for the valuesλn−1(U(zk)) and
λ1(U(zk)) in order to satisfy (2.8.5).

Our main motivation for considering unary problems were the results of Ra-
mana’s dissertation [RAM 93, Chapter 7], in particular, his really promising pre-
liminary numerical results. He solved with Algorithm 2.1 large unary problems
with acceptable running-times. However, the affine functionU : IRd → Sn,
which he used, had a simple structure. By applying Algorithm 2.1 for solving
unary problems, which result from the transformation of all-quadratic problems
and which, thus, have a complex affine function, this pure outer approximation ap-
proach showed a really bad performance in our computational tests. Even small
unary problems resulting from2-dimensional quadratic problems could not be
solved in acceptable times. Moreover, this approach induced numerical problems.
In many test problems the algorithm seemed to stick in a point away from an
ε-approximate solution. Since the hyperplanes used in this scheme became tooflat
the algorithm made small progress and the numerical problems increased. Note
that tooflat hyperplanes can lead to ill-conditioned matricesBk such that we can
obtain increasing numerical errors, if we do not invest additional effort.

Even though an algorithm based only on the cuts introduced by Ramana showed
a bad performance, his linear constraints can be used in Algorithm 2.3 in order to
accelerate the convergence of this approach. The fact that the use of additional cuts

76 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

in Algorithm 2.3 led to a more efficient solution method for unary problems, was
the first result of our numerical tests. We compared different combinations of the
four valid cuts presented in this chapter. The new cut (2.6.14) did not accelerate
the convergence of Algorithm 2.3 in the most cases, when we used the cuts (2.3.3)
and (2.3.5). The cut (2.3.5) was mostly better than (2.3.4). Consequently, the most
efficient combination of the possible four cuts in our numerical tests was the cut
(2.3.3) for the caseλn−1(U(zk)) > 0 and (2.3.5) forλ1(U(zk)) < 0.

In the following we compare the numerical performance of Algorithm 2.3 ap-
plying these two cuts with the numerical performance of Algorithm 2.2, i.e., of
Algorithm 2.3 without any additional valid cut. In both approaches we used the hy-
percubesRk developed in Subsection 2.6.1 for subdividing the setP k, if necessary.
The execution of the algorithms was terminated, if the appropriate stopping crite-
rion (2.8.5) was satisfied withδ defined as in (2.8.2) for a prespecified tolerance
ε > 0. Remember that the all-quadratic problems belonging to our test set have
always a non-empty feasible region (see Section 1.5). In order to avoid excessive
storage requirements, and, thus, also in order to avoid excessive running-times we
restricted the maximal number of polytopesP , which had to be stored at an iter-
ation in the collectionP . In the case of Algorithm 2.2 this maximal number was
100, 000. Since the storage requirements increase, when additional cuts are used,
we reduced this number to50, 000 in the case of Algorithm 2.3.

TABLE 2.3. Comparison of the numerical effort for solving2-
dimensional all-quadratic problems with the accuracyε = 0.1

Algorithm NuP ANuLP MNuLP ATime MTime ACol MCol
p = 1

2.2 42 142,377 52,224 103.5 38.7 24,853 18,499
2.3 50 26,914 1,304 96.9 2.63 2,931 404

p = 2

2.2 42 148,956 66,168 123.9 51.7 24,708 18,901
2.3 50 14,015 497.5 51.9 1.08 1,235 145

p = 3

2.2 42 98,574 95,566 83.9 79.1 23,724 19,034
2.3 50 4,787 746.5 12.2 1.54 789 199.5

p = 4

2.2 41 121,551 72,285 102.8 61.1 25,688 17,744
2.3 50 7,423 1,398 19.5 2.96 1,038 294

2.8. COMPUTATIONAL RESULTS 77

Table 2.3 and Table 2.4 display the numerical effort, which the two described
approaches needed in order to solve the50 5-dimensional unary problems resulting
from the transformation of our2-dimensional quadratic test problems. We use
the abbreviations NuP for the number of test problems, which could be solved
by the two methods within the given storage capacities. ANuLP is used for the
average number of linear problems, which had to be solved during the execution of
each algorithm. ATime stands for the average running-time in seconds, and in the
column ACol we display the average maximal number of elements, which had to
be stored in the collectionP . The three columns with MNuLP, MTime and MCol
show the corresponding values of the medians. Note that in the calculation of the
average values and of the medians we considered only the problems, which could
be solved within the given storage capacities. All numerical test discussed here,
were run on aSUN ULTRA 60 workstation.

TABLE 2.4. Comparison of the numerical effort for solving2-
dimensional all-quadratic problems with the accuracyε = 0.01

Algorithm NuP ANuLP MNuLP ATime MTime ACol MCol
p = 1

2.2 34 225,822 108,570 157.2 86.4 34,896 34,749
2.3 49 56,341 2,841 197.5 6.6 5,555 768

p = 2

2.2 36 173,958 138,446 143.5 109.8 34,656 34,607
2.3 49 14,699 1,007 49.0 2.11 1,473 260

p = 3

2.2 32 204,578 163,942 175.2 139.3 40,597 40,361
2.3 50 11,920 1,752 35.2 3.51 1,954 401.5

p = 4

2.2 30 150,128 126,474 131.1 110.4 32,695 32,762
2.3 50 17,351 2,725 53.8 6.10 2,505 532

It is obvious that Algorithm 2.3 with the additional cuts is the more efficient
approach for determiningε-approximate solutions for our test problems. In almost
all cases this approach was significantly faster and, moreover, with this algorithm
we were able to solve the most problems within the given storage capacities. Algo-
rithm 2.2 did not terminate with a solution in one third of the test problems, if an
accuracy ofε = 0.01 was required. In both approaches there is a great difference

78 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

between the average values and the medians. This makes clear – even though these
approaches, in particular Algorithm 2.3, showed a rather good performance in at
least50% of the solved test examples (see the medians) – there were some exam-
ples, where we needed a huge effort in order to determine a solution. Thus, our
approach did not show a good performance on average, particularly in comparison
with the simplicial branch-and-boundmethod for all-quadratic problems, which we
will develop in the next chapter.

An advantage of the presented approach is that the solution effort does not
depend on the numberp of quadratic constraints, as it will be the case for the
method described in the next chapter. This is due to the fact that the effort for
solving a unary problem does not depend on the number of linear constraints. The
structure of the affine matrix mapping is decisive.

Another interesting result of our numerical tests was that the subdivision pro-
cess used in Algorithm 2.3 had a regularization effect in the following sense. We
have mentioned that Algorithm 2.1 can lead to numerical problems, if the hyper-
planes used there get tooflat. In Algorithm 2.3 we used the same construction
rule for the additional cuts, but the subdivision of the current polytopeP k, which
was enforced, if the additional cuts became tooshallow, avoided such numerical
problems. From this point of view, Algorithm 2.3 was numerically more stable.

We have seen that the additional use of valid cuts in Algorithm 2.3 is reason-
able, since we obtain a significant speedup of our solution method. Our numerical
experience also showed, that on average the additional cuts (2.3.4) and (2.6.14)
only increased the running-time of Algorithm 2.3. It is hence not cogent that each
affine function satisfying (VCP) accelerate the convergence of this approach. An
appropriate combination of valid cuts is decisive. This should be considered, when
new cuts are developed in order to improve the performance of Algorithm 2.3.

We still have to examine, which choice of the polyhedronQk leads to the
most efficient algorithm. For this aim we also tried to solve the2-dimensional all-
quadratic test problems using the regulard-simplexSk and using the polyhedron
Q̄k. The corresponding results together with the effort of Algorithm 2.3 using
the hypercubesRk are presented in Table 2.5 and Table 2.6. We use the same
abbreviations as in the foregoing tables. The additional columns ACon and MCon
display the average and the median of the maximal number of linear constraints,
which were needed for describing an elementP of P . These facts together with
the columns corresponding to the maximal number of elements contained inP
give us more insight into the real storage requirements. The more constraints we

2.8. COMPUTATIONAL RESULTS 79

TABLE 2.5. Comparison of the numerical effort for solving2-
dimensional all-quadratic problems with the accuracyε = 0.1

Qk NuP ANuLP MNuLP ATime MTime ACol MCol ACon MCon
p = 1
Rk 50 26,914 1,340 96.9 2.63 2,931 404 61 54
Sk 45 37,721 2,2237 266 9.36 2,578 323 151 164
Q̄k 46 27,273 2,980 226 13.42 3,226 643 159 156

p = 2

Rk 50 14,015 497.5 51.9 1.08 1,235 145 54 43.5
Sk 48 12,612 814.5 89.5 3.09 1,034 147.5 132.6 113.5
Q̄k 49 15,421 1,176 133 4.11 1,631 300 146 111

p = 3

Rk 50 4,787 746.5 12.2 1.54 789 199.5 49 50.5
Sk 50 13,622 1530 98.8 5.74 1,343 193.5 134 126.5
Q̄k 50 11,756 1,319 80.3 5.28 1,689 299 124 126

p = 4

Rk 50 7,423 1,398 19.5 2.96 1,038 294 58 56
Sk 49 14,796 1,804 93.8 8.08 1,522 330 154 149
Q̄k 50 14,668 1,915 96.4 8.44 1,963 341 155 161

need for the description of a polytopeP the more storage is used by this set. As
in the runs of Algorithm 2.3 using the hypercubesRk, we restricted the maximal
number of elements belonging toP . By applyingSk or Q̄k we useρ = 1

d or
ρ = 1√

(d−1)2+1
in the subdivision criterion (SDC). These numbers are smaller

than 1√
d
, which is used forρ in the case ofRk. Thus, we know that subdivisions

are more rarely enforced and that the number of constraints describing an element
of P and consequently the storage size of such an element can increase faster. For
that reason we restricted the maximal number of polytopes inP to 20, 000, when
using the regulard-simplexSk or the polyhedron̄Qk in Algorithm 2.3.

The numerical results presented in the Tables 2.5 and 2.6 definitely show that
Algorithm 2.3 using the hypercubesRk is more efficient than the same approach
usingSk or Q̄k, at least with respect to our test problems. This seems to depend on
the fact that by usingRk a bigger part of the current polytopeP k can be eliminated.
Note that the volume ofRk ⊂ IRd is given by

V (Rk) =
(
ε(zk)2√

d

)d
=
(
ε(zk)√
d

)d
2d ,

80 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

TABLE 2.6. Comparison of the numerical effort for solving2-
dimensional all-quadratic problems with the accuracyε = 0.01

Qk NuP ANuLP MNuLP ATime MTime ACol MCol ACon MCon
p = 1
Rk 49 56,341 2,841 197.5 6.60 5,555 768 74 71
Sk 40 45,923 2,600 372.4 13.5 2,632 458.5 167 170.5
Q̄k 40 28,680 3,501 261.6 17.3 3,178 807 174 174.5

p = 2

Rk 49 14,699 1,007 49.0 2.11 1,473 260 64 55
Sk 48 26,494 2,209 221.6 8.56 2,010 343 168 144
Q̄k 48 25,035 2,645 149.8 10.94 2,578 491 191 150.5

p = 3

Rk 50 11,920 1,752 35.2 3.51 1,954 401.5 64 62
Sk 48 22,820 2,930 177.2 12.0 2,441 393.5 160 165.5
Q̄k 48 18,217 2,088 135.9 9.54 2,764 457 163 173.5

p = 4

Rk 50 17,351 2,725 53.8 6.10 2,505 532 75 72.5
Sk 47 25,994 3,801 207.7 16.2 2,805 554 192 195
Q̄k 47 22,226 4,382 191.7 25.5 3,114 809 201 213

whereas the volume of the regulard-simplexSk is

V (Sk) =
√
d+ 1
d!

(
ε(zk)

√
d+ 1
d

)d
=
(
ε(zk)√
d

)d (
√
d+ 1)d+1

d!

(see, e.g., [GKL95]). This implies that the volume ofSk is smaller thanV (Rk)
and, moreover, thatV (Sk) is decreasing faster with respect to the dimensiond

thanV (Rk). The advantage of the larger volume ofRk seems to be greater than
the disadvantage of the higher number of hyperplanes, which are necessary for
describingRk.

Whether the use of the regular simplexSk or the use of the theoretically better
polyhedronQ̄k (see Theorem 2.6.5) leads to a more efficient approach cannot be
answered definitely. Even though Algorithm 2.3 usingQ̄k was always faster on av-
erage – except forp = 2 andε = 0.1 – a comparison of the corresponding medians
does not show a unique result. The same is true for the number of subproblems,
which had to be solved during the execution of our method. Note that the average
values as well as the medians were calculated with respect to the number of solved
problems. Thus, these values are not directly comparable, when different numbers
of problems were solved. For example, in the casep = 4 andε = 0.1 (see Table

2.8. COMPUTATIONAL RESULTS 81

2.5) we obtain forQ̄k an average number of11, 743 LP’s and an average running-
time of76.13, considering only the49 test problems, which were also solved with
Sk.

With respect to the storage requirements we see that Algorithm 2.3 usingSk is
a better solution scheme. We needed less polytopesP and we needed additionally
less constraints for describing these sets. Note that by usingSk and the correspond-
ing value forρ the subdivision criterion (SDC) is more seldomly satisfied, such that
less splittings ofP k are necessary. Note, furthermore, that by usingQ̄k the number
of constraints determining a polytopeP k increases also ifP k is subdivided. By
usingRk andSk this number only grows, when the additional cuts are used (see
Remark 2.6.1 and Remark 2.6.2).

UsingSk andQ̄k the numerical results show again a high difference between
the average values and the medians. The reason is the same as in the case ofRk.
In at least50% of the test problems both approaches showed an acceptable per-
formance. However, there were numerical outliers, which destroyed the average
performance of our algorithm. In view of the presented computational results we
have to recognize that the use of the polyhedraQ̄k did not have the expected suc-
cess. The extra work for determining a better inner approximation polytope for the
eliminable part ofP k did not result in a substantial improvement of the numerical
performance of Algorithm 2.3. The easiest set, i.e., the hypercubeRk, showed the
best numerical results.

Comparing the presented results with the numerical performance of the solu-
tion method for (QP), which we develop in the next chapter, Algorithm 2.3 is –
even withRk – not a good approach for solving all-quadratic problems. For an ac-
curacy ofε = 0.01 and quadratic problems of sizen = 2 andp = 4 we needed on
average53.8 seconds. This bad performance boosted, if we tried to solve higher di-
mensional problems. In Figure 2.9 the numbers of the3-dimensional all-quadratic
problems are displayed, which could not be solved within the given storage capac-
ities by Algorithm 2.3 using the three discussed possibilities forQk and the poor
accuracyε = 0.5. The transformed unary problems had the dimension9. There-
fore, we reduced the maximal number of polytopes, which could belong to the set
P . When usingRk, we allowed20, 000 elements. In the cases ofSk andQ̄k we
restricted this number to10, 000. The corresponding minimal running-times, i.e.,
the fastest time after which Algorithm 2.3 was terminated since the storage capac-
ity was exceeded, are given in seconds in Table 2.7. Considering this table it is
not reasonable to increase the storage capacities in order to solve more problems.

82 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

FIGURE 2.9. Number of3-dimensional all-quadratic test prob-
lems where Algorithm 2.3 exceeded the given storage capacity

6
5

4
3

2
1

0

5

10

15

20

25

30

35

40

45

50

Number of quadratic constraints

Sk

Rk

Q̄k

used
polyhedron

TABLE 2.7. Minimal running-times of unsolved3-dimensional
all-quadratic problems withε = 0.5

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6
Rk 125.9 122.2 139.9 147.2 303.8 433.7
Sk 503.6 473.1 440.4 431.8 549.4 586.9
Q̄k 280.1 334.5 301.2 321.7 348.3 414.5

A running-time of at least2 minutes for one of the still unsolved3-dimensional
quadratic test problems is indeed not acceptable.

The last computational results demonstrate the, maybe, biggest disadvantage
of the attempt to solve all-quadratic problems of type (QP) via unary problems. The
transformation of the quadratic problems leads to anexplosionof the dimension
of the resulting (UP). Even for a3-dimensional (QP) we obtain a9-dimensional
unary problem. If we recognize, furthermore, that the numerical applicability of
general global optimization methods based on cutting planes or on branch-and-
bound techniques is limited to problems in small spaces, it is not surprising that
Algorithm 2.3 is not able to solve all-quadratic problems in dimensions higher than

2.8. COMPUTATIONAL RESULTS 83

3, at least that Algorithm 2.3 is not able to solve such problems with acceptable
effort.

Algorithm 2.3 has still a lot of features, which could be changed. We could try
to develop new valid cuts. We could use other values ofρ in (SDC) (see Remark
2.5.2) in order to change the number of subdivisions or instead we could look for
other polyhedra. Nevertheless, in view of the previous considerations, it is unlikely
that the solution of all-quadratic problems by using unary problems is a practicable
way. In the next chapter we will see that a direct solution method for all-quadratic
problems can have a significantly better numerical performance.

84 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

CHAPTER 3

A Simplicial Branch-and-Bound Method for Solving
Nonconvex All-Quadratic Problems

In this chapter we will discuss a direct approach for solving nonconvexall-quadratic
problems of type (QP). In the introduction (see Section 1.3) we pointed out that the
most solution approaches for Problem (QP) proposed in the literature were devel-
oped for more general problem classes containing (QP) as a special instance. To the
author’s knowledge there is up to now only one approach considering directly the
general nonconvex all-quadratic problem. This approach presented by Al-Khayyal
et al. [AKLV95] is a rectangular branch-and-bound scheme.

The simplicial branch-and-bound method for solving (QP), which we will in-
troduce and examine throughout the present chapter, use the same basic concepts
as this rectangular scheme. This new solution method shows a significantly bet-
ter computational performance than the indirect scheme presented in the foregoing
chapter. Moreover, this simplicial branch-and-bound algorithm often also outper-
forms the rectangular approach by Al-Khayyal et al.

3.1. Introduction

As in the introduction of this thesis we define (usingc0 = 0), for each
l ∈ {0, . . . , p} andx ∈ IRn,

ql(x) := xTQlx+ (dl)Tx+ cl ,

such that (QP) can be written as

min q0(x)

ql(x) ≤ 0 l = 1, . . . , p

x ∈ P .

(QP)

85

86 A SIMPLICIAL BRANCH-AND-BOUND METHOD FOR(QP)

Apart from the general assumptions for Problem (QP), like the symmetry ofQl

(l = 0, . . . , p) and the boundedness of P, we assume in this chapter that, for each
l ∈ {0, . . . , p}, real n × n matricesCl andDl are known with the following
properties

Cl is positive semidefinite,

Dl is negative semidefinite
and

Ql = Cl +Dl .

If we denote by

ρ(B) = max{|λ| , λ eigenvalue ofB}
thespectral radiusof a realn × n matrixB, then it is easy to see thatCl := ρlE

andDl := Ql−ρlE (l ∈ {0, . . . , p}) is a possible choice for these matrices, where
E is then-dimensional identity matrix andρl is a real value not smaller thanρ(Ql).
Note that matrix norms like the Frobenius norm (see Section 2.4 or [ZUR64]) are
upper bounds for the spectral radius, and hence we can use such norms for the
calculation ofρl (l ∈ {0, . . . , p}). Another possible way in order to obtain matrices
Cl andDl with the required properties is the spectral decomposition (see, e.g.,
[JRA93]).

As mentioned before, the simplicial branch-and-bound algorithm to be intro-
duced in this chapter uses the same basic concepts as the rectangular approach
proposed in [AKLV95]. For a given hyperrectangle Al-Khayyal et al. construct
an LP-relaxation of (QP) by applying the known convex envelope [AKF83] of
the two-dimensional bilinear functionxy on a rectangle (for details we refer to
[AKLV95], see also Subsection 1.3.4). The resulting relaxations are linear pro-
grams withn+ (p+ 1)n variables and4(p+ 1)n+ p+m constraints.

If an n-simplex is used instead of a hyperrectangle, it is possible to construct
an LP-relaxation of (QP) with respect to this simplex having onlyn variables and
p+m+n+1 constraints. How this can be done, is described in Section 3.2. Using
this LP-relaxation of (QP) we derive in Section 3.3 a simplicial branch-and-bound
method for solving (QP). This approach has the same theoretical properties as
Al-Khayyal et al.’s rectangular scheme. In Section 3.4 we show that our method
stops after a finite number of steps, if no feasible point exists. For the caseF 6= ∅
the subsequent convergence theorem guarantees that each accumulation point of
the point sequence generated by our approach is an optimal solution of Problem

3.2. A LINEAR PROGRAMMING RELAXATION OVER AN n-SIMPLEX 87

(QP). By accepting approximate solutions for Problem (QP) this convergence result
enables us to ensure finiteness of our simplicial branch-and-bound approach. We
complete the examination of our new method in Section 3.5 by reporting on results
on a computational comparison of our simplicial algorithm with the rectangular
algorithm of Al-Khayyal et al. The content of the present chapter was published in
[RAB98], except the numerical results and the new feature in Subsection 3.5.3.

3.2. A Linear Programming Relaxation over ann-Simplex

Let S = [v0, . . . , vn] ⊂ IRn be ann-simplex with the property that the inter-
section of this simplex with the polytopeP of Problem (QP) is not empty. Consider
now the all-quadratic problem (QP) with the additional constraint that each feasible
point belongs toS, i.e., consider the problem

min q0(x)

ql(x) ≤ 0 l = 1, . . . , p

x ∈ P ∩ S .

(QPS)

Denote byWS then× n matrix with the columns (vi − v0) (i = 1, . . . , n) and let
Bn := {λ ∈ IRn

+ :
∑n

i=1 λi ≤ 1} be a standardn-simplex. For eachx ∈ S there
is a uniquely determined elementλ ∈ Bn such thatx can be represented by

x = v0 +WSλ . (3.2.1)

Using this substitution forx ∈ S we can rewrite Problem (QPS) as

min (WSλ)TQ0WSλ+ (d0
S)TWSλ+ c0S

(WSλ)TQlWSλ+ (dlS)TWSλ+ clS ≤ 0 l = 1, . . . , p

AWSλ ≤ b−Av0
λ ∈ Bn ,

(QP
S

)

where, forl ∈ {0, . . . , p},
dlS = dl + 2Qlv0 ∈ IRn

and

clS = cl + vT0 Q
lv0 + (dl)T v0 ∈ IR .

88 A SIMPLICIAL BRANCH-AND-BOUND METHOD FOR(QP)

In view of the properties of the matricesCl andDl (l ∈ {0, . . . , p}) we know that,
for eachl ∈ {0, . . . , p}, the functionq̄lS : Bn → IR

q̄lS(λ) := (WSλ)TQlWSλ+ (dlS)TWSλ+ clS

can be split into a convex and a concave part

q̄lS(λ) = (WSλ)TDlWSλ+ (dlS)TWSλ+ clS︸ ︷︷ ︸
concave onBn

+ (WSλ)TClWSλ︸ ︷︷ ︸
convex onBn

.

We are interested in an affine function¯̀lS : Bn → IR (l ∈ {0, . . . , p}), which
underestimates̄qlS on then-simplexBn. As in the rectangular branch-and-bound
algorithm in [AKLV95] we use the concept of the convex envelope. It is known
(see Subsection 1.2.4 or [HPT95, Theorem 1.22]) that the convex envelope of
a concave functiong on ann-simplexS is the uniquely determined affine func-
tion, which coincides in the vertices ofS with g. Therefore, we obtain, for each
l ∈ {0, . . . , p}, that the linear functionϕlS : Bn → IR

ϕlS(λ) :=
n∑
i=1

λi(vi − v0)TDl(vi − v0)

is the convex envelope of the concave function(WSλ)TDlWSλ on then-simplex
Bn. Using the properties of the convex envelope (see Definition 1.2.3) and the
positive semidefiniteness of the matricesCl (l = 0, . . . , p) it follows, for each
λ ∈ Bn andl ∈ {0, . . . , p}, that

q̄lS(λ) = (WSλ)TDlWSλ + (dlS)TWSλ + clS + (WSλ)TClWSλ

≥ ϕlS(λ) + (dlS)TWSλ + clS + 0 =: ¯̀l
S(λ) .

I.e., neglecting the convex part ofq̄lS and underestimating its concave part with the
convex envelope we obtain the required affine function¯̀l

S (l = 0, . . . , p). Us-
ing these affine underestimating functions we obtain an LP-relaxation of Problem

(QP
S

)

min ¯̀0
S(λ)

¯̀l
S(λ) ≤ 0 l = 1, . . . , p

AWSλ ≤ b−Av0
λ ∈ Bn .

(LP
S

)

3.2. A LINEAR PROGRAMMING RELAXATION OVER AN n-SIMPLEX 89

REMARK 3.2.1. If we do not omit the convex part of the functionsq̄lS
(l = 0, . . . , p), then we obtain, for eachl ∈ {0, . . . , p}, with

ḡlS(λ) := ϕlS(λ) + (dlS)TWSλ+ clS + (WSλ)TClWSλ

a convex quadratic function, which also underestimatesq̄lS on the setBn. The use

of these functions would lead to a convex relaxation of Problem (QP
S

). Simplicial
branch-and-bound algorithms using convex relaxations instead of LP-relaxations
will be considered in Chapter 4.

The matrixWS is regular, by construction. Using the resubstitution

λ = W−1
S (x− v0)

we see that Problem (LP
S

) is equivalent to

min `0S(x)

`lS(x) ≤ 0 l = 1, . . . , p

x ∈ P ∩ S ,

(LPS)

where, for eachl ∈ {0, . . . , p}, the functioǹ l
S : IRn → IR

`lS(x) =
n∑
i=1

(
W−1
S (x− v0)

)
i
(vi − v0)TDl(vi − v0) + (dlS)T (x− v0) + clS

is the convex envelope of the concave quadratic function

ql(x)− (x− v0)TCl(x− v0) .

Note that the convex envelope of the sum of an arbitrary functiong and an affine
function` on a convex setC is justϕ+ `, whereϕ is the convex envelope ofg with
respect to the setC.

REMARK 3.2.2.

(a) From an implementational point of view the previous resubstitution is not

reasonable. Problem (LP
S

) is easier to solve, since we do not need to cal-
culate the inverse ofWS and the constraints describingBn are explicitly
given, whereasS is only described by its vertices. Therefore, in the imple-

mentation of the algorithm presented in Section 3.3 we used Problem (LP
S

)
in order to determine a lower bound for the optimal value of (QPS). Prob-
lem (LPS), i.e., a formulation of the LP-relaxation of (QPS) in thex-space,
is only needed for the subsequent theoretical analysis.

90 A SIMPLICIAL BRANCH-AND-BOUND METHOD FOR(QP)

(b) The LP-relaxation (LPS) of (QPS) is not uniquely determined, since it de-
pends on the numbering of the vertices of then-simplexS. Note that the
function ql and the affine underestimating function`lS (l ∈ {0, . . . , p})
coincide in the vertexv0 of S.

(c) Let Ŝ = [v̂0, . . . , v̂n] be an n-simplex contained in then-simplex
S = [v0, . . . , vn]. It is a known fact [HPT95, Theorem 1.23] that the
function values of the convex envelopeϕŜ of an arbitrary functiong on the
set Ŝ must be greater than or equal to the function values of the convex
envelopeϕS of g with respect to the larger setS. If there holdŝv0 = v0,
then, for eachl ∈ {0, . . . , p}, we know that̀ l

Ŝ
and`lS are convex envelopes

of the functionql(x) − (x − v0)TCl(x − v0) and thus it follows, for each
x ∈ Ŝ,

`l
Ŝ
(x) ≥ `lS(x) . (3.2.2)

In this case we know that the optimal value of (LPŜ) is not smaller than the
optimal value of (LPS). If the vertexv̂0 does not coincide withv0, Relation
(3.2.2) is no longer guaranteed, and we do not know how the optimal values
of (LPŜ) and (LPS) are related.

In order to prove the convergence of the simplicial branch-and-bound method
introduced in the next section we will need a relation between thesize of a given
n-simplexS and the maximal distance between the functionql and the underes-
timating function`lS (l ∈ {0, . . . , p}) on this simplex. The subsequent lemma
shows that this maximal distance is bounded from above by a term depending on
the diameter of the simplexS.

LEMMA 3.2.1. Let d2(S) denote the squared diameter of then-simplex
S = [v0, . . . , vn], i.e., d2(S) = max{‖vi − vj‖22 : i, j ∈ {0, . . . , n}}, and let
ρ(Cl) andρ(Dl) be the spectral radius ofCl andDl, respectively (l ∈ {0, . . . , p}).
Then, for eachl ∈ {0, . . . , p}, there holds

max
x∈S
|ql(x)− `lS(x)| ≤ d2(S)

(
ρ(Cl) + ρ(Dl)

)
. (3.2.3)

PROOF: Choose an arbitrary, but fixed indexl ∈ {0, . . . , p} and an arbi-
trary, but fixed elementx of S. Then there exists a uniquely determinedλx ∈ Bn
(see (3.2.1)) withql(x) = q̄lS(λx) and`lS(x) = ¯̀l

S(λx). In Subsection 1.2.4 we
pointed out that the concave envelope of a convex function on ann-simplexS is

3.2. A LINEAR PROGRAMMING RELAXATION OVER AN n-SIMPLEX 91

the uniquely defined affine function coinciding with this convex function in the ver-
tices ofS. Therefore, we know that the linear functionψlS : Bn → IR, ψlS(λ) =∑n

i=1 λi(vi−v0)TCl(vi−v0) is the concave envelope of(WSλ)TClWSλ on then-
simplexBn, and hence there holds thatψlS is an overestimator for(WSλ)TClWSλ

on the setBn. Using the negative semidefiniteness ofDl it follows

|ql(x) − `lS(x)| = q̄lS(λx)− ¯̀l
S(λx)

= (WSλ
x)TClWSλ

x︸ ︷︷ ︸
≤ψl

S
(λx)

+ (WSλ
x)TDlWSλ

x︸ ︷︷ ︸
≤ 0

−ϕlS(λx)

≤
n∑
i=1

λxi (vi − v0)T (Cl −Dl)(vi − v0) .

The spectral radius is a matrix norm on the spaceSn of symmetric realn × n

matrices. Moreover, this spectral radius norm is compatible with the Euclidean
vector norm. Using these facts we, furthermore, obtain

|ql(x)− `lS(x)| ≤
n∑
i=1

λxi ‖vi − v0‖2ρ(Cl −Dl)‖vi − v0‖2

≤ d2(S)ρ(Cl −Dl)
n∑
i=1

λxi︸ ︷︷ ︸
≤ 1

≤ d2(S)
(
ρ(Cl) + ρ(Dl)

)
.

Sincex is an arbitrary element ofS, Relation (3.2.3) follows readily. �

As a direct consequence of this lemma we know that the maximal distance be-
tweenql and`lS (l ∈ {0, . . . , p}) tends to0, if the simplexS shrinks to a singleton.
This is not surprising sinceql and`lS coincide by construction at least in the vertex
v0 of S (see Remark 3.2.2(b)).

REMARK 3.2.3. If the matricesCl andDl (l = 0, . . . , p) were constructed by
a spectral decomposition ofQl, then it is possible to prove that, for each
l ∈ {0, . . . , p}, there holds

ρ(Cl −Dl) = ρ(Ql) .

In this special case we can replace, for eachl ∈ {0, . . . , p}, the right-hand side of
(3.2.3) byd2(S)ρ(Ql).

92 A SIMPLICIAL BRANCH-AND-BOUND METHOD FOR(QP)

The simplicial branch-and-bound algorithm, which we present in the next sec-
tion, will use the LP-relaxation (LPS) of (QPS) in order to calculate a lower bound
for the optimal value of (QP) with respect to a givenn-simplexS.

3.3. A Simplicial Branch-and-Bound Algorithm

In the introduction of this thesis (see especially Subsection 1.2.2) we pointed
out that we need a relaxationS0 ⊃ F in order to start a branch-and-bound ap-
proach. Of course we would like to start with ann-simplexS0 ⊃ F . Since we as-
sumed thatP is a non-empty full-dimensional polytope, we know that there always
exists ann-simplexS0 ⊃ P (see, e.g., [HPT95, pages 145f.] for the construction
of such sets), which we can use as a start relaxation ofF ⊂ P .

In the previous section we have seen, how it is possible to calculate a lower
boundµ(S) for the optimal value of (QP), at least if the feasible region of (QP) is
additionally restricted to ann-simplexS. Upper bounds for the optimal value can
be obtained as usual by considering feasible pointsx̄ ∈ F , which were generated,
for example, during the solution of the LP-relaxation (LPS). The function value of
q0 at each feasible point̄x ∈ F is obviously an upper bound for the optimal value
of (QP).

Apart from the start relaxationS0 ⊃ F and the knowledge of the construction
of lower and upper bounds with respect to the used subdivision sets, we need finally
in order to formulate a branch-and-bound scheme (see again Subsection 1.2.2) a
rule for refining a consideredn-simplex. We use the so-calledbisection, where an
n-simplexS is split into two subsimplicesS1, S2 ⊂ S by a radial subdivision with
respect to the midpoint of the longest edge ofS, as we will see in the formulation
of the algorithm (see also Definition 1.2.2). This subdivision rule was introduced
in [HOR76] for branch-and-bound algorithms based on simplices and will ensure
in connection with the result of Lemma 3.2.1 the convergence of the presented
approach. The following algorithm is formulated according to the guidelines of a
basic branch-and-bound scheme given in [HPT95, Algorithm 3.5].

ALGORITHM 3.1 (Simplicial Branch-and-Bound Algorithm for (QP)).

Initialization
Determine ann-simplexS0 = [v0

0 , . . . , v
0
n] with S0 ⊃ P .

FLPS0 ← {x ∈ S0 ∩ P : `lS0(x) ≤ 0 , l = 1, . . . , p}
If FLPS0 = ∅ Then

STOP← True (F = ∅)

3.3. A SIMPLICIAL BRANCH-AND-BOUND ALGORITHM 93

Else
Solve the linear optimization problem (LP)minx∈FLPS0 `

0
S0(x). Letω(S0)

be an optimal solution andµ(S0) = `0S0(ω(S0)) be the optimal value.

µ0 ← µ(S0), P ← {S0}
If ω(S0) ∈ F Then
Q← {ω(S0)}, η0 ← q0(ω(S0)), xf ← ω(S0)

Else
Q← ∅, η0 ←∞

EndIf
STOP← False, k ← 0

EndIf

While STOP= False Do
If ηk = µk Then (SC)

STOP← True (xf is an optimal solution of (QP))

Else
Determine indicesi0, i1 ∈ {0, . . . , n} satisfying

‖vki0 − vki1‖22 = max
i,j=0,... ,n

‖vki − vkj ‖22
and set

Sk1 = [vk0 , . . . , v
k
i0−1,m

k, vki0+1, . . . , v
k
n],

Sk2 = [vk0 , . . . , v
k
i1−1,m

k, vki1+1, . . . , v
k
n]

with mk = 1
2 (vki0 + vki1), i.e., splitSk into Sk1 andSk2 by bisection.

For j = 1 To 2 Do
FLPSk

j
← {x ∈ Skj ∩ P : `l

Sk
j

(x) ≤ 0 , l = 1, . . . , p}
If FLPSk

j
6= ∅ Then

Solve the LPminx∈FLP
Sk

j

`0
Sk

j

(x). Letω(Skj) be an optimal solution

andµ̄(Skj) = `0
Sk

j

(ω(Skj)) be the optimal value.

µ(Skj)← max{µ(Sk), µ̄(Skj)} (LBR)

If ω(Skj) ∈ F Then Q← Q ∪ {ω(Skj)}
P ← P ∪ {Skj }

EndIf
EndFor

94 A SIMPLICIAL BRANCH-AND-BOUND METHOD FOR(QP)

P ← P \ {Sk}
If Q 6= ∅ Then
ηk+1 ← minx∈Q q0(x), choosexf ∈ Q with ηk+1 = q0(xf)

Else
ηk+1 ← ηk

EndIf
P ← P \ {S ∈ P : µ(S) ≥ ηk+1} (PR)

If P 6= ∅ Then
µk+1 ← minS∈P µ(S), chooseSk+1 ∈ P with µk+1 = µ(Sk+1)

Else
If Q 6= ∅ Then
µk+1 ← ηk+1

Else
STOP← True (F = ∅)

EndIf
EndIf
k ← k + 1

EndIf
EndWhile

REMARK 3.3.1.

(a) We know by construction thatµ(S) is a lower bound for the minimal value
of q0 on the setF ∩ S. ηk (k ∈ IN) is constructed such that this value is an
upper bound forq0 on the whole feasible setF . Therefore, there holds that
a simplexS ∈ P with the propertyµ(S) ≥ ηk+1 cannot contain a feasible
point x̄ ∈ F satisfyingq0(x̄) < q0(xf), and hence we can eliminate each
of these simplices in thepruning rule(PR).

(b) The pruning rule (PR) can only be successful, if the setQ is not empty,
since otherwise we would haveηk+1 = ∞ > µ(S) (S ∈ P). Note that it
is possible that after a finite number of steps Algorithm 3.1 never detects a
feasible point, what means thatQ could always be empty.

(c) If the partitionP is empty after the execution of (PR) and ifQ is not empty,
then it is obvious that the upper boundηk+1 <∞ is also a lower bound for
the optimal value of (QP).

3.4. CONVERGENCE 95

(d) Because of the formulation of the pruning rule (PR) with "≥" instead of
">" there holds at the beginning of iterationk, for eachS ∈ P , µ(S) < ηk

and henceµk < ηk. This implies that the stopping criterion (SC) can only
be fulfilled in iterationk ≥ 2, if P is empty andQ is not empty at the end
of iterationk − 1.

(e) In view of Remark 3.2.2(c) we do not know whether the optimal value
µ̄(Skj) = `0

Sk
j

(ω(Skj)) (k ∈ IN; j = 1, 2) of Problem (LPS
k
j) is in each

case not smaller than the lower boundµ(Sk). However, by setting

µ(Skj) = max {µ(Sk) , µ̄(Skj) }
in the lower bounding rule (LBR) in Algorithm 3.1 we obtain a value, which
is of course also a lower bound for (QPS

k
j) (k ∈ IN; j = 1, 2). Moreover,

these values satisfy, for eachk ∈ IN,

min{µ(Sk1) , µ(Sk2) } ≥ µ(Sk) . (3.3.1)

This guarantees that the sequence{µk}k∈IN is non-decreasing.

The polytopesFLPS are relaxations of the portion of the feasible setF of (QP)
contained in the simplexS. Algorithm 3.1 can stop by detecting the emptiness ofF

only, if all considered simplicesS lead to empty relaxationsFLPS . Thus we know
thatF is really empty in this case, since we start with ann-simplexS0 ⊃ F . The
construction ofµk (k ∈ IN) as the minimal value of the lower boundsµ(S) of all
n-simplicesS ∈ P , which were not pruned till iterationk − 1, guarantees that this
value is a lower bound for the optimal value ofq0 with respect to the whole feasible
regionF . If Algorithm 3.1 stops after a finite number of steps with a solutionxf ,
we obtain hence

q0(xf) = ηk = µk ≤ min
x∈F

q0(x) ≤ q0(xf) ,

showing the optimality ofxf for Problem (QP). It follows that Algorithm 3.1 is
well defined, as long as this approach terminates after a finite number of iterations.
The proof of the correctness of our method in the infinite case is the content of the
next section.

3.4. Convergence

In Algorithm 3.1 we used bisection as a subdivision rule for the current simplex
Sk at iterationk ∈ IN. This rule has the property that, for each infinite nested

96 A SIMPLICIAL BRANCH-AND-BOUND METHOD FOR(QP)

sequence{Sq}q∈IN of simplices generated by using this rule, there holds

d2(Sq) → 0 (q →∞) (3.4.1)

(see, e.g., [HOR76, KEA78]). This special property of the bisection in connection
with the result of Lemma 3.2.1 enables us to prove that in the infinite case each
accumulation point of the sequence{ω(Sk)}k∈IN generated by Algorithm 3.1 is
an optimal solution of Problem (QP). This will be the result of the Convergence
Theorem 3.4.2. At first, however, we need an additional lemma in order to establish
this convergence result. In this lemma we show that the feasible regionF of (QP)
cannot be empty, if Algorithm 3.1 does not stop after a finite number of iterations.

LEMMA 3.4.1. Algorithm 3.1 stops after a finite number of iterations, if no
feasible point for Problem (QP) exists, i.e., ifF = ∅.

PROOF: Assume thatF is empty and define the function̂F : IRn → IR by

F̂ (x) := max
l=1,... ,p

ql(x) .

F̂ is a continuous function and hence attains its minimum over the compact setP .
SinceF = {x ∈ P : F̂ (x) ≤ 0} is empty we know that there exists a positive real
valueδ satisfying

min
x∈P

F̂ (x) ≥ δ . (3.4.2)

Assume now, by contradiction, that Algorithm 3.1 generates an infinite sequence
{Sk}k∈IN of n-simplices. It follows that there must exist an infinite subsequence
{Skq}q∈IN of {Sk}k∈IN with the properties that, for eachq ∈ IN, there holds

Skq+1 ⊂ Skq (3.4.3)
and

FLPSkq 6= ∅ .

In view of Property (3.4.1) of the bisection, we obtain from (3.4.3)

d2(Skq) → 0 (q →∞) . (3.4.4)

Choose a real valuēδ with

0 < δ̄ < δ
1

max
l=1,... ,p

(ρ(Cl) + ρ(Dl))
.

3.4. CONVERGENCE 97

From (3.4.4) we see that there must be an indexq0 ∈ IN such that, for eachq ≥ q0,
there holds

d2(Skq) ≤ δ̄ .

Due to Lemma 3.2.1 we hence obtain, for eachq ≥ q0, l ∈ {1, . . . , p} and
x ∈ FLPSkq ,

ql(x) = ql(x)− `l
Skq (x) + `l

Skq (x)︸ ︷︷ ︸
≤ 0

≤ d2(Skq)
(
ρ(Cl) + ρ(Dl)

) ≤ δ̄
(
ρ(Cl) + ρ(Dl)

)
< δ .

We know thatFLPSkq (q ≥ q0) is not empty and, moreover, that each element of
this set belongs toP . Thus, from the previous relation it follows, for eachq ≥ q0
andx ∈ FLPSkq ,

F̂ (x) < δ ,

contradicting – in view of (3.4.2) – the emptiness assumption forF . �

If Algorithm 3.1 does not stop after a finite number of iterations, then we know
in view of the previous lemma that the feasible regionF of (QP) is not empty and
hence that a finite optimal value of Problem (QP) exists. With this result we are
now able to prove the convergence result mentioned before.

THEOREM 3.4.2. If Algorithm 3.1 generates an infinite sequence{Sk}k∈IN of
simplices, then every accumulation pointω? of the corresponding point sequence
{ω(Sk)}k∈IN is an optimal solution of Problem (QP).

PROOF: Due to Lemma 3.4.1 we know that there exists an optimal solutionx?

of Problem (QP) with optimal valueq0(x?). Since the current simplexSk (k ∈ IN)
is chosen such thatµk = µ(Sk) holds, and since we know thatµk (k ∈ IN) is by
construction a lower bound forq0(x) (x ∈ F) and, moreover, that{µk}k∈IN is a
non-decreasing sequence (see Remark 3.3.1(e)), there holds that the non-decreasing
sequence{µ(Sk)}k∈IN is bounded from above byq0(x?), and hence convergent.

Let ω? be an accumulation point of{ω(Sk)}k∈IN and let{ω(Skq)}q∈IN be a
subsequence converging toω?. By passing to a further subsequence, if necessary,
we can assume that the corresponding simplex sequence{Skq}q∈IN is decreasing.
At first we prove thatω? is a feasible point of (QP).

98 A SIMPLICIAL BRANCH-AND-BOUND METHOD FOR(QP)

Taking the result of Lemma 3.2.1 into account it follows from (3.4.1), for each
l ∈ {1, . . . , p},

0 ≤ ql(ω(Skq))− `l
Skq (ω(Skq))

≤ d2(Skq)
(
ρ(Cl) + ρ(Dl)

) → 0 (q →∞) . (3.4.5)

Note that, for eachq ∈ IN andl ∈ {1, . . . , p}, `l
Skq is an underestimating function

for ql on the setSkq and thatω(Skq) is an element ofSkq . Since the functionsql

(l = 1, . . . , p) are continuous we obtain from (3.4.5), for eachl ∈ {1, . . . , p},
0 ≥ `l

Skq (ω(Skq)) → ql(ω?) (q →∞) ,

showing the feasibility ofω?, i.e.,ω? ∈ F .
Relation (3.4.5) is obviously fulfilled also for the functionsq0 and `0

Skq

(q ∈ IN). By continuity of q0 and the mentioned boundedness of{µ(Sk)}k∈IN

it follows

q0(x?) ≥ µ(Skq) ≥ `0
Skq (ω(Skq)) → q0(ω?) (q →∞) . (3.4.6)

This implies with respect to the feasibility ofω? that

q0(ω?) ≤ q0(x?) = min
x∈F

q0(x) ≤ q0(ω?) ,

and henceq0(ω?) = q0(x?), which proves the optimality ofω?. �

REMARK 3.4.1.

(a) Property (3.4.1) of the bisection is essential for the proof of Lemma 3.4.1
as well as for the proof of the previous convergence theorem. Therefore,
each subdivision rule, which has this property, can be used in Algorithm
3.1 without altering the theoretical properties of this approach. Subdivision
rules satisfying (3.4.1) belong to the class of so-calledexhaustivesubdivi-
sion rules (see Definition 4.3.1), which will be considered in more detail in
the next chapter (see, in particular, Section 4.3).

(b) In order to guarantee the convergence of Algorithm 3.1 in the sense of
Theorem 3.4.2 we have not proved that for an infinite decreasing sequence
{Skq}q∈IN of simplices there holds

ηkq − µkq → 0 (q →∞) .

3.4. CONVERGENCE 99

Therefore, the used bounding procedure in Algorithm 3.1 does not belong to
the class of so-calledconsistentbounding operations (see [HT96B, Section
4.2]). Hence the general convergence theory for branch-and-boundmethods
proposed, for example, in [HPT95, HT96B] is not applicable. Note that
we are only able to prove the convergence of the sequence{µk}k∈IN of
lower bounds towards the optimal value of (QP). We do not know, how the
sequence{ηk}k∈IN of upper bounds behave.

Similar to the case of Algorithms 2.2 and 2.3 in the previous chapter we cannot
expect that Algorithm 3.1 detects in a finite number of steps an optimal solution
of Problem (QP). However, for the applicability of a solution method for (QP) in
practice we need a finite approach. The finiteness of Algorithm 3.1 can be achieved,
if we are satisfied with an approximate solution, where approximate solution is
meant in the sense of feasibility as well as of optimality. Letε, δ > 0 be two
prespecified tolerances. If we add in Algorithm 3.1 each solutionω(S) of a linear
subproblem satisfying, for eachl ∈ {1, . . . , p},

ql(ω(S)) ≤ δ , (3.4.7)

to the setQ, then we obtain a finite method by replacing the stopping criterion (SC)
with

If ηk − µk ≤ ε Then STOP← True . (SC)

Indeed, in view of Lemma 3.4.1 we know that Algorithm 3.1 is always finite, ifF

is empty. If the feasible region is not empty, then we have seen in the proof of The-
orem 3.4.2 that this method generates a point sequence{ω(Sq)}q∈IN converging to
an optimal solutionω? of (QP). Since this optimal solution is feasible, we know
by continuity of the quadratic functionsql (l ∈ {1, . . . , p}) that there is an index
q0 ∈ IN such that, for eachq ≥ q0,

ql(ω(Sq)) ≤ δ l = 1, . . . , p .

This means thatω(Sq) (q ≥ q0) is added to the setQ and hence used for updating
the upper boundsηq (q ≥ q0). It follows, for eachq ≥ q0,

µq = µ(Sq) = `0Sq(ω(Sq)) ≤ q0(ω(Sq))
and

ηq ≤ q0(ω(Sq)) .

This implies – in view of (3.4.6) – that the stopping criterion (SC) must be satisfied
after a finite number of steps.

100 A SIMPLICIAL BRANCH-AND-BOUND METHOD FOR(QP)

REMARK 3.4.2.

(a) If pointsx ∈ P satisfying (3.4.7) are added to the setQ, then there does
not hold anymore thatηk (k ∈ IN) is an upper bound for the optimal value
of (QP). We only know thatηk (k ∈ IN) is an upper bound for the function
values ofq0 on the set

Fδ = {x ∈ P : ql(x) ≤ δ , l = 1, . . . , p} .

(b) If Algorithm 3.1 using the stopping criterion (SC) terminates at iterationk
with a solutionxf ∈ Q, we obtain a point satisfying

ql(xf) ≤ δ l = 1, . . . , p
and

q0(xf)− µk ≤ ε ⇔ q0(xf)− ε ≤ µk .

We do not know anything about the optimality of this point. Note that it is
even possible that there holdsF = ∅. We only know thatq0(xf) − ε is a
lower bound for the optimal value of (QP), which is by convention∞ in the
empty case. Only in the case thatxf is additionally feasible, we obtain also
theε-optimality of this point in the sense that the optimal value of (QP) and
q0(xf) have a distance not bigger thanε.

(c) The used concept of approximate feasible points and approximate optimal
solutions will be discussed in more detail in the next chapter, where we
examine a generalization of Algorithm 3.1.

We complete the discussion of Algorithm 3.1 with an examination of its numer-
ical performance. In the next section we will demonstrate the better performance
of our simplicial branch-and-bound method in comparison with the performance of
the rectangular method by Al-Khayyal et al. [AKLV95].

3.5. Computational Results

The presented simplicial branch-and-bound Algorithm 3.1 and the rectangular
algorithm of Al-Khayyal et al. were encoded in C++. As in the implementation
of Algorithm 2.3 (see Section 2.8) the partition sets, which had to be stored inP ,
were managed by AVL-trees. In order to test and to compare the computational per-
formance of both algorithms we used the set of randomly generated test examples
introduced in Section 1.5. Before presenting the numerical results we give some
notes on the implementation of both methods.

3.5. COMPUTATIONAL RESULTS 101

3.5.1. Implementational Details.The implementation of the rectangular al-
gorithm followed closely the formulation given in [AKLV95]. As a subdivision
rule for a considered hyperrectangleRk (k ∈ IN) we used the special rule given in
[AKV96], which was also used in the numerical tests in [AKLV95]. In this rule
the hyperrectangleRk = {x ∈ IRn : lk ≤ x ≤ Lk} (lk, Lk ∈ IRn) is subdi-
vided into two hyperrectanglesRk1 andRk2 in the following way. Letω(Rk) be a
solution of the LP-relaxation used by Al-Khayyal et al. with respect to the hyper-
rectangleRk (see [AKLV95] for details). Leti0 ∈ {1, . . . , n} be an index, where
the following maximum

max
i=1,... ,n

max{ω(Rk)i − lki , Lki − ω(Rk)i}
max{1.0 , Lki − lki }

is attained. Then the new hyperrectangles are given by

Rk1 = {x ∈ Rk : lki0 ≤ xi0 ≤
lki0 + Lki0

2
}

and

Rk2 = {x ∈ Rk :
lki0 + Lki0

2
≤ xi0 ≤ Lki0} .

REMARK 3.5.1. We also testedbisectionin the rectangular algorithm, where
the above indexi0 ∈ {1, . . . , n} is chosen such that

Lki0 − lki0 = max
i=1,... ,n

[
Lki − lki

]
holds. The average numerical performance in our computational tests was nearly
the same. Therefore, we restrict the subsequent presentation of the numerical re-
sults to those obtained by using the described special subdivision rule, and not by
using bisection.

The construction of the necessary initial setS0 ⊃ P , respectivelyR0 ⊃ P ,
was done according to the following specifications. In the case of the rectangular
algorithm we obtained a hyperrectangleR0 = {x ∈ IRn : l0 ≤ L0} by solving the
2n linear programs

l0i := min
x∈P

xi , L0
i := max

x∈P
xi i = 1, . . . , n . (3.5.1)

In order to construct an initial simplexS0 we used one of the possibilities described
in [HPT95, pages 145f.]. Note that the test examples were generated such that the
polytopeP is full-dimensional (see again Section 1.5). Letv0 ∈ IRn be a vertex so-
lution of one of the2n linear problems in (3.5.1). Let, furthermore,{ai1 , . . . , ain}

102 A SIMPLICIAL BRANCH-AND-BOUND METHOD FOR(QP)

be a linear independent subset of{ai : i ∈ {1, . . . ,m} andaTi v0 = bi}, i.e., a
subset of the set of constraints describingP , which are binding atv0. If γ̄ is the
optimal value of

max
x∈P

− n∑

j=1

aTijx

 ,

then it is provable that

S0 = {x ∈ IRn : aTijx ≤ bij , j = 1, . . . , n , −
n∑
j=1

aTijx ≤ γ̄}

is ann-simplex satisfyingS0 ⊃ P . In the implementation of Algorithm 3.1 we
needed the vertices ofS0. These could be obtained by solvingn linear equation
systems. From (3.5.1) we had2n possibilities in order to generate simplicesS0 ⊃
P . We constructed with each nondegenerate vertex solution of a problem in (3.5.1)
a simplex in the described way and chose among these up to2n possibilities the
one with the smallest diameter.

The necessary positive semidefinite matricesCl and the negative semidefinite
matricesDl with Ql = Cl + Dl (l = 0, . . . , p) for our simplicial branch-and-
bound method were determined by spectral decomposition. The eigenvalues and
the eigenvectors of each matrixQl (l ∈ {0, . . . , p}) were calculated by applying
an appropriate routine from theNAG-library.

In the implementation of Algorithm 3.1 we added the subsequent cheap test in
order to decide whetherF ∩ S = ∅ holds for a givenn-simplexS = [v0, . . . , vn]

max
l=1,... ,p

min
i=1,... ,n

(vi − v0)TDl(vi − v0) + (dlS)T (vi − v0) + clS > 0 (3.5.2)

⇒ F ∩ S = ∅ .

By using the fact that a concave function attains its minimum on a polytope in a
vertex of this polytope [HPT95, Theorem 1.19], it is easy to verify that the left-
hand side of (3.5.2) is a lower bound formaxl=1,... ,p q

l(x) on the simplexS.
In both algorithms we have to solve linear subproblems. Since the LP-relaxa-

tions in Al-Khayyal et al.’s approach have a sparse structure we appliedMINOS
5.4 for solving these subproblems. This code is able to exploit sparsity. The LP-

relaxation (LP
S

) used in Algorithm 3.1 has a dense constraint matrix. Even though
the application of a code exploiting sparse structure for solving the linear subprob-
lems in Algorithm 3.1 leads thus to unnecessary effort, we decided to use also in

3.5. COMPUTATIONAL RESULTS 103

this approach theMINOS 5.4 code. By doing this we could guarantee that in both
algorithms the linear subproblems were solved with the same linear optimization
algorithm.

REMARK 3.5.2.

(a) We also tested both algorithms using the LP-subroutineE04NFF of the
NAG-library. This code is not able to manage sparsity. As it was to be
expected, the running-times of Algorithm 3.1 decreased (see also the nu-
merical results in Subsection 4.6.1), whereas the running-times of the rect-
angular method increased significantly, especially for problems with higher
dimensions and higher number of quadratic constraints.

(b) As noted in Remark 3.2.1 it is possible to construct a convex relaxation of
the restricted Problem (QPS). We implemented a variant of Algorithm 3.1
using these convex relaxations, where the subproblems were solved with the
MINOS 5.4 convex solver. Even though the necessary number of subprob-
lems, which had to be considered, decreased, the running-times increased
so much that the version with linear subproblems was substantially faster.
TheMINOS 5.4 convex solver use aprojected augmented Lagrangian al-
gorithm. In the computational results in the next chapter (see again Sub-
section 4.6.1) we will see that the use of convex subproblems can also lead
to decreasing running-times, if another code is used for solving the convex
quadratic relaxations, which is at least for our test problem more efficient.

In both algorithms the branching is stopped, if therelativedifference between
ηk andµk (k ∈ IN) is smaller than the tolerance valueε = 10−4, i.e., if there holds

ηk − µk ≤ ε max{1.0 , |ηk|} (SC)

(compare with the stopping criterion (SC)). Note that the rectangular algorithm
by Al-Khayyal et al. generates sequences{µk}k∈IN and{ηk}k∈IN with the same
properties as the corresponding sequences in Algorithm 3.1 such that the above
stopping criterion is also applicable in this approach. As mentioned at the end of
the previous section, we have to be satisfied with approximate feasible points in
order to obtain a finite method. In both algorithms each generated point satisfying
(3.4.7) with an accuracyδ = 10−8 was interpreted as feasible and hence used for
updatingηk (k ∈ IN). In the application of theMINOS 5.4 code we chose the
accuracy10−9.

104 A SIMPLICIAL BRANCH-AND-BOUND METHOD FOR(QP)

3.5.2. Numerical Comparison.Tables 3.1 and 3.2 show some numerical
results for the solved test problems. We use the abbreviation NuP S<R for the

TABLE 3.1. All test results forn = 2, 3, 4

p NuP AvgNuLP StdLP AvgTime Su StdTime
S<R S R S R S R S R

n = 2

1 18 47.2 24.4 20.9 20.7 0.27 0.230.84 0.09 0.14
2 32 45.8 29.3 21.5 21.5 0.27 0.321.18 0.10 0.20
3 45 77.8 52.0 45.8 23.8 0.40 0.621.54 0.19 0.28
4 46 69.5 48.6 35.1 18.5 0.39 0.681.74 0.15 0.25
n = 3

1 18 129.6 56.9 88.1 32.2 0.78 0.620.80 0.50 0.31
2 36 163.1 75.4 200.8 55.8 0.96 1.121.17 1.07 0.86
3 43 215.8 99.0 199.7 63.5 1.30 1.961.51 1.12 1.28
4 48 158.9 83.9 83.4 29.7 0.95 2.052.17 0.44 0.73
5 47 181.0 90.8 101.0 30.5 1.19 2.772.34 0.61 1.07
6 50 195.9 98.4 93.8 27.4 1.27 4.023.17 0.57 1.48
n = 4

1 15 333.0 104.8 371.3 96.3 2.19 1.510.69 2.25 1.35
2 35 364.6 109.4 383.6 73.2 2.48 2.380.96 2.51 1.61
3 43 354.4 129.2 456.2 71.8 2.38 4.191.69 2.84 2.70
4 46 652.5 195.2 973.5 172.3 4.87 8.061.65 6.63 7.48
5 48 376.7 141.2 271.2 49.8 2.83 7.522.66 1.90 3.61
6 49 750.5 201.5 1,644 194.9 6.26 13.62.17 15.2 12.8
7 50 470.3 185.7 352.9 94.7 3.83 14.93.89 2.79 8.88
8 50 431.6 156.7 406.2 69.2 3.68 14.63.96 3.28 8.16

number of problems, where the simplicial algorithm was faster with respect to the
running-time than the rectangular one. Note (see Section 1.5) that there are50
test problems for each pair (n, p) of the dimensionn and the number of quadratic
constraintsp. The abbreviation AvgNuLP is used for the average number of lin-
ear subproblems solved for each test problem with the simplicial Algorithm 3.1
(S) or the rectangular algorithm (R). StdLP stands for the standard deviation of the
number of linear subproblems. In the column AvgTime the average running-times
in seconds are displayed and the column StdTime shows the corresponding val-
ues of the standard deviation. Finally, the abbreviation Su is used for the speedup

3.5. COMPUTATIONAL RESULTS 105

TABLE 3.2. Some test results forn = 5, 6, 7, 8

p NuP AvgNuLP StdLP AvgTime Su StdTime
S<R S R S R S R S R

n = 5

2 25 955.6 185.6 1,451 151.6 8.32 5.960.72 11.4 5.02
4 40 1,110 224.8 1,492 192.9 10.6 14.71.38 13.7 14.2
6 48 1,070 267.3 1,103 192.7 10.7 28.02.62 10.5 22.5
8 48 1,386 312.8 1,430 246.5 17.4 50.62.91 21.2 37.4
10 50 905.8 250.9 928.3 123.5 11.05 52.24.72 10.1 23.6
n = 6

2 18 2,623 325.2 2,808 238.1 28.7 16.20.57 32.0 12.7
4 35 5,425 394.4 14,913 371.1 58.2 40.10.69 147.3 42.7
6 40 5,421 505.4 12,106 558.1 69.6 83.91.20 154.8 101.7
8 47 4,366 483.0 6,286 329.2 61.5 115.21.87 82.2 83.0
10 50 2,680 450.8 3,185 300.4 41.2 161.23.92 48.3 108.3
12 50 3,649 489.2 3,943 256.3 60.6 219.63.62 63.9 122.4
n = 7

2 9 11,710 521.0 26,545 465.9 46.9 10.70.23 111.0 9.41
4 27 13,039 634.4 39,539 958.0 55.0 27.00.49 165.5 41.1
6 35 7,233 526.6 9,164 346.0 35.8 39.31.10 46.1 27.7
8 42 9,901 714.7 12,297 456.4 52.3 80.31.53 63.5 55.3
10 48 9,280 682.7 11,811 393.6 54.0 104.51.93 67.4 57.5
12 49 8,902 686.2 11,321 497.8 58.4 141.92.43 75.8 99.7
14 49 10,368 688.8 13,496 396.7 73.0 181.42.49 95.8 107.4
n = 8

2 15 18,718 766.1 26,154 788.2 89.5 26.90.30 122.0 25.6
4 26 17,465 707.2 33,566 404.1 100.3 45.30.45 197.3 27.8
6 37 20,929 1,053 45,667 1,008 127.3 110.70.87 282.4 109.8
8 37 33,094 1,379 59,485 1,345 225.8 223.00.99 402.0 218.9
10 44 22,382 1,100 44,348 901.5 161.4 236.01.46 316.5 182.9
12 46 20,920 1,157 24,312 730.5 169.1 338.12.00 187.0 209.7
14 46 22,618 987.6 40,649 599.8 200.6 372.01.85 358.6 242.9
16 47 22,023 1,239 28,888 932.4 214.0 573.02.68 284.4 427.5

between the simplicial and the rectangular version, which is the quotient of the av-
erage running-time needed by the rectangular version and the average running-time
needed by Algorithm 3.1. The problems with dimensionn ≤ 6 were run on aSUN
SPARCserver 1000workstation. For problems with dimensionn ∈ {7, 8}we used

106 A SIMPLICIAL BRANCH-AND-BOUND METHOD FOR(QP)

SUN ULTRA 60 workstations, which are – with our code – on average at least3
times faster.

The numerical results show that forp ≥ n Algorithm 3.1 was, with respect
to the average running-times, almost always faster than the rectangular algorithm.
Only for couples (n, p) with p ≤ max{1, dn2 e} the rectangular approach needed
less time in more than50% of the test examples. For fixedn the relative perfor-
mance of the simplicial method improved with growingp (consider the bold-printed
speedup columns in Table 3.1 and Table 3.2). In the casesp = 2n Algorithm 3.1
outperformed the rectangular version. It was then up to4.7 times faster.

FIGURE 3.1. Number of test problems in percent where Algo-
rithm 3.1 is faster than Al-Khayyal et al.’s rectangular approach

1

3

5

7

10

14

2
3

4
5

6
7

8

0%

25%

50%

75%

100%

Dimension

Number
of quadratic
constraints

The simplicial approach had many more linear subproblems to solve in order
to detect an approximate solution of our test problems than the rectangular one.
Moreover, this rate increased with growing dimension. There is at least one reason

for this effect. In the derivation of the LP-relaxation (LP
S

) of (QPS) in Section 3.2
we neglect the convex information contained in the transformed problem (QP

S
). In

contrast to this Al-Khayyal et al. use all available information in order to generate
their lower bounds. They do not omit anything. Therefore it is not surprising that

3.5. COMPUTATIONAL RESULTS 107

FIGURE 3.2. Speedup

1
2

3
4 5 6 7 8 10 12 1416

2
3

4
5

6
7

8

0,00

1,00

2,00

3,00

4,00

5,00

Dimension quadratic constraints
Number of

the lower bounds used in the rectangular algorithm are better than those in our
method. Nevertheless, even though the number of linear subproblems increased,
the reduction in the complexity of each subproblem (smaller dimension and fewer
constraints) led to a decrease in the running-time.

Let us illustrate the presented computational results with two figures. In Fig-
ure 3.1 the number of test problems, where Algorithm 3.1 was faster with respect
to the running-time than the rectangular algorithm, are displayed in percent for all
tested combinations of the dimensionn and the number of quadratic constraints
p. Figure 3.2 shows the corresponding speedup coefficients. Both graphics show
on the one hand that for growing dimension and smaller number of quadratic con-
straints the relative performance of the rectangular algorithm in comparison with
the simplicial approach improved. On the other hand, they emphasize that for a
higher number of quadratic constraints (p ≥ n) the numerical performance of the
simplicial algorithm was much better.

The numerical performance of the method for solving (QP), which we dis-
cussed in the previous chapter, does not depend on the number of quadratic con-
straints. This is not the case for Algorithm 3.1. The computational results show that
the effort for solving an all-quadratic program depends on the dimension as well

108 A SIMPLICIAL BRANCH-AND-BOUND METHOD FOR(QP)

as on the number of quadratic constraints. It is interesting to note that the average
running-time of the simplicial method was by far less sensitive to the number of
quadratic constraints than the running-time of Al-Khayyal et al.’s approach. For
example, in the test problems with dimensionn = 8 the average running-time of
Algorithm 3.1 grew by a factor of almost3, whereas the average running-time of
the rectangular method grew by a factor of almost45.

In Section 1.5 we described the construction of all-quadratic problems with
dimensionn ∈ {1, . . . , 8, 10}, but we do not present the numerical results for the
ten-dimensional test problems. The reason is that both algorithms do not seem to be
attractive for solving problems of type (QP) with a dense structure and a dimension
higher than8. For such problems they required excessive running-times.

TABLE 3.3. A comparison of the medians of the running-times

p = 1 2 3 4 5 6 7 8 10 12 14 16

n = 2
S 0.26 0.26 0.36 0.38
R 0.21 0.34 0.63 0.71

MSu 0.79 1.31 1.76 1.87
n = 3

S 0.63 0.66 0.80 0.89 21.03 1.23
R 0.58 1.04 1.68 2.11 2.92 3.80

MSu 0.93 1.58 2.09 2.37 2.83 3.01
n = 4

S 1.33 1.59 1.94 3.11 2.50 2.48 2.99 2.40
R 1.07 2.17 3.86 6.30 6.96 10.2 12.7 12.5

MSu 0.81 1.36 1.99 2.03 2.79 4.09 4.26 5.21
n = 5

S 5.48 4.81 5.53 6.31 7.61 8.14 9.45 8.55 9.07
R 2.58 4.89 10.7 12.1 19.6 19.8 31.0 39.1 52.2

MSu 0.47 1.02 1.94 2.58 2.43 3.28 4.57 4.22 5.76
n = 6

S 10.2 19.7 21.0 24.0 22.8 21.5 26.7 36.5 24.9 41.9
R 4.13 11.6 21.6 29.9 46.6 57.0 68.6 91.6 131.4 190.0

MSu 0.40 0.59 1.03 1.25 2.04 2.65 2.57 2.51 5.27 4.53
n = 7

S 10.2 14.9 13.5 11.7 21.9 16.7 21.5 32.1 29.0 38.3 31.9
R 2.63 7.76 12.9 15.0 32.6 32.8 51.8 61.3 89.8 127.0 153.2

MSu 0.26 0.52 0.96 1.28 1.49 1.97 2.40 1.91 3.09 3.31 4.80
n = 8

S 28.9 20.8 27.6 39.1 31.0 42.5 83.2 86.7 59.3 120.7 77.1 88.1
R 6.58 19.7 30.7 45.5 59.3 79.4 114.3 151.0 181.5 294.0 297.6 454.5

MSu 0.23 0.95 1.11 1.17 1.91 1.87 1.37 1.74 3.06 2.44 3.86 5.16

A look at the standard deviation values in Tables 3.1 and 3.2 shows that the
simplicial algorithm had, unfortunately, a significantly higher variation of the nu-
merical effort. The standard deviation of the running-time is for problems with

3.5. COMPUTATIONAL RESULTS 109

n ≥ 5 almost always higher than the corresponding average value (see Table 3.2).
We even have combinations ofn andp, where the standard deviation is more than
3 times larger than the average value. The rectangular algorithm did not have this
property. The standard deviation of running-times is mostly smaller than the aver-
age value. This shows that the rectangular algorithm had a more robust behavior
than the simplicial one in the sense that the effort for solving problems with the
same dimension and the same number of quadratic constraints did not vary so keen.
In spite of that higher variation of the effort for solving all-quadratic problems, Al-
gorithm 3.1 was almost always faster and led on average to a substantial speedup,
at least for problems with higher number of quadratic constraints. If we neglect the
numerical outliers leading to the high standard deviation values, then there holds
that Algorithm 3.1 showed an even better relative performance. In Table 3.3 the
medians of the running-times for all tested combinations (n, p) together with the
median speedup coefficients (MSu) are displayed, where this speedup coefficient is
again the quotient of the median of the running-time for the rectangular algorithm
(R) and the corresponding value for Algorithm 3.1 (S). This table shows that, with
respect to the medians, Algorithm 3.1 was also for higher dimensional problems
andp = 2n about5 times faster than Al-Khayyal et al.’s rectangular approach
(compare with the speedup coefficients in Table 3.2).

3.5.3. A Modification of Algorithm 3.1. We finish the numerical examina-
tion of Algorithm 3.1 by considering a slight modification of this approach. In
Remark 3.2.2(b) we pointed out that the LP-relaxation (LPS) of (QPS) depends on
the numbering of the vertices ofS = [v0, . . . , vn], in particular on the choice of
v0. In the numerical tests we described till now, we did not care about the choice
of this vertex. Since we did not apply any rule, it was somehow randomly which
vertex of the considered simplexSkj (k ∈ IN; j = 1, 2) was the first one.

In the sequel we will see that a special choice of this vertex can lead to numer-
ical improvements of our approach. There are of course many possible decision
rules for choosingvk0 , which could depend on the function values ofq0 at the ver-
tices, or on the function values of then + 1 possible affine underestimating func-
tions, or also on the behavior of the quadratic constraintsql (l ∈ {1, . . . , p}) and
on the behavior of their underestimators. We tested several rules and would like to
present only the one, which showed the best performance in our numerical tests.

Let S = [v0, . . . , vn] be an arbitraryn-simplex and let, forj ∈ {0, . . . , n},
`0,jS : IRn → IR be the affine underestimating function forq0 onS constructed with

110 A SIMPLICIAL BRANCH-AND-BOUND METHOD FOR(QP)

respect to the vertexvj , i.e.,

`0,jS (x) =
n∑

i=0,i6=j

(
(W j

S)−1(x− vj)
)
i
(vi − vj)TD0(vi − vj)

+
(
d0 + 2Q0vj

)T
(x − vj) + (d0)T vj + vTj Q

0vj ,

where W j
S denotes the realn × n matrix with the columns(vi − vj)

(i ∈ {0, . . . , n} \ {j}). Consider the maximal distance of the objective function
q0 and the functioǹ0,j

S (j ∈ {0, . . . , n}) at the vertices ofS. It can be verified by
straightforward calculation that there holds

max
i=0,... ,n

[
q0(vi)− `0,jS (vi)

]
= max

i=0,... ,n
(vi − vj)TC0(vi − vj) .

Among thesen + 1 possibilities for the functioǹ0
S we choose one, where the

minimum of these maximal distances is attained, i.e., we choosej0 ∈ {0, . . . , n}
satisfying

max
i=0,... ,n

(vi − vj0)TC0(vi − vj0) = min
j=0,... ,n

[
max

i=0,... ,n
(vi − vj)TC0(vi − vj)

]
.

In Algorithm 3.1 this means that we interpretvj0 as the first vertex ofS, i.e.,
S = [vj0 , v0, . . . , vj0−1, vj0+1, . . . , vn], and construct the affine functions`lS
(l ∈ {0, . . . , p}) with respect to this vertex.

This decision rule for the choice of the first vertex ofSkj (k ∈ IN, j = 1, 2) led
to an improvement of the numerical performance of our approach. By applying this
rule we could reduce the effort for solving our test problems. In Table 3.4 the pro-
portional reductions of the average number of linear subproblems are displayed for

TABLE 3.4. Proportional reduction of the average number of
LP’s by applying a special selection rule for the first vertexvk0

n p 1 2 3 4 5 6 7 8 10 12 14 16

2 9.92 9.96 5.30 6.67
3 13.1 18.1 14.8 10.9 14.7 15.0
4 16.0 21.7 19.3 21.9 16.5 32.5 16.8 15.3
5 17.4 21.6 30.2 27.1 28.1 16.5 22.3 23.3 16.8
6 23.4 25.7 33.5 34.9 25.4 34.4 25.4 31.4 24.0 26.1
7 2.22 37.8 36.2 37.6 37.2 34.4 34.6 32.2 29.4 31.6 31.2
8 55.6 28.1 46.5 24.1 45.6 32.4 35.2 34.4 43.9 42.3 41.1 39.9

3.5. COMPUTATIONAL RESULTS 111

all combinations of the dimensionn and the number of quadratic constraintsp ex-
amined in our numerical tests. This proportional reduction is calculated according
to

AvgNuLP(A)− AvgNuLP(B)
AvgNuLP(A)

· 100% .

AvgNuLP(A) denotes the average number of linear subproblems needed by Algo-
rithm 3.1 without any rule for the choice of the first vertex. AvgNuLP(B) is the
corresponding value, when the above decision rule was applied. This table shows
that the application of the proposed selection rule was able to reduce the average
number of LP’s by up to50%. Since this selection rule is not time-consuming –
from a computational point of view – we obtained almost the same reduction in the
average running-times of Algorithm 3.1.

It is interesting to note that the numerical improvement increased with grow-
ing dimension. A reason for this effect might be that with growing dimension the
number of possibilities for choosing the first vertex increases. For small dimen-
sional problems we have a high probability that the choice ofvk0 according to our
special rule and the random choice ofvk0 coincide. Hence, we obtain only a slight
difference in the numerical effort. However, for higher dimensional problems this
probability decreases and the positive results in Table 3.4 corroborate that our se-
lection rule for the first vertex was a good choice in the sense that the lower bounds,
which we obtained by applying this rule, were mostly better than the one obtained
without using any rule. Another remarkable result of Table 3.4 is that the numerical
improvement did not depend on the number of quadratic constraints. Nevertheless,
it can be possible that an additional consideration of the quadratic constraints in the
selection rule for the first vertex leads to a further improvement of Algorithm 3.1.

The simplicial branch-and-bound method presented in this chapter used bi-
section as a subdivision rule for simplices. In Remark 3.4.1(a) we pointed out
that Property (3.4.1) of this rule is substantial for the convergence of our approach.
Some authors favor another subdivision rule. In this so-calledω-subdivisionrule an
n-simplexSk is subdivided into up ton+ 1 subsimplices by using a radial subdi-
vision with respect to the optimal solutionω(Sk) of the current LP-relaxation on
Sk (see Definition 1.2.2). One hopes that this point bears some information of the
original problem (QP), and hence one expects that this rule leads to better numer-
ical results. However, this subdivision rule has not Property (3.4.1) such that the
convergence of a simplicial branch-and-bound method, which is based on this rule,

112 A SIMPLICIAL BRANCH-AND-BOUND METHOD FOR(QP)

is still an open question. In the next chapter we will give an answer to this theo-
retical problem. We will consider a generalization of Algorithm 3.1, which uses
convex subproblems and is able to deal with a more general problem class.

CHAPTER 4

On the Convergence of Simplicial Branch-and-Bound
Methods

In this chapter we are interested in a generalization of the all-quadratic optimization
problem studied in this thesis. We treat problems of the form

min g0(x) + f0(x)

gl(x)+f l(x) ≤ 0 l = 1, . . . , p

x ∈ P ,

(DCP)

wheregl : IRn → IR (l = 0, . . . , p) are convex functions,f l : IRn → IR
(l = 0, . . . , p) are concave functions, andP = {x ∈ IRn : Ax ≤ b} with
A = (a1, . . . , am)T ∈ IRm×n, b ∈ IRm is a non-empty and full-dimensional
polytope. Problems of this form belong to the class ofgeneral d.c. problemssince
the objective function and a part of the constraint functions can be written as a
difference of twoconvex functions (see, e.g., [HPT95, TUY95, HT96B] for the
framework of d.c. problems). We denote by

F := {x ∈ IRn : Ax ≤ b , gl(x) + f l(x) ≤ 0 , l = 1, . . . , p}
the feasible region of Problem (DCP).

4.1. Introduction

In the following we distinguish three subclasses of (DCP):

(DCP1) g0 ≡ 0, p = 0, i.e., minimization of a concave function over a polytope;
(DCP2) gl ≡ 0 (l = 1, . . . , p), i.e., minimization of a d.c. function over a feasible

region described by a polytope and by reverse convex constraints;
(DCP3) ∃l ∈ {1, . . . , p}: gl 6= 0, i.e., minimization of a d.c. function over a non-

polyhedral set.

113

114 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

It is well-known that the optimal valuef? of a problem of type (DCP1) is
attained in at least one vertex ofP [HPT95, Theorem 1.19]. Nevertheless, this
problem class was proven to be NP-hard. NP-hardness holds even in very special
cases, such as problems whose objective function is concave quadratic and whose
feasible region is a hypercube (see, e.g., [PS88]).

This class of global optimization problems encompasses a wide variety of ap-
plications. Among them we recall problems witheconomies of scale, where con-
cave costs arise because of decreasing marginal costs, andminimum concave cost
flow problems, i.e., flow problems in which the cost functions of the arcs are con-
cave. Moreover, some well-known mathematical problems can be reformulated
as concave optimization problems, for instanceinteger programming[PS76] and
linear complementarity problems(see, for example, [HPT95, pages 69-70]).

Different approaches to the solution of (DCP1) were proposed in the litera-
ture. They can be subdivided in three classes: enumerative methods, successive
approximation methods and branch-and-bound methods. The first two classes of
algorithms are mostly guaranteed to return an optimal solution in finite time by ex-
ploring, in the worst case, all the vertices ofP . Branch-and-bound methods can
generally only be guaranteed to be convergent. On the other hand, algorithms from
this class are often efficient in practice.

The class of branch-and-bound methods can be further subdivided in three
subclasses according to the kind of partition sets they employ (see also Subsec-
tions 1.2.2 and 1.2.3):conical algorithms, first introduced in [TUY64], rectan-
gular algorithms, first introduced in [FS69], andsimplicial algorithms, first in-
troduced in [HOR76]. For further, more detailed information about theory, al-
gorithms and applications in the field of concave optimization over a polytope
we refer to the quite extensive literature on the subject, including, in particular,
[HOR84, PR86, BEN95, HPT95, HT96B].

If the objective function of a problem of type (DCP2) is linear and there is only
one concave constraint, i.e.,p = 1, then this problem is acanonical d.c. problem

min cTx
f̄(x) ≥ 0
x ∈ P ⊂ IRn

(DCP2)

with f̄(x) := −f1(x) (see, e.g., [HPT95] or [TUY95] for the definition of the
canonical d.c. problem). It is known that, under mild regularity conditions, the
optimal valuef? of (DCP2) is attained at a pointx? on an edge ofP satisfying
f̄(x?) = 0 [HPT95, Theorem 4.4] .

4.1. INTRODUCTION 115

The class (DCP2) of global optimization problems is not so widely explored
in the literature. The articles on d.c. programming consider mostly the canonical
d.c. problem or a general d.c. problem of the form (DCP3). Our differentiation
between (DCP2) and (DCP3) is theoretically motivated, as we will see in the next
sections. An application of problem class (DCP2) is the packing problem(see
Section 1.3 and particularly Chapter 5 for details). Problems with a d.c. objec-
tive function, linear constraints and Boolean variables can also be transformed to
problems of type (DCP2) (xi ∈ {0, 1} ⇔ x2

i − xi ≥ 0, xi ∈ [0, 1]).
Using the fact that an optimal solution of the canonical d.c. problem is attained

on an edge of the polytopeP a special finite solution method for this problem
class was developed in [TT85] (modified in [HPT95]). If the objective function of
(DCP2) is nonlinear or if there is more than one concave constraint then, extending
the ideas used for solving problems of type (DCP1), Problem (DCP2) can be solved
by branch-and-bound methods, as we will see in subsequent sections.

The class of d.c. functions defined on a compact convex set ofIRn is dense in
the set of continuous functions [HPT95, Corollary 4.2]. Furthermore, the set of
d.c. functions is closed with respect to arbitrary linear combinations, finite maxi-
mizations, finite minimizations and multiplications [HPT95, Theorem 4.1]. There-
fore, the class of general d.c. problems encompasses a wide variety of problem
classes and applications. However, finding a representation of a d.c. function as a
difference of two convex functions, which we assume to be given in the formula-
tion of problem type (DCP3), is in general a hard, still open problem. For the all-
quadratic problems such a representation is easy to generate as we saw in Chapter
3. They are also known for many interesting function classes. Among the various
applications of d.c. problems of type (DCP3) we recall thebridge location problem
(see [HT99]), thegeneral location problem(see, for example, [ILM88]) and the
design centering problem[VS82, THA88, NS92]. Similar to problems of type
(DCP2) general d.c. problems of type (DCP3) can be solved by branch-and-bound
methods. In order to avoid convex subproblems in such approaches, the branch-
and-bound methods are often combined with an outer approximation scheme (see
[HT99] and, in particular, [TUY95] and references therein).

In this chapter simplicial branch-and-bound methods for solving all types of
(DCP) are considered. In particular, simplicial algorithms based on the so-called
ω-subdivision, a special subdivision rule, first introduced in [TUY64] for conical
branch-and-bound algorithms and applied for simplicial approaches, for example,
in [HT96B], are studied. As long as a so-calledexhaustivesubdivision rule is used,

116 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

the convergence of the simplicial branch-and-bound method suggested in the next
section can be ensured. The convergence of this algorithm usingω-subdivision,
which is not necessarily exhaustive, was an open theoretical question for a long
time. Recently, a similar question was answered for conical branch-and-bound al-
gorithms used for solving (DCP1) independently and by different techniques in
[JM98] and [LOC97]. However, to the author’s knowledge, no proof of conver-
gence for simplicial algorithms, which base only onω-subdivisions, has been pub-
lished yet.

In the next section the general scheme of the studied simplicial branch-and-
bound algorithm is given, and in Section 4.3 the convergence of this approach based
on an exhaustive subdivision rule is proved. This convergence result corresponds to
the one obtained in the previous chapter for Algorithm 3.1 (see Theorem 3.4.2). If
we useω-subdivision, then a similar convergence result for the proposed algorithm,
used for solving problems of type (DCP1), can also be proven. In order to show,
additionally, a convergence result for this approach, applied for problems of type
(DCP2), we need an assumption with respect to the concave partf0 of the objective
function. This assumption is not a restriction, as we will see in Section 4.4. Though
the obtained convergence result for this case will be theoretically weaker than the
one before, – from a practical point of view – all convergence results derived in
this chapter have the same quality. They imply that the proposed approach detects
in finite time either the emptiness ofF or an approximate solution of the consid-
ered problem. The proofs of the statements yielding these convergence results for
our approach usingω-subdivisions are given together in Section 4.4 for both sub-
classes of (DCP). Even though the convergence results are slightly different, their
derivation is non the less connected. The part of the proofs relating to Problem
(DCP1) is equivalent to the convergence proofs in [LR97B]. In Section 4.5 we pro-
pose an example, which shows that the simplicial branch-and-bound method using
ω-subdivisions for solving problems of type (DCP3) is not necessarily convergent.
We conclude the consideration of the convergence in Section 4.6 with a numerical
comparison of the simplicial branch-and-bound algorithm with different subdivi-
sion rules for solving all-quadratic optimization problems of type (DCP3). In par-
ticular, we suggest in this section a modification of theω-subdivision, which leads
to a convergent algorithm also for problems of the general class (DCP3). In the last
Section 4.7 a partial answer to the theoretical problem of finiteness of the simplicial
branch-and-bound algorithm withω-subdivision, applied for solving problems of
type (DCP1), is presented. This finiteness result is also given in [LR97A].

4.2. SIMPLICIAL ALGORITHMS FOR(DCP) 117

4.2. Simplicial Algorithms for (DCP)

In this section we describe a simplicial branch-and-bound algorithm for solv-
ing Problem (DCP). The formulation is a generalization of the one given in Chapter
3 (see Algorithm 3.1). Before giving the exact description we recall some notations,
which will be extensively used in the following.

• Let, for r ∈ IN, r ≤ n,

Br := {λ ∈ IRr+1 :
r∑
i=0

λi = 1 , λi ≥ 0 , i = 0, . . . , r }

be the standardr-simplex inIRr+1.
• Let S = [v0, . . . , vn] be ann-simplex andl ∈ {0, . . . , p}. The affine

functionϕlS : IRn → IR,

ϕlS(x) =
n∑
i=0

λ(x)if l(vi) (4.2.1)

is the convex envelope off l over S (see, e.g., [HPT95] or Subsection
1.2.4). The vectorλ(x) ∈ {λ ∈ IRn+1 :

∑n
i=0 λi = 1} denotes the

uniquely determined barycentric coordinates ofx ∈ IRn with respect to the
vertex set{v0, . . . , vn} of S, i.e.,x =

∑n
i=0 λ(x)ivi. Let ζlS ∈ IRn be the

unique solution of the following system of equations

(ζlS)T (vi − v0) = f l(vi)− f l(v0) i = 1, . . . , n .

Then there holds, forx ∈ IRn,

ϕlS(x) = (ζlS)T (x− v0) + f l(v0) . (4.2.2)

• Let S = [v0, . . . , vn] be ann-simplex. For eachj ∈ {0, . . . , n}, choose
i(j) ∈ {0, . . . , n} \ {j} and letv̄Sj ∈ IRn be the unique solution of the
system of linear equations

(v̄Sj)T (vi − vi(j)) = 0 i ∈ {0, . . . , n} \ {j, i(j)} (4.2.3.a)

(v̄Sj)T (vj − vi(j)) = −1 . (4.2.3.b)

Then, withcSj := (v̄Sj)T vi(j), then-simplexS can be represented by the
system of linear inequalities

(v̄Sj)Tx ≤ cSj j = 0, . . . , n . (4.2.4)

118 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

The vector v̄Sj is the normal of the facet[v0, . . . , vj−1, vj+1, . . . , vn]
of S.

In Chapter 3 (see, in particular, Section 3.4) we pointed out that it is neces-
sary to be satisfied with approximate solutions of all-quadratic problems of type
(QP), if we are interested in a finite solution approach. The finiteness of the sim-
plicial branch-and-bound method for Problem (DCP) to be discussed in the present
chapter, can also only be obtained, if approximate feasible respectively optimal so-
lutions are sufficient. Therefore, we introduce the concept of(δ,ρ)-feasiblepoints
and of(ε,δ,ρ)-solutionsof Problem (DCP).

DEFINITION 4.2.1. A point x̄ ∈ IRn is called (δ,ρ)-feasible for Problem
(DCP) with real numbersδ, ρ ≥ 0, if there holds

aTj x̄− bj ≤ ρ j = 1, . . . ,m (4.2.5.a)
and

gl(x̄) + f l(x̄) ≤ δ l = 1, . . . , p . (4.2.5.b)

A pointx̄ ∈ IRn is called an(ε,δ,ρ)-solution for Problem (DCP) with real numbers
ε,δ,ρ ≥ 0, if there holds

x̄ is (δ,ρ)-feasible (4.2.6.a)
and

g0(x̄) + f0(x̄)− ε ≤ min
x∈F

[
g0(x) + f0(x)

]
, (4.2.6.b)

where the right-hand side of (4.2.6.b) is defined as∞, if F is empty.

For ρ = 0 we say that̄x is a δ-feasible point, forδ = ρ = 0 x̄ is a feasible
point and forε = δ = ρ = 0 x̄ is an optimal solution of (DCP). Note that for an
(ε,δ,ρ)-solutionx̄ ∈ IRn it is not necessary that there holds

g0(x?) + f0(x?) ≤ g0(x̄) + f0(x̄) ,

wherex? denotes the optimal solution of (DCP), ifF 6= ∅. Therefore, Condition
(4.2.6.b) does not guarantee that the objective function value ofx̄ has a distance
smaller thanε to the optimal one (see, in particular, the caseF = ∅). This distance
depends on the choice ofδ andρ and on the behavior of the objective function of
(DCP) on the set

Fδ,ρ := {x ∈ IRn : aTj x− bj ≤ ρ , j = 1, . . . ,m,
gl(x) + f l(x) ≤ δ , l = 1, . . . , p} .

If, however,x̄ is feasible, then̄x is ε-optimal in the sense of

|g0(x̄) + f0(x̄)− g0(x?)− f0(x?)| ≤ ε .

4.2. SIMPLICIAL ALGORITHMS FOR(DCP) 119

In order to formulate the simplicial branch-and-bound method for Problem
(DCP) we need a convex relaxation of (DCP) with respect to a given simplex. Let
S = [v0, . . . , vn] be ann-simplex. The set

FS := {x ∈ S : Ax ≤ b , gl(x) + ϕlS(x) ≤ 0 , l = 1, . . . , p} (4.2.7)

is convex withFS ⊃ F ∩ S. If FS is non-empty, we know that the optimal
solutionµ?(S) of the convex optimization problem

min g0(x) + ϕ0
S(x)

x ∈ FS
(DCPS)

is a lower bound for min
x∈F∩S

[
g0(x) + f0(x)

]
, i.e., (DCPS) is a convex relaxation

of (DCP). In the following we denote by (DCPSi) (i = 1, 2, 3) the proposed convex
relaxation of Problem (DCPi) (i = 1, 2, 3) with respect to the simplexS. Note that
(DCPS1) is a linear optimization problem, (DCPS2) is a convex optimization prob-
lem with linear constraints and (DCPS3) is an optimization problem with a convex
objective function as well as convex constraints.

In general, it is not possible to solve exactly the convex optimization problem
(DCPS) in finite time. We are only able to assume that a solution method for
(DCPS) is known, which solves the problem in finite time with arbitrary accuracies
ε̄, δ̄, ρ̄ > 0. This means, if such a method does not detect the emptiness ofFS , it
generates a point̄x with the properties

aTj x̄− bj ≤ ρ̄ j = 1, . . . ,m , (4.2.8.a)

(v̄Si)T x̄− cSi ≤ ρ̄ i = 0, . . . , n , (4.2.8.b)

gl(x̄) + ϕlS(x̄) ≤ δ̄ l = 1, . . . , p (4.2.8.c)
and

g0(x̄) + ϕ0
S(x̄)− ε̄ ≤ min

x∈FS

[
g0(x) + ϕ0

S(x)
]

= µ?(S) . (4.2.8.d)

According to Definition 4.2.1,̄x is an (̄ε, δ̄, ρ̄)-solution of Problem (DCPS). Note
that it is possible that the used method stops with a (δ̄, ρ̄)-feasible point, even
though the feasible regionFS is empty. In each case

µ(S) := g0(x̄) + ϕ0
S(x̄)− ε̄ (4.2.9)

is a lower bound forµ?(S), sinceµ?(S) is defined as∞ in the empty case. In the
following we denote byCONVEXSOLVERε̄,δ̄,ρ̄ (ε̄, δ̄, ρ̄ ≥ 0) a solution method for
Problem (DCPS), which detects after finite time either the emptiness ofFS or a
point x̄ with Properties (4.2.8.a)-(4.2.8.d).

120 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

REMARK 4.2.1.

(a) Since (DCPS1) is a linear optimization problem we can use the Simplex-
Algorithm as aCONVEXSOLVER0,0,0.

(b) If the objective function of (DCPS2) is quadratic with a positive definite
Hessian, then several solution methods exist. For example, this problem is
equivalent to a linear complementarity problem (LCP) and, therefore, there
exists also aCONVEXSOLVER0,0,0. For an overview on the relation be-
tween convex quadratic optimization problems and LCP‘s and for solution
methods for LCP‘s we refer to [CPS92].

(c) In Section B.1 aCONVEXSOLVERε̄,δ̄,0 , which bases on the KCG-cutting-
plane-method [CG59, KEL60] and needs no additional assumptions on the
involved nonlinear functions beside of their convexity, is presented. For
extensions of this method we refer to [HTT87, HT96B] and references
therein.

(d) If an (̄ε, δ̄, 0)-solution of Problem (DCPS) is required, it is possible to ad-
just an arbitraryCONVEXSOLVERε̄,δ̄,ρ̄ in such a way that the calculated
point x̄ ∈ IRn is feasible with respect to the linear constraints. If aCON-
VEXSOLVERε̃,δ̃,ρ̃ delivers a point̃x /∈ P ∩ S and the accuracies are chosen
sufficiently small, then we can use the orthogonal projection pointx̄ of x̃
on the polytopeP ∩ S as an (̄ε, δ̄, 0)-solution of Problem (DCPS). How
this can be done and, in particular, how the accuraciesε̃, δ̃ andρ̃ have to be
chosen, is described in Section B.2.

For the formulation of the algorithm we assume further that a real number
η̄ <∞ with the property

η̄ ≥

min
x∈F

[
g0(x) + f0(x)

]
, if F 6= ∅

max
x∈P

[
g0(x) + f0(x)

]
, otherwise

, (4.2.10)

is known. If a feasible point̄x ∈ F is known in advance, then we can use
η̄ := g0(x̄) + f0(x̄). Otherwise by setting

η̄ := max
x∈P

[
ψ0
S(x) + f0(x)

]
, (4.2.11)

whereψ0
S : IRn → IR denotes the concave envelope ofg0 with respect to an arbi-

traryn-simplexS ⊃ P , we get the required value. Note that (4.2.11) is a concave
maximization problem, which can be solved by an arbitraryCONVEXSOLVERε̄,δ̄,ρ̄.

4.2. SIMPLICIAL ALGORITHMS FOR(DCP) 121

If the accuracȳε is greater than0, we have to adjust the calculatedoptimal value
of (4.2.11) withε̄ in order to obtain a real number with Property (4.2.10).

The description of the algorithm follows the guidelines of a basic branch-and-
bound algorithm given in [HPT95, Algorithm 3.5] and is similar to Algorithm 3.1
discussed in Chapter 3.

ALGORITHM 4.1 (Simplicial Branch-and-Bound Algorithm for (DCP)).

Initialization
Choose real numbersε, δ, ρ ≥ 0 and sequences{ε̄k}k∈IN0 , {δ̄k}k∈IN0 ,

{ρ̄k}k∈IN0 with ε̄k, δ̄k, ρ̄k ≥ 0 (k ∈ IN0) andε̄k, δ̄k, ρ̄k → 0 (k →∞).

Determine ann-simplexS0 = [v0
0 , . . . , v

0
n] with S0 ⊃ P .

Q← {v0
i : i = 0, . . . , n with v0

i is (δ,ρ)-feasible}
If CONVEXSOLVERε̄0,δ̄0,ρ̄0 detectsFS0 = ∅ Then

STOP← True (F = ∅)
Else

Let ω(S0) be an (̄ε0, δ̄0, ρ̄0)-solution of (DCPS
0
) and

µ(S0) = g0(ω(S0)) + ϕ0
S0(ω(S0)) be the corresponding function value.

µ(S0)← µ(S0)− ε̄0, µ0 ← µ(S0) , P ← {S0}
If ω(S0) is (δ, ρ)-feasibleThen Q← Q ∪ {ω(S0)}
If Q 6= ∅ Then
η0 ← min

x∈Q
[
g0(x) + f0(x)

]
Choosexf ∈ Q with η0 = g0(xf) + f0(xf) .

Else
η0 ← η̄ + ε+ τ (τ > 0 arbitrary)

EndIf
STOP← False, k ← 0

EndIf

While STOP= False Do
If ηk − µk ≤ ε Then (SC)

STOP← True (xf is an (ε, δ, ρ)-solution of (DCP))
Else

Choosewk ∈ Sk\{vk0 , . . . , vkn} and set (PSR)
Ik ← {i ∈ {0, . . . , n} : λki > 0 with λk ∈ Bn ,

∑n
j=0 λ

k
j v
k
j = wk }

122 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

If wk is (δ, ρ)-feasibleThen Q← Q ∪ {wk}
For j ∈ Ik Do
Skj ← [vk0 , . . . , v

k
j−1, w

k, vkj+1, . . . , v
k
n] ⊂ Sk

If CONVEXSOLVERε̄k,δ̄k,ρ̄k does not detectFSk
j

= ∅ Then

Letω(Skj) be an (̄εk, δ̄k, ρ̄k)-solution of (DCPS
k
j) andµ(Skj) =

g0(ω(Skj)) + ϕ0
Sk

j

(ω(Skj)) be the corresponding function value.

µ(Skj) ← max{µ(Skj)− ε̄k, µk} (LBR)

If ω(Skj) is (δ, ρ)-feasibleThen Q← Q ∪ {ω(Skj)}
P ← P ∪ {Skj }

EndIf
EndFor
P ← P\{Sk}
If Q 6= ∅ Then
ηk+1 ← min

x∈Q
[
g0(x) + f0(x)

]
Choosexf ∈ Q with ηk+1 = g0(xf) + f0(xf) .

Else
ηk+1 ← ηk

EndIf
P ← P\{S ∈ P : µ(S) ≥ ηk+1 − ε} (PR)

If P 6= ∅ Then
µk+1 ← min

S∈P
µ(S)

ChooseSk+1 ∈ P with µk+1 = µ(Sk+1). (SSR)
Else

If Q 6= ∅ Then
µk+1 ← ηk+1 − ε

Else
STOP← True (F = ∅)

EndIf
EndIf
k ← k + 1

EndIf
EndWhile

4.2. SIMPLICIAL ALGORITHMS FOR(DCP) 123

REMARK 4.2.2.

(a) P is assumed to be a non-empty full-dimensional polytope. Therefore,
there exists always ann-simplexS0 with S0 ⊃ P . For the construction
possibilities we refer to [HPT95, pp. 145f].

(b) Since we are in general – as mentioned before – not able to solve the convex
subproblems exactly, we cannot guarantee that there holds

µ(Skj) ≥ µ(Sk) = µk ,

even though we know thatSkj ⊂ Sk. In order to generate a non-decreasing
sequence of lower bounds we use the lower bounding rule (LBR).

(c) The deletion of the simplices in the classicalpruning rule(PR) is the conse-
quence of the fact thatµ(S) is a lower bound ofminx∈F∩S

[
g0(x) + f0(x)

]
(see (4.2.9)). IfP is empty after executing this rule andQ is not empty, then
it is obvious thatηk+1 − ε is a lower bound for the optimal value of (DCP).

(d) Each (δ, ρ)-feasible point for (DCP) generated during the solution of the
convex subproblems should be affiliated to the setQ in order to possibly
improve the upper boundηk.

(e) The algorithm has to generate at least one (δ, ρ)-feasible point for Problem
(DCP), such that the stopping criterion (SC) can be satisfied. If no feasible
point is known in advance, it follows immediately from Property (4.2.10) of
η̄ that, for each simplexS generated during the execution of the algorithm,
there holds

µ(S) ≤ η̄ = η0 − ε− τ .

Therefore, without an update ofηk+1 different fromηk the stopping cri-
terion (SC) cannot be fulfilled. Moreover, taking the pruning rule into ac-
count, we know that (SC) can only be satisfied in iterationk ≥ 2, if there
holdsP = ∅ andQ 6= ∅ at the end of the previous iteration (compare with
Remark 3.3.1(d)).

(f) It is possible that Algorithm 4.1 generates an (ε, δ, ρ)-solution of Problem
(DCP) withε, δ, ρ > 0, even ifF = ∅.

(g) Since we choosewk /∈ {vk0 , . . . , vkn} in the point selection rule (PSR) it is
ensured that there holdsIk 6= ∅. Note that the used subdivision ofSk is a
radial subdivision (see Definition 1.2.2), which forms a partition ofSk (see
Definition 1.2.1 and [HPT95, Proposition 3.7]).

124 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

(h) If there holds, for an iterationk ∈ IN, ε ≥ ε̄k, δ ≥ δ̄k andρ ≥ ρ̄k and,
additionally, if ω(Skj) is a vertex of the simplexSkj (j ∈ Ik), then we
know that this simplexSkj is fathomed in the pruning rule (PR). Indeed, let
ω(Skj) be a vertex ofSkj . It follows that the function value of each concave
function f l (l ∈ {0, . . . , p}) at the pointω(Skj) coincides with the func-
tion value of the corresponding convex envelopeϕl

Sk
j

. The pointω(Skj)

is at least (δ, ρ)-feasible for Problem (DCPS
k
j) and, consequently, also

(δ, ρ)-feasible for Problem (DCP), i.e.,ω(Skj) is used for updating the upper
boundηk+1. It follows that

µ(Skj) ≥ g0(ω(Skj)) + ϕ0
Sk

j
(ω(Skj))︸ ︷︷ ︸

=f0(ω(Sk
j
))

−ε ≥ ηk+1 − ε ,

i.e.,Skj must be fathomed in the pruning rule (PR).

The construction ofµk (k ∈ IN) guarantees that this value is always a lower
bound forg0(x) + f0(x) with respect to the whole feasible regionF . Therefore, it
is obvious that, when finite, the algorithm will determine either an (ε, δ, ρ)-solution
(ε, δ, ρ ≥ 0) of (DCP) or the emptiness ofF . How far it is possible to prove
the finiteness of Algorithm 4.1 withε, δ, ρ > 0, respectively the convergence for
ε = δ = ρ = 0, depends on the choice of the rule to split the current simplexSk.
The subdivision rule applied in Algorithm 4.1, which is determined by the selection
of the pointwk (see the point selection rule (PSR) in the formulation of Algorithm
4.1), is also a critical one with respect to the efficiency of the presented approach
(see, e.g., [TUY91A] or the numerical results in Section 4.6).

There exist two classical subdivision rules. In the so-calledbisection, which
was first introduced in [HOR76] for simplicial algorithms,wk is chosen as the
midpoint of the longest edge of the current simplexSk = [vk0 , . . . , v

k
n]. Let

i0, i1 ∈ {0, . . . , n} be two indices corresponding to vertices ofSk with the longest
Euclidean distance, i.e.,

‖vki0 − vki1‖2 = max
i,j=0,... ,n

‖vki − vkj ‖2 . (4.2.12)

Then we choose

wk :=
vki0 + vki1

2
.

4.2. SIMPLICIAL ALGORITHMS FOR(DCP) 125

This is the subdivision rule, we chose in the formulation of Algorithm 3.1 (see
Section 3.3).

If we apply the so-calledω-subdivision (see, e.g., [TUY64, HT96B]), then
we subdivide the current simplexSk with respect to the calculated solutionω(Sk)
of the subproblem (DCPS

k

). In the classicalω-subdivision rule, as it is described,
e.g., in [HT96B], the pointwk is chosen asω(Sk). Since it is assumed there that
ω(Sk) is feasible with respect to the relevant simplexSk and, additionally, feasible
with respect to the original problem, i.e.,ω(Sk) ∈ F ∩ Sk, it is clear (see Remark
4.2.2(h)) that in this situation there holdsω(Sk) ∈ Sk \ {vk0 , . . . , vkn}.

In the formulation of Algorithm 4.1 we use aCONVEXSOLVERε̄k,δ̄k,ρ̄k with
ε̄k, δ̄k, ρ̄k ≥ 0 (k ∈ IN). Therefore, in general we cannot expect thatω(Sk) is
contained inSk, and, in particular, we do not know anything about the feasibility
of ω(Sk) with respect to the original Problem (DCP). For that reason, we cannot
choosewk = ω(Sk) in each case and we need, thus, a generalization of the classical
ω-subdivision rule. A possible choice ofwk is the following, which we would like
to call thegeneralizedω-subdivision rule (GWSR):

Choosēλk ∈ {λ ∈ IRn+1 :
∑n

i=0 λi = 1} with ω(Sk) =
∑n
i=0 λ̄

k
i v
k
i .

Īk ← {i ∈ {0, . . . , n} : λ̄ki > 0}
If |Īk| = 1 Then
wk ← 1

2

(
vki0 + vki1

)
(i.e., choose a bisection)

Else
Determineγk :=

∑
i∈Īk λ̄ki

For i = 0 To n Do
If i ∈ Īk Then

λki ← λ̄k
i

γk

Else
λki ← 0

EndIf
EndFor
wk ← ∑n

i=0 λ
k
i v
k
i

EndIf

126 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

Theω-subdivision rule, which is connected to the information returned by the
algorithm inside the selected simplex, seems to be the more natural choice than
bisection, at least for problems of type (DCP1). On the other hand, while Algo-
rithm 4.1 based on bisections can be proven to be convergent (see Section 4.3), the
same is in general not true for the variant of Algorithm 4.1, which employs only
ω-subdivisions, as the counterexample in Section 4.5 shows.

If we solve problems of type (DCP1), we can choosēεk = δ̄k = ρ̄k = 0
(k ∈ IN0) in the initialization of Algorithm 4.1 since (DCPS1) is a linear optimiza-
tion problem, i.e., we can assume that (DCPS) is solvable exactly in finite time (see
Remark 4.2.1 (a)). Furthermore, it follows in this situation that (GWSR) coincides
with the classicalω-subdivision rule, i.e.,wk = ω(Sk) for anyk ∈ IN. Even for
this case the convergence of the presented approach based onω-subdivisions was
an open question.

Some mixed approaches for solving problems of type (DCP1) were proposed
in the literature, in which both bisection andω-subdivision are used. These are
the so-called normal algorithms, first introduced and proven to be convergent in
[TUY91B] for conical algorithms and extended in [HT96B] to simplicial algo-
rithms. These normal algorithms could be further extended in a straightforward
way to a convergent solution method for Problem (DCP) by combining Algorithm
4.1 with the special subdivision strategy used in these approaches.

Nevertheless, as already mentioned in the introduction of this chapter, we will
prove the convergence of the proposed approach only employingω-subdivisions,
applied for solving problems of type (DCP1). Under some assumptions, which
are particularly fulfilled for all-quadratic problems, we are also able to prove a
slightly weaker convergence result for problems of type (DCP2). Before discussing
these convergence results in Section 4.4 we show, first of all, the convergence of
Algorithm 4.1 based on an exhaustive subdivision rule.

4.3. Convergence with Exhaustive Subdivision Rules

If we set ε = δ = ρ = 0 in the initialization of Algorithm 4.1 and if we
use an exhaustive subdivision rule, then we are able to prove the convergence of
the approach presented in the previous section. This is the content of this section.
Proving the convergence we obtain finiteness of Algorithm 4.1 forε, δ, ρ > 0. First
we recall the definition of an exhaustive subdivision rule in a simplicial branch-
and-bound algorithm (see [HPT95, Definition 3.5] and [HT96B, Definition 4.10]).

4.3. CONVERGENCE WITH EXHAUSTIVE SUBDIVISION RULES 127

DEFINITION 4.3.1. A nested sequence of simplices{Sk}k∈IN,
Sk+1 ⊂ Sk (k ∈ IN) is calledexhaustive, if Sk shrinks to a unique points ∈ IRn

ask→∞, i.e.,

lim
k→∞

Sk =
∞⋂
k=1

Sk = {s} . (4.3.1)

Within a simplicial branch-and-bound algorithm, a subdivision rule is called
exhaustive, if every nested subsequence of simplices generated throughout the al-
gorithm is exhaustive.

The bisection defined in the previous section is an exhaustive subdivision rule
for simplices (see, e.g., [HOR76, KEA78]), as already pointed out in Chapter 3 (see
Remark 3.4.1(a)). A – still exhaustive – generalization of the classical bisection is
given in [HPT95, HOR97]. In thisgeneralized bisectionwk is chosen as

wk = λkvki0 + (1− λk)vi1 (k ∈ IN) (4.3.2)

with λk ∈ [c, 0.5], c > 0 (k ∈ IN) andi0, i1 ∈ {0, . . . , n} defined as in (4.2.12).
If Algorithm 4.1 employs only an exhaustive subdivision rule, the convergence

of the presented solution method for Problem (DCP) can be shown.

THEOREM 4.3.1. Assume thatε = δ = ρ = 0 and that an exhaustive sub-
division rule is used. Then Algorithm 4.1 is convergent in the following sense:
If Algorithm 4.1 generates an infinite sequence{Sk}k∈IN of simplices, then every
accumulation pointω? of the corresponding point sequence{ω(Sk)}k∈IN is an
optimal solution of Problem (DCP).

PROOF: Let ω? be an accumulation point of the sequence{ω(Sk)}k∈IN and
let{ω(Skq)}q∈IN be a subsequence converging toω?. Without loss of generality we
assume that{Skq}q∈IN is an infinite nested sequence of simplices. Since{Sk}k∈IN

is generated by an exhaustive subdivision rule there exists a points ∈ IRn with

lim
q→∞Skq =

∞⋂
q=1

Skq = {s} . (4.3.3)

From the calculation ofω(Skq) (q ∈ IN) we know that, for eachq ∈ IN, there exists
a numberk(q) ∈ IN satisfying

kq−1 ≤ k(q) < kq , (4.3.4.a)

aTj ω(Skq)− bj ≤ ρ̄k(q) j = 1, . . . ,m , (4.3.4.b)

128 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

(v̄S
kq

i)Tω(Skq)− cSkq

i ≤ ρ̄k(q) i = 0, . . . , n , (4.3.4.c)

gl(ω(Skq)) + ϕl
Skq (ω(Skq)) ≤ δ̄k(q) l = 1, . . . , p (4.3.4.d)

and
g0(ω(Skq)) + ϕ0

Skq (ω(Skq)) ≤ µ(Skq) + ε̄k(q) (4.3.4.e)

(k(q) is the iteration in whichSkq has been generated). Because of the affine
independence ofvkq

0 , . . . , v
kq
n we know further that, for eachq ∈ IN, there exists a

uniqueλq ∈ {λ ∈ IRn+1 :
∑n
i=0 λi = 1} with

ω(Skq) =
n∑
i=0

λqi v
kq

i . (4.3.5)

With (4.2.3.a), (4.2.3.b) and (4.3.4.c) we obtain, for eachj ∈ {0, . . . , n},

(v̄S
kq

j)Tω(Skq)− cSkq

j =
n∑
i=0

λqi

(
(v̄S

kq

j)T vkq

i − cS
kq

j

)
= −λqj ≤ ρ̄k(q) .

The sequence{ρ̄k}k∈IN is bounded. Therefore, by passing to a subsequence, if
necessary, we can assume that there holds

λq → λ̄ (q →∞)

and, in particular,̄λ ∈ Bn. Because of (4.3.3) each vertex sequence{vkq

i }q∈IN

(i = 0, . . . , n) converges tos. It follows that

ω(Skq) =
n∑
i=0

λqi v
kq

i →
n∑
i=0

λ̄is = s (q →∞) . (4.3.6)

Now with respect to (4.3.4.b) it follows, forj ∈ {1, . . . ,m},
aTj ω(Skq) − bj ≤ ρ̄k(q)

↓ (q →∞) ↓
aTj s − bj ≤ 0 ,

and with (4.3.4.d) we obtain, for eachl ∈ {1, . . . , p},
gl(ω(Skq)) +

n∑
i=0

λqi f
l(vkq

i) ≤ δ̄k(q)

↓ ↓ ↓ (q →∞) ↓
gl(s) +

n∑
i=0

λ̄i f
l(s) ≤ 0 .

4.3. CONVERGENCE WITH EXHAUSTIVE SUBDIVISION RULES 129

Note thatf l andgl (l ∈ {0, . . . , p}) are continuous functions (see, e.g., [ROC70,
Theorem 10.1]). Therefore, we know thats is a feasible point, i.e.,F 6= ∅. From
the construction ofµkq = µ(Skq) (q ∈ IN) it follows that {µkq}q∈IN is a non-
decreasing sequence (see Remark 4.2.2(b)), which is bounded from above by the
optimal value(f0 + g0)? <∞ of (DCP) and hence convergent to a real valueµ?.

Using (4.3.4.e) we also obtain

g0(ω(Skq)) +
n∑
i=0

λqi f
0(vkq

i) ≤ µ(Skq)+ε̄k(q) ≤ (f0 + g0)?+ε̄k(q)

↓ ↓ ↓ (q →∞) ↓ ↓ ↓
g0(s) +

n∑
i=0

λ̄i f
0(s) ≤ µ? + 0 ≤ (f0 + g0)?+ 0 ,

and because of the feasibility ofs there holds

g0(s) + f0(s) = (f0 + g0)? ,

showing the optimality ofs. Since the limit of a convergent sequence is unique, it
follows from (4.3.6) that

s = ω? ,

and we have proven the theorem. �

The following corollary is a direct consequence of the proof of this theorem.

COROLLARY 4.3.2. Assume thatε = δ = ρ = 0 and that an exhaustive
subdivision rule is used, then Algorithm 4.1 stops after a finite number of iterations,
if no feasible point exists, i.e., ifF = ∅.

REMARK 4.3.1. If an exhaustive subdivision rule is used, it is possible to
avoid nonlinear subproblems (see, for example, [HT99]). LetS = [v0, . . . , vn]
be ann-simplex andxS ∈ S be an arbitrary point, e.g.,xS = 1

n+1

∑n
i=0 vi.

Let further, for l ∈ {0, . . . , p}, ξlS be a subgradient ofgl at the pointxS , i.e.,
ξlS ∈ ∂gl(xS), where∂gl(xS) denotes the subdifferential ofgl at the pointxS (see,
e.g., [ROC70, SHO85] or Appendix B for the definition and the framework of sub-
gradients and subdifferentials of convex functions). Then we know that the optimal

130 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

solutionµ̄?(S) of the linear problem

min (ξ0S)T (x− xS) + g0(xS) + ϕ0
S(x)

(ξlS)T (x − xS) + gl(xS) + ϕlS(x) ≤ 0 l = 1, . . . , p

x ∈ P ∩ S
(LDCPS)

is a lower bound forminx∈F∩S
[
g0(x) + f0(x)

]
. If we replace in the formulation

of Algorithm 4.1 the convex relaxation (DCPS) of (DCP) with respect to the sim-
plexS by the linear relaxation (LDCPS), then the algorithm is still convergent (see
again [HT99, Theorem 14]). Applying this concept to all-quadratic problems of
type (QP) leads to the lower bounds, which we used in Algorithm 3.1. Note that
(LPS) and (LDCPS) coincide, ifxS is chosen asv0.

The choice between (DCPS) and (LDCPS) is a question of efficiency. The con-
vex subproblems are in general harder to solve, but provide a better lower bound,
since the objective function as well as the nonlinear constraints are better approx-
imated. If an efficient solution method for (DCPS) is available, the use of this
method could lead to a faster algorithm than the use of a linear problem solver
for (LDCPS) (see the numerical results in Subsection 4.6.1). Whether an efficient
solver for (DCPS) exists, depends on the special structure of this convex subprob-
lem. For convex quadratic subproblems, for example, interior point methods can
be used if some additional assumptions are fulfilled (see, e.g., [JAR96]).

The previous convergence result for Algorithm 4.1 is not really surprising,
since an exhaustive subdivision rule is assumed. In the next section we prove a
similar convergence result for this method in the case that theω-subdivision rule
is employed and the approach is used for solving problems of type (DCP1) and
(DCP2). Recognize that theω-subdivision rule is not necessarily exhaustive.

4.4. Convergence with theω-Subdivision Rule

In this section we assume that aCONVEXSOLVER0,0,0 is known. If we ap-
ply Algorithm 4.1 for solving problems of type (DCP1), we can use the Simplex-
Algorithm as mentioned in Remark 4.2.1(a). For general problems of type (DCP2)
such a solution method does not exist to the author’s knowledge. However, for
example in the case thatg0 is a quadratic function and thus (DCPS2) is a convex
quadratic optimization problem with linear constraints, aCONVEXSOLVER0,0,0 is
available (see Remark 4.2.1(b)). The existence of such a solution method for the
convex subproblems implies that we choose0-sequences for{ε̄k}k∈IN, {δ̄k}k∈IN

4.4. CONVERGENCE WITH THEω-SUBDIVISION RULE 131

and {ρ̄k}k∈IN in the initialization of Algorithm 4.1, i.e.,̄εk = δ̄k = ρ̄k = 0
(k ∈ IN). Furthermore, in view of Remark 4.2.2(h) we know that, for each simplex
Sk = [vk0 , . . . , v

k
n], the optimal solutionω(Sk) of the corresponding convex sub-

problem (DCPS
k

) is contained in the setSk \{vk0 , . . . , vkn}. This implies that in the
used generalizedω-subdivision rule (GWSR) we choose in each iterationk ∈ IN
the pointwk asω(Sk).

As a consequence of the use of aCONVEXSOLVER0,0,0 we setρ = 0, since the
linear constraints describingP are also involved in the description of the feasible
set of the subproblems (DCPS). A second consequence is that we setδ = 0, if
we apply Algorithm 4.1 for solving problems of type (DCP1). Indeed, since the
constraints of (DCP1) are linear (p = 0), they are not relaxed in the formulation
of (DCPS1). In this situation we know that each pointω(S) generated in Algorithm
4.1 for an arbitraryn-simplexS is feasible for the original Problem (DCP1), i.e.,
ω(S) ∈ F .

We assume further that in the formulation of Problem (DCP2) the functionf0

is strictly concave, i.e., for anyx, y ∈ IRn with x 6= y andλ ∈ (0, 1), there holds

f0(λx + (1− λ)y) > λf0(x) + (1− λ)f0(y) . (4.4.1)

This is not a restriction. The function̄f0(x) := f0(x) − σ‖x‖22 with a real value
σ > 0 is strictly concave and̄g0(x) + σ‖x‖22 is still convex. Therefore, we can
solve

min
x∈F

[
ḡ0(x) + f̄0(x)

]
with a strictly concave part of the objective function instead ofmin

x∈F
[
g0(x) + f0(x)

]
.

In the following we consider the version of Algorithm 4.1, which employs
only ω-subdivisions. In order to obtain the desired convergence results for this
approach, applied for solving problems of type (DCP1) and (DCP2), we show that
this method is always finite, if the toleranceε is chosen greater than0, and in the
case of (DCP2), if δ is also greater than0. This proof of finiteness is based on some
lemmata and corollaries whose statements are presented in the sequel. Even though
the pronounced results will be the same, some proofs are different depending on the
problem class which we would like to solve with Algorithm 4.1. Each proof will
be marked in a non-ambiguous way in order to clarify whether it is true for both
types or only for one. The longer and more technical proofs of some results will be
given in Appendix A.

132 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

The proof of finiteness will be done by contradiction. The results of the follow-
ing lemmata will be proven using an infinite nested sequence{Sk}k∈IN of simplices
with the properties that, for allk ∈ IN,

Sk+1 is thedirect childof Sk = [vk0 , . . . , v
k
n] , (4.4.2.a)

i. e.,Sk+1 = [vk0 , . . . , v
k
i−1, ω(Sk), vki+1, . . . , v

k
n] (i ∈ {0, . . . , n}) ,

and

µk = µ(Sk) < ηk − ε . (4.4.2.b)

If the algorithm does not stop after a finite number of iterations, then – given the
sequence{Sk}k∈IN of simplices which are selected in the simplex selection rule
(SSR) of Algorithm 4.1 – there exists at least one subsequence with the additional
attributes (4.4.2), as it will be shown in the proof of the Finiteness Theorem 4.4.9.

If we consider, fork ∈ IN, ann-simplexSk and its direct childSk+1, then it is
a known fact (see, e.g., [HPT95, Theorem 1.23] or Remark 3.2.2(c)) that, for any
x ∈ Sk+1, there holds

ϕlSk+1(x) = ϕlSk(x) + τ l(x) l = 0, . . . , p , (4.4.3)

whereτ l : IRn → IR (l ∈ {0, . . . , p}) denotes a function with nonnegative values.
The following lemma specifies, for eachx ∈ Sk+1 and at least onel ∈ {0, . . . , p},
a lower bound for the function valueτ l(x). This lower bound depends on the
barycentric coordinates ofx with respect toSk+1 and on the toleranceε, respec-
tively δ.

LEMMA 4.4.1. LetSk be the selected simplex in iterationk ∈ IN of Algorithm
4.1 withSk = [vk0 , . . . , v

k
i−1, v

k
i , v

k
i+1, . . . , v

k
n] (i ∈ {0, . . . , n}) and letS? =

[vk0 , . . . , vki−1, v
?, vki+1, . . . , v

k
n] be one of the simplices obtained by subdividing

Sk with respect tov? = ω(Sk).
Letx be an arbitrary element ofS? with the unique representation

x = λ0v
k
0 + · · ·+ λiv

? + · · ·+ λnv
k
n ,

with λ ∈ Bn. If Sk is not fathomed in the pruning rule (PR) of Algorithm 4.1, then
there holds

ϕ0
S?(x) ≥ ϕ0

Sk(x) + ελi , if v? is (δ, 0)- feasible,

or
∃l ∈ {1, . . . , p} : ϕlS?(x) ≥ ϕlSk(x) + δλi , otherwise.

 (4.4.4)

4.4. CONVERGENCE WITH THEω-SUBDIVISION RULE 133

PROOF FOR(DCP1) AND (DCP2): Using (4.2.1) and the linearity of the
convex envelopeϕlSk we know that, forl ∈ {0, . . . , p}, there holds

ϕlS?(x) =
n∑

j=0,j 6=i
λjf

l(vkj) + λif
l(v?) ,

and

ϕlSk(x) =
n∑

j=0,j 6=i
λjf

l(vkj) + λiϕ
l
Sk(v?) .

If v? is (δ, 0)-feasible, this point was used for updating the current upper boundηk

in an earlier iteration. It follows that

g0(v?) + f0(v?) ≥ ηk .

SinceSk is not fathomed in the pruning rule (PR) of Algorithm 4.1, there holds

µk = g0(v?) + ϕ0
Sk(v?) < ηk − ε ,

and the first conclusion follows immediately.
If v? is not (δ, 0)-feasible, then there must exist an indexl ∈ {1, . . . , p} with

the property

gl(v?) + f l(v?) > δ .

However, we know thatv? is feasible with respect to the constraints describing
(DCPS), i.e.,

gl(v?) + ϕlSk(v?) ≤ 0 ,

which proves the second part of (4.4.4). �

With the result (4.4.4) we are now able to show that, given a nested sequence
{Sk}k∈IN of simplices and a sufficiently large numberK ∈ IN, at least one vertex
of the residual simplicesSk (k ≥ K) will be fixed. If we apply Algorithm 4.1
for solving problems of type (DCP1), then we know that each generated optimal
solutionω(Sk) (k ∈ IN) of the linear subproblem (DCPS

k

) is feasible. Recognize
that aCONVEXSOLVER0,0,0 is assumed to be used. Therefore, it is easy to see
that in this situation at least one vertex of the simplicesSk (k ∈ IN) must be fixed.
Indeed, if all verticesvk0 , . . . , v

k
n of Sk have been changed at least once, then they

are all feasible. This means that the current upper boundηk must be lower than
or equal to the minimal value off0 with respect tovk0 , . . . , v

k
n. Thus, the function

values of the convex envelopeϕ0
Sk on the simplexSk are higher than or equal toηk

134 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

(compare with (4.2.1)), and the simplexSk must be fathomed in the pruning rule
(PR) of Algorithm 4.1 (see also the proof of Lemma 4.7.1).

In order to prove that one vertex must be fixed in the case of (DCP2) we need
more technical effort, sinceω(Sk) is not necessarily (δ, 0)-feasible. However, ap-
plying this necessary effort, we obtain a stronger result. We are able to show that
the nested simplex sequence shrinks to a lower-dimensional simplexS, whereS
is given by the fixed vertices of the residual simplicesSk (k ≥ K). In Lemma
4.4.2 this stronger result is formulated and the corresponding proof is presented in
Section A.1. In this proof we do not use the strict concavity off0. Thus, this proof,
and consequently the following lemma, is also valid in the case of (DCP1).

LEMMA 4.4.2. Let{Sk}k∈IN be an infinite nested sequence of simplices gen-
erated by Algorithm 4.1 with Properties (4.4.2). Then there exist a numberK ∈ IN
and an integerr with 0 ≤ r < n such that, for eachk ≥ K, there holds

Sk = [v0, . . . , vr, vkr+1, . . . , v
k
n] , (4.4.5)

wherev0, . . . , vr are fixed vectors, whilevkr+1, . . . , v
k
n (k ∈ IN, k ≥ K) change

infinitely often. Moreover, there holds⋂
k∈IN

Sk = [v0, . . . , vr] =: S . (4.4.6)

In order to show that the numberr of fixed vertices of the residual simplicesSk

(k ≥ K) must be greater than1, i.e.,r ≥ 1, we first prove that each accumulation
point of the sequence{ω(Sk)}k∈IN is contained in the setS \ {v0, . . . , vr}. This
is the result of the following lemma. The proof of this lemma, which also does not
depend on the considered problem class, is given in Section A.2.

LEMMA 4.4.3. Let{Sk}k∈IN be an infinite nested sequence of simplices gen-
erated by Algorithm 4.1 with Properties (4.4.2). LetK ∈ IN and0 ≤ r < n be
given by Lemma 4.4.2. Denote byS = [v0, . . . , vr] the fixed face of the residual
simplices

Sk = [v0, . . . , vr, vkr+1, . . . , v
k
n] (k ≥ K) .

Then, for each accumulation pointω̄ of the sequence{ω(Sk)}k∈IN, there holds

ω̄ ∈ S \ {v0, . . . , vr} . (4.4.7)

4.4. CONVERGENCE WITH THEω-SUBDIVISION RULE 135

This result will also be helpful in the proof of the next Lemma 4.4.5. However,
a direct consequence of the previous result is that at least two vertices of the residual
simplicesSk (k ≥ K) have to be fixed.

COROLLARY 4.4.4. Let {Sk}k∈IN be an infinite nested sequence generated
by Algorithm 4.1 with Properties (4.4.2). Let furtherK ∈ IN and0 ≤ r < n be
given by Lemma 4.4.2. Then there holds

r ≥ 1 . (4.4.8)

PROOF FOR(DCP1) AND (DCP2): Assume, by contradiction, that there
holdsr = 0, i.e.,

S = {v0} =
⋂
k∈IN

Sk .

The sequence{ω(Sk)}k∈IN is bounded. Therefore there exists an accumulation
point ω̄ of this sequence. Since the simplex sequence{Sk}k∈IN consists of nested,
compact and non-empty sets, it follows

ω̄ ∈ S = {v0} .

This is a contradiction to the result of Lemma 4.4.3, and hence we obtain
r ≥ 1. �

REMARK 4.4.1. The result of the previous corollary follows also by the con-
siderations regarding an exhaustive subdivision rule in Section 4.3. Indeed, if we
are in the situation that only one vertex of the simplex sequence{Sk}k≥K is fixed,
then it follows by Lemma 4.4.2 that there holds

S = {v0} =
⋂
k∈IN

Sk . (4.4.9)

This relation is the essential part in the proof of Theorem 4.3.1, which guarantees
the convergence of Algorithm 4.1 for an exhaustive subdivision rule. Therefore, by
the same argumentation as in the corresponding proof (see Section 4.3) we would
obtain finiteness of Algorithm 4.1 forε, δ > 0, if (4.4.9) is satisfied.

In order to prove finiteness of the variant of Algorithm 4.1, which employs only
ω-subdivisions, it is not sufficient that each accumulation pointω̄ of the sequence
{ω(Sk)}k∈IN is contained in the set[v0, . . . , vr] \ {v0, . . . , vr}. Actually, we need
a slightly stronger result. The next lemma signifies that the barycentric coordinates
of ω(Sk) (k ≥ K) with respect to the not-fixed vertices ofSk (k ≥ K) converge

136 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

to 0. The proofs of this lemma, which are different for the considered problem
classes, are given in Section A.3.

LEMMA 4.4.5. Let{Sk}k∈IN be an infinite nested sequence generated by Al-
gorithm 4.1 with Properties (4.4.2). LetK ∈ IN and1 ≤ r < n be chosen as in
Lemma 4.4.2 and let

ω(Sk) =
r∑
i=0

λki vi +
n∑

i=r+1

λki v
k
i , (4.4.10)

with λk ∈ Bn andk ≥ K. Then there holds

Λk :=
n∑

i=r+1

λki −→ 0 (k →∞) . (4.4.11)

It follows immediately from the previous lemma that, for eachk ≥ K, the
optimal solutionω(Sk) of the linear subproblem (DCPS1) can be represented as
a combination of a pointxk, contained in the fixed faceS = [v0, . . . , vr] of the
simplicesSk, and a residualςk ∈ IRn. This representation is given in the following
corollary. Furthermore, it is shown that the distance between the function values of
ϕ0
Sk at the pointsω(Sk) andxk converges to0.

COROLLARY 4.4.6. Let {Sk}k∈IN be an infinite nested sequence generated
by Algorithm 4.1 with Properties (4.4.2), and letK ∈ IN and1 ≤ r < n be given
by Lemma 4.4.2. Then there exists a numberK̃ ∈ IN with K̃ ≥ K such that,
for eachk ≥ K̃, there exist a pointxk ∈ [v0, . . . , vr], a point ςk ∈ IRn with
‖ςk‖2 → 0 (k →∞) and a real valueσk with σk → 0 (k →∞) satisfying

ω(Sk) = xk + ςk (4.4.12)

and

ϕ0
Sk(ω(Sk)) = ϕ0

Sk(xk) + σk . (4.4.13)

PROOF FOR(DCP1) AND (DCP2): In view of Relation (4.4.11) we know
that there exists an integer̃K ≥ K such that, for eachk ≥ K̃, there holds

Λk < 1 .

Set, fork ≥ K̃,

xk :=
r∑
i=0

λki
1− Λk

vi

4.4. CONVERGENCE WITH THEω-SUBDIVISION RULE 137

with λk ∈ Bn andΛk ∈ IR defined as in (4.4.10) and (4.4.11). Obviously there
holdsxk ∈ [v0, . . . , vr], and we obtain the following representation ofω(Sk)

ω(Sk) = xk +
n∑

i=r+1

λki v
k
i − Λk

r∑
i=0

λki
1− Λk

vi︸ ︷︷ ︸
=: ςk

.

For the function value ofϕ0
Sk at the pointω(Sk) we further get

ϕ0
Sk(ω(Sk)) = ϕ0

Sk(xk) +
n∑

i=r+1

λki f
0(vki)− Λk

r∑
i=0

λki
1− Λk

f0(vi)︸ ︷︷ ︸
=: σk

.

Because of the boundedness ofS0, there exist real valuesC > 0 andD > 0 such
that, for eachx ∈ S0, there holds‖x‖2 ≤ C and|f0(x)| ≤ D. With Lemma 4.4.5
it follows

‖ςk‖2 = ‖
n∑

i=r+1

λki v
k
i − Λkxk‖2 ≤ 2ΛkC → 0 (k →∞) .

Furthermore, we obtain

|σk| = |
n∑

i=r+1

λki f
0(vki)− Λk

r∑
i=0

λki
1− Λk

f0(vi)|

≤ ΛkD + Λk
r∑
i=0

λki
1− Λk︸ ︷︷ ︸
= 1

D → 0 (k →∞) .

�

By using all previous results it is now possible to prove that there exists a
numberK̄ ≥ K̃ such that, for eachk ≥ K̄, we are able to replace the point
xk ∈ S = [v0, . . . , vr] in Relation (4.4.12) by a pointrk ∈ S with the property
that a lower bound forµk = µ(Sk) depending onrk can be given. This lower
bound is the sum of the function valueg0(rk) + ϕ0

Sk(rk) of the objective func-

tion of Problem (DCPS
k

) and a residual part depending onΛk, which converges
to 0 – with respect toΛk – slower than the Euclidean distance between the points
ω(Sk) andrk. This is the result of the following Lemma 4.4.7 and will be essen-
tial for the proof of finiteness of the version of Algorithm 4.1, which employs only

138 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

ω-subdivisions. The proofs of this lemma, which are again different for both prob-
lem classes, are given in Section A.4. The notationo(x) is used for an arbitrary
functionτ : IR→ IR with the property

τ(x)
x
→ 0 (x→ 0) .

LEMMA 4.4.7. Let {Sk}k∈IN be an infinite nested simplex sequence gener-
ated by Algorithm 4.1 with Properties (4.4.2). Then there exist a number
K̄ ∈ IN, a real valueσ > 0 and, for eachk ≥ K̄, a point rk ∈ [v0, . . . , vr]
satisfying

g0(ω(Sk)) + ϕ0
Sk(ω(Sk)) ≥ g0(rk) + ϕ0

Sk(rk) + σΛk + o(Λk) , (4.4.14.a)

ϕlSk(rk) ≤ o(Λk) l = 1, . . . , p (4.4.14.b)
and

‖ω(Sk)− rk‖2 = o(Λk) (4.4.14.c)

with Λk (k ≥ K̄) defined as in (4.4.11).

In order to obtain a contradiction in the proof of the final finiteness result it is
still not sufficient that for eachk ≥ K̄ we have got a pointrk ∈ S = [v0, . . . , vr]
with Properties (4.4.14.a)-(4.4.14.c). Beyond it, we need a pointr̄k ∈ S with
Properties (4.4.14.a) and (4.4.14.c), which is, additionally, feasible with respect to
the convex subproblem (DCPS

k

). Thus, it is necessary to prove the existence of a
point r̄k satisfying (4.4.14.a), (4.4.14.c) and

r̄k ∈ P , ϕlSk(r̄k) ≤ 0 l = 1, . . . , p . (4.4.15)

Since the convex envelopesϕlSk (l = 1, . . . , p, k ≥ K) have, in view of the result
of Lemma 4.4.2, the same function values onS independent ofk, it follows, for
eachx ∈ S andk ≥ K,

ϕlSk(x) =
r∑
i=0

λif
l(vi)

with λ ∈ Br, x =
∑r
i=0 λivi. Therefore, Condition (4.4.15) is fulfilled, if̄rk is

contained in the set

F̄ := {x ∈ P ∩ S :
∑r

i=0λif
l(vi) ≤ 0 , l = 1, . . . , p

with λ ∈ Br , x =
∑r
i=0λivi} .

4.4. CONVERGENCE WITH THEω-SUBDIVISION RULE 139

Note that in the case of problem class (DCP1) there even holds̄F = P ∩ S. The
proof of the next lemma presented in Section A.5 shows that the orthogonal pro-
jection ofrk on the setF̄ satisfies Conditions (4.4.14.a), (4.4.14.c) and (4.4.15).

LEMMA 4.4.8. Let {Sk}k∈IN be an infinite nested simplex sequence gener-
ated by Algorithm 4.1 with Properties (4.4.2). LetK̄ ∈ IN andσ > 0 be given by
Lemma 4.4.7. Then, for eachk ≥ K̄, there exists a point̄rk ∈ F̄ satisfying

g0(ω(Sk)) + ϕ0
Sk(ω(Sk)) ≥ g0(r̄k) + ϕ0

Sk(r̄k) + σΛk + o(Λk) (4.4.16.a)

and
‖ω(Sk)− r̄k‖2 = o(Λk) (4.4.16.b)

with Λk (k ≥ K̄) defined as in (4.4.11).

With this last lemma we are now able to prove the postulated finiteness of
Algorithm 4.1.

THEOREM 4.4.9. The variant of Algorithm 4.1, which employs onlyω-sub-
divisions, is finite, if aCONVEXSOLVER0,0,0 is used and

• in the case of problem class (DCP1), if ε > 0 andδ, ρ = 0, or
• in the case of problem class (DCP2), if ε, δ > 0, ρ = 0 andf0 is strictly

concave.

PROOF FOR(DCP1) AND (DCP2): Assume, by contradiction, that Algorithm
4.1 does not stop after a finite number of iterations, i.e., the algorithm generates
an infinite sequence{Sk}k∈IN of simplices. Then there exists an infinite nested
subsequence{Skq}q∈IN ⊂ {Sk}k∈IN with Properties (4.4.2). We know – regarding
Lemma 4.4.8 – that there exist a numberQ̄ ∈ IN, an integer1 ≤ r < n, a positive
real valueσ and a point sequence{r̄q}q≥Q̄ such that, for eachq ≥ Q̄, there holds

Skq = [v0, . . . , vr, v
kq

r+1, . . . , v
kq
n] , (4.4.17.a)

r̄q ∈ F̄ ⊂ FSkq = {x ∈ Skq ∩ P : ϕl
Skq (x) ≤ 0 , l = 1, . . . , p} (4.4.17.b)

and

g0(ω(Skq)) + ϕ0
Skq (ω(Skq))

≥ g0(r̄q) + ϕ0
Skq (r̄q) + σΛkq + o(Λkq)

(4.4.17.c)

with Λkq defined as in (4.4.11).

140 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

The pointω(Skq) is the optimal solution of the convex optimization problem

min
x∈F

S
kq

[
g0(x) + ϕ0

Skq (x)
]

.

Therefore, it follows from the feasibility of̄rq with respect to the setFSkq (see
(4.4.17.b)) that

g0(ω(Skq)) + ϕ0
Skq (ω(Skq)) ≤ g0(r̄q) + ϕ0

Skq (r̄q) , (4.4.18)

and from (4.4.17.c) we obtain, forq ≥ Q̄,

g0(r̄q) + ϕ0
Skq (r̄q) ≥ g0(r̄q) + ϕ0

Skq (r̄q) + σΛkq + o(Λkq) .

This relation is equivalent to

σΛkq︸ ︷︷ ︸
≥0

+o(Λkq) ≤ 0 .

Considering Lemma 4.4.5 we know that the sequence{Λkq}q∈IN converges to
0, if q tends to infinity, and, furthermore, this sequence converges slower than
{o(Λkq)}q∈IN to 0. Thus, there must exist a numberq′ ≥ Q̄ satisfying

Λkq′ = 0 . (4.4.19)

Indeed, ifΛkq is always greater than0, it follows by definition ofo(Λ) that

σ + o(Λkq)

Λkq
≤ 0

↓ (q →∞)

0 < σ+ 0 ≤ 0 ,

which is a contradiction.
Relation (4.4.19) is only possible if there holds

ω(Skq′) ∈ [v0, . . . , vr] .

If ω(Skq′) is contained in[v0, . . . , vr] \ {v0, . . . , vr}, Skq′+1 will be generated
by replacing one of the verticesv0, . . . , vr. However, this contradicts Property
(4.4.17.a) of the simplex sequence{Skq}q∈IN. Thus, there holds

ω(Skq′) ∈ {v0, . . . , vr} (4.4.20.a)

and, additionally,

ϕl
S

k
q′ (ω(Skq′)) = f l(ω(Skq′)) l = 0, . . . , p . (4.4.20.b)

4.4. CONVERGENCE WITH THEω-SUBDIVISION RULE 141

The pointω(Skq′) ∈ Skq′ ∩ P is feasible with respect to the convex optimization

problem (DCPS
k

q′). In view of (4.4.20.b) we obtain

f l(ω(Skq′)) = ϕl
S

k
q′ (ω(Skq′)) ≤ 0 l = 1, . . . , p ,

and therefore we know thatω(Skq′) is a (δ, 0)-feasible point of Problem (DCPi)
(i = 1, 2). Hence, the pointω(Skq′) was used for updating the upper bound, and it
follows

µkq′ = µ(Skq′) = g0(ω(Skq′)) + ϕ0

S
k

q′ (ω(Skq′))

≤ ηkq′ ≤ g0(ω(Skq′)) + f0(ω(Skq′)) .

In view of Relation (4.4.20.b) withl = 0 we obtain

µkq′ = ηkq′ ,

contradicting, forε > 0, Property (4.4.2.b) of the simplex sequence{Skq}q∈IN and
completing the proof. �

This finiteness result guarantees the convergence of Algorithm 4.1 only em-
ployingω-subdivisions, applied for solving problems of type (DCP1) and (DCP2).
However, the convergence of Algorithm 4.1 does not hold in the sense of Theorem
4.3.1, i.e., we do not know whether each accumulation pointω? of the point se-
quence{ω(Sk)}k∈IN is optimal, if Algorithm 4.1 withε = δ = ρ = 0 generates
an infinite sequence{Sk}k∈IN of simplices. From Theorem 4.4.9 we obtain for
problem class (DCP1) that, if ε is also chosen as0, then there holds

µk = µ(Sk) → min
x∈P

f0(x) (k →∞) (4.4.21)

in the infinite case. Note thatP is assumed to be non-empty and that{µ(Sk)}k∈IN

is by construction non-decreasing. For this problem class we obtain, furthermore,
that each accumulation pointx?f of the sequence{xkf}k∈IN is optimal for (DCP1),
wherexkf denotes the best known point at iterationk ∈ IN, i.e., ηk = f0(xkf).
Thus, in this case there holds a similar convergence result as in Theorem 4.3.1.

In the case of problems of type (DCP2) we obtain from Theorem 4.4.9 con-
vergence of Algorithm 4.1 only in the following sense. For arbitrary accuracies
ε, δ > 0 we know that this method detects in finite either the emptiness ofF or an
(ε, δ, 0)-solution of Problem (DCP2). This implies that, ifF 6= ∅, we are able to
construct a sequence{xk}k∈IN such that each accumulation point of this sequence

142 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

is an optimal solution of (DCP2). This can be done by successively applying Algo-
rithm 4.1 with different positive accuraciesεk, δk (k ∈ IN) belonging to sequences
{εk}k∈IN, {δk}k∈IN converging to0. Such an iterative application of Algorithm
4.1 detects in particular the emptiness ofF in finite time (compare with Corollary
4.3.2).

REMARK 4.4.2. At first glance the above convergence results for the variant
of Algorithm 4.1, which employs onlyω-subdivisions and is applied for the solu-
tion of problems of type (DCP1) and (DCP2), are weaker than the one obtained
in the exhaustive case (Theorem 4.3.1) – especially the result for problem class
(DCP2). However – from a practical point of view – these different convergence
concepts have the same quality. Note that the stronger convergence of algorithms in
the sense of Theorem 4.3.1 is only needed in order to obtain finiteness of such ap-
proaches, when approximate solutions are sufficient. Hence, both results show that
Algorithm 4.1 with an exhaustive subdivision rule as well as withω-subivisions is
finite, if we are satisfied with (ε, δ, 0)-solutions of Problem (DCP2) (ε, δ > 0). This
is the essential result we need in order to apply this method in practice.

As the counterexample in the next section shows, it is not possible to extend
the presented proof techniques in order to ensure the convergence of Algorithm
4.1 – in the above sense – in the general case. However, a careful checking of
the proofs shows that all results until Lemma 4.4.7 are also provable in the case
of the general problem class (DCP3). Moreover, using aCONVEXSOLVERε̄k,δ̄k,0

(k ∈ IN) with non-increasing sequences{ε̄k}k∈IN and{δ̄k}k∈IN converging to0
instead of aCONVEXSOLVER0,0,0 , it is also possible to verify all these results.
However, in this situation it is necessary to change slightly the formulation of some
of these lemmata, where these changes do not alter the essential content of the
results. For example, the result of Lemma 4.4.1 does not hold for eachk ∈ IN. It is
only provable that there exists aK ∈ IN such that Relation (4.4.4) withε2λi instead
of ελi and δ2λi instead ofδλi is true, for eachk ≥ K.

Before presenting the counterexample we would like to give some ideas in or-
der to understand, why the proofs fail in the general case. It is immediately clear,
that the Finiteness Theorem 4.4.9 cannot be proven using aCONVEXSOLVERε̄k,δ̄k,0.

Indeed, without an exact solution of the convex subproblem (DCPSk

) the relation
(4.4.18) is not fulfilled, and we are not able to derive the contradiction. This em-
phasizes that the assumption of aCONVEXSOLVER0,0,0 is substantial for the proof
of Theorem 4.4.9.

4.4. CONVERGENCE WITH THEω-SUBDIVISION RULE 143

Apart from the problem that it is not reasonable to assume that aCONVEX-
SOLVER0,0,0 is available in the case of problems of type (DCP3), the attempt of
proving the presented finiteness result in this case even fails in the proof of Lemma
4.4.8. We show there (see Appendix A) that the orthogonal projectionr̄k of rk on
the set

F̄ := {x ∈ P ∩ S :
∑r

i=0λif
l(vi) ≤ 0 , l = 1, . . . , p

with λ ∈ Br , x =
∑r

i=0λivi}
has the property‖r̄k − rk‖2 = o(Λk) and, thus, we can derive that this point sat-
isfies the required conditions of Lemma 4.4.8. We prove this property by using
the Karush-Kuhn-Tucker(KKT)-conditions (see, e.g., [HOR79, FLE87, MAN94])
for the convex optimization problemminx∈F̄ ‖x − rk‖22. Since this problem has
only linear constraints we do not need a regularity condition for applying the KKT-
theory. If we try to use the same argumentation in the case of problem class (DCP3)
with continuous differentiable functionsgl (l ∈ {1, . . . , p}), then we need a regu-
larity condition for the convex optimization problemminx∈F̄3

‖x− rk‖22 with

F̄3 := {x ∈ P ∩ S : gl(x) +
∑r

i=0λif
l(vi) ≤ 0 , l = 1, . . . , p

with λ ∈ Br , x =
∑r

i=0λivi} ,

since this problem has also nonlinear convex constraints. In general, we are not able
to assume that such a regularity condition is fulfilled for each possible simplexS =
[v0, . . . , vr]. The counterexample presented in the next section shows a situation
where the KKT-conditions fail.

Even if we would be able to formulate a condition checkable in advance for
problems of type (DCP3) ensuring the applicability of the KKT-theory, another
problem occurs. Apart from the application of the KKT-conditions a second es-
sential part in the proof of Lemma 4.4.8 is the existence of a positive real value
τ independent of the iteration counterk (see Relation (A.5.16) in Section A.5).
The existence of this value depends on the fact that there is only a finite number
of possible gradients in the formulation of the KKT-conditions for the problems
minx∈F̄ ‖x− rk‖22 (k ∈ IN). Formulating these conditions forminx∈F̄3

‖x− rk‖22
with continuous differentiable functionsgl (l = 0, . . . , p) we can obtain in each
iteration gradients depending on∇gl(r̄k) (l ∈ {1, . . . , p}). Therefore, the set of
possible gradients is no longer finite, and the existence of the necessary valueτ > 0
is in general not provable, at least not provable with the used techniques.

144 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

4.5. A Counterexample

In this section we show that the variant of Algorithm 4.1, which employs
only ω-subdivisions, can fail, if this approach is used for solving problems of type
(DCP3). Consider the following optimization problem

min f
(
x
y

)
1
4x

2 + y2 ≤ 1

g(x) + y2 ≤ 1(
x
y

) ∈ P ⊂ IR2

(CE)

with f : IR2 → IR, f
(
x
y

)
= −‖(xy)‖22 = −x2 − y2 , g : IR→ IR

g(x) =
{

0 , if x ≥ 0
x2 , otherwise

andP = {(xy) ∈ IR2 : x ≥ −1 , − 1
2x + y ≥ − 3

2 , −x − y ≥ −3}. The function
f is concave, in particular strictly concave, the nonlinear constraint functions are
obviously convex andP is a full-dimensional, non-empty polytope. Therefore, the
Problem (CE) belongs to the class (DCP3) and the feasible region of (CE) is given
by

F = {(xy) ∈ P : 1
4x

2 + y2 ≤ 1 , g(x) + y2 ≤ 1}
(see Figure 4.1). It is easy to see that the functionf attains its unique minimum on
F at the point

(
x?

y?

)
=
(
2
0

)
with optimal valuef? = −4.

In the following we apply the variant of Algorithm 4.1, which employs only
ω-subdivisions, for solving Problem (CE). We will see that even withε > 0 and
a CONVEXSOLVER0,0,0 this approach generates an infinite sequence{Sk}k∈IN of
simplices with the properties that, for eachk ∈ IN, there holds

µ(Sk) < −9 , (4.5.1.a)

f(ω(Sk)) = −1 (4.5.1.b)
and (

x?

y?

)
/∈ Sk . (4.5.1.c)

Since the functionf is continuous it follows that each accumulation pointω? of the
sequence{ω(Sk)}k∈IN has the function valuef(ω?) = −1. Thus, we know that

4.5. A COUNTEREXAMPLE 145

FIGURE 4.1. The feasible setF of Problem (CE)

F
v0

v2

(
x?

y?

)

v1

y

x

ω? is not optimal. This shows that this variant of Algorithm 4.1 is not convergent
in the sense of Theorem 4.3.1. Moreover, if the accuraciesδ, ρ > 0 are chosen
sufficiently small, we are able to guarantee that there holds

min
x∈Fδ,ρ

f
(
x
y

) ≥ −5

with Fδ,ρ = {(xy) ∈ IR2 : 1
4x

2 + y2 ≤ 1 + δ , g(x) + y2 ≤ 1 + δ ,

−x ≤ 1 + ρ , 1
2x − y ≤ 3

2 + ρ , x + y ≤ 3 + ρ}. This implies that in
Algorithm 4.1 the upper boundηk (k ∈ IN) is always not smaller than−5, and
from Property (4.5.1.a) of the lower bound sequence we know that forε ∈ (0, 4)
Algorithm 4.1 does not terminate after a finite number of iterations. Hence, this
approach is also not convergent in the sense of Theorem 4.4.9.

The polytopeP is a 2-simplex with the verticesv0 =
(
3
0

)
, v1 =

(−1
−2

)
and

v2 =
(−1

4

)
(see Figure 4.1). Thus, we can chooseP as the start-simplexS0, i.e.,

S0 = [v0, v1, v2]. In view of (4.2.2) we obtain for the convex envelopeϕS0 of f on

146 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

the setS0 the following relation

ϕS0

(
x
y

)
= 0 · (x− 3) + (−2) · (y − 0)︸ ︷︷ ︸

=(ζS0)T

((
x
y

)
−v0
) + (−9)︸︷︷︸

=f(v0)

.

It follows immediately that the optimal solution ofminz∈F ϕS0(z) is the point
ω(S0) =

(
0
1

)
with optimal valueϕS0(ω(S0)) = −11. Thus we getµ0 = −11 and

f(ω(S0)) = −1, and the simplexS0 is subdivided – using theω-subdivision rule
– in the three simplices

S0
1 = [v0, v1, ω(S0)] ,

S0
2 = [v0, ω(S0), v2]

and

S0
3 = [ω(S0), v1, v2]

(see Figure 4.2(a)).

FIGURE 4.2. Subdivision ofS0 with respect toω(S0)

v0

v1

S0
1

S0
3

S0
2

ω(S0)

v2

(a)

v0

v2

w̄

Ŝ0
2

S̄0
2

ω(S0)

(b)

4.5. A COUNTEREXAMPLE 147

We prove now that the following relations hold

min{µ(S0
1), µ(S0

2)} ≥ −9 (4.5.2)
and

µ(S0
3) < −9 , (4.5.3)

which means thatS0
3 is chosen as the new simplexS1 at the end of iteration0.

Because ofmin{f(v0), f(v1), f(ω(S0))} = min{−9,−5,−1} = −9 it is obvious
that, for eachz ∈ S0

1 , ϕS0
1
(z) ≥ −9 and henceµ(S0

1) ≥ −9. In order to prove
this relation forS0

2 we need more effort. Using again the representation (4.2.2) for
convex envelopes we obtain

ϕS0
2

(
x
y

)
= −5x− 7y + 6 .

The pointw̄ =
(−0.5

2.5

)
= 0.5ω(S0) + 0.5v2 belongs to the edge[ω(S0), v2] of

the simplexS0
2 and has the function valueϕS0

2
(w̄) = −9. The simplexS0

2 can be
partitioned into two simplices

S̄0
2 = [v0, ω(S0), w̄] and Ŝ0

2 = [v0, w̄, v2]

(see Figure 4.2(b)), with the properties

ϕS0
2
(z) ≥ −9 ∀z ∈ S̄0

2
and

ϕS0
2
(z) ≤ −9 ∀z ∈ Ŝ0

2 .

Since the simplexŜ0
2 does not contain a feasible point of Problem (CE), i.e.,

F ∩ Ŝ0
2 = ∅ (see again Figure 4.2(b)), we obtainµ(S0

2) ≥ −9, which proves
Relation (4.5.2).

Denote now for a pointw =
(
wx

wy

) ∈ {(xy) ∈ IR2 : x2 + y2 = 1 , −1 < x ≤ 0 ,
0 < y ≤ 1} ⊂ F by

F (w) := {(xy) ∈ IR2 : x2 + y2 = 1 , −1 < x < wx , 0 < y < wy}
the part of the boundary of the feasible regionF of (CE) which lies between the
points

(−1
0

)
and

(
wx

wy

)
. We verify Relation (4.5.3) by showing that the optimal

solution of min
z∈F∩S0

3

ϕS0
3
(z) must be attained at a point̂w ∈ F (ω(S0)) with the

property

ϕS0
3
(ŵ) < −9 . (4.5.4)

This will be done by the next lemma. However, this lemma presents a more general
result, which will also be helpful in the sequel.

148 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

LEMMA 4.5.1. Let w be a point on the part{(xy) ∈ IR2 : x2 + y2 = 1 ,
−1 < x ≤ 0 , 0 < y ≤ 1} of the boundary of the feasible regionF of Problem
(CE). LetS(w) be the2-simplex with the verticesw, v1 =

(−1
−2

)
andv2 =

(−1
4

)
(see Figure 4.3) and letϕS(w) : IR2 → IR be the convex envelope off on the set
S(w) = [w, v1, v2]. Let furtherŵ be the optimal solution of min

z∈F∩S(w)
ϕS(w)(z).

Then there holds

ŵ ∈ F (w) (4.5.5.a)
and

ϕS(w)(ŵ) < −9 . (4.5.5.b)

FIGURE 4.3. Situation in Lemma 4.5.1

�����
�����
�����
�����

�����
�����
�����
�����

S(w)

v2

w

F (w)
v1

y

x

PROOF: From (4.2.2) we know thatϕS(w)

(
x
y

)
(
(
x
y

) ∈ IR2) is given by

ϕS(w)

(
x
y

)
= 2 ba (x − wx) + (−2)(y − wy)− 1

with w =
(
wx

wy

)
, b = 4 + wy anda = 1 + wx. Consider the set

F̄ := F (w) ∩
{(

τ√
1−τ2

)
: −1 < τ ≤ −b√

a2+b2

}
.

Because ofwx > −1 we obtaina > 0 and, therefore, −b√
a2+b2

> −1. It follows

that the setF̄ is not empty and, moreover, there holdsF̄ ⊂ S(w) ∩ F (note that
F (w) ⊂ S(w), see Figure 4.3). Showing, for all̄w ∈ F̄ , the relation

ϕS(w)(w̄) < −9 , (4.5.6)

4.5. A COUNTEREXAMPLE 149

we will obtain that the minimal value ofϕS(w) on the setS(w) ∩ F must be lower
than−9. For this aim consider the one-dimensional functionϕ̄S(w) : [−1, 0]→ IR,

ϕ̄S(w)(τ) := ϕS(w)

(
τ√

1−τ2

)
.

There holdsϕ̄S(w)(−1) = −9. Therefore, in order to prove Relation (4.5.6) it is
sufficient to show that the function̄ϕS(w) is monotonously decreasing along the
line between−1 and −b√

a2+b2
. The functionϕ̄S(w) is obviously differentiable in

each pointτ ∈ (−1, 0), and there holds

∂ϕ̄S(w)(τ)
∂τ

= 2
b

a
+

2τ√
1− τ2

.

For τ ∈ (−1, −b√
a2+b2

) we know that1 − τ2 ≤ 1 − b2

a2+b2 = a2

a2+b2 and, thus,
because ofτ < 0 we obtain

2τ√
1− τ2

≤ 2τ
a√

a2+b2

< 2
−b√
a2+b2

a√
a2+b2

= −2b
a

.

It follows that, for eachτ ∈ (−1, −b√
a2+b2

), there holds

∂ϕ̄S(w)(τ)
∂τ

< 0 ,

which shows that̄ϕS(w) is monotonously decreasing on(−1, −b√
a2+b2

) and, thus,

there holdsϕS(w)(ŵ) < −9, i.e., Relation (4.5.5.b) is fulfilled.
In order to prove Relation (4.5.5.a) assume, by contradiction, that there holds

ŵ /∈ F (w). Because of the structure of the setF ∩ S(w) (see the shaded region in
Figure 4.3) we know that, for each pointw̃ ∈ (F ∩ S(w)) \ (F (w) ∪ {w, (−1

0

)}),
the line betweeñw andv2 must intersect the setF (w). Because ofϕS(w)(ŵ) < −9
we haveŵ /∈ {w, (−1

0

)}. Let w̄ be the intersection point of[ŵ, v2] andF (w). It
follows that there is a real valueλ ∈ (0, 1) with w̄ = ŵ+λ(v2− ŵ) and we obtain

ϕS(w)(w̄) = ϕS(w)(ŵ) + λ

2b
a

(−1− ŵx)︸ ︷︷ ︸
<0,ŵx∈(−1,0]

−2 (4− ŵy)︸ ︷︷ ︸
>0,ŵy∈[−1,1]

< ϕS(w)(ŵ)

contradicting the optimality of̂w. �

150 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

With the notation used in the previous lemma there holdsS0
3 = S(ω(S0)), and

therefore we obtain particularly the postulated result (4.5.4) for the solutionω(S0
3)

of the optimization problem min
z∈F∩S0

3

ϕS0
3
(z). This means that there holds

µ(S0
3) = ϕS0

3
(ω(S0

3)) < −9 ,

which impliesµ1 = µ(S0
3) < −9.

In iteration1 the simplexS1 = S0
3 is now subdivided with respect to the point

ω(S1) ∈ F (ω(S0)) in the three subsimplices

S1
1 = [ω(S0), v1, ω(S1)] ,

S1
2 = [ω(S0), ω(S1), v2]

and

S1
3 = [ω(S1), v1, v2] .

Because ofmin{f(ω(S0)), f(v1), f(ω(S1))} = min{−1,−5,−1} > −9 we ob-
tain µ(S1

1) > −9 and regarding Lemma 4.5.1 we know that the minimal point of
ϕS1

3
on the setF ∩ S1

3 belongs toF (ω(S1)), and that there holdsµ(S1
3) < −9. If

we are able to show that the function value ofϕS1
2

is greater than or equal to−9
for each feasible pointz ∈ F ∩ S1

2 , then we obtain

S2 = S1
3 and µ2 = µ(S1

3) < −9 .

This means that we would be in the same situation as at the end of iteration0. The
next lemma shows that the relation

min
z∈F∩S̄

ϕS̄(z) ≥ −9

is true for each2-simplex S̄ = [w1, w2, v2] with w1, w2 ∈ F
(
0
1

)
, and hence, in

particular, forS1
2 .

LEMMA 4.5.2. Let S̄ = [w1, w2, v2] be a2-simplex withw1, w2 ∈ F
(
0
1

)
and

letϕS̄ : IR2 → IR be the convex envelope off on S̄. Then there holds

min
z∈F∩S̄

ϕS̄(z) ≥ −9 . (4.5.7)

4.5. A COUNTEREXAMPLE 151

FIGURE 4.4. Situation in Lemma 4.5.2

������
������
������

������
������
������

w̄2

w1

w2

C

w̄1v2
S̄ \ C

PROOF: There holdsϕS̄(w1) = ϕS̄(w2) = −1 andϕS̄(v2) = −17. With
w̄i := 0.5wi + 0.5v2 (i = 1, 2) we obtain, fori = 1, 2,

ϕS̄(w̄i) = −9 ,

and hence

ϕS̄(z) ≥ −9 ∀z ∈ [w1, w2, w̄1, w̄2] =: C .

In order to show result (4.5.7) it is sufficient to prove that each element ofS̄ \C is
infeasible with respect to Problem (CE) (see Figure 4.4).

Letw be an arbitrary element of̄S \ C, i.e.,

w =
(
wx

wy

) ∈ [v2, w̄1, w̄2] .

By definition of w̄i (i = 1, 2) we obtainwx ≤ −0.5 andwy ≥ 2.0. It follows
immediately1

4w
2
x + w2

y > 1, i.e.,w /∈ F . �

Combining the results of Lemma 4.5.1 and Lemma 4.5.2 and regarding the
considerations above we see that the variant of Algorithm 4.1, which uses only
ω-subdivisions, generates an infinite sequence{Sk}k∈INof simplices with the prop-
erties that, for eachk ∈ IN, there holds

Sk = [ω(Sk−1), v1, v2] ,

ω(Sk) ∈ F (ω(Sk−1))
and

µk = µ(Sk) < −9 .

152 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

By definition ofF (ω(Sk−1)) (k ∈ IN) we obtain furthermoref(ω(Sk)) = −1, and
that the optimal point

(
x?

y?

)
=
(
2
0

)
of Problem (CE) does not belong to the simplex

Sk. Consequently, we have shown that Algorithm 4.1 applied for solving Prob-
lem (CE) generates an infinite simplex sequence with Properties (4.5.1.a)-(4.5.1.c).
Note that Algorithm 4.1 generates this simplex sequence independent of the cho-
sen accuracies. Too large values ofε, δ or ρ could only lead to a termination of
Algorithm 4.1 after a finite number of iterations. However, it is obvious that these
accuracies can be chosen – greater than0 – such that Algorithm 4.1 makes infin-
itely many steps without fulfilling the stopping criterion, and hence does not solve
Problem (CE).

REMARK 4.5.1. In this situation we see that the simplexS in the sense of
Lemma 4.4.2 is the1-simplex[v1, v2]. The unique point̄z ∈ F ∩S is

(−1
0

)
, and the

gradients of the constraints, which describe the setF ∩S and which are active at̄z,
are linear dependent. Therefore, the KKT-theory is not applicable for the problem

min ‖z̃ − z‖22
z ∈F ∩ S (CEOP)

for an arbitrary point̃z ∈ S \F , i.e., the vector(z̃− z̄) is not an element of the cone
generated by the gradients of the active constraints of Problem (CEOP) inz̄ (see
the proof of Lemma 4.4.8 in Section A.5). As mentioned at the end of the previous
section this is a situation, where the KKT-theory does not work.

In the next section we will see that it is nevertheless possible to make Algo-
rithm 4.1 convergent for problems of each class, where convergence is meant in
the sense that this approach detects in finite time either the emptiness of the fea-
sible region or an approximate solution. For this aim we will change a little the
generalizedω-subdivision rule (GWSR) by using the result of Lemma 4.4.2.

4.6. Numerical Comparisons

In this section we discuss the numerical performance of Algorithm 4.1. The
proposed simplicial branch-and-bound Algorithm 4.1 was encoded in C++ with
management of partition sets by AVL-trees. In fact, we used a modified version
of the code mentioned in Chapter 3 (see, especially, Section 3.5). In order to test
the computational performance of our algorithm we solved again the randomly
generated set of all-quadratic problems described in Section 1.5.

4.6. NUMERICAL COMPARISONS 153

We are interested in (ε, δ, ρ)-solutions of Problem (DCP) withε, δ, ρ > 0. Note
that the test examples were generated in a way, which ensured that the feasible set
F is not empty. In view of the Convergence Theorem 4.3.1 we know that the variant
of Algorithm 4.1, which employs only bisections, detects such a solution in finite
time. Using the generalizedω-subdivision rule (GWSR) the finiteness of Algorithm
4.1 is no longer guaranteed, at least in the general case. Nevertheless, it is possible
to make this variant of Algorithm 4.1 finite, as we will see later in this section. For
this purpose we will modify (GWSR) by using the result of Lemma 4.4.2.

4.6.1. Comparison of Algorithm 4.1 Based on Bisection with Algorithm
3.1. First of all we would like to compare the computational performances of Al-
gorithm 4.1 employing bisections and of Algorithm 3.1 (see Section 3.3). The used
subproblems are the main difference between Algorithm 3.1 and Algorithm 4.1, if
we apply these approaches for solving all-quadratic problems (QP). Note that we
also use a (δ, ρ)-feasibility concept in order to obtain finiteness of Algorithm 3.1
(see the considerations at the end of Section 3.4). In Algorithm 3.1 we obtain lower
bounds by linearizing the original Problem (QP) with respect to the current simplex
(see Section 3.2) and in Algorithm 4.1 we use convex subproblems. Since the con-
vex relaxation of an all-quadratic problem, presented in Section 4.2 for Algorithm
4.1, is of course a better approximation than the linear relaxation proposed in Sec-
tion 3.2 for Algorithm 3.1 (see also Remark 3.2.1), we can expect that Algorithm
4.1 needs less iterations than Algorithm 3.1 in order to solve this problem. How
much the running-times change is not predictable in advance. They can decrease,
but also increase.

We solved all test problems with Algorithm 3.1 using the LP-subroutine
E04NFFof theNAG-library. Since there is no sparse structure in our linear sub-
problems it is not reasonable to useMINOS 5.4, as we did in Section 3.5. Note that
this tool is slower than E04NFF, if both are applied for solving non-sparse prob-
lems (compare with the computational results in Section 3.5 and the reason there to
useMINOS 5.4). As aCONVEXSOLVERε̄,δ̄,ρ̄ in Algorithm 4.1 we used theNAG-
subroutineE04UCCwith the default value of̄ε depending on the machine precision
andδ̄ = ρ̄ = 10−6. This routine implements asequential quadratic programming
(SQP) method. In both algorithms we used the accuraciesε = δ = 10−4 and
ρ = 10−6. As in the numerical tests in Section 3.5 we stopped branching in both
algorithms, when therelativedifference betweenηk andµk (k ∈ IN) was smaller

154 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

than the toleranceε, i.e., if there held

ηk − µk ≤ ε max{1.0 , |ηk|} (SC)

(compare with page 103).

REMARK 4.6.1. We do not solve Problem (DCPS) directly with theCON-
VEXSOLVERε̄,δ̄,ρ̄ . In order to avoid the calculation of the vectorsv̄Si (see (4.2.3.a)
and (4.2.3.b)) (i = 0, . . . , n) it is cheaper to affinely transform Problem (DCPS) by
usingx = v0 +WSλ, whereWS denotes the regular (n× n)-matrix with columns
(vi − v0) (i = 1, . . . , n) andλ is an element of{λ ∈ IRn :

∑n
i=1 λi ≤ 1 , λ ≥ 0}.

By doing this we do not need the constraints(v̄Si)Tx ≤ cSi in order to ensure
that the feasible points of Problem (DCPS) are contained in the current simplex
S = [v0, . . . , vn]. It is sufficient to require that there holdsλ ∈ [0, 1]n and∑n

i=1 λi ≤ 1 (see the derivation of the LP-relaxation in Section 3.2 and, espe-
cially, the Remarks 3.2.1 and 3.2.2(a)).

Tables 4.1 and 4.2 show some numerical results for the generated test prob-
lems run on aSUN SPARCserver 1000workstation. We use the abbreviations NuP
Co<Li for the number of problems where Algorithm 4.1 with convex subproblems
was faster with respect to the running-time than Algorithm 3.1 with linear subprob-
lems. AvgNuSP is used for the average number of subproblems solved for each
test problem with Algorithm 4.1 (Co) or Algorithm 3.1 (Li). StdSP is used for the
standard deviation of the number of subproblems. AvgTime stands for the aver-
age computing time in seconds necessary for solving a problem and StdTime for
the corresponding standard deviation values. Note that in the numerical tests of
Algorithm 3.1 in Section 3.5 we used higher accuracies for checking the"feasibil-
ity" of generated solutionsω(Sk). Therefore, Algorithm 3.1 had in the numerical
tests in the present chapter on average less linear subproblems to solve than it was
the case in Section 3.5 (see Tables 3.1 and 3.2). The results for Algorithm 3.1
were obtained with the original variant of this approach, which did not apply any
selection rule for the first vertex of a consideredn-simplex (see Subsection 3.5.3).

The numerical results displayed in Table 4.1 show that for small dimensional
problems (n ≤ 4) the decrease of the number of subproblems, which had to be
solved, did not lead to a decrease of the running-time. Algorithm 4.1 with convex
subproblems needed on average the same or slightly more time in order to solve the
test problems than the other one did. However, as we can see in Table 4.2, if more
than twice as much linear subproblems had to be solved, Algorithm 4.1 showed a

4.6. NUMERICAL COMPARISONS 155

TABLE 4.1. All test results forn = 2, 3, 4

p NuP AvgNuSP StdSP AvgTime StdTime
Co<Li Co Li Co Li Co Li Co Li

n = 2

1 21 29.6 42.0 12.9 17.1 0.12 0.11 0.05 0.04
2 20 23.6 38.2 12.4 18.8 0.12 0.13 0.06 0.08
3 12 33.9 55.5 14.1 30.4 0.19 0.16 0.09 0.07
4 3 34.4 50.2 11.1 23.4 0.21 0.14 0.08 0.06
n = 3

1 16 78.4 122.5 52.2 83.0 0.43 0.42 0.29 0.30
2 14 80.2 133.0 47.1 131.7 0.47 0.44 0.32 0.38
3 9 101.4 173.0 67.6 145.1 0.68 0.55 0.45 0.43
4 6 82.0 132.0 43.4 74.7 0.57 0.42 0.28 0.22
5 8 88.3 156.4 48.4 106.8 0.74 0.53 0.44 0.33
6 10 88.8 159.5 44.5 86.2 0.70 0.56 0.33 0.33
n = 4

1 14 172.6 304.4 145.8 316.4 1.27 1.12 1.07 1.10
2 14 179.2 324.4 158.4 323.9 1.39 1.35 1.26 1.38
3 10 155.3 310.2 105.9 372.1 1.28 1.26 0.86 1.43
4 18 234.1 536.2 214.7 741.2 2.14 2.24 2.17 3.13
5 10 178.4 332.6 110.7 257.7 1.67 1.41 1.12 1.03
6 10 228.5 671.6 202.5 1,661 2.32 3.47 2.12 10.10
7 10 207.2 382.3 141.6 292.9 2.22 1.82 1.53 1.34
8 4 204.6 372.9 154.1 378.2 2.43 1.92 1.85 1.98

better numerical performance with respect to the running-time than Algorithm 3.1.
With growing dimensions and, in particular, with a growing number of quadratic
constraints the relative difference between the average number of convex subprob-
lems and the average number of linear subproblems increased. For dimensions
higher thann = 6 Algorithm 4.1 solves more than60% of the 50 test problems
faster than Algorithm 3.1. On average Algorithm 4.1 was always faster for these
test problems. Since the speedup, i.e., the quotient of the average running-time
with linear subproblems and the average running-time with convex subproblems
was mostly less than1.5, we see that the use of convex subproblems was not a sub-
stantial acceleration of the considered solution process for all-quadratic problems.
However, there was a small acceleration.

156 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

TABLE 4.2. Some test results forn = 5, 6, 7, 8

p NuP AvgNuSP StdSP AvgTime StdTime
Co<Li Co Li Co Li Co Li Co Li

n = 5

2 21 444.9 933.4 649.1 1432 4.56 4.71 5.90 6.18
4 21 479.0 1,033 615.7 1379 5.91 6.32 7.53 8.07
6 14 488.8 965.7 439.7 978.9 7.08 6.50 6.37 6.37
8 21 509.1 1,211 413.9 1214 8.45 9.42 7.05 9.59
10 15 375.9 800.8 280.7 742.9 7.28 6.61 5.43 5.90
n = 6

2 30 1,058 2,546 1,019 2,731 13.99 18.25 13.00 19.32
4 29 1,632 5,315 2,735 14,899 26.87 41.30 47.13 105.8
6 28 1,918 5,184 3,768 12,043 38.29 46.03 73.76 105.0
8 21 1,534 4,191 1,885 5,984 34.75 41.10 42.36 56.15
10 20 907 2,345 927.1 2,509 24.49 25.41 24.77 26.59
12 31 1,228 3,467 1,349 3,885 37.97 43.82 41.82 45.73
n = 7

2 32 3,601 11,319 8,416 25,815 63.91 100.2 150.2 230.1
4 40 3,246 12,510 7,069 38,315 72.10 147.7 161.2 375.3
6 34 2,246 7,015 3,001 8,855 56.49 82.07 73.09 104.5
8 31 2,928 9,236 3,568 11,230 93.75 119.1 115.1 138.5
10 31 2,885 9,038 3,526 12,054 101.2 127.5 114.5 163.8
12 35 2,768 8,631 3,576 10,830 111.8 137.5 149.6 175.4
14 23 3,091 9,969 3,667 13,217 137.2 168.7 163.8 230.8
n = 8

2 34 6,126 18,002 14,354 25,313 128.2 211.3 280.0 285.6
4 33 5,585 17,282 14,449 33,490 154.3 226.7 379.5 438.5
6 30 5,808 19,474 13,115 43,043 189.3 288.6 396.4 670.1
8 35 9,398 32,306 16,262 57,404 416.6 522.1 747.2 921.8
10 30 4,285 21,935 4,989 43,103 214.8 378.4 255.1 728.8
12 33 5,102 19,783 5,470 23,321 284.4 380.9 304.5 432.1
14 25 5,419 23,616 8,654 49,231 368.3 493.3 554.7 1,014
16 32 5,749 20,977 6,934 27,565 393.7 503.5 465.6 656.5

Remember that it is possible to improve the performance of Algorithm 3.1 by
introducing a selection rule for the first vertex of a considered simplex, as we did in
Subsection 3.5.3. The convex relaxation used in Algorithm 4.1 is unique and does
particularly not depend on the first vertex, as it is the case for the LP-relaxation

4.6. NUMERICAL COMPARISONS 157

applied in Algorithm 3.1. Hence such a selection rule does not alter the numer-
ical performance of Algorithm 4.1 and, in view of the results in Table 3.4, it is
likely that the use of a selection rule in Algorithm 3.1 reduces the running-time
advantage of Algorithm 4.1. On the other hand, in Algorithm 4.1 we applied a
CONVEXSOLVERε̄,δ̄,ρ̄ , which only uses the differentiability of the convex func-
tions. Maybe another solution method, which exploits the quadratic structure of
(DCPS), can solve the occurring convex subproblems faster (see, e.g., [JAR96]).
Thus, we can expect that Algorithm 4.1 with convex subproblems is – with respect
to the running-time – a better solution method for all-quadratic optimization prob-
lems than Algorithm 3.1 with linear subproblems, at least for dimensions higher
thann = 4.

Another interesting numerical effect of the use of convex subproblems instead
of linear subproblems is that the standard deviation values are in some cases sig-
nificantly smaller. Note that, especially in Table 4.2, for the numbers of solved
subproblems as well as for the running-times the values of the standard deviation
are very high, when they are compared with the average values. The reason is that,
in particular for growing dimensions, the number of test problems, which needed
substantially more time to be solved than the average, increased, and that the dif-
ference between the effort for solving such numerical outliers and the effort for
solving average problems also grew. These effects were stronger if linear subprob-
lems were used. From this point of view we see that Algorithm 4.1 shows, at least

TABLE 4.3. Comparison of the medians of the running-times of
Algorithm 4.1 based on bisection and of Algorithm 3.1

p = 2 p = 4 p = 6 p = 8 p = 10 p = 12 p = 14 p = 16

n = 5

Co 2.64 3.53 5.14 6.06 6.06
Li 2.93 3.83 4.75 4.99 4.96

n = 6

Co 10.21 14.39 15.97 21.04 16.51 23.84
Li 14.18 15.12 16.01 19.70 17.04 30.03

n = 7

Co 27.08 35.69 29.15 55.18 70.46 71.66 78.11
Li 34.20 47.23 35.97 73.75 64.33 88.12 72.13

n = 8

Co 34.61 59.79 68.14 136.4 114.4 179.8 192.0 191.1
Li 52.63 98.18 92.30 204.9 133.5 215.9 174.3 234.7

158 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

for the examined test problems, a more stable behavior in the sense that less nu-
merical outliers occur. In view of the existence of numerical outliers we can expect
that a large number of test problems could be solved with less effort than the av-
erage values imply. In Table 4.3 we display the medians of the running-times in
seconds, corresponding to the numerical results of Table 4.2. The presented values
show that at least50% of the test problems could be solved significantly faster than
the average. We also see that the medians of the running-times for Algorithm 4.1
(Co) are not always smaller than the corresponding values for Algorithm 3.1 (Li),
as it is the case for the average values, at least for dimensions higher thann = 5
(see Table 4.2). This corroborates the effect mentioned above that the use of convex
subproblems reduces the occurrence of numerical outliers and the worst case effort,
respectively.

4.6.2. A Convergent Subdivision Rule Based on (GWSR).In the following
we would like to use Algorithm 4.1 with the (GWSR) strategy in order to solve the
same set of test problems. Since – in view of Section 4.5 – we cannot be sure that
the variant of Algorithm 4.1, which employs only the generalizedω-subdivision
rule, detects in finite time an (ε, δ, ρ)-solution, we introduce a modification of
(GWSR) ensuring finiteness of Algorithm 4.1.

For this aim we will exploit the result of Lemma 4.4.2. At the end of Section
4.4 we pointed out that also in the general case (DCP3) all results until Lemma
4.4.7 are provable for Algorithm 4.1 using aCONVEXSOLVERε̄k,δ̄k,0 (k ∈ IN).
As long as a solution method for the convex subproblems is used, which generates
a pointω(Sk) ∈ Sk, we know thatwk is chosen asω(Sk) in the (GWSR)-rule
(if δ̄k ≤ δ and ε̄k ≤ ε, see Remark 4.2.2(h)). In the numerical tests we use a
CONVEXSOLVERε̄,δ̄,ρ̄ with arbitrary accuracies̄ε, δ̄, ρ̄ > 0. Therefore, there does
not necessarily holdω(Sk) ∈ Sk, and it is not immediately clear that at least
the results of Lemma 4.4.2 still hold. Nevertheless, if the accuraciesε̄, δ̄ andρ̄ are
chosen as in the following lemma, then we are able to prove all results until Lemma
4.4.2 for the version of Algorithm 4.1 with (GWSR) also in the general case.

LEMMA 4.6.1. Let ε, δ, ρ ≥ 0 be given. LetLl be a Lipschitz constant ofgl

(l ∈ {0, . . . , p}) on then-simplex

S̄0 = {x ∈ IRn : (v̄S
0

i)Tx ≤ cS
0

i + ρ , i = 0, . . . , n}
(see (4.2.2) for the definition of̄vS

0

i andcS
0

i), letD ∈ IRn be an upper bound for
‖ · ‖2 onS0 = [v0

0 , . . . , v
0
n], e.g.,D = maxi=0,... ,n ‖v0

i ‖2, and letCl be an upper

4.6. NUMERICAL COMPARISONS 159

bound forf l (l ∈ {0, . . . , p}) on the same set. Fork ∈ IN denote by

Īk := {i ∈ {0, . . . , n} : λ̄ki > 0}
with λ̄k ∈ {λ ∈ IRn+1 :

∑n
i=0 λi = 1}, ω(Sk) =

∑n
i=0 λ̄

k
i v
k
i and set

wk :=
∑
i∈Īk

λ̄ki
γk
vki

with γk =
∑

i∈Īk λ̄ki . If ω(Sk) is an (̄ε, δ̄, ρ̄)-solution of (DCPS
k

) with

ε̄ ≤ 1
4ε , δ̄ ≤ 1

4δ

and

ρ̄ ≤ min
{
ρ

4
,

ρ

4nD‖ai‖2 , i = 1, . . . ,m ,
δ

4n(Cl +DLl)
, l = 1, . . . , p ,

ε

4n(C0 +DL0)

}
,

then there holds

wk is a (34δ,
3
4ρ)-feasible point for (DCPS

k

) (4.6.1.a)

and

g0(wk) + ϕ0
Sk(wk) ≤ µ(Sk) + 3

4ε . (4.6.1.b)

PROOF: In the proof of Theorem 4.3.1 we showed that, ifω(Sk) is an
(ε̄, δ̄, ρ̄)-solution of (DCPS

k

), then there holds, for eachk ∈ IN andi ∈ {0, . . . , n},
λ̄ki ≥ −ρ̄ .

Therefore, using the relation∑
i∈Īk

(
λ̄ki −

λ̄ki
γk

)
= γk − 1 =

∑
i/∈Īk

|λ̄ki |

we obtain∑
i∈Īk

(
λ̄ki −

λ̄ki
γk

)
+
∑
i/∈Īk

|λ̄ki | = 2
∑
i/∈Īk

|λ̄ki |︸︷︷︸
≤ρ̄

≤ 2nρ̄ . (4.6.2)
|Īk| ≥ 1

Because of the definition ofwk it follows

‖ω(Sk)− wk‖2 = ‖
∑
i∈Īk

(
λ̄ki −

λ̄ki
γk

)
vki +

∑
i/∈Īk

λ̄ki v
k
i ‖2

160 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

≤ D

∑
i∈Īk

(
λ̄ki −

λ̄ki
γk

)
+
∑
i/∈Īk

|λ̄ki |

 ≤ 2nDρ̄ (4.6.3)

(4.6.2)

and, forl ∈ {0, . . . , p},

|ϕlSk(ω(Sk))− ϕlSk(wk)| = |
∑
i∈Īk

(
λ̄ki −

λ̄ki
γk

)
f l(vki) +

∑
i/∈Īk

λ̄ki f
l(vki)|

≤ Cl

∑
i∈Īk

(
λ̄ki −

λ̄ki
γk

)
+
∑
i/∈Īk

|λ̄ki |

 ≤ 2nClρ̄ . (4.6.4)

(4.6.2)

From (4.6.3) and (4.6.4) we conclude, fori ∈ {1, . . . ,m},
aTi w

k ≤ aTi ω(Sk)︸ ︷︷ ︸
≤bi+ρ̄

+ |aTi wk − aTi ω(Sk)|︸ ︷︷ ︸
≤‖ai‖2‖wk−ω(Sk)‖2

≤ bi + ρ̄︸︷︷︸
≤ ρ

4

+ ‖ai‖22nDρ̄︸ ︷︷ ︸
≤ ρ

2

≤ bi + 3
4ρ (4.6.5)

and, forl ∈ {1, . . . , p},
gl(wk) + ϕlSk(wk) ≤ gl(ω(Sk)) + ϕlSk(ω(Sk)) + |gl(ω(Sk))− gl(wk)|︸ ︷︷ ︸

≤Ll‖ω(Sk)−wk‖2

+ |ϕlSk(ω(Sk))− ϕlSk(wk)|︸ ︷︷ ︸
≤2nClρ̄

≤ δ̄ + 2nDLlρ̄+ 2nClρ̄

≤ δ̄︸︷︷︸
≤ δ

4

+ 2n(DLl + Cl)ρ̄︸ ︷︷ ︸
≤ δ

2

≤ 3
4δ , (4.6.6)

which shows the (34δ,
3
4ρ)-feasibility of wk with respect to the feasibility set of

(DCPS
k

). In order to show (4.6.1.b) we obtain by the same argumentation as in
(4.6.6)

g0(wk) + ϕ0
Sk(wk) ≤ g0(ω(Sk)) + ϕ0

Sk(ω(Sk))︸ ︷︷ ︸
≤µ(Sk)+ε̄

+ 2n(DL0 + C0)ρ̄︸ ︷︷ ︸
≤ ε

2

≤ µ(Sk) + 3
4ε .

�

4.6. NUMERICAL COMPARISONS 161

REMARK 4.6.2.

(a) It follows immediately that the situation|Īk| = 1 (see (GWSR)) cannot
occur, if ε̄, δ̄ andρ̄ are chosen as in the previous lemma. Indeed,|Īk| = 1
means that

wk =
∑
i∈Īk

λ̄ki
γk
vki ∈ {vk0 , . . . , vkn} .

Regarding (4.6.1.a) and because ofϕlSk(vki) = f l(vki) (i ∈ {0, . . . , n}),
we know that there is a (δ, ρ)-feasible vertexvki′ ∈ {vk0 , . . . , vkn}. Since
each vertex ofSk (k ∈ IN) is used for updating the upper bound in previous
iterations of Algorithm 4.1 and in view of (4.6.1.b), there holds

ηk ≤ g0(vki′) + f0(vki′) = g0(wk) + ϕ0
Sk(wk)

≤ µ(Sk)︸ ︷︷ ︸
<ηk−ε

+ 3
4ε < ηk − 1

4ε ,

which is a contradiction.
(b) In the quadratic case the Lipschitz constantsLl (l ∈ {0, . . . , p}) can be

calculated in the following way

Ll = max
x∈V (S̄0)

‖∇f l(x)‖2 ,

whereV (S̄0) denotes the vertex set of̄S0. For the calculation ofLl in the
general case we refer to Section B.2.

(c) Since we have aCONVEXSOLVERε̄,δ̄,ρ̄ for arbitrary accuracies̄ε, δ̄, ρ̄ > 0
the necessary upper boundsCl for the concave functionsf l (l ∈ {0, . . . , p})
on the setS0 can be determined using this solution method.

With the result of Lemma 4.6.1 and using an analogous argumentation as in
the proof of Lemma 4.4.1 the following corollary is easy to verify.

COROLLARY 4.6.2. Assume thatε, δ, ρ > 0. LetSk be the selected simplex
in iteration k ∈ IN of Algorithm 4.1 employing the generalizedω-subdivision rule
(GWSR), letω(Sk) be an (̄ε, δ̄, ρ̄)-solution of (DCPS

k

) with ε̄, δ̄ and ρ̄ chosen as
in Lemma 4.6.1, and letS? be one of the simplices obtained by subdividingSk

with respect towk. If Sk is not fathomed in the pruning rule (PR) of Algorithm
4.1, then there holds, for eachx ∈ S? with x =

∑n
j=0,j 6=i λjv

k
j + λiw

k, λ ∈ Bn,

162 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

i ∈ {0, . . . , n},
ϕ0
S?(x) ≥ ϕ0

Sk(x) + 1
4ελi , if wk is (δ, ρ)- feasible,

or
∃l ∈ {1, . . . , p} : ϕlS?(x) ≥ ϕlSk(x) + 1

4δλi , otherwise.

 (4.6.7)

PROOF: As mentioned above, this proof is analogous to the proof of Lemma
4.4.1. Therefore, we would not like to expatiate this proof. However, note that –
regarding Remark 4.6.2(a) – there holds

wk =
∑
i∈Īk

λ̄ki
γk
vki /∈ {vk0 , . . . , vkn} ,

i.e, |Īk| > 1 in (GWSR). Note, furthermore, thatwk is, in view of Lemma 4.6.1,
alwaysρ-feasible with respect to the linear constraints of (DCP). �

The result of this corollary coincides with Lemma 4.4.1, where this lemma was
the essential part in the proof of Lemma 4.4.2. A careful checking of the proofs for
Lemma 4.4.2 (see Appendix A, especially the proof of Lemma A.1) shows that this
result is also true in the general case of problems of type (DCP3), if the assumptions
of Corollary 4.6.2 are fulfilled.

COROLLARY 4.6.3. Assume thatε, δ andρ are chosen greater than0 in the
initialization of Algorithm 4.1, and assume that aCONVEXSOLVERε̄,δ̄,ρ̄ is used
with ε̄, δ̄ and ρ̄ chosen as in Lemma 4.6.1. Let{Sk}k∈IN be an infinite nested
sequence of simplices generated by the variant of Algorithm 4.1, which employs
only (GWSR). Assume further that this sequence has the properties that, for each
k ∈ IN, there holds

Sk+1 = [vk0 , . . . , v
k
i−1, w

k, vki+1, . . . , v
k
n]

and
µ(Sk) < ηk − ε .

Then there exist a numberK ∈ IN and an integerr with 0 ≤ r < n, such that

Sk = [v0, . . . , vr, vkr+1, . . . , v
k
n] ∀k ≥ K ,

wherev0, . . . , vr are fixed vectors, whilevkr+1, . . . , v
k
n (k ∈ IN, k ≥ K) change

infinitely often. Moreover, there holds⋂
k∈S

Sk = [v0, . . . , vr] =: S .

4.6. NUMERICAL COMPARISONS 163

If we modify the generalizedω-subdivision rule in such a way, that in the
result of Corollary 4.6.3 there must holdr = 0, then we can obtain an algorithm,
which delivers in finite time either an (ε, δ, ρ)-solution of Problem (DCP) withε, δ,
ρ > 0 or the emptiness ofF . The followingmodified generalizedω-subdivision
rule (MGWSR) yields this intention. For this rule we need an additional counter
N(i, Sk), which shows how long the vertexvki (i ∈ {0, . . . , n}) of Sk did not
change.

In the initialization phase of Algorithm 4.1 we set, for eachi ∈ {0, . . . , n},
N(i, S0) = 0, and in each iteration this counter is adjusted, for each simplexSkj
(j ∈ Ik), in the following way

N(i, Skj) = N(i, Sk) + 1 , if i ∈ {0, . . . , n} \ {j}
N(j, Skj) = 0 .

In order to formulate the modified rule we need, additionally, an arbitrary, but fixed
numberN̄ ∈ IN, which has to be chosen in the initialization phase of Algorithm
4.1. The (MGWSR) is now as follows.

Choosēλk ∈ {λ ∈ IRn+1 :
∑n

i=0 λi = 1} with ω(Sk) =
∑n
i=0 λ̄

k
i v
k
i .

Īk ← {i ∈ {0, . . . , n} : λ̄ki > 0}
If |Īk| = 1 Then
wk ← 1

2

(
vki0 + vki1

)
(SR1)

(i.e., choose a classical bisection, see (4.2.12) for the definition ofi0 andi1)

Else
DetermineN1 andi2 with N1 = N(i2, Sk) = maxi∈{0,... ,n}N(i, Sk)
andN2 = maxi∈{0,... ,n}\{i2}N(i, Sk).
If N2 > N̄ Then
wk ← 1

2

(
vki0 + vki1

)
(SR2)

Else
Determineγk :=

∑
i∈Īk λ̄ki

wk ← ∑
i∈Īk

λ̄k
i

γk v
k
i (SR3)

EndIf
EndIf

164 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

THEOREM 4.6.4. Assume thatε, δ and ρ are chosen greater than0 in the
initialization of Algorithm 4.1, and assume that aCONVEXSOLVERε̄,δ̄,ρ̄ is used
with ε̄, δ̄ andρ̄ chosen as in Lemma 4.6.1. Then the variant of Algorithm 4.1, which
employs only (MGWSR), detects for Problem (DCP), in particular for (DCP3), in
finite time either the emptiness of the feasible regionF or an (ε, δ, ρ)-solution.

PROOF: Assume, by contradiction, that Algorithm 4.1 is not finite and let, without
loss of generality,{Sk}k∈IN be an infinite nested sequence of simplices generated
by this approach with the propertyµ(Sk) < ηk − ε (k ∈ IN). In view of Remark
4.6.2(a) we know thatwk must be chosen by the selection rules (SR2) or (SR3). If
there holds

|{k ∈ IN : wk is chosen by (SR2)}| < ∞ , (4.6.8)

then we can assume thatwk (k ∈ IN) is always chosen by (SR3). With respect
to Corollary 4.6.3 we obtain the existence of a numberK ∈ IN and an integer
0 ≤ r < n with

Sk = [v0, . . . , vr, vkr+1, . . . , v
k
n] ∀k ≥ K .

Since eachwk is chosen by (SR3) there holdsr = 0. Otherwise, we would obtain

min {N(0, Sk) , N(1, Sk)} > N̄

for k ∈ IN big enough, which would force the selection ofwk by (SR2). The fact
that r is equal to0 together with the second result of Corollary 4.6.3 implies the
exhaustiveness of the sequence{Sk}k∈IN, and, because ofε, δ, ρ > 0, Theorem
4.3.1 yields a contradiction.

Therefore, (4.6.8) cannot be true, i.e., an infinite number of elements of
{Sk}k∈IN must be generated by the classical bisection rule. Denote byd(Sk) :=
maxi,j=0,... ,n ‖vki −vkj ‖2 the diameter ofSk and the maximal distance ofwk to any
vertex ofSk by d(wk, Sk) := maxi=0,... ,n ‖wk − vki ‖2. If there exists a constant
valueτ ∈ (0, 1) with the property that, for eachk ∈ IN, there holds

d(wk, Sk) ≤ τd(Sk) , (4.6.9)

then it is a known fact [HT96B, Proposition VII.4] that infinitely many bisections
guarantee the exhaustiveness of{Sk}k∈IN.

As mentioned before we know, in view of Theorem 4.3.1 and because ofε, δ,
ρ > 0, that{Sk}k∈IN cannot shrink to a singleton. Thus, there does not exist a value

4.6. NUMERICAL COMPARISONS 165

τ ∈ (0, 1) with property (4.6.9). I.e., there is at least a subsequence{Skq}q∈IN of
{Sk}k∈IN with

d(wkq , Skq)
d(Skq)

→ 1 (q →∞) (4.6.10)

and, for eachq ∈ IN,

wkq is chosen by (SR3) .

Note that{d(Sk)}k∈IN is a non-increasing sequence, which is, in view of the non-
exhaustiveness of{Sk}k∈IN, convergent to a real valuēd > 0, and note, further-
more, that there holds

d(wk, Sk) ≤
√

3
2 d(S

k) ,

if wk is chosen by bisection (see, e.g., the proof of Proposition 3.14 in [HPT95]).
Since each vertex sequence{vkq

i }q∈IN (i ∈ {0, . . . , n}) is bounded, we can as-
sume, without loss of generality, that they are convergent to pointsv̄i
(i = 0, . . . , n). Letλq ∈ Bn (q ∈ IN) be chosen such that

wkq =
n∑
i=0

λqi v
kq

i .

Because of the boundedness of{λq}q∈IN we can further assume, without loss of
generality, that this sequence is also convergent to a vectorλ̄ ∈ Bn and we obtain

wkq →
n∑
i=0

λ̄iv̄i =: w̄ . (4.6.11)

We prove now that, taking (4.6.10) into account, there holds

w̄ ∈ {v̄0, . . . , v̄n} . (4.6.12)

PROOF OF(4.6.12): Obviously we know that

d(Skq) → max
i,j=0,... ,n

‖v̄i − v̄j‖2 = d̄ (q → ∞) . (4.6.13)

For eachq ∈ IN, there is an indexi(q) ∈ {0, . . . , n} with

d(wkq , Skq) = ‖wkq − v
kq

i(q)
‖2 .

Assume, without loss of generality, thati(q) is always the same index, i.e.,

d(wkq , Skq) = ‖wkq − v
kq

i′ ‖2 (4.6.14)

for eachq ∈ IN and a fixedi′ ∈ {0, . . . , n}.

166 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

Combining (4.6.10), (4.6.11), (4.6.13) and (4.6.14) we obtain

0 < d̄ = ‖w̄ − v̄i′‖2 = ‖
n∑

j=0

λ̄j v̄j − v̄i′‖2

= ‖
n∑

j=0

λ̄j (v̄j − v̄i′) ‖2 ≤
n∑

j=0

λ̄j ‖v̄j − v̄i′‖2︸ ︷︷ ︸
≤d̄

≤ d̄ .

Therefore, we see that,

‖
n∑

j=0

λ̄j (v̄j − v̄i′) ‖2 =
n∑

j=0

λ̄j‖ (v̄j − v̄i′) ‖2 = d̄ . (4.6.15)

Because of̄d > 0 we know that the set

L := {j ∈ {0, . . . , n} : (v̄j − v̄i′) 6= 0 andλ̄j > 0}
is not empty, and, in view of the right-hand side of (4.6.15), for eachj /∈ L, there holds
λ̄j = 0. Indeed, ifL is empty, then we obtain

∑n

j=0
λ̄j‖v̄j − v̄i′‖2 = 0 contradicting

d̄ > 0. Moreover, if there is an indexj′ /∈ L with λ̄j′ > 0, then it follows that∑n

j=0
λ̄j‖v̄j − v̄i′‖2 ≤ ∑n

j=0,j 6=j′ λ̄j d̄ < d̄ contradicting (4.6.15). The left-hand
equality in Relation (4.6.15) is only possible if there exists, for each pairi, j ∈ L, a
scalarγi,j ∈ IR \ {0} with

v̄i − v̄i′ = γi,j
λ̄j

λ̄i

(v̄j − v̄i′) .

Furthermore, again in view of the right-hand equation of (4.6.15), we obtain

‖v̄i − v̄i′‖2 = ‖v̄j − v̄i′‖2 = d̄ , (4.6.16)

and, therefore,

γi,j
λ̄j

λ̄i

∈ {−1, 1} .

Assume thatγi,j
λ̄j

λ̄i
= −1. Then there holds(v̄i − v̄i′) = (v̄i′ − v̄j). This implies

2d̄ = ‖2(v̄i − v̄i′)‖2 = ‖v̄i − v̄i′ + v̄i′ − v̄j‖2 = ‖v̄i − v̄j‖2 ≤ d̄ ,

which contradicts̄d > 0. It follows, that there is an indexi′′ ∈ L such that, for each
j ∈ L, there holds

v̄i′′ = v̄j ,

and we conclude

w̄ =
∑
j∈L

λ̄j v̄j +
∑
j /∈L

λ̄j︸︷︷︸
=0

v̄j = v̄i′′
∑
j∈L

λ̄j︸ ︷︷ ︸
=1

= v̄i′′ ,

i.e., (4.6.12) is true. 2

4.6. NUMERICAL COMPARISONS 167

Assume, without loss of generality, that there holdsw̄ = v̄0. Since the points
wkq (q ∈ IN) are chosen by (SR3) we know, regarding Lemma 4.6.1, that, for
eachq ∈ IN, wkq is (34δ,

3
4ρ)-feasible for the convex subproblem (DCPSkq

). The

point sequences{wkq}q∈IN and {vkq

0 }q∈IN converge to the same limit point̄v0.
Therefore, we obtain by continuity off l andgl (l ∈ {0, . . . , p}) (see, e.g., again
[ROC70, Theorem 10.1]) and by using the same representation ofwkq (q ∈ IN) as
in the proof of (4.6.12), for eachl ∈ {0, . . . , p},

gl(wkq)− gl(vkq

0) → 0 (q →∞)
and

ϕl
Skq (wkq)− f l(vkq

0) = ϕl
Skq (wkq)− ϕl

Skq (vkq

0) → 0 (q →∞) .

It follows, that there exists aQ ∈ IN such that, for eachq ≥ Q,

v
kq

0 is (δ, ρ)-feasible

and

g0(vkq

0) + f0(vkq

0) ≤ g0(wkq) + ϕ0
Skq (wkq) + 1

8ε . (4.6.17)

Since each (δ, ρ)-feasible vertex of an iteration simplexSk (k ∈ IN) was used for
updating the upper bound, it follows from Relation (4.6.17) and Relation (4.6.1.b)
of Lemma 4.6.1 that

g0(vkq

0) + f0(vkq

0) ≤ µ(Skq) + 7
8ε < ηkq − 1

8ε ≤ g0(vkq

0) + f0(vkq

0)− 1
8ε ,

which is also a contradiction and completes the proof. �

4.6.3. Comparison of Different Subdivision Strategies Based on (MGWSR).
Theorem 4.6.4 guarantees that Algorithm 4.1 with (MGWSR) delivers in finite time
an (ε, δ, ρ)-solution of our test problems, if the accuracies for the usedCONVEX-
SOLVERε̄,δ̄,ρ̄ are chosen sufficiently small. We implemented the modified gen-
eralizedω-subdivision rule and used again theNAG-routineE04UCC, where the
accuracies̄ε, δ̄ and ρ̄ were calculated as required in Lemma 4.6.1. With this im-
plementation we solved all test problems. However, in order to avoid excessive
running-time we stopped the calculations, if more than200, 000 convex subprob-
lems were solved. The variant of Algorithm 4.1, which uses only bisections, needed
less than this maximal number of convex subproblems for solving any test problem.
The tolerancesε, δ andρ were the same as in the numerical experiments using bi-
section and forN̄ we chose2n.

168 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

In Table 4.4 we compare the numerical performance of Algorithm 4.1 using
(MGWSR) with the performance of Algorithm 4.1 only employing bisections. The
displayed test results for the dimensionsn = 2 andn = 3 were run onSUN
SPARC 10workstations. The used abbreviations are the same as in Table 4.1 and
4.2. Mω stands for Algorithm 4.1 with (MGWSR) andBi for Algorithm 4.1 using
bisections. Even though Algorithm 4.1 using (MGWSR) was mostly in more than

TABLE 4.4. Comparison of (MGWSR) and bisection

p NuP AvgNuSP StdSP AvgTime StdTime
Mω<Bi Mω Bi Mω Bi Mω Bi Mω Bi

n = 2

1 46 16.50 29.64 33.16 12.96 0.13 0.23 0.16 0.10
2 40 14.94 23.60 26.08 12.40 0.14 0.21 0.17 0.10
3 43 28.54 33.92 43.50 14.12 0.30 0.34 0.36 0.17
4 35 86.10 34.40 366.9 10.93 1.31 0.36 3.58 0.13
n = 3

1 43 105.6 78.00 386.3 51.47 1.04 0.91 2.97 0.60
2 37 78.06 80.16 97.05 47.03 1.05 1.03 1.43 0.66
3 37 181.7 101.3 517.9 67.40 2.76 1.43 6.35 0.95
4 25 113.1 82.00 131.4 43.38 1.64 1.20 1.64 0.59
5 30 294.1 88.20 966.1 48.50 3.94 1.40 10.98 0.72
6 22 205.4 88.80 308.5 44.31 4.52 1.54 7.17 0.72

50% of the test examples faster than Algorithm 4.1 using bisections, the average
running-time was only in a few cases lower. Furthermore, the standard deviation
of the number of solved convex subproblems as well as of the running-time was
higher in the case of (MGWSR) and was growing faster. The reason is that Al-
gorithm 4.1 using (MGWSR) was in many test examples slightly faster than the
version of Algorithm 4.1 with bisections, at least for small dimensions, but, in par-
ticular for growing dimensions and a growing number of quadratic constraints, this
approach was in more and more test examples significantly slower than Algorithm
4.1 using bisections. For dimensions higher thann = 3 Algorithm 4.1 only em-
ploying (MGWSR) did not solve all50 test problems for each couple (n, p) of the
dimensionn and the number of quadratic constraintsp with less than200, 000 con-
vex subproblems. As it can be seen in Figure 4.5, the number of not-solved test
problems increased with growing dimensions and a growing number of quadratic
constraints. For example, for dimensionn = 8 andp = 16 quadratic constraints

4.6. NUMERICAL COMPARISONS 169

FIGURE 4.5. Number of test problems where Algorithm 4.1 us-
ing (MGWSR) needed more than200, 000 convex subproblems

1 2 3 4 5 6 7 8 10 12 14 16

4

5

6

7

8

0

5

10

15

20

25

30

35

40

45

50

Dimension

Number of quadratic constraints

Algorithm 4.1 using (MGWSR) needed less than200, 000 convex subproblems for
only 5 test problems. Remember that the same approach, which used only bisec-
tions, solved all test problems with less than this maximal number of calls of the
subroutineE04UCC.

Due to this reason we obtain that Algorithm 4.1 with bisections led to a more
robust solution process, wheremore robustis meant in the following sense. The
number of necessary convex subproblems and, thus, the running-time did not vary
so keenly, as it was the case, when (MGWSR) was applied. The effort for detecting
an (ε, δ, ρ)-solution of the quadratic test problems was rather predictable. Even
though the variant of Algorithm 4.1, which employs only bisections, was also for
higher dimensions not always the fastest approach, it was a better approach than
the same algorithm using (MGWSR), since it did not show numerical outliers.

Our numerical experiments further showed a regularization effect of the bisec-
tion with respect to the effort for solving the convex subproblems. If the generated
simplices tend to degenerate, i.e., they become tooflat, as it is possible by using
(MGWSR), then numerical problems, e.g., ill-conditioned constraint matrices, can

170 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

occur and can lead to a substantially growing effort for solving the convex subprob-
lems. If the classical bisection rule is used, then the risk of the occurrence of such
numerical problems is much lower. In our numerical tests such problems did not
appear in connection with the use of the bisection.

In order to make (MGWSR) more robust in the sense mentioned above, we
could reduce the number̄N . With N̄ = 2n Algorithm 4.1 using (MGWSR) chose
wk by (SR3) on average in91.5% of the performed subdivisions (see also Table
4.8 and Table 4.9). If we reducēN , the number of bisections will increase and
the numerical performance of Algorithm 4.1 using (MGWSR) will approach to
the numerical performance of the variant of this algorithm, which employs only
bisections. Note that, for each nested sequence{Sk}k∈IN, all simplicesSk (k > N̄)
must be generated by bisection, ifN̄ is chosen smaller thann− 1.

As mentioned before, there were also for higher dimensions test examples
where the (MGWSR) strategy was the best one. If we simply reduceN̄ , then we
will obtain a more robust algorithm, but, at the end we have nothing else than an
algorithm using bisections, and it is likely that we loose the not frequent, but really
good results of (MGWSR) for some test examples. Maybe it is possible to develop
a strategy, which is a mixture of the classical bisection rule and (MGWSR), and
which shows a good performance in all cases, i.e., which use (MGWSR), if this
strategy is the fastest one, and bisection, if (MGWSR) does not work.

In the case of problems of type (DCP1) we know thatω(Sk) (k ∈ IN) is
always a feasible point, at least if aCONVEXSOLVER0,0,0 is used. Therefore, it
is reasonable to hope that this point is a better choice than the point obtained by
bisection, sinceω(Sk) is connected to the information returned by the algorithm
inside the selected simplexSk. This is the main reason for the suggestion of the
ω-subdivision, e.g., in [HT96B]. In the general case of problems of type (DCP3)
the pointω(Sk) is the approximate solution of a subproblem, where the objective
function as well as the constraints are relaxed. Therefore, we cannot hope that
ω(Sk) has something to do with the solution of the original problem. Ifω(Sk) is
at least (δ, ρ)-feasible, then this point is used for updating the upper bound, and
we have more hope thatω(Sk) bears some information about the original problem.
Thus the first mixed strategy we used was the following(MGWSR1)

4.6. NUMERICAL COMPARISONS 171

If w̄k is (δ, ρ)-feasibleThen
Choosewk by (MGWSR).

Else
Choosewk by bisection.

EndIf

wherew̄k is defined as
∑

i∈Īk
λ̄k

i

γk v
k
i with λ̄k ∈ IRn+1, γk ∈ IR andĪk ⊂ {0, . . . , n}

given as in Lemma 4.6.1.
This strategy was much more robust than (MGWSR) alone, but the average

running-times for higher dimensions were still slower than by using only bisections.
In this case2 test problems withn = 7 and17 problems withn = 8 were not
solved. Therefore, we developed further strategies. In these strategies we try to use
more information about the Problem (DCP).

Denote bymk the middle point of the longest edge ofSk (k ∈ IN), i.e.,

mk = 1
2 (vki0 + vki1) ,

with i0 and i1 defined as in (4.2.12). Denote, further, forl ∈ {0, . . . , p} and
x ∈ IRn, by

τ lSk(x) := f l(x)− ϕlSk(x)

the difference between the function values of the concave functionf l and its convex
envelope at the pointx.

In the second mixed strategy(MGWSR2) we require now, additionally, that
τ0
Sk(w̄k) is greater thanτ0

Sk(mk). This means that we choose just the point
w̄ ∈ {w̄k,mk} which pushes most the convex envelope. Note that the convex
envelopesϕ0

Sk
j

(j ∈ Ik) coincide atw̄ with f0, whereSkj is the simplex result-

ing from the subdivision ofSk with respect to the point̄w (see the formulation of
Algorithm 4.1).

This strategy showed on average a better running-time performance than
(MGWSR1). However,5 test problems withn = 7 and8 problem withn = 8
were still not solved with less than200, 000 convex subproblems.

Therefore, in the third mixed strategy we further intensified the decision crite-
rion for the use of (MGWSR) by considering also the constraints. The pointwk is

172 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

chosen only by (MGWSR), if there holds

w̄k is (δ, ρ)-feasible, (C.1)

τ0
Sk(w̄k) > τ0

Sk(mk) (C.2)
and

max
l∈{1,... ,p}

τ lSk(w̄k) > max
l∈{1,... ,p}

τ lSk(mk) . (C.3)

This strategy(MGWSR3) is the most robust strategy with respect to all strategies
using (MGWSR) we tested. Only one test problem with dimensionn = 8 was
not solved. On the other hand, as we will see later, applying this strategy only
in a few iterations of Algorithm 4.1 the new simplices were generated by using
w̄k as subdivision point (see Tables 4.8 and 4.9). Thus, this strategy did not show
in all relevant examples, i.e., in just the examples where (MGWSR) is the best
approach, the good performance of (MGWSR) mentioned before. Therefore, in
the last examined mixed strategy(MGWSR4) we relaxed again the criteria which
had to be fulfilled in order to choose (MGWSR) instead of the bisection rule. The
(δ, ρ)-feasibility of w̄k is no longer required. The number of iterations, where
(MGWSR) is applied, increased again (see Tables 4.8 and 4.9), but, this strategy
was less robust than (MGWSR3), as we can see in Figure 4.6.

FIGURE 4.6. Number of test problems where Algorithm 4.1 us-
ing (MGWSR4) needed more than200, 000 convex subproblems

1 2 3 4 5 6 7 8 10 12 14 16

6

7

8
0

1

2

3

4

5

Number of quadratic constraints
Dimension

Table 4.5 gives an overview of the different subdivision strategies we tested
and of the criteria which have to be fulfilled such that either (MGWSR) or the
classical bisection is used.

4.6. NUMERICAL COMPARISONS 173

TABLE 4.5. Different strategies and the used subdivision rules

USED SUBDIVISION RULE

STRATEGY (MGWSR) Bisection

Bisection never always

(MGWSR) always never

(MGWSR1) if (C.1) is satisfied otherwise

(MGWSR2) if (C.1) and (C.2) are satisfied otherwise

(MGWSR3) if (C.1), (C.2) and (C.3) are satisfied otherwise

(MGWSR4) if (C.2) and (C.3) are satisfied otherwise

We also tested strategies requiring the (δ, ρ)-feasibility ofmk before analyzing
the criterions (C.2) and (C.3). Our numerical tests showed that the feasibility of
mk was nearly never fulfilled and, thus, by requiring this feasibility we obtained a
strategy which almost coincided with (MGWSR) or (MGWSR1).

With each of the presented six strategies we tried to solve all test problems.
Because of the high number of test examples (3, 000 for each strategy) we used
several workstations, as it can be seen in Table 4.7. In order to make the running-
times comparable all problems with the same dimension and the same number of
quadratic constraints were calculated on the same machine.

In Tables 4.6 and 4.7 the average running-times in seconds are displayed for
some of the solved test problems. Note that in the calculation of the average
running-times we considered only the problems, which were solved by considering
less than200, 000 convex subproblems. Therefore, the corresponding number of
solved problems is given in brackets next to the average running-time. The columns
with respect to the bisection strategy are not comparable with the corresponding
columns of Table 4.1 or Table 4.2, respectively, since other workstations were used
for the calculations.

The third mixed strategy (MGWSR3) shows with respect to the running-time
the best numerical performance among all strategies involving (MGWSR). In some
cases this strategy was even faster than bisection. However, none of the strate-
gies usingω-subdivision beats the numerical performance of the bisection strategy.
Thus, and with respect to the possible numerical problems by using a strategy with
(MGWSR) mentioned before, the bisection seems to be the best choice, at least for
the tested set of all-quadratic optimization problems.

174 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

TABLE 4.6. Comparison of the average running-time in sec-
onds for all strategies andn = 2, 3, 4

p Bisection (MGWSR) (MGWSR1) (MGWSR2) (MGWSR3) (MGWSR4)
n = 2a

1 0.22 (50) 0.13 (50) 0.13 (50) 0.16 (50) 0.18 (50) 0.18 (50)
2 0.21 (50) 0.14 (50) 0.14 (50) 0.15 (50) 0.18 (50) 0.18 (50)
3 0.34 (50) 0.30 (50) 0.30 (50) 0.34 (50) 0.32 (50) 0.31 (50)
4 0.36 (50) 1.31 (50) 0.60 (50) 0.55 (50) 0.34 (50) 0.34 (50)
n = 3a

1 0.91 (50) 1.04 (50) 0.62 (50) 0.65 (50) 0.71 (50) 0.72 (50)
2 1.03 (50) 1.05 (50) 1.00 (50) 0.86 (50) 0.93 (50) 0.92 (50)
3 1.43 (50) 2.76 (50) 1.51 (50) 1.39 (50) 1.25 (50) 1.36 (50)
4 1.20 (50) 1.64 (50) 1.54 (50) 1.37 (50) 1.10 (50) 1.10 (50)
5 1.40 (50) 3.94 (50) 1.74 (50) 1.55 (50) 1.31 (50) 1.41 (50)
6 1.54 (50) 4.52 (50) 2.47 (50) 1.86 (50) 1.46 (50) 1.54 (50)
n = 4a

1 1.94 (50) 2.53 (50) 1.53 (50) 1.51 (50) 1.59 (50) 1.69 (50)
2 2.26 (50) 2.89 (49) 2.10 (50) 1.79 (50) 1.86 (50) 2.51 (50)
3 2.10 (50) 13.5 (50) 2.12 (50) 1.98 (50) 1.96 (50) 2.76 (50)
4 3.62 (50) 19.8 (49) 3.90 (50) 3.75 (50) 3.42 (50) 3.70 (50)
5 2.78 (50) 15.6 (50) 3.16 (50) 2.99 (50) 2.65 (50) 2.83 (50)
6 3.97 (50) 36.7 (48) 4.85 (50) 4.48 (50) 3.80 (50) 4.06 (50)
7 3.79 (50) 28.3 (48) 4.92 (50) 4.54 (50) 3.70 (50) 3.99 (50)
8 3.95 (50) 13.3 (45) 5.39 (50) 4.83 (50) 3.84 (50) 4.03 (50)

arun onSUN SPARC 10workstations

We conclude the numerical comparisons by a consideration of the average
number of ω-subdivisions used by the different strategies (MGWSR),
(MGWSR1)-(MGWSR4), i.e., we consider the number of subdivisions, wherewk

was chosen by (SR3) and not by bisection. Tables 4.8 and 4.9 show the aver-
age number ofω-subdivisions for some test results in percent. Note that also for
the calculation of these average numbers we considered only the problems, which
were solved with less than200, 000 convex subproblems. For that reason, the cor-
responding numbers of solved test problems are given again in brackets (compare
with Tables 4.6 and 4.7). As it was to be expected, the number ofω-subdivisions
was reduced, if a stronger criterion for the choice of (MGWSR) was applied. Fur-
thermore, it is not surprising that for strategies using at least criterion (C.1), i.e.,
for (MGWSR1), (MGWSR2) and (MGWSR3), the average proportional part of
ω-subdivisions decreased, if the number of nonlinear constraints increased. The

4.6. NUMERICAL COMPARISONS 175

TABLE 4.7. Comparison of the average running-times in
seconds for all strategies andn = 5, 6, 7, 8

p Bisection (MGWSR) (MGWSR1) (MGWSR2) (MGWSR3) (MGWSR4)
n = 5b

2 6.14 (50) 23.98 (46) 7.80 (50) 6.29 (50) 5.42 (50) 8.56 (50)
4 8.11 (50) 148.2 (49) 11.17 (50) 9.56 (50) 7.86 (50) 18.36 (50)
6 9.66 (50) 152.9 (44) 11.19 (50) 11.06 (50) 9.18 (50) 12.27 (50)
8 11.91 (50) 275.5 (45) 15.06 (50) 14.42 (50) 11.45 (50) 12.66 (50)
10 9.61 (50) 385.3 (46) 12.64 (50) 11.84 (50) 9.19 (50) 10.19 (50)
n = 6

2c 14.27 (50) 175.4 (49) 99.29 (50) 30.42 (50) 11.70 (50) 21.92 (50)
4c 27.21 (50) 293.1 (41) 34.47 (50) 28.37 (50) 25.84 (50) 35.60 (50)
6c 37.10 (50) 403.8 (36) 46.37 (50) 43.33 (50) 36.96 (50) 83.81 (50)
8a 59.42 (50) 1530 (35) 73.45 (50) 72.13 (50) 57.96 (50) 68.60 (50)
10b 32.40 (50) 824.9 (38) 50.89 (50) 44.79 (50) 32.30 (50) 41.74 (50)
12b 51.83 (50) 2391 (30) 73.73 (50) 71.18 (50) 49.67 (50) 66.19 (50)
n = 7d

2 24.97 (50) 109.8 (41) 55.20 (49) 21.19 (48) 31.17 (50) 48.23 (49)
4 29.86 (50) 251.8 (34) 58.50 (49) 32.11 (49) 30.98 (50) 41.02 (47)
6 23.05 (50) 382.1 (33) 31.55 (50) 29.47 (50) 22.59 (50) 29.51 (48)
8 36.92 (50) 396.4 (28) 43.86 (50) 41.27 (50) 35.95 (50) 66.27 (49)
10 41.16 (50) 973.1 (19) 48.07 (50) 46.09 (50) 40.04 (50) 60.06 (49)
12 44.21 (50) 784.3 (19) 52.07 (50) 51.23 (50) 43.06 (50) 53.53 (50)
14 52.46 (50) 688.2 (19) 60.58 (50) 60.13 (50) 51.46 (50) 75.98 (50)
n = 8

2c 127.7 (50) 506.3 (34) 339.4 (47) 158.0 (49) 124.9 (50) 263.5 (49)
4c 149.5 (50) 756.2 (23) 303.2 (50) 201.6 (49) 153.2 (50) 309.9 (50)
6c 184.4 (50) 2115 (22) 313.3 (50) 234.5 (50) 199.2 (50) 239.0 (49)
8c 391.7 (50) 750.9 (15) 627.7 (50) 620.3 (50) 388.3 (50) 523.3 (48)
10c 226.8 (50) 3169 (11) 265.3 (50) 357.0 (50) 219.4 (50) 326.5 (50)
12d 118.2 (50) 1080 (10) 138.7 (50) 134.2 (50) 114.5 (50) 299.9 (50)
14d 134.7 (50) 1641 (12) 166.1 (50) 164.0 (50) 131.4 (50) 141.3 (48)
16d 164.4 (50) 2106 (5) 217.2 (50) 215.2 (50) 167.2 (50) 207.8 (49)

arun onSUN SPARC 10workstations
brun onSUN SPARC 20workstations
crun onSUN SPARCserver 1000workstations
drun onSUN ULTRA 60 workstations

same is also true for strategy (MGWSR4), as we can see in the last columns of
Table 4.8 and Table 4.9. However, using this strategy the variation of the propor-
tional part with respect to a fixed dimension was not so high as for the other mixed

176 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

TABLE 4.8. Comparison of the average proportional part of sub-
divisions, wherewk is chosen by (SR3), forn = 2, 3, 4

p (MGWSR) (MGWSR1) (MGWSR2) (MGWSR3) (MGWSR4)
n = 2

1 97.46 (50) 27.04 (50) 7.88 (50) 3.98 (50) 5.19 (50)
2 93.44 (50) 18.27 (50) 7.36 (50) 2.91 (50) 5.04 (50)
3 95.75 (50) 14.99 (50) 4.20 (50) 1.21 (50) 2.75 (50)
4 98.49 (50) 11.60 (50) 4.49 (50) 0.590 (50) 2.57 (50)
n = 3

1 95.24 (50) 24.53 (50) 7.70 (50) 3.10 (50) 5.83 (50)
2 93.87 (50) 10.06 (50) 4.01 (50) 1.14 (50) 5.68 (50)
3 95.57 (50) 9.08 (50) 4.53 (50) 1.41 (50) 5.51 (50)
4 91.71 (50) 4.63 (50) 2.01 (50) 0.298 (50) 2.45 (50)
5 93.66 (50) 4.26 (50) 1.40 (50) 0.227 (50) 2.89 (50)
6 92.56 (50) 4.29 (50) 1.92 (50) 0.088 (50) 2.60 (50)
n = 4

1 95.44 (50) 23.58 (50) 5.76 (50) 5.47 (50) 9.85 (50)
2 95.09 (49) 19.85 (50) 5.18 (50) 2.25 (50) 5.33 (50)
3 94.44 (50) 4.62 (50) 2.77 (50) 2.40 (50) 6.92 (50)
4 94.67 (49) 3.60 (50) 1.85 (50) 0.303 (50) 4.79 (50)
5 93.14 (49) 1.76 (50) 0.831 (50) 0.155 (50) 3.97 (50)
6 94.65 (48) 3.44 (50) 1.62 (50) 0.170 (50) 4.39 (50)
7 92.83 (48) 2.55 (50) 0.746 (50) 0.186 (50) 3.13 (50)
8 94.68 (45) 1.95 (50) 0.532 (50) — (50) 3.65 (50)

strategies. This shows that the feasibility criterion (C.1) is a strong one, at least for
a high number of quadratic constraints.

Our numerical tests showed further that there are, in particular for higher
number of nonlinear constraints (p ≥ n), a lot of test examples where the three
criterions are rarely satisfied together. Using (MGWSR3) there are many exam-
ples where only bisections were used for subdivision. This is demonstrated by the
small numbers in the corresponding columns of Tables 4.8 and 4.9. For the pairs
(n, p) ∈ {(4, 8), (5, 10)} we even had a situation where for solving all50 test
problems with Algorithm 4.1 using (MGWSR3) a simplex was never generated by
choosing the pointwk according to the rule (SR3), i.e., in this situation the strategy
(MGWSR3) led to the same iterations as the bisection strategy.

4.6. NUMERICAL COMPARISONS 177

TABLE 4.9. Comparison of the average proportional part of sub-
divisions, wherewk is chosen by (SR3), forn = 5, 6, 7, 8

p (MGWSR) (MGWSR1) (MGWSR2) (MGWSR3) (MGWSR4)
n = 5

2 90.50 (46) 20.84 (50) 5.70 (50) 3.57 (50) 8.02 (50)
4 91.71 (49) 7.86 (50) 3.05 (50) 1.02 (50) 4.91 (50)
6 92.62 (44) 1.61 (50) 0.583 (50) 0.138 (50) 5.08 (50)
8 88.95 (45) 0.868 (50) 0.423 (50) 0.0844 (50) 4.02 (50)
10 89.60 (46) 1.21 (50) 0.253 (50) — (50) 3.71 (50)
n = 6

2 94.05 (49) 69.38 (50) 4.48 (50) 3.21 (50) 18.21 (50)
4 91.29 (41) 9.75 (50) 2.95 (50) 0.583 (50) 5.52 (50)
6 78.99 (36) 4.46 (50) 1.58 (50) 0.302 (50) 5.46 (50)
8 87.23 (35) 1.37 (50) 2.03 (50) 0.229 (50) 4.78 (50)
10 80.53 (38) 3.61 (50) 0.413 (50) 0.0388 (50) 3.63 (50)
12 83.40 (30) 0.864 (50) 0.402 (50) 0.042 (50) 3.99 (50)
n = 7

2 99.17 (41) 49.50 (49) 9.03 (48) 7.32 (50) 12.53 (49)
4 75.30 (34) 2.29 (49) 2.47 (49) 1.35 (50) 10.36 (47)
6 89.65 (33) 56.19 (50) 8.89 (50) 1.12 (50) 7.02 (48)
8 93.56 (28) 1.07 (50) 0.421 (50) 0.0283 (50) 7.08 (49)
10 91.96 (19) 1.24 (50) 0.185 (50) 0.0717 (50) 7.02 (49)
12 87.96 (19) 0.175 (50) 0.107 (50) 0.0028 (50) 2.71 (50)
14 94.06 (19) 0.345 (50) 0.108 (50) 0.0076 (50) 3.72 (50)
n = 8

2 88.22 (34) 31.94 (47) 8.02 (49) 4.03 (50) 11.66 (49)
4 71.34 (23) 18.42 (50) 6.49 (49) 2.20 (50) 8.68 (50)
6 85.04 (22) 7.36 (50) 2.39 (50) 0.537 (50) 6.92 (49)
8 99.77 (15) 3.40 (50) 2.69 (50) 0.759 (50) 6.07 (48)
10 92.81 (11) 0.977 (50) 0.111 (50) 0.0536 (50) 5.77 (50)
12 86.51 (10) 0.383 (50) 0.253 (50) 0.0367 (50) 2.35 (50)
14 94.62 (12) 0.185 (50) 0.065 (50) 0.0022 (50) 6.20 (48)
16 86.25 (5) 0.0533 (50) 0.0198 (50) 0.0026 (50) 5.65 (49)

Finally, we have to note that all these suggested strategies did not manage our
aim to develop a mixed strategy, which is the best one in all cases. Maybe it is
possible to develop such a strategy by using other problem information than the
information we used. The existence of such a strategy is still an open question.

178 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

4.7. A Finiteness Result

We conclude the chapter about the convergenceof simplicial branch-and-bound
algorithms based onω-subdivisions with a partial answer to the theoretical prob-
lem of the finiteness of Algorithm 4.1, even withε = δ = ρ = 0. In this section
we consider problems of type (DCP1), i.e., concave minimization problems over
polytopes. In Section 4.4 we showed that the variant of Algorithm 4.1, which em-
ploys onlyω-subdivisions, applied for problems of this type is convergent, if a
CONVEXSOLVER0,0,0 is available. Remember that in this situation there holds in
the generalizedω-subdivision rule (GWSR) alwayswk = ω(Sk). As we will see
in this section it is even possible to prove the finiteness of this approach, if two
additional assumptions are fulfilled.

Some finite simplicial branch-and-bound algorithms for solving problems of
type (DCP1) were proposed in the literature (see, e.g., [BEN85, TB85, BS94,
NAS96]). In some cases finiteness was obtained by combining the simplicial ap-
proach with some other tools. For instance, in [BEN85] finiteness is yielded by the
introduction of a neighbor generation mechanism. In some other cases finiteness
was obtained by using different subdivision rules: instead of subdividing the se-
lected simplex with respect to one of its points, as we did in Algorithm 4.1 (see,
especially, the point selection rule (PSR) and the following lines in the formulation
of this approach in Section 4.2), the selected simplex is subdivided by other tech-
niques. One of such different subdivision techniques is described in [NAS96] and
the corresponding algorithm is proven to be finite. On the other hand, the number
of new simplices generated at each iteration by this technique may be extremely
high, while by subdividing with respect to a point of the simplex, i.e., by applying
a radial subdivision, this number is bounded from above byn+ 1.

To the author’s knowledge, no proof of finiteness for the basic simplicial branch-
and-bound Algorithm 4.1 applied for solving problems of type (DCP1) has been
given apart from [LR97A]. Some simplicial branch-and-bound algorithms can
even be proven to be infinite. For instance, for Algorithm 4.1 with bisections it
is possible to construct counterexamples showing that the algorithm, though con-
vergent, is not finite. In some other cases finiteness is still an open question.

As mentioned before, we need two additional assumptions in order to prove
the finiteness of the version of Algorithm 4.1, which usesω-subdivisions (with
ε = δ = ρ = 0) and is applied for solving problems of type (DCP1). The first of
these assumptions is a mild one and can always be enforced, as it will be shown in

4.7. A FINITENESS RESULT 179

the sequel. The second assumption is a strong one and cannot be guaranteed all the
time. However, as we will see, this assumption is easy to check and holds in some
special cases.

The assumptions are as follows.

(A.1) The function value of the concave objective functionf0 in a vertex of
the start-simplexS0 = [v0

0 , . . . , v
0
n], which does not belong to the poly-

topeP , is smaller than the optimal valuef? of f0 overP , i.e., for each
i ∈ {0, . . . , n} with v0

i /∈ P , there holds

f0(v0
i) < f? . (A.1)

(A.2) Each vertex of the start-simplexS0, which does not belong to the polytope
P , violates one and only one of the constraints describingP , i.e., for each
i ∈ {0, . . . , n} with v0

i /∈ P , there is exactly one indexj(i) ∈ {1, . . . ,m}
satisfying

aTj(i)v
0
i > bj(i) . (A.2)

REMARK 4.7.1.

(a) The assumption (A.1) can be enforced for any start-simplexS0 ⊃ P by
considering the concave function

f̃0(x) := f0(x) +M min {0, min
j=1,... ,m

(bj − aTj x)} , x ∈ IRn

with

M := max
i ∈ {0, . . . , n}

v0
i /∈ P

 f0(v0

i)− µ(S0) + 1
| min
j=1,... ,m

(bj − aTj v0
i)|

 ,

which has the same optimal value and optimal solutions asf0 over the
polytopeP . Therefore, this assumption is not a substantial restriction. Re-
member thatµ(S0) denotes the optimal value of the initial linear problem
(DCPS

0

1).
(b) The assumption (A.2) depends only on the start-simplexS0 and it is a strong

one. Given ann-simplexS0 it is easy to check whetherS0 satisfies (A.2).
However, we cannot assume that for an arbitrary polytopeP there exists an
n-simplexS0 ⊃ P which fulfills this assumption. Nevertheless, there are
some well-known instances, where it is possible to construct such simplices.
If P is a hypercube, for example, then a start-simplexS0 ⊃ P satisfying
(A.2) exists (compare, e.g., the construction of start polytopes in [HPT95,
pp. 145f]).

180 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

Apart from these two assumptions we assume again, as in Section 4.4, that a
CONVEXSOLVER0,0,0 like the Simplex-Method is used for solving the linear sub-
problems (DCPS1). If the start-simplexS0 and the concave objective functionf0

satisfy (A.1) and (A.2), then it can be shown that Algorithm 4.1 only employing
ω-subdivisions, applied for solving problems of type (DCP1), will stop after a fi-
nite number of iterations, even withε = δ = ρ = 0. This is the result of the final
Finiteness Theorem 4.7.3. At first, however, two additional lemmata are needed to
establish this theorem.

The following lemma is equivalent to the first part of Lemma 4.4.2. Since there
we usedε, δ > 0 in order to prove Lemma 4.4.2 for problems of type (DCP1) and
(DCP2), it is necessary to give another proof, which is valid in the case of (DCP1)
also forε = δ = 0.

LEMMA 4.7.1. Let{Sk}k∈IN be an infinite nested sequence of simplices gen-
erated by Algorithm 4.1 with the properties that, for eachk ∈ IN, there holds

Sk+1 = [vk0 , . . . , v
k
i−1, ω(Sk), vki+1, . . . , v

k
n] (4.7.1.a)

and

ϕ0
Sk(ω(Sk)) = µ(Sk) < ηk (4.7.1.b)

(compare with Properties (4.4.2.a) and (4.4.2.b)). Then there exist a number
K ∈ IN and an integerr with 0 ≤ r < n such that, for eachk ≥ K, there
holds

Sk = [v0, . . . , vr, vkr+1, . . . , v
k
n] , (4.7.2)

wherev0, . . . , vr are fixed vectors, whilevkr+1, . . . , v
k
n (k ≥ K) change infinitely

often. Moreover, for eachi ∈ {0, . . . , r}, there holds

vi /∈ P ⇒ vi = v0
i . (4.7.3)

PROOF: As we pointed out before Lemma 4.4.2, result (4.7.2) is a direct
consequence of the feasibility of each generated pointω(Sk). Note that in the
considered case (DCP1) the feasible region of each subproblem is a subset ofF

and that we use aCONVEXSOLVER0,0,0.
Indeed, assume, by contradiction, that in the infinite nested sequence{Sk}k∈IN

all the vertices of the simplicesSk = [vk0 , . . . , v
k
n] change infinitely often. Choose

a numberK̄ ∈ IN such that each vertex ofSK̄ has changed at least once, i.e.,

vK̄i 6= v0
i ∀i ∈ {0, . . . , n} .

4.7. A FINITENESS RESULT 181

Because of (4.7.1.a) it follows that, for eachi ∈ {0, . . . , n}, there is an index
k(i) ∈ IN, k(i) < K̄ satisfying

vK̄i = ω(Sk(i)) ∈ P = F . (4.7.4)

Each feasible pointω(Sk) (k ∈ IN) is used for updating the upper bound. There-
fore, we know that, for eachi ∈ {0, . . . , n}, there holds

f0(vK̄i) ≥ ηK̄ ,

and, thus, we obtain, for eachx ∈ SK̄ ,

ϕ0
SK̄ (x) =

n∑
i=0

λif
0(vK̄i) ≥

n∑
i=0

λiη
K̄ = ηK̄ (4.7.5)

with λ ∈ Bn andx =
∑n

i=0 λiv
K̄
i . Combining (4.7.1.b) and (4.7.5) it follows for

ω(SK̄) ∈ SK̄

ηK̄ ≤ ϕ0
SK̄ (ω(SK̄)) < ηK̄ ,

which is a contradiction and proves result (4.7.2).
Since each new vertex belongs toP (see (4.7.4)) Relation (4.7.3) is follows

readily. �

In order to obtain a contradiction in the proof of the final finiteness result we
prove in the next lemma that, given an infinite nested sequence{Sk}k∈IN with
Properties (4.7.1), there is a numberK̂ ∈ IN such that the infinitely changing
verticesv of the residual simplices{Sk}k≥K̂ have a special property, if (A.1) and
(A.2) are satisfied. We are able to show that such a vertexv must be contained in
the intersection of all hyperplanes, which are described by just the constraints of
P , which are violated by at least one of the fixed vertices of{Sk}k≥K̂ .

LEMMA 4.7.2. Let {Sk}k∈IN be an infinite sequence of simplices with Prop-
erties (4.7.1). Let furtherS0 be a start-simplex in Algorithm 4.1 and
f0 : IRn → IR be a concave function satisfying Assumptions (A.1) and (A.2), and
let K ∈ IN and 0 ≤ r < n be given by Lemma 4.7.1, i.e.,Sk =
[v0, . . . , vr, vkr+1, . . . , v

k
n] (k ≥ K). Then there exists a number̂K ∈ IN such

that, for eachi ∈ {0, . . . , r} with vi /∈ P , there holds, for allk ≥ K̂ and
l ∈ {r + 1, . . . , n},

aTj(i)v
k
l = bj(i) , (4.7.6)

182 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

wherej(i) ∈ {1, . . . ,m} denotes – with respect to (A.2) – the unique constraint of
P violated byvi.

PROOF: Choose an arbitrary, but fixed indexi′ ∈ {0, . . . , r} with
vi′ /∈ P . From (4.7.3) we know thatvi′ is a vertex ofS0, and regarding (A.1)
and the structure of the convex envelope we obtain, fork ≥ K,

ϕ0
Sk(vi′) = f0(vi′) < f? . (4.7.7)

Theorem 4.4.9 implies that the variant of Algorithm 4.1, which employs only
ω-subdivisions and is applied for solving problems of type (DCP1), is convergent
in the sense that for the sequence{µ(Sk)}k∈IN we obtain

µ(Sk) → f? (k →∞)

(compare with (4.4.21)). Moreover, we know that, for eachk ∈ IN,

µ(Sk) ≤ f? .

Since (4.7.7) is fulfilled for each indexi ∈ {0, . . . , r} with vi /∈ P we hence know
that there is a number̄K ∈ IN, K̄ ≥ K such that, for eachk ≥ K̄,

µ(Sk) > max
i∈{0,... ,r},vi/∈P

f0(vi) . (4.7.8)

Choose a number̂K ∈ IN, K̂ ≥ K̄ such that, for eachk ≥ K̂ and
l ∈ {r + 1, . . . , n}, there exists an indexk(l) ∈ IN, K̄ ≤ k(l) < k with

vkl = ω(Sk(l)) .

Assume now, by contradiction, that Relation (4.7.6) is not true fori′, i.e., there is
an indexl′ ∈ {r + 1, . . . , n} and a numberk′ ≥ K̂ satisfying

aTj(i′)v
k′
l′ < bj(i′) . (4.7.9)

This means thatvk
′
l′ is not active in the unique constraint ofP violated byvi′ . Note

thatvk
′
l′ must be feasible.

Let v̄ be the intersection point of the line segment between the two points
ω(Sk

′(l′)) = vk
′
l′ andvi′ with the hyperplaneH := {x ∈ IRn : aTj(i′)x = bj(i′)},

i.e.,

{v̄} = [ω(Sk
′(l′)), vi′] ∩H ⊂ Sk

′(l′) .

4.7. A FINITENESS RESULT 183

Sincevi′ violates only the constraintaTj(i′)x ≤ bj(i′) andω(Sk
′(l′)) does not violate

any constraint, it follows that̄v is contained inSk
′(l′) ∩ P , and, furthermore, by

using (4.7.9), that there exists aλ ∈ (0, 1) satisfying

v̄ = λvi′ + (1 − λ)ω(Sk
′(l′)) .

Therefore, we obtain

ϕ0
Sk′(l′)(v̄) = λϕ0

Sk′(l′)(vi′)︸ ︷︷ ︸
=f0(vi′)

+(1− λ)ϕ0
Sk′(l′)(ω(Sk

′(l′)))︸ ︷︷ ︸
=µ(Sk′(l′))

and from (4.7.8) it follows that

ϕ0
Sk′(l′)(v̄) < ϕ0

Sk′(l′)(ω(Sk
′(l′))) ,

which contradicts the minimality ofω(Sk
′(l′)) with respect toSk

′(l′) ∩ P . �

With this result the postulated finiteness of Algorithm 4.1 can now be shown.

THEOREM 4.7.3. Assume thatε = δ = ρ = 0 and that aCONVEXSOL-
VER0,0,0 is used. Assume further that the start-simplexS0 is chosen and the con-
cave objective functionf0 : IRn → IR is given in a way such that Assumptions
(A.1) and (A.2) are satisfied. Then the version of Algorithm 4.1, which employs
onlyω-subdivisions, will stop after a finite number of iterations, if it is applied for
solving a problem of type (DCP1).

PROOF: Assume, by contradiction, that this version of Algorithm 4.1 does
not stop after a finite number of iterations, i.e., the algorithm generates an infinite
sequence{Sk}k∈IN of simplices. Then there exists an infinite nested subsequence
{Skq}q∈IN ⊂ {Sk}k∈IN with Properties (4.7.1). ChoosêQ ∈ IN as in Lemma 4.7.2
and0 ≤ r < n as in Lemma 4.7.1 and let, for eachq ≥ Q̂, a vectorλq ∈ Bn be
given with

ω(Skq) =
r∑
i=0

λqi vi +
n∑

i=r+1

λqi v
kq

i .

Set, forq ≥ Q̂,

βq :=
r∑
i=0

λqi .

184 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

We prove first that, for eachq ≥ Q̂, there holds

βq ∈ (0, 1) . (4.7.10)

It is obvious thatβq belongs to[0, 1]. If βq is not different from0 for an index

q′ ≥ Q̂, we obtainω(Skq′) =
∑n

i=r+1 λ
q′
i v

kq′
i and

∑n
i=r+1 λ

q′
i = 1. This implies

because of the feasibility ofv
kq′
i (i = r + 1, . . . , n) (see the choice of̂Q in the

proof of Lemma 4.7.2) that

µ(Skq′) = ϕ0

S
k

q′ (ω(Skq′)) =
n∑

i=r+1

λq
′
i f

0(v
kq′
i︸︷︷︸
∈P

) ≥ ηkq′ , (4.7.11)

contradicting (4.7.1.b). If there holdsβq
′
= 1, then we haveω(Skq′) ∈ [v0, . . . , vr].

By the same argumentation as in the proof of Theorem 4.4.9 we obtain that this is
either a contradiction to the propertySkq = [v0, . . . , vr, v

kq

r+1, . . . , v
kq
n] (q ≥ Q̂)

of the simplex sequence{Skq}q∈IN or to Property (4.7.1.b). Therefore, we know
that (4.7.10) is fulfilled for anyq ≥ Q̂.

Now choose an arbitrary, but fixedq ≥ Q̂. By using (4.7.10) we are able to
representω(Skq) in the following way

ω(Skq) = βq
1
βq

(
r∑
i=0

λqi vi

)
︸ ︷︷ ︸

:=wq
1

+(1− βq) 1
1− βq

(
n∑

i=r+1

λqi v
kq

i

)
︸ ︷︷ ︸

:=wq
2

, (4.7.12)

such that we obtain

µ(Skq) = ϕ0
Skq (ω(Skq)) = βqϕ0

Skq (wq1) + (1− βq)ϕ0
Skq (wq2) .

By the same argumentation as in (4.7.11) it follows thatϕ0
Skq (wq2) ≥ ηkq and,

therefore, with Property (4.7.1.b) we know that

ϕ0
Skq (wq1) < ηkq ≤ ϕ0

Skq (wq2) .

This implies thatϕ0
Skq is strictly monotonously decreasing on the line betweenwq2

andwq1. In view of (4.7.10) there holdswq1 6= ω(Skq), and it follows

ϕ0
Skq (wq1) < ϕ0

Skq (ω(Skq)) .

Sinceω(Skq) is the optimal solution ofminx∈Skq∩F ϕ
0
Skq (x), it follows

wq1 /∈ P = F .

4.7. A FINITENESS RESULT 185

Let j′ ∈ {1, . . . ,m} be the index of a constraint definingP violated bywq1. Then
this constraint must be violated by one of the infeasible vertices of the fixed face
[v0, . . . , vr] of Skq and it follows by Lemma 4.7.2 that, for each
l ∈ {r + 1, . . . , n}, there holds

aTj′v
kq

l = bj′

and, thus,

aTj′w
q
2 = bj′ and aTj′w

q
1 > bj′ . (4.7.13)

In view of (4.7.12) we know thatω(Skq) is an element of the open line segment
LS := {x ∈ IRn : ∃λ ∈ (0, 1) with x = λwq1 + (1 − λ)wq2} between the points
wq1 andwq2. However, using (4.7.13) we obtain, for eachx ∈ LS,

x 6∈ P

contradicting the feasibility ofω(Skq) and completing the proof. �

The proofs for obtaining this finiteness result use substantially the feasibility
of each generated solutionω(Sk) (k ∈ IN), i.e.,

ω(Sk) ∈ P = F .

This feasibility property ofω(Sk) is only given for the problem class (DCP1) as
long as aCONVEXSOLVER0,0,0 is used. In the case of problems of type (DCP2) we
do not have this property ofω(Sk) (k ∈ IN), and, therefore, the proof techniques
suggested here cannot be extended to more general problem classes. Note that it is
not necessary that Algorithm 4.1 applied for solving problems of type (DCP2) or
(DCP3) detects in finite time a feasible point. In order to overcome this difficulty we
just introduced the (δ, ρ)-feasibility concept in Section 4.2 (see Definition 4.2.1).

186 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

CHAPTER 5

Packing Equal Circles in a Square

In the previous three chapters we developed some approaches applicable for the
solution of arbitrary nonconvex all-quadratic problems of type (QP). As mentioned
in Section 1.1, the problem of packing equal circles with maximum radius into a
square, which we would like to call in the following thepacking problem, is an
application of this class of global optimization problems. In the first section of the
present chapter we will see that there is a one-to-one relation between solutions
of the packing problem and solutions of Problem (PP) given on page 5. Problem
(PP) is hence an equivalent formulation of the packing problem as an all-quadratic
program and could be solved – at least theoretically – with one of the methods
developed so far.

However, Problem (PP) is a (2n + 1)-dimensional program with
(
n
2

)
concave

quadratic constraints, wheren is the number of circles which we would like to pack
into the square. For reasons becoming evident in Section 5.1 we are interested in
solutions of the packing problem for more than20 circles. Therefore, we have to
solve Problem (PP) withn > 20. In the numerical tests done for the approaches
for solving (QP) discussed so far (see particularly Subsection 3.5.2) we recognized
that these general methods are not able to solve all-quadratic problems with dimen-
sions higher than 10, at least that they are not able to solve such problems with
acceptable computational effort. Consequently, it is not surprising that these meth-
ods developed for general problems of type (QP) fail to solve Problem (PP). They
are not able to determine approximate solutions of (PP) – for the required sizes of
the dimension and the number of quadratic constraints – with acceptable effort.

Exploiting the structure of the packing problem, respectively of Problem (PP),
we are non the less able to derive a new global solution method based on a rect-
angular branch-and-bound scheme, which can determine approximate solutions of
the packing problem for more than20 circles. The description of this new solution
method is the main content of the present chapter.

187

188 PACKING EQUAL CIRCLES IN A SQUARE

5.1. Introduction

The packing problem is a widely explored problem in the field of optimization.
One tries to find the maximum radiusr of n equal and non-overlapping circles
located within the unit square. This problem can be formulated as

max r

S(xi, r) ⊂ U i = 1, . . . , n

S(xi, r) ∩ S(xj , r) = ∅ 1 ≤ i < j ≤ n
(CPP)

where, for eachi ∈ {1, . . . , n}, S(xi, r) := {x ∈ IR2 : ‖x − xi‖2 < r} denotes
the open sphere with centerxi ∈ IR2 and radiusr, andU := [0, 1]2 denotes the
unit square.

As we will see below, the circle packing problem (CPP) is equivalent to the
problem of scatteringn points into the unit square such that the minimum pairwise
distanced becomes as large as possible. This point scattering problem is given by

max d

d ≤ ‖xi − xj‖2 1 ≤ i < j ≤ n
xi ∈ U i = 1, . . . , n .

(PSP)

In Problem (PSP) one considers only the centers of the circles. In contrast to
Problem (CPP) it is allowed that a center-pointxi (i ∈ {1, . . . , n}) belongs to the
boundary ofU , i.e., the constraintsS(xi, r) ⊂ U (i = 1, . . . , n) are neglected. In
(PSP) we only require thatxi (i ∈ {1, . . . , n}) is contained inU . The second group
of constraints in (CPP) is obviously equivalent to the constraintsd ≤ ‖xi − xj‖22
(1 ≤ i < j ≤ n) in the formulation of (PSP). Even though Problem (CPP) and
Problem (PSP) are not equivalent at first glance, there is still a one-to-one relation
between the optimal solutions of both problems. It can be seen that there holds

r?(n) =
d?(n)

2(d?(n) + 1)
(5.1.1)

(see, for example, [DGPWM91]), wherer?(n) is the optimal radius of the packing
problem (CPP) withn circles andd?(n) is the optimal minimal distance for the
scattering ofn points. Solving (PSP) one obtains the centers ofn circles, which
form an optimal solution of (CPP) on a slightly larger square. Indeed, one solves
(CPP) on a square with edge-length1+d?(n) (see Figure 5.1). Note that a variation
of the edge-length of the square in the packing problem does not alter the packing

5.1. INTRODUCTION 189

of an optimal combination of circles. Such a variation leads only to a scaling of a
solution of (CPP).

FIGURE 5.1. Solutions forn = 3

0 1

1

(a) Problem (CPP)

1

0 1

(b) Problem (PSP)

Problem (PSP) is obviously equivalent to

max t

t− ‖xi − xj‖22 ≤ 0 1 ≤ i < j ≤ n
xi ∈ U i = 1, . . . , n ,

(PP)

which is just the formulation of the packing problem as an all-quadratic problem
mentioned in Section 1.1. The optimal valuet?(n) of (PP) is equal to the squared
optimal distanced?(n) of (PSP).

According to the intention of this thesis we will consider the all-quadratic for-
mulation (PP) of the circle packing problem (CPP) throughout this chapter. We say
thatx? = (x?1, . . . , x

?
n)T with x?i = (x?i1 , x

?
i2

)T ∈ U is an optimal solution of
Problem (PP) with optimal valuet?, if there holds

t?(n) = t? = min
1≤i<j≤n

‖x?i − x?j‖22 .

Any point x̄ = (x̄1, . . . , x̄n)T ∈ Un satisfying

t?(n)− min
1≤i<j≤n

‖x̄i − x̄j‖22 ≤ ε

190 PACKING EQUAL CIRCLES IN A SQUARE

will be called anε-optimal solution, whereε > 0 is some prespecified tolerance
possibly depending on the numbern of points.

As an interpretation for this problem, we can think ofx1, . . . , xn as the po-
sitions of "objects" which interfere with each other. The interference is inversely
proportional to the minimum distance between the objects. Therefore, the solution
of (PP) is an arrangement of the objects such that the interference is reduced to a
minimum. For instance,x1, . . . , xn may be positions of radio stations, which we
want to place in such a way that the interferences between them are reduced to a
minimum.

Problem (PP) has received a great deal of attention in the last years. In spite of
its apparent simplicity, it turns out to be a quite difficult one. Papers about it can be
divided into two categories. The first category contains papers in which proofs of
optimality of packings for some values ofn are given. Optimal solutions forn ≤ 9
were already found in the sixties by geometric arguments. The casesn = 2, . . . , 5
are easy; the solution forn = 6 was given by Graham; the casesn = 7, 8 were
solved in [SM65] and the casen = 9 in [SCH65]. Optimal solutions were geomet-
rically derived also for bigger values ofn. Optimal solutions forn = 14, 16, 25, 36
are proposed in [WEN83, WEN87A, WK87, WEN87B]. In [DGPW90] a com-
puter proof for the casesn = 10 − 13 is suggested, while in [DGPWM91] the
computer proof of optimality is extended to the casesn = 14− 20. To the author’s
knowledge no proof of optimality forn > 20 has ever been given in the literature.

The second category includes papers in which improvements with respect to
the best known solutions forn > 20 are presented – without giving any proof of
optimality. Good packings forn up to 27 and for a few values greater than 27 are
given in [GOL70]. In [MFP95] the formulation (PP) for the circle packing problem
is employed and good packings forn ≤ 30 are calculated using a stochastical
approach.

It seems to be obvious that the following implication

n = k2 =⇒ d?(n) =
1

k − 1
, (5.1.2)

is true. However, Relation (5.1.2) is only fulfilled for2 ≤ k ≤ 6. Indeed, in
[NO97], where good packings forn ≤ 50 are given, a packing for49 is presented
with a bigger minimum pairwise distance than1

6 . In [GL96] good packings for
n ≤ 52 and for a few other values greater than 52 are proposed. In particular, for
n = 21, 28, 34, 40, 43, 45, 47 the presented results are better than those in [NO97].

5.1. INTRODUCTION 191

For a short overview about the circle packing problem with respect to squares
and to other related objects like circles, triangles or hemispheres we refer also to
[STE98].

Since the optimal solutions of Problem (PP) for up to20 points are reported
to be known, we are interested in solutions of (PP) withn > 20. As mentioned
before, the optimization approaches for all-quadratic problems discussed so far in
this thesis are not able to solve Problem (PP) with a dimension higher than42 and
with more than

(
20
2

)
concave quadratic constraints. With the rectangular branch-

and-bound method by Al-Khayyal et al. [AKLV95] as well as with our simplicial
approach (see Chapter 3) we were only able to solve Problem (PP) with less than
10 points. Therefore, we developed a new rectangular branch-and-bound approach,
which is theoretically able to solve Problem (PP) in each dimension and which
showed a good performance with up to27 points.

Before formulating the algorithm in Section 5.3 we study in Section 5.2 some
theoretical properties of optimal solutions of Problem (PP). We state the intuitive
fact that there exists at least one optimal solution such that as many points as pos-
sible belong to the boundary of the unit squareU . In Subsection 5.2.1 it is shown
that there exists an optimal solution of Problem (PP) with a special behavior at each
vertex of the unit squareU . Another result describing the behavior of at least one
optimal solution along each edge ofU is discussed in Subsection 5.2.2. In Sec-
tion 5.3 a rectangular branch-and-bound algorithm for solving (PP) is proposed.
Even though we do not expatiate the details of our algorithm in this section, we
are able to prove the convergence of this approach under some restrictions. In the
following three Sections 5.4 - 5.6 we describe the details of our method. The cal-
culation of the critical upper bounds is developed in Section 5.4. Exploiting the
special structure of Problem (PP) we are able to derive in Section 5.5 a special
splitting strategy for the relevant hyperrectanglesR ⊂ Un, which shows a better
performance for this problem than the well-known bisection (for the definition of
the bisection see, e.g., page 101). Using the theoretical results derived in Section
5.2 and an idea mentioned in [DGPWM91] we develop strategies for reducing the
size of the relevant hyperrectangles in Section 5.6. These strategies enabled us to
further improve the performance of our approach. In Section 5.7 we present prelim-
inary computational results. In particular, we give approximately optimal solutions
for n = 21 − 24, 26, 27. We finish this chapter with a discussion of some fur-
ther improvements of the introduced method, which enable us to solve even larger
problems. In particular, we present in Section 5.8 forn = 32 a solution, which

192 PACKING EQUAL CIRCLES IN A SQUARE

constitutes an improvement of the best solution known so far. Apart from these
improvements of our method and the numerical results for more than27 points the
presented results are also given in [LR98A, LR98B].

5.2. Theoretical Results

We start the treatment of (PP) by a theoretical examination of this problem.
One would intuitively expect that as many as possible membersx?i (i ∈ {1, . . . , n})
of an optimal solutionx? ∈ Un of Problem (PP) lie on or near to the boundary of
U , since we try to maximize the minimum squared distancet between any two
points. In the following two subsections we derive some properties, which have
to be fulfilled by at least one optimal solution of Problem (PP). These properties
corroborates the intuitive fact mentioned above and will later be useful in order
to improve the numerical performance of our new rectangular branch-and-bound
method introduced in Section 5.3.

5.2.1. Properties of an Optimal Solution at each Vertex.As the known op-
timal solution for the casen = 6 shows (see [SM65] or Figure 5.5), we cannot
expect that each vertex ofU belongs to an optimal solution of (PP). However we
are able to derive the existence of an optimal solution with a special property at each
vertexv of U . Either this vertexv is a member of the solutionx? = (x?1, . . . , x

?
n)
T

itself or there exist two pointsx?i , x
?
j (i, j ∈ {1, . . . , n}), which lie on the two

boundary lines ofU forming the vertexv and which have exactly the optimal dis-
tanced?(n), i.e.,d?(n) = ‖x?i − x?j‖2. This will be the result of Theorem 5.2.3
and the subsequent corollary.

In order to prove this theorem we need to show the existence of an opti-
mal solution of (PP) with another special property. We need an optimal solution
x? = (x?1, . . . , x?n)T ∈ Un such that each memberx?i of x? (i ∈ {1, . . . , n})
belonging to the convex hull[x?1, . . . , x

?
n] of the pointsx?1, . . . , x

?
n belongs even to

the boundary ofU . The existence of such a solution is ensured by the next lemma.
In the following corollary we prove, moreover, that there is an optimal solution of
Problem (PP) such that the set[x?1, . . . , x

?
n] touches each boundary line ofU .

LEMMA 5.2.1. There exists an optimal solution(x?1, . . . , x?n)T ∈ IR2n of
Problem (PP) with the property

x?i ∈ ∂([x?1, . . . , x
?
n]) =⇒ x?i ∈ ∂U = ∂([0, 1]2) , (P1)

5.2. THEORETICAL RESULTS 193

i.e., each memberx?i of the optimal solutionx? belonging to the boundary of the
convex hull of the pointsx?1, . . . , x

?
n belongs to the boundary of the unit squareU .

PROOF: Let (x1, . . . , xn)T ∈ IR2n be an optimal solution of (PP) with op-
timal valuet?(n). Denote byCO the convex hull of the pointsx1, . . . , xn, i.e.,
CO = [x1, . . . , xn]. If solutionx does not have Property (P1), then there exists a
memberxi ∈ ∂CO satisfyingxi /∈ ∂U . Consider the normal coneC(xi) of set
CO at pointxi (see [ROC70] for the general definition of a normal cone), i.e.,

C(xi) = {y ∈ IR2 : y = xi + d , dT (xj − xi) ≤ 0 , j ∈ {1, . . . , n} \ {i}}
(compare with Figure 5.2).

FIGURE 5.2. Normal cones

CO

U

xk C(xk)

C(xi)

xi

The setC(xi) has the following properties. These properties can be found in
[ROC70]. For completeness we present a detailed proof.

(A). C(xi) \ {xi} 6= ∅
The convex hullCO is a polytope, which can be described by a finite set
of facets. Let, for eachj ∈ Ii, the setF ij := {y ∈ IR2 : (f ij)

T y = (f ij)
Txi}

denote a facet ofCO through the pointxi with the propertyCO ⊂
{y ∈ IR2 : (f ij)

T y ≤ (f ij)
Txi}, whereIi is an index set satisfying|Ii| ≤ 2.

Choose a vectord ∈ IR2, which is a convex combination of the normalsf ij
(j ∈ Ii), i.e., chooseλ ∈ IR|Ii|

+ with
∑

i∈Ii λi = 1 and set

d :=
∑
j∈Ii

λjf
i
j 6= 0

194 PACKING EQUAL CIRCLES IN A SQUARE

Then, for eachj ∈ {1, . . . , n} \ {i}, there holds

dT (xj − xi) =
∑
j∈Ii

λj ((f ij)
T (xj︸︷︷︸

∈CO

− xi))

︸ ︷︷ ︸
≤0

≤ 0 .

Hence we obtainxi + d ∈ C(xi) \ {xi}.
(B). CO ∩C(xi) = {xi}

Choose an arbitrary, but fixedx ∈ CO ∩ C(xi). There exists a vector
λ ∈ IRn

+ with
∑n

j=1 λj = 1 andx =
∑n

j=1 λjxj . Because ofx ∈ C(xi)
we obtain, for eachj ∈ {1, . . . , n} \ {i},

0 ≥ (x − xi︸ ︷︷ ︸
=d

)T (xj − xi)

=

(
n∑
j=1

λj(xj − xi)
)T

(xj − xi) =
n∑
j=1

λj ‖xj − xi‖22︸ ︷︷ ︸
>0, if i6=j

.

It follows thatλi = 1 and thusx = xi.
(C). y ∈ C(xi) =⇒ ‖y − xj‖22 ≥ t?(n) , j ∈ {1, . . . , n} \ {i}

Choose an arbitrary, but fixedy ∈ C(xi). For eachj ∈ {1, . . . , n} \ {i},
there holds

‖y − xj‖22 = ‖xi − xj + d‖22
= ‖xi − xj‖22 + 2dT (xi − xj)︸ ︷︷ ︸

≥0

+ ‖d‖22︸︷︷︸
≥0

≥ ‖xi − xj‖22 ≥ t?(n) .

Choosing a pointd ∈ IR2 with 0 6= d ∈ C(xi) − {xi}, which exists because of
(A), we obtain that, for eachλ ∈ IR+, the pointxi + λd is an element ofC(xi).
Since by assumptionxi does not belong to the boundary ofU , there holds

λ̄ := max{λ ≥ 0 : xi + λd ∈ U} > 0 .

Settingx?i := xi+λ̄dwe obtain an element of the boundary ofU . Taking Properties
(B) and (C) of the normal coneC(xi) into account it follows that
(x1, . . . , xi−1, x

?
i , xi+1, . . . , xn)T is also an optimal solution of Problem (PP) and,

moreover,x?i ∈ ∂[x1, . . . , xi−1, x
?
i , xi+1, . . . , xn] ∩ ∂U . Repeating the argumen-

tation presented in this proof we obtain a solution(x?1, . . . , x?n)T of (PP) satisfying
Property (P1). �

5.2. THEORETICAL RESULTS 195

As mentioned before, in order to prove the existence of an optimal solution
of Problem (PP) with the claimed special behavior at each vertex ofU , we need a
solutionx? of (PP) with Property (P1) and, additionally, satisfying that the convex
hull of the membersx?1, . . . , x

?
n of x? touches each boundary line ofU . If an

optimal solution of (PP) is given, it is easy to see that an altering of this solution
– using the same ideas as in the previous proof – leads to an optimal solution of
(PP) with the required attributes.

COROLLARY 5.2.2. There exists an optimal solution(x?1, . . . , x
?
n)
T ∈ IR2n

of Problem (PP) with Property (P1) and, additionally, with the property that, for
eachi ∈ {1, 2} andj ∈ {0, 1}, there holds

[x?1, . . . , x
?
n] ∩ eji 6= ∅ , (P2)

whereeji = {x ∈ U : xi = j} is a boundary line of the unit squareU . This means
that the convex hull[x?1, . . . , x?n] of the set{x?1, . . . , x?n} touches each edge of the
unit squareU .

PROOF: Let (x1, . . . , xn)T ∈ Un be an optimal solution of (PP) with optimal
valuet?(n) fulfilling Property (P1). If the convex hull of the set{x1, . . . , xn} does
not touch an edgee of U , then we choose one of the membersxi (i ∈ {1, . . . , n}),
which are closest toe. Moving xi towards this edge in the direction perpendicu-
lar to e we obtain a pointx?i ∈ e. This direction belongs to the normal cone of
the set[x1, . . . , xn] at pointxi. Hence, it follows by an analogous argumenta-
tion as in the proof of Lemma 5.2.1 that the minimum pairwise squared distance
of x̄ = (x1, . . . , xi−1, x

?
i , xi+1, . . . xn)T is still equal tot?(n). Consequently,̄x

is also an optimal solution of (PP) satisfying Property (P1) and, additionally, the
convex hull of the members of̄x touchese. �

Using optimal solutions of Problem (PP) satisfying Properties (P1) and (P2)
we are now able to derive the existence of optimal solutions with a special behavior
at each vertex of the unit square, as the following theorem shows.

THEOREM 5.2.3. There exists an optimal solution(x?1, . . . , x
?
n)T ∈ IR2n of

Problem (PP) with optimal valuet?(n) such that, for each vertexv of the unit
squareU , i.e.,v =

(
v1
v2

) ∈ {(00), (01), (10), (11)}, one and only one of the following
statements is true

196 PACKING EQUAL CIRCLES IN A SQUARE

(i) ∃i ∈ {1, . . . , n} with v = x?i , (P3a)

(ii) ∃i, j ∈ {1, . . . , n} with x?i1 = v1 , x
?
j2 = v2

and, forl ∈ {i,j} , ‖v − x?l ‖22 < t?(n) .
(P3b)

This means that either the vertexv itself belongs to the optimal solution or there
exist two membersx?i , x

?
j of this solution lying on the boundary lines ofU forming

the vertexv, which have a squared distance tov smaller than the optimal one.

PROOF: Forn ≤ 5 the known optimal solutions (see Figure 5.3) have Prop-
erty (P3). Therefore, we can assume that there holdsn > 5 and, in particular,
t?(n) < 1.0.

FIGURE 5.3. Known solutions forn = 2, . . . , 5

0 1

1

t?(2) = 2

1

1

0

t?(3) = 8−√
48

0 1

1

t?(4) = 1

0 1

1

t?(5) = 1
2

Let (x1, . . . , xn)T ∈ Un be an optimal solution of (PP) with optimal value
t?(n) satisfying Properties (P1) and (P2). Choose an arbitrary, but fixed vertexv of
U and define (usingt := t?(n))

S2(v, t) := {y ∈ IR2 : ‖v − y‖22 < t}
and

S̄2(v, t) := S2(v, t) ∩ {x1, . . . , xn} .

The setS̄2(v, t) contains all members of(x1, . . . , xn)T , which have a squared
distance smaller thant to the vertexv. Depending on the cardinality of the set
S̄2(v, t) we distinguish four cases.

Case 1: |S̄2(v, t)| = 0
For eachi ∈ {1, . . . , n}, there holds‖v − xi‖22 ≥ t. Setting

x?1 := v

5.2. THEORETICAL RESULTS 197

and, fori ∈ {2, . . . , n},
x?i := xi

we obtain an optimal solution of Problem (PP), which fulfills (P3a) at vertexv, and
not (P3b).

Case 2: |S̄2(v, t)| = 1
Without loss of generality assume thatx1 is the only element of̄S2(v, t), i.e.,
S̄2(v, t) = {x1}. For eachi ∈ {2, . . . , n}, there holds‖v − xi‖22 ≥ t. Using
the same definition forx? ∈ Un as in the previous case we obtain again an optimal
solution with the same properties as before.

Case 3: |S̄2(v, t)| = 2
We will show in this case that only (P3b) is true – not (P3a). We prove this for the
vertexv =

(
0
0

)
. The argumentation for the other vertices is analogous. LetS̄2(v, t)

be given by{xi, xj} with i, j ∈ {1, . . . , n}, i 6= j. Regarding the definition of
S̄2(v, t) it follows that there holds

v /∈ {xi, xj} . (5.2.1)

Hence Property (P3a) is not fulfilled. Ifxi andxj belong to the boundary ofU , it
is easy to see that (P3b) is satisfied. Indeed, since there holdst < 1.0 we know
thatxi andxj must lie on the boundary lines forming the vertexv. Moreover, with
respect to the definition of̄S2(v, t) and because of‖xi−xj‖22 ≥ t they cannot both
belong to the same edge ofU .

We prove now thatxi andxj must always belong to the boundary ofU . As-
sume, by contradiction, thatxi does not belong to an edge of the unit square, i.e.,
xi /∈ ∂U . The optimal solution(x1, . . . , xn)T has Property (P1) such that there
also holds

xi /∈ ∂CO

with CO = [x1, . . . , xn]. The setCO is a polytope and we know thatv does not
belong to this set. It follows that there exists a facet ofCO which separatesv and
xi. Each facet ofCO is a line connecting two elements of{x1, . . . , xn} belonging
to the boundary ofCO and hence – taking (P1) into account – belonging to the
boundary ofU . Since the point(x1, . . . , xn)T ∈ IR2n fulfills by assumption Prop-
erty (P2), there must exist two elementsxk, xl ∈ {x1, . . . , xi−1, xi+1, . . . , xn}

198 PACKING EQUAL CIRCLES IN A SQUARE

satisfying

xk1 = 0 , xk2 > 0

xl1 > 0 , xl2 = 0

and
xi1
xl1

+
xi2
xk2

> 1 , (5.2.2)

i.e.,xi lies on the right-hand side of the facet ofCO formed by the pointsxk and
xl (compare with Figure 5.4).

FIGURE 5.4. Vertex situation

√
t

U

xi

v

xl

xk

Because of‖xk − xi‖22 ≥ t and‖xl − xi‖22 ≥ t we obtain

x2
i1 + (xk2 − xi2)2 ≥ t and (xl1 − xi1)2 + x2

i2 ≥ t . (5.2.3)

Moreover, in view ofxi ∈ S2(v, t) we know that

x2
i1 + x2

i2 ≤ t . (5.2.4)

Combining (5.2.3) and (5.2.4) it follows that

(xk2 − xi2)2 ≥ x2
i2 , (xl1 − xi1)2 ≥ x2

i1 (5.2.5)
and hence

1
2xk2 ≥ xi2 , 1

2xl1 ≥ xi1 . (5.2.6)

From this relation we obtain
xi1
xl1

+
xi2
xk2
≤ 1

2
+

1
2

= 1 ,

5.2. THEORETICAL RESULTS 199

contradicting (5.2.2) and, therefore, contradicting the assumptionxi /∈ ∂U . Anal-
ogously, it can be proven thatxj must belong to∂U .

Hence we have seen that in Case 3 the solution(x1, . . . , xn)T must fulfill
Property (P3b) itself and cannot satisfy (P3a).

Case 4: |S̄2(v, t)| ≥ 3
It follows from the argumentation in the previous case that any point of the set
S̄2(v, t) is contained in the boundary of the unit square. Therefore, at least two
points must belong to the same edge. However, this is not possible since they
would have a squared distance smaller thant. Thus Case 4 cannot occur. �

In the introduction of this subsection we claimed that there is an optimal so-
lution of Problem (PP) satisfying (P3) and the additional property that there holds
‖x?i − x?j‖22 = t?(n) in the case of (P3b). In order to strengthen Property (P3b) in
this sense we will need some technical effort.

COROLLARY 5.2.4. There exists an optimal solution(x?1, . . . , x
?
n)T of Prob-

lem (PP) with optimal valuet?(n) satisfying Properties (P1)-(P3) and, addition-
ally, fulfilling

‖x?i − x?j‖22 = t?(n) (*)

in the case of (P3b).

PROOF: Let (x1, . . . , xn)T ∈ IR2n be an optimal solution of (PP) with Prop-
erties (P1)-(P3). Let furtherv be a vertex of the unit squareU such that (P3b) is
fulfilled, i.e.,

S̄2(v, t) = {xi, xj} ⊂ ∂U .

As in Case 3 of the proof of the previous Theorem 5.2.3 we assume thatv is the
origin. Furthermore, without loss of generality, we can assume that

xj1 = xi2 = 0 .

If the squared distance betweenxi andxj is equal tot?(n), then we know that
Property (*) is fulfilled at vertexv. Otherwise there must hold

‖xi − xj‖22 > t?(n) =: t .

In this case it is possible to move one of the pointsxi orxj towards the origin such
that (*) is fulfilled and the distance to all other pointsxl (l ∈ {1, . . . , n} \ {i, j})
is still big enough. This will be proven in the sequel.

200 PACKING EQUAL CIRCLES IN A SQUARE

In order to derive this result we need at first a more technical statement.

For anyl ∈ {1, . . . , n} \ {i, j}, there holds

xl1 ≥ xi1 or xl2 ≥ xj2 . (5.2.7)

PROOF OF(5.2.7): Assume that (5.2.7) is not true, i.e.,

∃l ∈ {1, . . . , n} \ {i, j} with xl1 < xi1 andxl2 < xj2 .

From‖xi − xl‖2
2 ≥ t and‖xj − xl‖2

2 ≥ t we obtain

(xi1 − xl1)
2 + x2

l2 ≥ t (5.2.8.a)

x2
l1 + (xj2 − xl2)

2 ≥ t (5.2.8.b)

and hence

t ≤ x2
i1 −2xi1xl1︸ ︷︷ ︸

≤−2x2
l1

+x2
l1 + x2

l2 ≤ x2
i1 − x2

l1 + x2
l2 (5.2.9.a)

t ≤ x2
l1 + x2

j2 −2xj2xl2︸ ︷︷ ︸
≤−2x2

l2

+x2
l2 ≤ x2

l1 + x2
j2 − x2

l2 . (5.2.9.b)

Adding (5.2.9.a) to (5.2.9.b) and using the fact that{xi, xj} ⊂ S2(
(
0
0

)
, t) it

follows

2t ≤ x2
i1 + x2

j2 < 2t ,

which is a contradiction. Therefore, (5.2.7) must be true. 2

If there holdsxi1 ≤ xj2 , it is possible to movexi towards the origin in order to
satisfy (*). Indeed, setxi(ε) :=

(xi1−ε
0

)
for ε ≥ 0. It is provable that, for any

ε ∈ (0, xi1) andl ∈ {1, . . . , n} \ {i, j}, there holds

t ≤ ‖xl − xi(ε)‖22 = (xl1 − xi1 + ε)2 + x2
l2 . (5.2.10)

This relation shows that it is possible to movexi towards the origin – altering the
first coordinatexi1 – without decreasing too much the squared distance between
the moved pointxi(ε) andxl (l ∈ {1, . . . , n} \ {i, j}).

PROOF OF(5.2.10): Choose an arbitrary, but fixed indexl ∈ {1, . . . , n} \ {i, j}.
In order to show (5.2.10) we have to distinguish two cases.

Case 1: xi1 ≤ xl1

It follows immediately that

xl1 − xi1 + ε ≥ xl1 − xi1 ≥ 0 .

5.2. THEORETICAL RESULTS 201

This implies

(xl1 − xi1 + ε)2 + x2
l2 ≥ (xl1 − xi1)

2 + x2
l2 = ‖xi − xl‖2

2 ≥ t .

Case 2: xi1 > xl1

From (5.2.7) we obtain thatxl2 ≥ xj2 . Therefore, we can conclude

t ≤ ‖xl − xj‖2
2 = x2

l1 + x2
j2 −2xl2xj2︸ ︷︷ ︸

≤−2x2
j2

+x2
l2

≤ x2
l1 − x2

j2︸︷︷︸
≥x2

i1

+x2
l2

≤ x2
l1 − x2

i1︸ ︷︷ ︸
≤0

+x2
l2 ≤ x2

l2 .

It follows

(xl1 − xi1 + ε)2 + x2
l2 ≥ x2

l2 ≥ t .
2

If we choosēε ∈ (0, xi1) satisfying‖xi(ε̄) − xj‖22 = t, we obtain from (5.2.10)
that (x1, . . . , xi−1, xi(ε̄), xi+1, . . . , xn)T is also an optimal solution of Problem
(PP) fulfilling (P1)-(P3) and, additionally, fulfilling (*) at vertexv.

In order to movexi towards the origin we assumed that there holdsxi1 ≤ xj2 .
If this is not true, it is possible to movexj – altering the second coordinatexj2 –
towards the origin in an analogous way, such that in each case we obtain an optimal
solution of (PP) with all required attributes at vertexv.

Forn ≤ 9 it follows from the known solutions (see Figure 5.3 and Figure 5.5)
that solutions of Problem (PP) exist, which fulfill the stronger Property (*) at each

FIGURE 5.5. Known solutions forn = 6, . . . , 9

1

1

0

t?(6) = 13
36

10

1

t?(7)
4

= 7 − 4
√

3

0 1

1

t?(8) = 2 −√
3

0 1

1

t?(9) = 1
4

202 PACKING EQUAL CIRCLES IN A SQUARE

vertexv of U with Property (P3b). Hence, we have to verify the existence of such
points only forn ≥ 10. This implies that there holdst = t?(n) ≤ 0.25 and thus

S̄2(v, t) ∩ S̄2(w, t) = ∅ (5.2.11)

for two different verticesv andw of the unit square. Therefore, we can apply the
argumentation used above in order to guarantee that (*) is fulfilled at each vertex
of U , which has Property (P3b). Property (5.2.11) implies that the points we would
like to move in order to enforce (*) must be different for different vertices ofU .

�

In the following we denote by Property (P3) this stronger version.

5.2.2. Properties of an Optimal Solution along each Edge.If we consider
the behavior of an optimal solution on the boundary lines of the unit squareU , we
cannot expect that two consecutive points have exactly the optimal distance (com-
pare, e.g., the optimal solutions forn = 6 or n = 7, see [SM65] or Figure 5.5).
We are only able to verify the existence of an optimal solution with the property
that this distance is smaller than two times the optimal one. This is the result of the
following theorem. At first, however, one additional lemma is needed in order to
establish this statement.

LEMMA 5.2.5. Let (x1, . . . , xn)T ∈ IR2n be an optimal solution of Problem
(PP) with optimal valuet?(n). Assume further that there exist indices
i, j ∈ {1, . . . , n} andl ∈ {1, 2} satisfying

‖xi − xj‖22 ≥ 4t?(n) and xil = xjl ∈ {0, 1} , (5.2.12)

and, moreover, that there does not exist an indexk ∈ {1, . . . , n} \ {i, j} with
xk ∈ [xi, xj]. Then there holds

intU ∩ {x1, . . . , xn} 6= ∅ . (5.2.13)

This means, if two consecutive pointsxi andxj lying on the same boundary line of
the unit squareU have a distance not smaller than two times the optimal distance√
t?(n), then there exists a memberxm of this optimal solution belonging to the

interior ofU .

PROOF: The pointsxi andxj belong by Assumption (5.2.12) to the same
edge ofU . Hence there holds

‖xi − xj‖22 ≤ 1

and consequently regarding the left part of (5.2.12) we knowt?(n) ≤ 0.25.

5.2. THEORETICAL RESULTS 203

We prove Relation (5.2.13) by contradiction. Assume that there does not exist
a member of the optimal solution belonging to the interior ofU . With respect to
the value oft?(n) we distinguish again two cases.

Case 1: t?(n) = 0.25
From the first part of (5.2.12) it follows that‖xi − xj‖22 = 1 and thus these points
are vertices ofU . It can be seen that in this situationn cannot be greater than7.
Indeed, it is not possible to place more points on the boundary lines ofU such that
the squared distance is not smaller than0.25. However, forn ≤ 7 solutions with
larger minimum distances are known [SM65] (see also Figures 5.3 and 5.5). Con-
sequently, the feasible point(x1, . . . , xn)T is not optimal for (PP), contradicting
the assumption.

Case 2: t := t?(n) < 0.25
In this case it is possible to explicitly construct a pointx̄ = (x̄1, . . . , x̄n)T with a
bigger minimum squared distance thant.

Assume, without loss of generality, that there holdsi = n andj = 1 and that
the membersxi (i = 1, . . . , n) are numbered in such a way thatxi+1 is a direct
neighbor ofxi (compare with Figure 5.6). Denote, fori ∈ {1, . . . , n − 1}, by

FIGURE 5.6. Numbering

xn x1

x2

x3

x4

xn−1

xn−2

xn−3

di,i+1 the 1-norm distance between the two consecutive pointsxi andxi+1, i.e.,

di,i+1 := ‖xi − xi+1‖1 ≥ ‖xi − xi+1‖2 ≥
√
t . (5.2.14.a)

Denote, furthermore, bydn,1 the according distance betweenxn andx1, i.e.,

dn,1 := ‖xn − x1‖1 ≥ ‖xn − x1‖2 ≥ 2
√
t . (5.2.14.b)

204 PACKING EQUAL CIRCLES IN A SQUARE

Since the total length of the boundary lines ofU is 4 it follows that there holds
n−1∑
i=1

di,i+1 + dn,1 = 4 .

Therefore, from (5.2.14.a) and (5.2.14.b) we obtain

(n+ 1)
√
t ≤ 4 . (5.2.15)

Set

δ :=
4

n+ 0.5
−√t .

From Relation (5.2.15) we see that

0 < δ

and because ofn ≥ 8 (compare with Case 1) we know that

δ < 0.5−√t .

In the sequel we construct now a solutionx̄ = (x̄1, . . . , x̄n)T of Problem (PP) with
a minimum pairwise distance of

√
t+ δ. In order to do this we will place one point

at the center ofU and the remaining (n− 1) points will be placed at the boundary
of the unit square. Let us first interpret the edges ofU as one connected line, i.e.,
as the interval[0, 4], where each integer in this interval coincides with a vertex of
U . 0 and4 coincide with the same vertex, namely the origin. We construct now
a sequence of (n − 1) real numbers lying inside this interval in such a way that
two successive numbers have a distance equal to

√
t+ δ, if no integer lies between

them, and a distance equal to
√

2(
√
t + δ) otherwise. This is sufficient in order to

obtain a solution of Problem (PP) with a minimum distance in the Euclidean norm
not smaller than

√
t+ δ, as required.

The needed sequence of real numbers is defined as follows

x̃1 := 0.0

and, fori ∈ {2, . . . , n− 1},

x̃i :=

{
x̃i−1 + (

√
t+ δ) , if bx̃i−1c = bx̃i−1 + (

√
t+ δ)c

x̃i−1 +
√

2(
√
t+ δ) , otherwise.

In order to verify that this sequence has the claimed properties it is sufficient to
show that̃xn−1 lies in the interval[0, 4] and, additionally, that̃xn−1 has a distance
not smaller than

√
t + δ to 4 (and hence to the origin). If we look for the biggest

5.2. THEORETICAL RESULTS 205

quantityk ∈ IN of numbers constructed by the foregoing prescription, which be-
long to the interval[0, 4− (

√
t+ δ)], then we have to solve the problem

max k

(k − 4)(
√
t+ δ) + 3

√
2(
√
t+ δ) ≤ 4− (

√
t+ δ)

k ∈ IN .

Note that there are three integers inside the interval[0, 4]. Hence there are at most
three pairs(x̃i, x̃i+1) (i ∈ {1, . . . , k − 1}) with a distance of

√
2(
√
t + δ). The

remaining(k − 4) distances are by construction equal to(
√
t + δ). From the

properties ofδ it is easy to verify that we obtaink? = n − 1, wherek? is the
optimal solution of the previous problem.

With this sequence of real numbers we are now able to construct the required
feasible pointx̄ ∈ Un with the claimed minimal pairwise distance. Set, for
i = 1, . . . , n− 1,

x̄i :=

(x̃i, 0.0)T , if 0.0 ≤ x̃i ≤ 1.0

(1.0, x̃i − 1.0)T , if 1.0 < x̃i ≤ 2.0

(1.0− (x̃i − 2.0), 1.0)T , if 2.0 < x̃i ≤ 3.0

(0.0, 1.0− (x̃i − 3.0))T , otherwise.

Adding x̄n := (0.5, 0.5)T we obtain obviously a feasible point for (PP). Straight-
forward calculation shows that this point has a larger minimum squared distance
than(x1, . . . , xn)T . This contradicts the optimality of(x1, . . . , xn)T and com-
pletes the proof. �

If two consecutive points of an optimal solution of Problem (PP) lying on the
same edge ofU have a distance bigger than or equal to two times the optimal one,
the previous lemma guarantees that there always exists a member of this optimal
solution belonging to the interior of the unit squareU . In the proof of the next theo-
rem we show that it is possible to move one of these interior points to the boundary
of U without decreasing the minimum distance. This leads to the existence of an
optimal solution of Problem (PP) with the claimed property at each boundary line
of the unit squareU .

206 PACKING EQUAL CIRCLES IN A SQUARE

THEOREM 5.2.6. There exists an optimal solution(x?1, . . . , x
?
n)T of Problem

(PP) with the following property:

If there exist indicesi, j ∈ {1, . . . , n}with i 6= j and an indexl ∈ {1, 2}withx?il =
x?jl ∈ {0, 1} and, furthermore, there does not exist an indexk ∈ {1, . . . , n}\{i, j}
with x?k ∈ [x?i , x

?
j], then there holds

‖x?i − x?j‖22 < 4t?(n) . (P4)

I.e., two consecutive members of(x?1, . . . , x?n)T belonging to the same edge of the
unit square have a distance smaller than two times the optimal one.

PROOF: Let (x1, . . . , xn)T ∈ IR2n be an optimal solution of Problem (PP)
with optimal valuet := t?(n). Assume that there exist two consecutive members
of this optimal solution with a distance not smaller than two times the optimal one.
This means that there exist indicesi, j ∈ {1, . . . , n}, i 6= j and an indexl ∈ {1, 2}
satisfying

‖xi − xj‖22 ≥ 4t (5.2.16.a)
and

xil = xjl ∈ {0, 1} , (5.2.16.b)

and there does not exist an indexk ∈ {1, . . . , n} \ {i, j} such thatxk belongs to
[xi, xj]. As long as there are two consecutive points with Properties (5.2.16.a) and
(5.2.16.b), Lemma 5.2.5 yields that there exists a member of(x1, . . . , xn)T located
within the interior ofU . In order to prove the existence of an optimal solution with
Property (P4) it is hence sufficient to show that we are able to move one of these
interior points to the boundary ofU without decreasing the minimum distance.

Without loss of generality, we assumei = 1, j = 2, l = 2, x12 = x22 = 0.0
andx11 < x21 , i.e.,x1 andx2 lie on the edgee = {y ∈ IR2 : 0.0 ≤ y1 ≤ 1.0,
y2 = 0.0} and there holdsx21 ≥ x11 + 2

√
t.

Denote by

A := {xi : i ∈ {3, . . . , n}, xi1 ≤ x11 or xi1 ≥ x21}
the set of all members of(x1, . . . , xn)T different fromx1 andx2 with the property
that the first coordinate does not belong to the open interval(x11 , x21). It is easy to
verify that, for eachλ ∈ [x11 +

√
t, x21 −

√
t] andx ∈ A, there holds

‖x− (λ0)‖22 ≥ t . (5.2.17)

Depending on the structure of setA we distinguish two cases.

5.2. THEORETICAL RESULTS 207

Case 1: {x3, . . . , xn} \A = ∅
Set

x?31
:=

x11 + x21

2
and x32 := 0.0 .

From (5.2.17) we obtain, for eachk ∈ {4, . . . , n},
‖x?3 − xk‖22 ≥ t .

Moreover, fori ∈ {1, 2}, there holds also‖x?3 − xi‖22 ≥ t. Therefore, the point
(x1, x2, x

?
3, x4, . . . , xn)T is another optimal solution of (PP) with the property that

the number of members belonging to the boundary ofU is increased by one – in
comparison with(x1, . . . , xn)T .

Case 2: {x3, . . . , xn} \A 6= ∅
Choose an indexl ∈ {3, . . . , n} such that there holds

xl2 = min{y2 | y ∈ {x3, . . . , xn} \A} . (5.2.18)

Construct a new pointx?l ∈ IR2 belonging to[x1, x2] according to the following
rule

x?l1 :=

xl1 , if x11 +

√
t ≤ xl1 ≤ x21 −

√
t

x11 +
√
t , if xl1 < x11 +

√
t

x21 −
√
t , otherwise

and x?l2 := 0.0 .

For i ∈ {1, 2} there holds obviously‖x?l − xi‖22 ≥ t. In order to finish the proof
we have to show that the pointx?l has a squared distance not smaller thant to any
member of(x1, . . . , xn)T belonging to the set

Ā := {x3, . . . , xn} \ (A ∪ {xl}) .

Choose an arbitrary, but fixed elementxk of Ā. Depending on the definition of
x?l1 it is necessary to distinguish three subcases.

Case 2.1: x?l1 = xl1

From (5.2.18) we know thatxk2 ≥ xl2 . It follows

‖xk − x?l ‖22 = (xk1 − xl1)2 + x2
k2

≥ (xk1 − xl1)2 + (xk2 − xl2)2
= ‖xk − xl‖22 ≥ t .

208 PACKING EQUAL CIRCLES IN A SQUARE

Case 2.2: x?l1 = x11 +
√
t

The following assertions are true

xl2 ≤ xk2 (compare with Relation (5.2.18)) (5.2.19.a)

xl1 − x11 <
√
t (definition ofx?l1) (5.2.19.b)

x11 ≤ xl1 (sincexl /∈ A) (5.2.19.c)

t ≤ ‖xk − xl‖22 = (xk1 − xl1)2 + (xk2 − xl2)2 (5.2.19.d)

t ≤ ‖xl − x1‖22 = (x11 − xl1)2 + x2
l2 . (5.2.19.e)

Using these statements we can conclude for the squared distance between
x?l andxk

‖xk − x?l ‖22 = (xk1 − x11 −
√
t)2 + x2

k2

= [(xk1 − xl1) + xl1 − x11 −
√
t]2 + [(xk2 − xl2) + xl2]

2

= (xk1 − xl1)2 + 2(xk1 − xl1)(xl1 − x11 −
√
t)

+ (xl1 − x11)
2 − 2

√
t(xl1 − x11) + t

+ (xk2 − xl2)2 + 2xl2 (xk2 − xl2)︸ ︷︷ ︸
≥0, (5.2.19.a)

+x2
l2

≥ (xk1 − xl1)2 + (xk2 − xl2)2 + ‖xl − x1‖22︸ ︷︷ ︸
≥t, (5.2.19.e)

+t

+ 2(xk1 − xl1)(xl1 − x11 −
√
t) + 2(x11 − xl1)

√
t

≥ 2t+ (xk1 − xl1)2 + (xk2 − xl2)2
+ 2(xk1 − xl1)(xl1 − x11 −

√
t) + 2(x11 − xl1)

√
t

=: C

We need thatC is not smaller thant. In order to prove this we have to
distinguish two further subcases.

Case 2.2.1: xk1 − xl1 ≤ √
t

In this situation we obtain

C = 2t + ‖xk − xl‖2
2 + 2[(xk1 − xl1)︸ ︷︷ ︸

≤√
t

(xl1 − x11 −
√

t)︸ ︷︷ ︸
≤0, (5.2.19.b)

+(x11 − xl1)
√

t]

≥ 2t + ‖xk − xl‖2
2 + 2

√
t [xl1 − x11 −√

t + x11 − xl1]︸ ︷︷ ︸
=−√

t

= ‖xk − xl‖2
2 ≥ t (see (5.2.19.d)).

5.3. THE ALGORITHM 209

Case 2.2.2: xk1 − xl1 >
√

t

It follows

C = 2t + (xk1 − xl1)
2 + (xk2 − xl2)

2︸ ︷︷ ︸
≥0

+ 2[(xk1 − xl1)(xl1 − x11 −
√

t) + (x11 − xl1)︸ ︷︷ ︸
≤0, (5.2.19.c)

√
t︸︷︷︸

<(xk1−xl1)

]

≥ 2t + (xk1 − xl1)
2 − 2

√
t(xk1 − xl1)

= (xk1 − xl1 −
√

t)2︸ ︷︷ ︸
≥0

+t ≥ t .

Hence we obtain in Case 2.2 that‖xk − x?l ‖22 ≥ t.
Case 2.3: x?l1 = x21 −

√
t

By analogous calculations as in Case 2.2 it is possible to conclude

‖xk − x?l ‖22 ≥ t .

We showed that, for each indexk ∈ {1, . . . , n} \ {l}, there holds

‖x?l − xk‖22 ≥ t .

Therefore, the point(x1, . . . , xl−1, x
?
l , xl+1, . . . , xn)T is also an optimal solution

of Problem (PP) with the same additional property as the new solution constructed
in Case 1. �

The results of Theorem 5.2.3 in connection with Corollary 5.2.4 and the result
of Theorem 5.2.6 are independent from each other. Combining both we know that
there exists an optimal solution(x?1, . . . , x?n)T of Problem (PP) fulfilling Properties
(P1)-(P4). In particular, as we will see in Section 5.5, Property (P4) and the strong
version of Property (P3) give us a powerful tool in order to reduce the dimension
of subproblems in a rectangular branch-and-bound algorithm.

5.3. The Algorithm

After the derivation of the theoretical results in the previous section giving us
more insight into the structure of possible solutions of Problem (PP) we present
now an algorithm for solving (PP). As in the solution approaches for (QP) devel-
oped in Chapters 3 and 4 we use a branch-and-bound scheme (see also Subsection
1.2.2). In Chapter 3 we saw that the use of simplices as subdivision sets can lead

210 PACKING EQUAL CIRCLES IN A SQUARE

to a faster solution approach than the application of hyperrectangles, in particular,
if we try to solve all-quadratic problems with a large number of constraints. Even
though Problem (PP) has – in comparison with the dimension – a large number
of constraints we prefer in the following algorithm hyperrectangles as subdivision
sets. Using this type of sets the required initial hyperrectangle (see again Subsec-
tion 1.2.2) is immediately given byUn. Moreover, the strategies, which we will
develop in subsequent sections in order to improve the numerical performance of
our solution scheme for (PP), need hyperrectangles.

In the present section we describe the basic algorithm without expatiating the
details. These are discussed in the following sections. The presented algorithm
guarantees to detect for a prespecified toleranceε > 0 anε-optimal solution for the
point scattering problem in finite time. Some preliminary notes about the conver-
gence of our approach are given at the end of this section.

Denote byf : IR2n → IR

f(x) := min
1≤i<j≤n

‖xi − xj‖22
the minimum pairwise squared distance of the membersxi = (xi1 , xi2)T

(i ∈ {1, . . . , n}) of a 2n-dimensional pointx = (x1, . . . , xn)T ∈ IR2n. Using
this notation Problem (PP) can be written as

max f(x)

x ∈ Un .
(PP)

Assume that a point̄x ∈ Un is known withf(x̄) > 0. We can generate such
a point x̄ by using a local optimizer alone or in combination with a stochastical
approach like a multi-start algorithm (see, e.g., [BR95] for an introduction to sto-
chastic methods for global optimization). However, it is not necessary thatx̄ is
a local optimal point for Problem (PP). Therefore, it is also sufficient to simply
construct̄x ∈ Un geometrically.

Assume further that an upper boundµ̄ for the optimal valuet?(n) of Problem
(PP) is given. If the optimal valuet?(n− 1) for Problem (PP) withn− 1 points or
an upper bound fort?(n− 1) is known, we can choose this value forµ̄. Otherwise
it is possible to set̄µ := 2.0 since, for anyx ∈ Un, there holds0 ≤ f(x) ≤ 2.

Similar to Algorithm 3.1 and Algorithm 4.1 the formulation of the algorithm
for Problem (PP) follows nearly the guidelines of a basic branch-and-boundscheme
given in [HPT95, Algorithm 3.5]. Note that the following algorithm has special
adaptations to Problem (PP). In particular, we do not insist that the union of all

5.3. THE ALGORITHM 211

partition sets forms the full set (see (5.3.1) below). Since the details of the following
approach will be expatiated later in this chapter, we use another type of description
than before.

ALGORITHM 5.1 (Rectangular Branch-and-Bound Algorithm for (PP)).

Initialization
Choose a real numberε ≥ 0.
Set, for i ∈ {1, . . . , n}, R0

i ← [0, 1] × [0, 1] =: [l0i1 , L
0
i1] × [l0i2 , L

0
i2],

R0 ← R0
1 × . . .×R0

n ⊂ IR2n, R0 ← {R0},
x0 ← x̄, η0 ← f(x0), Q← {x0}, µ0 ← µ̄, µR0 ← µ0, k ← 0.

Loop

Step I: (Stopping criterion)
If there holdsµk − ηk ≤ ε, thenSTOP.
x? := xk is anε-optimal solution of Problem (PP), i.e.,
t?(n)− ηk = t?(n)− f(xk) ≤ ε.

Step II:
Choose the smallest indexj ∈ {1, . . . , n} satisfying

max{Lkj1 − lkj1 , Lkj2 − lkj2} =

max
{
max{Lki1 − lki1 , Lki2 − lki2}, i = 1, . . . , n

}
.

Step III: (Subdivision strategies)
Constructl ∈ IN two-dimensional rectanglesRk1j , . . . , R

kl
j with equal size

fulfilling, for eachi = 1, . . . , l,

Rki

j ⊂ Rkj

and, for each1 ≤ i < p ≤ l,
intRki

j ∩ intRkp

j = ∅ .

Step IV: (Size reduction strategies)
If possible, reduce, for eachi ∈ {1, . . . , l}, the size of the hyper-
rectangles

Rki = Rk1 × . . .×Rkj−1 ×Rki

j ×Rkj+1 × . . .×Rkn ,

i.e., construct hyperrectangles̄Rki ⊂ Rki .

212 PACKING EQUAL CIRCLES IN A SQUARE

Step V: (Upper bounds)
For p = 1 To l Do

If R̄kp = ∅ Then
µR̄kp ← −∞

Else
Construct an upper boundµR̄kp for the optimization problem

max t

t− ‖xi − xj‖22 ≤ 0 1 ≤ i < j ≤ n
(x1, . . . , xn)T ∈ R̄kp

ηk ≤ t ≤ µk .

(SP)

Use each pointy ∈ R̄kp found during the calculation ofµR̄kp in order
to update the lower bound, i.e.,

ηk ← max{ηk, f(y)}
Q ← Q ∪ {y} .

EndIf
EndFor

Step VI:
Adjust the setRk of relevant subdivision sets by setting

Rk ← (Rk \Rk) ∪ {R̄kp : p ∈ {1, . . . , l} with µR̄kp ≥ ηk} .

Step VII: (Pruning rule)
Rk+1 ← {R ∈ Rk : µR ≥ ηk}

Step VIII:
Update the lower and the upper bound by setting

ηk+1 ← ηk

µk+1 ←
{

max{µR : R ∈ Rk+1} , if Rk+1 6= ∅
ηk+1 , otherwise

.

Choose a new nodeRk+1 of the partition tree satisfyingµRk+1 = µk+1.
Select a pointxk+1 ∈ Q with f(xk+1) = ηk+1. k ← k + 1.
Go to Step I.

5.3. THE ALGORITHM 213

REMARK 5.3.1. Problem (PP) is a maximization problem. Therefore, we
have changed in contrast to the previous algorithms the meaning of the Greek sym-
bolsη andµ. In Algorithm 5.1η denotes a lower bound andµ is an upper bound.

As mentioned before, the formulation of Algorithm 5.1 follows nearly the
guidelines of a general branch-and-bound scheme given in [HPT95]. There are
two main ways in order to adapt this general algorithm to a special problem or
problem class. First of all it is necessary to decide how the bounds should be con-
structed. For the lower boundsηk (k ∈ IN) we use the most common and simple
idea, which we also used in Algorithm 3.1 and Algorithm 4.1 for the boundsηk.
The lower bound is updated each time the algorithm generates a new pointy ∈ IR2n

belonging to the feasible region of (PP) with a function valuef(y) bigger than the
current boundηk.

In the construction of the upper boundµR with respect to a given hyperrect-
angleR we invest more effort. Similar to the solution approaches for (QP) we
calculate this bound by solving an LP-relaxation of Problem (PP) with the addi-
tional constraint(t, x) ∈ [ηk, µk] × R (see Subproblem (SP) in Step V). By in-
terpreting Problem (SP) as an all-quadratic problem or as a polynomial problem
we could choose the LP-relaxations proposed in [AKLV95] or [ST92] (see also
Section 1.3). However, doing this we do not stay abreast of the special structure of
(SP). Note that each quadratic constraint depends only on the four variablesxi1 ,
xi2 , xj1 andxj2 . Exploiting this structure we are able to construct a better linear
approximation of the feasible region of Problem (SP) than by using one of these
general approaches. In Section 5.4 our method for calculating upper bounds for
this special problem is discussed.

The second step of adapting a general branch-and-bound scheme is to deter-
mine in which way we subdivide the current subdivision set. In Algorithm 3.1 and
Algorithm 4.1 we used radial subdivisions of the appliedn-simplices (see Defi-
nition 1.2.2), which result in a partition (Definition 1.2.1) of the subdivided set.
The hyperrectangleRk used in Algorithm 5.1 is the Cartesian product ofn two-
dimensional rectanglesRki (i ∈ {1, . . . , n}). We partitionRk by splitting one of
these rectanglesRki . In Step II we decide which rectangleRki (i ∈ {1, . . . , n})
we would like to subdivide and in Step III we use a strategy to generatel ∈ IN
rectangular subsets ofRki . How we do this is described in Section 5.5. Our strategy
is similar to the well-known bisection approach (see, e.g., page 101). However, in

214 PACKING EQUAL CIRCLES IN A SQUARE

contrast to this strategy we divideRk in each iteration with respect to two dimen-
sions and not only regarding one dimension. Furthermore, exploiting the structure
of Problem (PP) we are able to eliminate a lot of possible partition sets in advance
even without computing upper bounds. Therefore – at the end of Step III – the sets
Rk1 , . . . , Rkl do not form a partition ofRk. The property

l⋃
i=1

Rki = Rk ⇔
l⋃
i=1

Rki

j = Rkj (5.3.1)

is not necessarily satisfied (compare with the required properties in Step III).
In branch-and-bound algorithms derived for general problem classes it is usu-

ally not possible to manipulate the current subdivision setRk apart from its split-
ting. In Algorithm 3.1 and Algorithm 4.1 we do not know how to manipulate further
then-simplicesSkj resulting from the partition of the current setSk, since in gen-
eral no additional information about the structure of Problem (QP) is available. If a
branch-and-bound scheme is developed for a special problem instance, as it is the
case for Algorithm 5.1, then exploiting the structure of this instance could enable us
to derive manipulation strategies for the sets resulting after the subdivision step. In
fact, in the case of Problem (PP) we can reduce under some circumstances the size
of the relevant hyperrectanglesRki using the theoretical results derived in Section
5.2 and the knowledge of the current best known valueηk, as mentioned in Step IV
of the algorithm. The resultingsize reduction strategiesare presented in Section
5.6.

Before expatiating the details of the suggested algorithm in the following sec-
tions let us first give some notes on the convergence of this approach. We would
like to formulate three conditions, which have to be satisfied by the upper bounds
(Step V) and by the subdivision set manipulation strategies, i.e., by the subdivision
strategies and the size reduction strategies (Step III and Step IV). Using these con-
ditions we are able to prove the convergence of our method.

The conditions are as follows.

(C1) The subdivision strategy is exhaustive, i.e., for each infinite sequence of
hyperrectangles{Rk}k∈IN satisfyingRk+1 ⊂ Rk for eachk ∈ IN, there
exists a points ∈ Un with

lim
k→∞

Rk =
⋂
k∈IN

Rk = {s}

(compare with Definition 4.3.1).

5.3. THE ALGORITHM 215

(C2) If an infinite nested sequence of hyperrectangles{Rk}k∈IN with the prop-
erty limk→∞Rk = {s} ⊂ Un is given, then there holds

lim
k→∞

µRk = f(s) .

(C3) The subdivision strategies and the size reduction strategies areconsistentin
the following sense. LetP k ⊂ Un be the union of the relevant subdivision
sets in Step I in iterationk ∈ IN, i.e.,P k =

⋃
R∈Rk R. Then there holds

thatP k ∪Q contains an optimal solution of Problem (PP), i.e.,(
P k ∪Q) ∩ SOL(n) 6= ∅

whereSOL(n) denotes the set of optimal solution of Problem (PP) withn

scattering points.

Condition (C1) for the subdivision strategy and Condition (C2) for the up-
per bounds are often used in order to prove the convergence of branch-and-bound
schemes for general problem classes (see, e.g., [HPT95, Section 3.7]). Note that in
the convergence proof for Algorithm 3.1 (see Section 3.4) and in the convergence
proof for Algorithm 4.1 in the exhaustive case (see Section 4.3) we have just veri-
fied these conditions. In both algorithms we had the property that the sets resulting
from the subdivision of the currentn-simplex form a partition ofSk and that these
sets are not further manipulated. Therefore, these two conditions were sufficient
for the convergence of these approaches.

As mentioned before, the subdivision strategy used in Step III of Algorithm
5.1 does not lead to a partition, since Relation (5.3.1) is not necessarily satisfied.
Moreover, we are able to reduce the size of the hyperrectanglesRk1 , . . . , Rkl with
our size reduction strategies in Step IV. Therefore, in order to prove the correct-
ness of Algorithm 5.1 in the sense that this method detects anε-optimal solution
of Problem (PP), it is not sufficient that Condition (C1) and Condition (C2) are
fulfilled. In Section 5.5 and in Section 5.6 we will see that using our subdivision
set manipulation strategies we may lose optimal solutions, i.e., we cut away parts
of the feasible region of Problem (PP) containing optimal solutions without detect-
ing them. However, as long as the strategies applied in our method guarantee that
there still exist at least one optimal solution in the part of the feasible area of (PP),
which is not eliminated by the set manipulation strategies, we are able to prove the
correctness of Algorithm 5.1. If Algorithm 5.1 fulfills Condition (C3), it is ensured
that not all optimal solutions are eliminated without detecting them.

216 PACKING EQUAL CIRCLES IN A SQUARE

Under the assumption that the required conditions are satisfied by the strategies
used in Algorithm 5.1 we are able to show that our method detects in finite time
an ε-optimal solution of Problem (PP), ifε is chosen greater than0. This will
be a direct consequence of the following convergence theorem, which proves the
correctness of Algorithm 5.1 for the caseε = 0.

THEOREM 5.3.1. Assume thatε = 0 and that Algorithm 5.1 fulfills Condi-
tions (C1), (C2) and (C3). Then the following assertions are true:

(i) If Algorithm 5.1 stops after a finite number of iterations withηk = µk, then
it follows thatxk is an optimal solution of Problem (PP) with optimal value
ηk.

(ii) If Algorithm 5.1 generates an infinite point sequence{xk}k∈IN, then there
holds that each accumulation pointx? of this sequence is an optimal solu-
tion of Problem (PP) with optimal valuef(x?).

PROOF: Denote, fork ∈ IN, by P k the part ofUn still to be analyzed in
Step I of iterationk, i.e.,

P k =
⋃
R∈RkR .

From the description of the algorithm it follows immediately that, for anyk ∈ IN,

f(xk) = ηk ≤ max
x∈Pk∪Q

f(x) = max{ max
(t,x)∈Fk

t , max
x∈Q

f(x)︸ ︷︷ ︸
=ηk

} (5.3.2)

with F k = {(t, x) ∈ IR× P k with t− ‖xi − xj‖22 ≤ 0 , 1 ≤ i < j ≤ n}, and

max
x∈Pk∪Q

f(x) ≤ µk . (5.3.3)

Since Condition (C3) is satisfied for eachk ∈ IN, there holds

max
x∈Pk∪Q

f(x) = t?(n) . (5.3.4)

Combining (5.3.2), (5.3.3) and (5.3.4) we obtain the first result (i).

In order to prove (ii) we can use the general convergence theory proposed
in [HPT95, Section 3.7]. Because of Property (C3) our algorithm has the same
essential properties as the general branch-and-bound scheme used in [HPT95, Al-
gorithm 3.5]. Note that we are interested in detecting oneglobal solution of Prob-
lem (PP). Therefore, assertion (ii) follows immediately from [HPT95, Theorem

5.3. THE ALGORITHM 217

3.8], if for each infinite nested subsequence{Rkq}q∈IN of the generated sequence
{Rk}k∈IN of 2n-dimensional hyperrectangles, there holds

lim
q→∞[µRkq − ηkq] = 0 . (5.3.5)

Let {Rkq}q∈IN be a subsequence of{Rk}k∈IN satisfyingRkq+1 ⊂ Rkq for each
q ∈ IN. From Condition (C1) we know that in this situation there exists a point
s ∈ Un with

lim
q→∞Rkq = {s} . (5.3.6)

Algorithm 5.1 generates, for eachq ∈ IN, a pointykq ∈ Rkq satisfying

f(ykq) ≤ ηkq .

Note that in Step V at least one point belonging toRkq (q ∈ IN) is used for updating
the lower boundηkq . From (5.3.6) we obtain hence

lim
q→∞ f(ykq) = f(s) ≤ lim

q→∞ ηkq . (5.3.7)

Condition (C2) implies that
lim
q→∞µRkq = f(s) . (5.3.8)

Using (5.3.7) and (5.3.8) Property (5.3.5) follows readily. �

REMARK 5.3.2. In the convergence proofs for Algorithm 3.1 and Algorithm
4.1 in the exhaustive case it was not possible to use the general convergence theory
given in [HPT95, Section 3.7] (see Remark 3.4.1(b)). In both approaches we do not
necessarily generate feasible points for each considered subdivision set. Therefore,
we do not know how the sequence{ηk}k∈IN behaves. Since in Algorithm 5.1
we consider the formulation of Problem (PP) given on page 210 we can use each
point belonging to the current hyperrectangle in order to update the lower bound
ηk (k ∈ IN). This guarantees that the sequence{ηk}k∈IN converges to the optimal
valuet?(n) in the infinite case.

As a consequence of the convergence result presented above it is immediately
clear that, for eachε > 0, Algorithm 5.1 generates anε-optimal solutionxk in
finite time. In the following sections we describe the details of the calculation
of the upper bounds and the details of the diverse subdivision set manipulation
strategies, which we used in our implementation of Algorithm 5.1. In order to
guarantee a correct functioning of the suggested approach we will have to show at
the respective places that the postulated conditions are fulfilled.

218 PACKING EQUAL CIRCLES IN A SQUARE

5.4. Upper Bounds

In this section we describe the calculation of an upper bound for the optimiza-
tion problem

max t

t− ‖xi − xj‖22 ≤ 0 1 ≤ i < j ≤ n
xi ∈ Ri i = 1, . . . , n

η ≤ t ≤ µ ,

(SP’)

where, fori ∈ {1, . . . , n}, Ri = [li1 , Li1] × [li2 , Li2] (0 ≤ lij ≤ Lij ≤ 1,
j ∈ {1, 2}) is a two-dimensional rectangle, andη > 0 andµ ≤ 4 are real numbers.
This problem coincides with Subproblem (SP) in the description of Algorithm 5.1
in the previous section.

We calculate an upper bound of (SP’) by solving an LP-relaxation of this prob-
lem. In order to obtain such a relaxation we need for any concave quadratic con-
straint

t− ‖xi − xj‖22 ≤ 0

(1 ≤ i < j ≤ n) a piecewise affine convex functionhij : IR × IR2 × IR2 → IR
with the property

{(t, xi, xj)T ∈ [η, µ]×Ri ×Rj : t− ‖xi − xj‖22 ≤ 0}
⊂ {(t, xi, xj)T ∈ [η, µ]×Ri ×Rj : hij(t, xi, xj) ≤ 0} .

(5.4.1)

In order to simplify the presentation we ignore at first the indicesi, j and consider
one concave quadratic constraint

g(t, x, y) := t− ‖x− y‖22 ≤ 0 ,

where(t, x, y)T is restricted to the set[η, µ]×Rx ×Ry with

Rx := [lx1 , Lx1]× [lx2 , Lx2]
and

Ry := [ly1 , Ly1]× [ly2 , Ly2] .

In order to construct a piecewise affine convex functionh such that

F := {(t, x, y)T ∈ [η, µ]×Rx ×Ry : t− ‖x− y‖22 ≤ 0}
⊂ {(t, x, y)T ∈ [η, µ]×Rx ×Ry : h(t, x, y) ≤ 0} ,

(5.4.2)

5.4. UPPERBOUNDS 219

let us examine the quadratic part ofg, i.e., consider the function̄g : IR2× IR2 → IR
given by

ḡ(x, y) := ‖x− y‖22 = (x1 − y1)2 + (x2 − y2)2
over the4-dimensional rectanglēR := Rx × Ry. Substitutingv for the term
(x1 − y1) andw for (x2 − y2) we can interpret̄g as a two-dimensional function
ĝ : IR2 → IR with

ĝ(v, w) := v2 + w2 .

According to the feasible region ofx andy the new variables are restricted as fol-
lows

−1 ≤ lv := lx1 − Ly1 ≤ v ≤ Lx1 − ly1 =: Lv ≤ 1

−1 ≤ lw := lx2 − Ly2 ≤ w ≤ Lx2 − ly2 =: Lw ≤ 1 .

If a piecewise affine function̂h : IR2 → IR with the properties

• ĥ is concave, i.e., the minimum of a finite number of affine functions,
• there holds, for any

(
v
w

) ∈ R̂ := [lv, Lv]× [lw, Lw],

ĥ(v, w)

{
≥ µ , if ĝ(v, w) ≥ µ
≥ ĝ(v, w) , if η ≤ ĝ(v, w) < µ

, (5.4.3)

is given, we obtain by setting

h(t, x, y) := t− ĥ(x1 − y1, x2 − y2)
a functionh fulfilling (5.4.2). Note that if there is a point(t, x, y)T ∈ [η, µ]×Rx×
Ry with ḡ(x, y) ≥ µ andg(t, x, y) ≤ 0, then – regarding (5.4.3) – there holds
ĥ(x1 − y1, x2 − y2) ≥ µ and henceh(t, x, y) ≤ 0. Note further that there does not
exist a point(t, x, y)T ∈ [η, µ]×Rx ×Ry with ḡ(x, y) < η andg(t, x, y) ≤ 0.

In the next part of this section we describe the construction of a piecewise
affine concave function̂h with Property (5.4.3) in detail. Denote by

V (R̂) = {
(
lv
lw

)
,

(
Lv
lw

)
,

(
Lv
Lw

)
,

(
lv
Lw

)
} = {v1, v2, v3, v4}

the set of vertices of the two-dimensional rectangleR̂ and assume, without loss of
generality, that there holds

ĝ(v1) = max
z∈R̂

ĝ(z) . (5.4.4)

Note that a convex function always attains its maximum over a polytopeP in a
vertex ofP [HPT95, Theorem 1.19].

220 PACKING EQUAL CIRCLES IN A SQUARE

If an affine functioǹ : IR2 → IR, `(z) = aT z + b coinciding in three vertices
of R̂ with the function values of̂g is given, it follows by straightforward calculation
that` also coincides witĥg in the fourth vertex, i.e., for eachi ∈ {1, . . . , 4}, there
holds

`(vi) = ĝ(vi) . (5.4.5)

PROOF OF(5.4.5): If, for i ∈ {1, 2, 3}, there holds̀ (vi) = ĝ(vi), we obtain

`(v1) = a1lv + a2lw + b = l2v + l2w = ĝ(v1)

`(v2) = a1Lv + a2lw + b = L2
v + l2w = ĝ(v2)

`(v3) = a1Lv + a2Lw + b = L2
v + L2

w = ĝ(v3) ,

and therefore

ĝ(v4) = l2v + L2
w = `(v1) − `(v2) + `(v3)

= a1lv + a2Lw + b = `(v4)
2

REMARK 5.4.1. The functioǹ is the concave envelope ofĝ on the rectangle
[v1, v2, v3, v4] (see Subsection 1.2.4). Note that the concave envelope of a separable
function f : IRn → IR, f(x) =

∑n
i=1 fi(xi) on a rectangleR = {x ∈ IRn :

li ≤ xi ≤ Li , i = 1, . . . , n} is the sum of the concave envelopes of each part
fi : IR→ IR of f on the interval[li, Li] (i = 1, . . . , n) [HT96B, Theorem IV.8].

Because of Relation (5.4.5) it is obvious that the affine function` is an over-
estimating function for̂g on the whole rectanglêR, and especially that̀ fulfills
(5.4.3). Hence the simplest way in order to obtain the required functionĥ is to take
the function` itself. However, in some circumstances it is possible to "improve"
this overestimator, where "improve" is meant in the sense of a concave approxima-
tion of ĝ with respect to the feasible regionF , which has function values smaller
than or equal tò. Considering the structure ofF we recognize that it is not neces-
sary to overestimatêg on the whole rectanglêR, as we do by choosing̀. We only
need a concave overestimator for the function

min{µ , ĝ(v, w) } (5.4.6)

on the setR̂ ∩ {(vw) ∈ IR2 : ĝ(v, w) ≥ η} (see Figure 5.7 and compare with

Property (5.4.3)). Note that all points
(
v
w

) ∈ R̂ with a function valuêg(v, w)
lower thanη (see the bottom of the functioñg in Figure 5.7) are infeasible, i.e.,
F ∩ {(vw) ∈ IR2 : ĝ(v, w) < η} = ∅.

5.4. UPPERBOUNDS 221

FIGURE 5.7. The relevant function

0

0.2

0.4

0.6

0.8

1

-1

-0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0

0.

0

0

v

g̃(v,w)

w

g̃(v, w) = min{µ,max{ĝ(v, w), η} }
with (v, w)T ∈ [0, 1]× [−1, 1]

Depending on the function values ofĝ in the vertices of̂R ⊂ [−1, 1]× [−1, 1]
we distinguish four main cases.

Case 1: ĝ(vi) < η , i ∈ {1, . . . , 4} (see Figure 5.8)

Sinceĝ is a convex function it follows immediately that, for each(v, w)T ∈ R̂,
there holdŝg(v, w) < η. This impliesF = ∅. In this case it is not necessary to
construct a function̂h because we do not need an upper bound for Problem (SP’).

Case 2: ĝ(vi) ≥ µ , i ∈ {1, . . . , 4} (see Figure 5.9(a))

Since, for any(v, w)T ∈ R̂, there holds

min{µ , max{ĝ(v, w), η} } ≤ µ ,

we obtain by settinĝh ≡ µ a constant function with Property (5.4.3). This function
is a better approximation of̂g with respect to the feasible regionF than the affine
function`. Moreover, there is no possibility to further improveĥ without losing the

222 PACKING EQUAL CIRCLES IN A SQUARE

FIGURE 5.8. Case 1

−1

R̂

v3

1

1

v1

v4

v2

The dotted cir-
cle displays the
contourline for
ĝ(v, w) = η and
the solid circle
for ĝ(v, w) = µ.

FIGURE 5.9. Case 2 and 3

−1

v2v1

v3v4

R̂

1

1

(a) Case 2

v4

R̂

v3

v1 v2

−1

1

1

(b) Case 3

concavity.

Case 3: η ≤ ĝ(vi) ≤ µ , i ∈ {1, . . . , 4} (see Figure 5.9(b))

In this situation the previously defined affine function` is the best approximation
of ĝ fulfilling (5.4.3). As in Case 2 it is not possible to improveĥ ≡ ` and preserve

5.4. UPPERBOUNDS 223

simultaneously the concavity ofĥ.

Case 4: ∃i, j ∈ {1, . . . , 4} with (ĝ(vi) > µ andĝ(vj) < µ) (see Figure 5.10(a))
or (ĝ(vi) < η andĝ(vj) > η) (see Figure 5.10(b))

In this situation the affine functioǹis not the best concave approximation ofĝ with

FIGURE 5.10. Case 4

−1

v4

R̂

v3

v1 v2

1

1

(a)µ3η0

−1

v1 v2

v3v4

R̂

1

1

(b) µ1η2

Property (5.4.3). Using a piecewise affine function we are able to improve`. It is
possible that up to three verticesvi of R̂ have a function valuêg(vi) bigger than
µ or that up to three vertices have a function value smaller thanη. Depending on
the number of vertices of̂R with a function value bigger or smaller thanµ or η,
respectively, there are hence 12 possible subcases (see Table 5.1).

To depict the rather simple ideas in order to obtain a better approximation
of ĝ we describe the construction of the functionĥ for Subcaseµ0η1 in detail
(compare with Figure 5.11). Letv5 andv6 be the intersection points of the level
curve{(v, w) ∈ [−1, 1]×[−1, 1] : ĝ(v, w) = η}with the boundary of the rectangle
R̂ and assume at first that there holds

v5 ∈ relint([v2, v3])
(5.4.7)

v6 ∈ relint([v3, v4])

224 PACKING EQUAL CIRCLES IN A SQUARE

TABLE 5.1. Possible subcases

Subcase |{i ∈ {1, . . . , 4} : ĝ(vi) > µ}| |{i ∈ {1, . . . , 4} : ĝ(vi) < η}|
µ0η1 0 1
µ0η2 0 2
µ0η3 0 3
µ1η0 1 0
µ1η1 1 1
µ1η2 1 2
µ1η3 1 3
µ2η0 2 0
µ2η1 2 1
µ2η2 2 2
µ3η0 3 0
µ3η1 3 1

(for the definition of the relative interior (relint) of a set we refer to [ROC70]). The
points belonging to the triangle formed byv3, v5 andv6 – except the pointsv5 and
v6 themselves – (see the shaded region in Figure 5.11) are not feasible. Therefore,
it is not necessary to overestimateĝ on this region. If we kink the affine functioǹ
along the line betweenv2 andv4 and pull down the part lying over[v2, v4, v5, v6]

FIGURE 5.11. Caseµ0η1

���
���
���
���

−1

R̂
v1 v2

v6

v5

1

1

v4 v3

5.4. UPPERBOUNDS 225

as much as possible, we improve the approximation ofĝ over the feasible region
F .

Let us explain this strategy now in a more technical way. Let`1 be the affine
function, which coincides with the function̂g at the verticesv1, v2 andv4, i.e.,
`1 ≡ `. Let further`21 be the affine function, which coincides at the pointsv2, v4
andv5 with ĝ and, analogously,̀22 be the affine function coinciding witĥg at the
pointsv2, v4 andv6. The affine functions̀21 and`22 are by construction equal
along the line joining the pointsv2 andv4. This line splits the two-dimensional real
spaceIR2 into two halfspaces, where the pointsv5 andv6 belong to the same of
these halfspaces. Therefore, one of the following relations have to be satisfied

`21(v6) ≥ `22(v6) = ĝ(v6) (5.4.8.a)

or

`22(v5) ≥ `21(v5) = ĝ(v5) . (5.4.8.b)

If (5.4.8.a) is fulfilled, we set̀ 2 := `21. Otherwise we choosè2 := `22. It is
immediately clear that̂h1 : R̂→ IR given by

ĥ1(v) :=min{`1(v), `2(v)}

=

{
`1(v) , if v ∈ [v1, v2, v4]

`2(v) , if v ∈ [v2, v4, v3]

is a piecewise affine concave function satisfying Property (5.4.3).
Assume now, without loss of generality, that (5.4.8.a) is true, i.e., we choose

`2 ≡ `21. We are able to improvêh1 further by kinking̀ 2 along the line betweenv4
andv5 and now pulling down the part over[v4, v5, v6]. Let `3 be the affine function
coinciding withĝ at the pointsv4, v5 andv6. It follows by the same arguments as
before that̂h : R̂→ IR

ĥ(v) :=min{ĥ1(v), `3(v)}

=

`1(v) , if v ∈ [v1, v2, v4]

`2(v) , if v ∈ [v2, v4, v5]

`3(v) , if v ∈ [v3, v4, v5]

is also a piecewise affine function fulfilling (5.4.3). This function has the additional
property that, for eachv ∈ [v5, v6, v3], there holds

ĥ(v) ≤ η . (5.4.9)

226 PACKING EQUAL CIRCLES IN A SQUARE

If Assumption (5.4.7) is not true, we can simplify the definition ofĥ as de-
scribed in the following cases:

Case 1: v5 = v2 andv6 ∈ relint([v3, v4])

ĥ(v) := min{`1(v), `22(v)} , v ∈ R̂
Case 2: v6 = v4 andv5 ∈ relint([v2, v3])

ĥ(v) := min{`1(v), `21(v)} , v ∈ R̂
Case 3: v5 = v2 andv6 = v4

ĥ(v) := `1(v) , v ∈ R̂
In the described manner we are able to construct the required functionĥ for Case
µ0η1 by a minimum of up to three affine functions. The construction ofĥ in the
remaining eleven cases (see again Table 5.1) follows the same ideas.

REMARK 5.4.2. Note that there is one difference in the argumentation, if we
construct the function̂h for the cases where at least one vertex ofR̂ has a function
value bigger thanµ, i.e., if there holdsg(v1) > µ (see (5.4.4)). Let us consider
Caseµ1η0 in order to explain this difference. Denote byv5 andv6 the intersection
points of the level curve{(v, w) ∈ [−1, 1] × [−1, 1] : ĝ(v, w) = µ} with the
boundary of the rectanglêR (see Figure 5.12) and let∆ be the triangle formed by
the pointsv1, v5 andv6. According to the described ideas we pull down twice the

FIGURE 5.12. µ1η0

��
��
��
��

−1

v4

v1

v3

v2v5

v6
R̂

1

1

affine functioǹ over the triangle∆. In Caseµ0η1 this operation was allowed since

5.4. UPPERBOUNDS 227

all elements of the shaded triangle in Figure 5.11 were infeasible. In contrast to this
in the present case the points belonging to∆ are feasible (see the shaded region in
Figure 5.12). However, the elements of∆ have function values with respect to
ĝ bigger than or equal toµ. Regarding the structure of the feasible regionF it is
hence not necessary to overestimateĝ on the triangle∆ (compare with (5.4.6)). It is
sufficient if the function̂h is bigger than or equal toµ on this set. The application
of the described ideas leads obviously to a functionĥ – minimum of up to three
affine functions – fulfilling, for eachv ∈ ∆,

ĥ(v) ≥ µ

(compare with Relation (5.4.9)). Therefore, in the cases withĝ(v1) > µ the con-
cave overestimating function̂h for the functionĝ on the setF can be constructed
using the same ideas as described in Caseµ0η1.

Table 5.2 shows the maximum number of affine functions needed for the con-
struction of̂h in each subcase. These maximum numbers coincide with the number

TABLE 5.2. Maximum number of affine functions

Subcase maximum number Subcase maximum number

µ0η1 3 µ1η3 2
µ0η2 2 µ2η0 2
µ0η3 1 µ2η1 3
µ1η0 3 µ2η2 2
µ1η1 4 µ3η0 1
µ1η2 3 µ3η1 2

of triangles we use in order to partition the region ofR̂, whereĝ has function values
not smaller thanη and not greater thanµ. The choice of this triangle partition de-
pends on the function values ofĝ in the relevant corner points, as we have described
in detail for the construction of̂h in Caseµ0η1.

Consider now again the optimization problem (SP’). In the described way we
are able to build for each pair (i, j) (1 ≤ i < j ≤ n) the required piecewise affine
functionhij : IR × IR2 × IR2 → IR satisfying Condition (5.4.1), which is needed
in order to obtain an upper bound for Problem (SP’). It follows immediately that

228 PACKING EQUAL CIRCLES IN A SQUARE

the solutionµR of the optimization problem

max t

hij(t, xi, xj) ≤ 0 1 ≤ i < j ≤ n
xi ∈ Ri i = 1, . . . , n

η ≤ t ≤ µ ,

(LSP’)

delivers such an upper bound for the optimal value of (SP’). Note that (LSP’) can
be formulated as a linear program, sincehij is a maximum of a finite number of
affine functions.

In Section 5.3 we pointed out that it is necessary for a correct functioning of
Algorithm 5.1 that the described upper boundsµR satisfy Condition (C2). This is
ensured by the following lemma.

LEMMA 5.4.1. Let {Rk = Rk1 × . . . × Rkn}k∈IN be an infinite sequence of
2n-dimensional hyperrectangles withR1 ⊂ Un andRk ⊃ Rk+1 for eachk ∈ IN.
Assume further that there exists a points = (s1, . . . , sn)T ∈ Un satisfying

lim
k→∞

Rk = {s} (5.4.10)

Then there holds

lim
k→∞

µRk = f(s) = min
1≤i<j≤n

‖si − sj‖22 . (5.4.11)

PROOF: Let, for1 ≤ i < j ≤ n, `R
k

ij : IR2 → IR be the affine functioǹ with
respect to the rectanglesRki andRkj , i.e., for eachl ∈ {1, . . . , 4} there holds

`R
k

ij (vijR
k

l) = (vijR
k

l1
)2 + (vijR

k

l2
)2 = ‖vijRk

l ‖22 , (5.4.12)

wherevijR
k

l is a vertex of the rectangleRki − Rkj = [lki1 − Lkj1 , L
k
i1 − lkj1] ×

[lki2 − Lkj2 , Lki2 − lkj2]. According to the construction of̂h we know that, for each
1 ≤ i < j ≤ n, xi ∈ Rki , xj ∈ Rkj andt ∈ [ηk, µk], there holds

hR
k

ij (t, xi, xj) ≥ t− `Rk

ij (xi1 − xj1 , xi2 − xj2)
= t− `Rk

ij (xi − xj) .
(5.4.13)

From (5.4.10) and (5.4.12) it follows immediately, for each1 ≤ i < j ≤ n and
l ∈ {1, . . . , 4}, that

`R
k

ij (vijR
k

l) → ‖si − sj‖22 (k →∞) . (5.4.14)

5.4. UPPERBOUNDS 229

Since, for each1 ≤ i < j ≤ n andk ∈ IN, the affine functioǹ Rk

ij attains its
maximum over the rectangleRki − Rkj in a vertex of this set, i.e.,

max
w∈Rk

i
−Rk

j

`R
k

ij (w) = max
l=1,... ,4

`R
k

ij (vijR
k

l) , (5.4.15)

we obtain – taking (5.4.10) and (5.4.14) into account – that the following relation
is satisfied, for each1 ≤ i < j ≤ n,

max
xi ∈ Rk

i

xj ∈ Rk
j

`R
k

ij (xi − xj) → ‖si − sj‖22 (k →∞) . (5.4.16)

The points is an element of each hyperrectangleRk (k ∈ IN). Hence, we know
thatf(s) is bounded from above byµRk (k ∈ IN). Regarding (5.4.13) and (5.4.16)
we can conclude

f(s) ≤ µRk = max
hRk

ij (t, xi, xj) ≤ 0

x ∈ Rk

t ∈ [ηk , µk]

t ≤ max
hRk

ij (t, xi, xj) ≤ 0

x ∈ Rk

t

≤ max
t − `Rk

ij (xi − xj) ≤ 0

x ∈ Rk

t = max
x∈Rk

min
1≤i<j≤n

`R
k

ij (xi − xj)

≤ min
1≤i<j≤n

max
xi ∈ Rk

i

xj ∈ Rk
j

`R
k

ij (xi − xj)

︸ ︷︷ ︸
↓ (k → ∞)

‖si − sj‖2
2︸ ︷︷ ︸

↓ (k → ∞)

f(s)

,

which proves Relation (5.4.11). �

Considering the structure of Problem (PP), respectively of Subproblem (SP),
we were able to construct upper bounds, which can expect to be better than those
obtained by a general approach for all-quadratic programs (see, e.g., [AKLV95,
ST92]). In the subsequent two sections we will see that the examination of the

230 PACKING EQUAL CIRCLES IN A SQUARE

structure of (PP) can also be exploited for the subdivision of the current hyperrect-
angleRk. Doing this we will be able to substantially reduce the effort for solving
Problem (PP) with Algorithm 5.1. However, we have to keep in mind that the
subdivision set manipulation strategies introduced in Sections 5.5 and 5.6 fulfill
Condition (C1) and Condition (C3).

5.5. Subdivision Strategies

LetRk = Rk1 × . . .×Rkn be the current hyperrectangle considered in iteration
k ∈ IN of Algorithm 5.1. As pointed out in the description of our approach (see
Section 5.3) we choose in Step II an indexj ∈ {1, . . . , n} such that the rectangle
Rkj = [lkj1 , L

k
j1]× [lkj2 , L

k
j2] has the longest edge-length among all rectangles form-

ingRk. In Step III of Algorithm 5.1 we subdivide this rectangle in order to obtain
a subdivision of the hyperrectangleRk. However, until now we did not say how we
do that.

In the present section we describe the strategy applied for splitting the chosen
rectangleRkj into a finite number of subrectangles. In order to simplify the pre-
sentation we ignore the iteration counterk in the following. We start this section
with a description of the basic strategy leading to a partition ofRj . After this we
discuss some special features of our subdivision strategy. Exploiting the structure
of Problem (PP) they enable us to avoid redundant computations.

5.5.1. Basic Strategy.If the two-dimensional rectangleRj coincides with the
unit squareU , we construct a partition ofRj (see Definition 1.2.1) consisting of
the four squares

U1 = [0.0, 0.5]× [0.0, 0.5]

U2 = [0.5, 1.0]× [0.0, 0.5]

U3 = [0.0, 0.5]× [0.5, 1.0]

U4 = [0.5, 1.0]× [0.5, 1.0] .

(5.5.1)

(see Figure 5.13(a)). Note that in Algorithm 5.1 the rectangleRj is initialized
with U = [0, 1]2. In the next level, i.e., ifRj is equal to one of the squares
U1, U2, U3 or U4, we obtain a refined partition by constructingm2 squaresŪl
(l ∈ {1, . . . ,m2}) with equal size and edge-length0.5m . The choice of the integer
m with m ≥ 2 depends on the value of the first lower boundη0 > 0 determined
by the first best known solution for (PP) (see the initialization phase of Algorithm
5.1). This choice shall assure that the squared diameter ofŪl (l ∈ {1, . . . ,m2}) is

5.5. SUBDIVISION STRATEGIES 231

FIGURE 5.13. Basic subdivision strategy

U3

U1 U2

U4

1.0

0.5 1.0

0.5

0.0

(a)Rj = U

0.5

0.5

0.0

<
√
η0

(b) Rj = U1, m = 3

smaller thanη0 (see Figure 5.13(b)). For that reason we choosem as the solution
of the optimization problem

min m(
Lj1−lj1

m

)2

+
(
Lj2−lj2

m

)2

< η0

m ∈ IN ,m ≥ 2 .

Selectingm in this way we know that at most one memberx?k of an optimal solu-
tion (x?1, . . . , x

?
n)T ∈ Un of Problem (PP) can belong to one of these squaresŪl

(l ∈ {1, . . . ,m2}).
REMARK 5.5.1. In our numerical tests it was sufficient to choosem = 2 for

n ≤ 13 andm = 3 for n ≤ 27.

In deeper levels, i.e., ifRj has a maximal edge-length smaller than or equal
to 0.5

m , we subdivideRj again into four rectangles with equal size by bisecting the
edges of this rectangle.

REMARK 5.5.2. As we will see in Section 5.6, it is possible thatRj shrinks
to an interval, i.e., to a one-dimensional rectangle. In these cases we simply split
Rj by halving this interval.

The reason for choosing a partition consisting of more than four squares in the
second level has a heuristical nature. Our numerical tests showed that this strategy
– in connection with the following special features and the possible reductions of

232 PACKING EQUAL CIRCLES IN A SQUARE

the size of relevant rectangles discussed in Section 5.6 – has a much better running-
time performance than the simpler strategy, whereRj is always divided into four
squares.

For the implementation of the following special features it is essential that at
least in the first level we use squares as partition sets instead of two-dimensional
rectangles with different edge-length, as it is done in [DGPWM91].

5.5.2. Special Features.Because of the special structure of Problem (PP)
there are many optimal solutions differing only by the numbering of their mem-
bers or differing by a rotation or a reflection.

Consider the casen = 6. An optimal solution of Problem (PP) is given by

x1 =
(

0
0

)
, x2 =

(
1
3
1
2

)
, x3 =

(
2
3

0

)
, x4 =

(
1
1
2

)
,

(5.5.2)

x5 =
(

0
1

)
, x6 =

(
2
3

1

)
, t = 13

36

(see Figure 5.14(a)). Setting, for eachi ∈ {1, . . . , 5}, x̄i := xi+1 andx̄6 := x1

FIGURE 5.14. Same solutions with different numbering

x2

x3

x4

x1

x5 x6

0 1

1

(a) Numbering 1

x̄1

x̄2

x̄3

1

1

0 x̄6

x̄4 x̄5

(b) Numbering 2

we obtain the "same" optimal solution (see Figure 5.14(b)). The membersxi of an
optimal solution are permutable. However, for the solution of the point scattering
problem it is sufficient if we detect one of thesen! optimal solutions. Hence, we
need a subdivision strategy, which guarantees aunique numbering.

5.5. SUBDIVISION STRATEGIES 233

In order to illustrate the problem of possible rotations and reflections consider
again the casen = 6. There are8 possible symmetric arrangements of an optimal
solution(x1, . . . , xn)T ∈ Un in the unit squareU . For the optimal solution given

FIGURE 5.15. Solutions differing by rotation

x2

x3

x4

x1

x5 x6

0 1

1

(a)0◦ rotation

x5

x2

x1

x3x6

x41

10

(b) 90◦ rotation

x5

x2x4

x3 x1

0 1

1

x6

(c) 180◦ rotation

1

1

x5x1

x4

x3 x6

x2

0

(d) 270◦ rotation

in (5.5.2) (see Figure 5.15(a)), there are three possible rotations (Figures 5.15(b)-
5.15(d)) and four reflections (Figures 5.16(a)-5.16(d)). For Algorithm 5.1 it would
be sufficient, if only one of these possibilities is considered. Therefore, we need
also a strategy, which avoids that Algorithm 5.1 looks for more than one of these
symmetric solutions. Note that these reflections and rotations are the results of
orthogonal transformations, which do not change the Euclidean distances between
the members of a pointx ∈ Un.

234 PACKING EQUAL CIRCLES IN A SQUARE

FIGURE 5.16. Solutions differing by reflection

x1

x4

x6 x5

0 1

1

x3

x2

(a) Reflection along
[(

0.5
0

)
,
(
0.5
1

)]
x6x5

x1 x3

0 1

1

x2 x4

(b) Reflection along[
(

0
0.5

)
,
(

1
0.5

)
]

0

1

1

x1x5

x4

x6 x3

x2

(c) Reflection along[
(
0
1

)
,
(
1
0

)
]

x1

x2

x5

x6x3

x41

0 1

(d) Reflection along[
(
0
0

)
,
(
1
1

)
]

REMARK 5.5.3. The arrangements displayed in Figure 5.15 and in Figure
5.16 differ only by the numbering of the members of the solution(x1, . . . , xn)T

(compare, e.g., Figures 5.15(a) and 5.16(b)). Consequently, one could assume that
a unique numberingstrategy also reduces the number of possible symmetric ar-
rangements, and it would be thus not necessary to consider all displayed cases in
a symmetry avoiding strategy. However, the fact that the reflections lead only
to a different numbering in comparison with the rotations depends on the special
structure of the considered solution forn = 6. This solution is symmetric itself. If
an optimal solution for Problem (PP) is not symmetric, as it is for example the case
for n = 10 (see Figure 5.17), then there exist8 completely different arrangements.

5.5. SUBDIVISION STRATEGIES 235

FIGURE 5.17. A solution of Problem (PP) forn = 10

ad 5.15(a) ad 5.15(b) ad 5.15(c) ad 5.15(d)

ad 5.16(a) ad 5.16(b) ad 5.16(c) ad 5.16(d)

In the following we would like to sketch how we obtain the required unique
numbering and how we try to avoid the appearance of symmetric solutions. We
stress that the elimination of redundant solutions is crucial for the efficiency of
Algorithm 5.1 (see also Remark 5.6.1 in the next section). The algorithm necessar-
ily refines the branch-and-bound tree near all optimal solutions that have not been
identified as "simple modifications" of each other. Thus the amount of time saved
by eliminatingk − 1 of k solutions is nearly a factor ofk.

Unique Numbering. In order to describe the simple idea of this special strat-
egy let us assume that a hyperrectangle

R = R1 × · · · ×Rn
is given such that, for eachi ∈ {1, . . . , n}, the rectangleRi is subdivided twice,
i.e.,Ri is the result of a subdivision of one of the four squaresUi (i = 1, . . . , 4) (see
(5.5.1)). Taking the basic strategy into account it follows that, for each rectangle
Ri (i ∈ {1, . . . , n}), there exists a unique squarēUi ⊂ U with edge length0.5

m

satisfyingRi ⊂ Ūi. If we identify each of the4m2 possible squares̄U with a

236 PACKING EQUAL CIRCLES IN A SQUARE

unique numberno(Ū) and require that, for anyi = 1, . . . , n− 1, there holds

no(Ūi) < no(Ūi+1) , (5.5.3)

then we are able to guarantee a unique numbering of the rectangles forming the
hyperrectangleR.

Let us illustrate this approach with an example. Consider again the casen = 6
and assume thatm is chosen as2. In this situation there are16 possible squares
Ū . Numbering these possibilities as shown in Figure 5.18 and requiring that (5.5.3)

FIGURE 5.18. Unique numbering

2 5 6

8743

9 10 13 14

1612 1511

1

1

0 1

is true, we see that solution̄x displayed in Figure 5.14(b) is not possible. Indeed,
x̄ is a member of the hyperrectanglēR = R̄1 × · · · × R̄6 given in Figure 5.19(b)
with the propertyno(Ū6) < no(Ū1). This violates Condition (5.5.3). On the other

FIGURE 5.19. Different numberings

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

R3

0 1

1

R5 R6

R4

R1

R2

(a) Possible

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

0 1

1

R̄6

R̄4 R̄5

R̄3

R̄2

R̄1

(b) Impossible

��
��
��

��
��
��

��
��
��
��

��
��
��
��
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

R̂3

0 1

1

R̂1

R̂4 R̂6

R̂5

R̂2

(c) Possible

hand, a numbering of solutionx as in Figure 5.14(a) is allowed, since this point is
contained in the hyperrectangleR = R1 × · · · ×R6 shown in Figure 5.19(a).

5.5. SUBDIVISION STRATEGIES 237

As mentioned before, this strategy guarantees a unique numbering of the rect-
anglesRi forming the considered hyperrectangleR. Unfortunately, this strategy
is not able to ensure a unique numbering of an optimal solution, i.e., Algorithm
5.1 using this strategy can still look for several solutions of Problem (PP) differing
only by the numbering of their members. Indeed, with respect to the basic strat-
egy we know that each squarēU resulting from the second partition ofU contains
at most one member of an optimal solution. However, if a member of an optimal
solution belongs to the boundary of such a squareŪ , this set is not unique, as it is
the case forxi =

(
0.3̄3
0.5

)
or xj =

(
1.0
0.5

)
in our present example. In such a situation

our strategy does not guarantee a unique numbering of the optimal solution. The
numbering of the hyperrectanglêR = R̂1×· · ·×R̂6 given in Figure 5.19(c) fulfills
also Property (5.5.3). Hence, Algorithm 5.1 – even using this unique numbering
strategy – has to detect an optimal solution in hyperrectangleR (Figure 5.19(a))
as well as in hyperrectanglêR (Figure 5.19(c)). Nevertheless, this special feature
strongly reduces the necessary effort for solving Problem (PP). Note that we elim-
inate till the second partitioning leveln!− 1 of n! possible hyperrectangles.

Symmetry Avoiding Strategy. Let

R = {R = R1 × · · · ×Rn ⊂ U2n,

Ri = [li1 , Li1]× [li2 , Li2] ⊂ U , i = 1, . . . , n}

be the set of all possible2n-dimensional hyperrectangles. The symmetries result-
ing from the relevant rotations and reflections (see again Figure 5.15 and Figure
5.16) can be interpreted as an equivalence relation∼ on the setR.

R,Q ∈ R : R ∼ Q ⇐⇒
R is the result of one of the three possible
rotations ofQ or the result of one of the
four possible reflections ofQ

The equivalence relation∼ divides R into equivalence classesRι (ι ∈ I,

I index set), i.e.,

• Rι ⊂ R, ∀ι ∈ I
• R ∼ Q, ∀R,Q ∈ Rι, ι ∈ I
• Rι ∩Rκ = ∅, ∀ι, κ ∈ I, ι 6= κ

• ⋃ι∈I Rι = R .

238 PACKING EQUAL CIRCLES IN A SQUARE

Obviously, it is sufficient for a correct functioning of Algorithm 5.1 if this
method considers only one member of the equivalence classesRι, which are rele-
vant during the execution of our approach. We developed a strategy able to decide
whether a given hyperrectangleR = R1 × · · · × Rn in a node of the branch-and-
bound tree is aspecialrepresentative of an equivalence class or not. Let us shortly
sketch the basic ideas of this strategy.

Assume at first that we are in a situation such that the current hyperrectangle
R is given as the Cartesian product of the squaresUi (i ∈ {1, . . . , 4}) (see (5.5.1)),
i.e., each memberRi of R has been subdivided once. If the previously described
unique numbering strategy is applied, then we know that there are three integersi1,
i2, i3 ∈ {1, . . . , n+ 1} (i1 ≤ i2 ≤ i3) satisfying

Ri = U1 i = 1, . . . , i1 − 1 ,

Ri = U2 i = i1, . . . , i2 − 1 ,

Ri = U3 i = i2, . . . , i3 − 1
and

Ri = U4 i = i3, . . . , n .

Note that the unique numbering strategy can also be applied for hyperrectangles
with this structure, even though we described the ideas of this method under the
assumption that each member of the considered hyperrectangle is subdivided twice.
Denote by

C1 := i1 − 1 , C2 := i2 − i1 , C3 := i3 − i2 , C4 := n+ 1− i3
the number of membersRj (j ∈ {1, . . . , n}) of R, which are equal toUi
(i ∈ {1, . . . , 4}). In order to avoid that Algorithm 5.1 considers more than one
representative of the equivalence class of the setR containing the hyperrectangle
R we require that these countersC1, C2, C3 andC4 fulfill special ordering con-
ditions.

Ordering conditions for the first level

C1 ≥ max{C1, C2, C3} (OC1)

C2 ≥ C3 (OC2)

If C1 = C2 ThenC3 ≥ C4 (OC3)

If C1 = C3 ThenC2 ≥ C4 (OC4)

5.5. SUBDIVISION STRATEGIES 239

If a hyperrectangleR = R1 × . . . × Rn does not fulfill (OC1), it is possible to
rotate the rectangles forming this set such that (OC1) is satisfied. Condition (OC2)
can be reached by a reflection along the line

[(
0
0

)
,
(
1
1

)]
and Condition (OC3) is

yielded by a reflection along
[(

0.5
0

)
,
(
0.5
1

)]
. If Condition (OC4) is not satisfied we

can reflect the members ofR along the line
[(

0
0.5

)
,
(

1
0.5

)]
and obtain an element of

the same equivalence class fulfilling this condition. Note that all Conditions (OC1)-
(OC4) are satisfiable simultaneously. The examination of the reflection along the
line

[(
1
0

)
,
(
0
1

)]
in the first level does not lead to another ordering condition. We

could only requireC1 ≥ C4. However, this is fulfilled regarding Condition (OC1)
and thus unnecessary.

Let us illustrate these conditions for the casen = 6. As mentioned before, we
would like to avoid that Algorithm 5.1 tries to determine the solutions displayed
in Figures 5.15(b)-5.15(d). In order to detect these solutions Algorithm 5.1 has to
generate the hyperrectangles

R1 = U1 × U1 × U2 × U2 × U3 × U4 ,

R2 = U1 × U2 × U2 × U3 × U4 × U4 ,

R3 = U1 × U2 × U3 × U3 × U4 × U4 ,

R4 = U1 × U1 × U2 × U3 × U3 × U4 ,

R5 = U1 × U2 × U2 × U3 × U3 × U4

and

R6 = U1 × U1 × U2 × U3 × U4 × U4 .

(see Figure 5.20). Only the hyperrectanglesR1 andR6 satisfy (OC1)-(OC4) si-
multaneously. Indeed,R2,R3 andR5 violate (OC1) andR4 does not fulfill (OC2).
Hence, Algorithm 5.1 eliminates these four sets from further considerations. This
means that only one-third of the hyperrectangles containing optimal solutions have
to be analyzed further. However, because of the special structure of the solution
for n = 6 – x2 andx4 does not belong to a unique squareUi (i ∈ {1, . . . , 4}) –
the remaining hyperrectanglesR1 andR6 still contain the four possible symmetric
arrangements ofx. The solutions given in Figures 5.15(a) and 5.15(c) lie inR1

and all solutions are located withinR6. For that reason we have to examine the
symmetry structure of the relevant hyperrectangles also in the second level.

Assume now that the current hyperrectangleR is given by the Cartesian prod-
uct of n rectangles with edge-length0.5m , i.e., each member ofR is subdivided

240 PACKING EQUAL CIRCLES IN A SQUARE

FIGURE 5.20. Hyperrectangles containing an optimal solution

0 1

1

C1 = 2 C2 = 2

C3 = 1 C4 = 1

(a)R1

0 1

1

C1 = 1

C3 = 1 C4 = 2

C2 = 2

(b) R2

0 1

1

C1 = 1

C3 = 2 C4 = 2

C2 = 1

(c) R3

0 1

1

C1 = 2

C3 = 2 C4 = 1

C2 = 1

(d) R4

0 1

1

C1 = 1

C3 = 2 C4 = 1

C2 = 2

(e) R5

0 1

1

C1 = 2

C3 = 1 C4 = 2

C2 = 1

(f) R6

twice. According to the choice ofm we know that each rectangleRi
(i ∈ {1, . . . , n}) formingR contains at most one member of an optimal solution
of Problem (PP) and hence the rectanglesRi (i ∈ {1, . . . , n} must be different
from each other. Moreover, we know thatR is a child of a hyperrectanglêR, which
has satisfied all conditions in the first level and we know which type of symmetry
are still possible, i.e., with respect to which type of symmetry isR̂ invariant. For
example, in the casen = 6 there holds that forR1 and hence for all its children
only the reflection along the line

[(
0.5
0

)
,
(
0.5
1

)]
can be considered. The other pos-

sible hyperrectangleR6 is invariant with respect to180◦ rotations as well as with
respect to reflections along

[(
0
0

)
,
(
1
1

)]
and along

[(
0
1

)
,
(
1
0

)]
.

In order to avoid that Algorithm 5.1 examines more than one representative of
the equivalence classes containing hyperrectangles with the described structure we
assign to each squareUi (i ∈ {1, . . . , 4}) a number, as we did in the first level.
However, this number is not a pure integer anymore. We use binary representations
of integer values with a length ofm2. An element of them2-dimensional binary

5.5. SUBDIVISION STRATEGIES 241

vector corresponds to one of them2 possible subsquares obtained by partitioning
Ui (i ∈ {1, . . . , 4}) according to the basic strategy. Such an element is set to1,
if the corresponding square is a member ofR, and0 otherwise. Consider the case
m = 2. We have4 possible subsquares of edge-length0.25 for each squareUi
(i ∈ {1, . . . , 4}). In order to examine rotation symmetries we define the vectors
C1, C2, C3, C4 ∈ {0, 1}4 as shown in Figure 5.21. As in the first level we require

FIGURE 5.21. Numbering ofC1, C2, C3, C4 for rotation sym-
metries andm = 2

0

1

1

C32

C13

C11 C12

C14

C34 C44

C24

C21

C22

C43

C23

C31 C33 C42 C41

that the integers given by the binary vectorsC1, C2, C3 andC4 fulfill special or-
dering conditions – likeC1 ≥ max{C2, C3, C4} (compare with Condition (OC1)
for the first level). Note that the numbering of the vectors is chosen such that they
are invariant with respect to the rotations. The same has to be done, if we examine
possible reflections. In these cases we choose form = 2 the numberings given
in Figures 5.22(a)-5.22(d). The resulting integers are also checked, whether they
fulfill special ordering conditions.

It is essential to note that in the cases where more than one type of symmetry
can be examined we have to pay attention that the applied conditions are consistent.
Recognize that in contrast to the first level the integers used here for checking the
ordering conditions can vary for different symmetries. This means that we have to
guarantee that all conditions, which we require, can be fulfilled simultaneously by
at least one element of each relevant equivalence class ofR. This problem leads to
a distinction of many cases in order to formulate these conditions. Therefore, we
abandon an explicit formulation of the used conditions in the present work.

242 PACKING EQUAL CIRCLES IN A SQUARE

FIGURE 5.22. Numbering ofC1, C2, C3, C4 for reflection
symmetries andm = 2

1

0 1

C32

C13

C11 C12

C14

C34 C44

C24

C21

C23

C42

C22

C31 C33 C43 C41

(a) along
[(

0.5
0

)
,
(
0.5
1

)]
0

1

1

C33

C13

C11 C12

C14

C34 C44

C24

C21

C22

C42

C31 C32 C41

C23

C43

(b) along
[(

0
0.5

)
,
(

1
0.5

)]

0

C13

C11 C12

C14

C44 C42

C43 C41

1

1

(c) along
[(

0
1

)
,
(
1
0

)]

1

1

C33 C34

C24

C21

C22

C23

C31 C32

0

(d) along
[(

0
0

)
,
(
1
1

)]

REMARK 5.5.4.

(a) If m is different from2, as it is the case for numerically interesting num-
bers of points (see Remark 5.5.1), we have to adjust the numbering of the
m2-dimensional binary vectorsC1,C2,C3 andC4 according to the previ-
ous ideas. Moreover, theconsistentordering conditions, which we require
to be fulfilled, have also to be adapted in these cases.

5.5. SUBDIVISION STRATEGIES 243

(b) If the considered hyperrectangle is a child of a set invariant with respect to
reflections along the line

[(
1
0

)
,
(
0
1

)]
or along

[(
0
0

)
,
(
1
1

)]
, it is also possible to

formulate additional conditions considering the subsquares ofU2 andU3 or
of U1 andU4, respectively, which are not crossed by the reflection line (see
the not-numbered subsquares in Figure 5.22(c) or in Figure 5.22(d)).

Let us finally illustrate the described symmetry avoiding strategy in the second
level for our examplen = 6. The hyperrectanglesR11 andR12 given in Figure
5.23 are children ofR1 and hence possible during the execution of Algorithm 5.1.

FIGURE 5.23. Possible children ofR1 for n = 6

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

0 1

1

(a)R11

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

0 1

1

(b) R12

As we have pointed out before, the hyperrectangleR1 is only invariant with re-
spect to reflections along the line

[(
0.5
0

)
,
(
0.5
1

)]
. According to the numbering of the

4-dimensional binary vectors given in Figure 5.22(a) we obtain:

R11:

C1 = (1, 0, 0, 1)T

C2 = (0, 1, 1, 0)T

C3 = (1, 0, 0, 0)T

C4 = (0, 0, 1, 0)T

R12:

C1 = (0, 1, 1, 0)T

C2 = (1, 0, 0, 1)T

C3 = (0, 0, 1, 0)T

C4 = (1, 0, 0, 0)T

If we use the condition

C1 ≥ C2 ,

we see thatR11 satisfies this condition andR12 violates it. HenceR12 is eliminated
from further considerations and we obtain that the optimal solution given in Figure

244 PACKING EQUAL CIRCLES IN A SQUARE

5.15(c), which was still contained inR1, is with respect to the children of this
hyperrectangle no longer possible.

The hyperrectangleR6 , which fulfills also the ordering conditions in the first
level, can lead to the four hyperrectangles given in Figure 5.24 containing the four

FIGURE 5.24. Possible children ofR6 for n = 6

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

0 1

1

(a)R61

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

0 1

1

(b) R62

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
���
�
�
�

0 1

1

(c) R63

�
�
�
�

��
��
��

��
��
����
��
��

��
��
���
�
�
�

��
��
��
��

�
�
�

�
�
�

0 1

1

(d) R64

possible arrangements of the optimal solutions shown in Figure 5.15. We know
thatR6 is invariant with respect to180◦ rotations. Using the numbering of the
binary vectorsC1, C2, C3 andC4 given in Figure 5.21 and requiringC1 ≥ C4
– as we did in the first level – we obtain thatR63 andR64 violates this condition.
If we consider the reflection along the line

[(
0
0

)
,
(
1
1

)]
and require againC2 ≥ C3

(compare with (OC2)), whereC2 andC3 are now numbered as in Figure 5.22(d), it
follows thatR61 does not fulfill this condition. Thus using our ordering conditions,
only the hyperrectangleR62 remains.

Applying the described symmetry avoiding strategy in the second level it fol-
lows again that two-third of the hyperrectangles containing symmetric solutions are
eliminated from further considerations. Unfortunately, there are still two symmet-
ric solutions (see Figure 5.15(a) and Figure 5.15(b)), which have to be detected by
Algorithm 5.1, sinceR11 andR62 fulfill all ordering conditions and contain both
arrangements ofx. The reason for this fact is again the special structure of the
solutionx for n = 6 given in (5.5.2). As in the first level, there are two different
equivalence classes ofR, whose members contain symmetric arrangements ofx.

Hence our symmetry avoiding strategy is not able to fully avoid that Algorithm
5.1 has to detect different symmetric solutions. We can only guarantee that Algo-
rithm 5.1 does not look for optimal solutions in more than one representative of an
equivalence class ofR. This is the best we can obtain and – as it was the case for

5.5. SUBDIVISION STRATEGIES 245

the unique numbering strategy – we have seen in our example that the use of the
suggested symmetry avoiding strategy reduces significantly the effort for solving
Problem (PP) with Algorithm 5.1.

If a hyperrectangleR fulfilling all required conditions in the second level is
still invariant with respect to some types of symmetry, we could examine these
symmetries also in deeper levels. However, our numerical experience showed that
this effort does not lead to an improvement of the numerical performance of Algo-
rithm 5.1 – at least as long as the size reduction strategies introduced in the next
section are used.

Besides these two special features, which do not depend on the current upper
and lower bounds, we also use a third idea in order to reduce the effort for solv-
ing Problem (PP). This idea exploits explicitly the knowledge of the current best
known valueη.

Using the Current Lower Bound η. If we assume that for the cases2 ≤ l < n

upper boundsµ(l) for the optimal solution valuet?(l) are known, then it is possible
to further reduce the number of subdivision setsR = R1 × · · · × Rn, which are
relevant during the execution of Algorithm 5.1. Note that the presented approach
can deliver the necessary upper boundsµ(l).

For a given hyperrectangleR = R1 × · · · ×Rn ⊂ U2n and for2 ≤ l < n, let

Rl = {{Ri : i ∈ I} with I ⊂ {1, . . . , n}, |I| = l}
be the set of all subsets of{Ri, i = 1, . . . , n} with cardinalityl. Choose, forl < n,
a setQ ∈ Rl and let

Q̄ = [l1, L1]× [l2, L2]

be the smallest rectangle containing all elements ofQ. Since there holdsµ(l) ≥
t?(l) it is obvious that the maximal minimum pairwise squared distance ofl points
lying inside a square with edge lengthd is not greater thanµ(l)d2.

If there holds

µ(l)(max{L1 − l1, L2 − l2})2 < η , (5.5.4)

it is not possible thatl points lie insideQ̄ with a minimum squared distance bigger
than or equal toη. Thus it is not necessary to considerR further, sinceR cannot
contain a pointx ∈ IR2n with a better distance behavior than the current best known
point.

246 PACKING EQUAL CIRCLES IN A SQUARE

Let us illustrate this method with an example. Consider again the casen = 6
and assume that the current rectangleR = R1 × · · · × R6 has the structure given
in Figure 5.25. We know thatµ(4) = 1 = t?(4). Hence we can derive that the

FIGURE 5.25. Eliminable case

���
���
���

���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
�����

��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

R4

R1

R3

R6 Q̄R5

R2

10

1

maximal minimum pairwise squared distance of four points lying inside the square

Q̄ = [0.5, 1.0]× [0.25, 0.75] = R2 ∪R3 ∪R5 ∪R6

is equal to0.25 = µ(4)0.52. If a current best known valueη greater than0.25 is
given, we are able to eliminateR from the set of relevant hyperrectangles without
losing an optimal solution of Problem (PP).

REMARK 5.5.5.

(a) In Algorithm 5.1 (see Section 5.3) we use the subdivision strategies de-
scribed so far in the following way. At first we partition the current rec-
tangleRj in 4 orm2 rectanglesR1

j , · · · , Rl̄j (l̄ ∈ {4,m2}) with equal size
following the basic strategy. After this we use the special features in order to
test whether it is possible to eliminate some of the resulting hyperrectangles

Ri = R1 × · · · ×Rj−1 ×Rij ×Rj+1 × · · · ×Rn , i = 1, . . . , l̄ .

In this way we obtainl (0 ≤ l ≤ l̄) hyperrectangles, which have to be
analyzed further.

(b) Note that in the execution of Algorithm 5.1 it is not necessary that all two-
dimensional rectangles forming the hyperrectangleR have equal size, since
we split in each iteration only one partRj . For simplicity of presentation we
have assumed in the description of the subdivision strategies in the present
section that all rectanglesR1, . . . , Rn forming the current hyperrectangle

5.6. SIZE REDUCTION STRATEGIES 247

have equal size (compare with the previous figures). In the implementa-
tion of Algorithm 5.1 we took the possibility of different sizes into account.
It is possible to adapt all subdivision strategies mentioned before to the
examination of hyperrectangles consisting of members without equal size.
However, doing this we have to pay attention to the fact that the strategies
used in our algorithm can interfere with each other. For instance, the con-
ditions for the symmetry avoiding strategies have to recognize the unique
numbering strategy. Therefore, we have to ensure that all conditions, which
we require to be satisfied, work simultaneously.

In the description of Algorithm 5.1 in Section 5.3 we postulate that the subdivi-
sion strategies fulfill Conditions (C1) and (C3). Since our basic strategy generates
more and smaller subsets ofR than the bisection strategy would do, it follows im-
mediately that our subdivision strategy is exhaustive, i.e., satisfies (C1). Note that
the bisection of hyperrectangles is exhaustive.

In the discussion of the special features we have seen that we lose optimal
solutions applying our strategies. Nevertheless, it is possible to implement these
strategies such that we never lose all solutions. Therefore, our subdivision strate-
gies are also consistent in the sense of Condition (C3).

The described special features reduce the effort for solving Problem (PP) by
avoiding possible, but redundant partition sets in advance. Only the last idea takes
advantage of the information generated by the algorithm itself. Exploiting these
information in a stronger way it is possible to reduce the size of the hyperrectangles,
which are not eliminated from consideration by these subdivision strategies. How
we realize this is the content of the next section.

5.6. Size Reduction Strategies

LetR = R1×. . .×Rn ⊂ IR2n be a hyperrectangle in an iteration of Algorithm
5.1 withRi = [li1 , Li1]× [li2 , Li2] ⊂ U (i ∈ {1, . . . , n}), and letη > 0 andµ ≤ 2
respectively be the current lower and upper bound. Assume that this hyperrectangle
belongs to the sets remaining after the execution of the subdivision strategies in
Step III. Note that we ignore the iteration indexki (i ∈ {1, . . . , l}, k ∈ IN) in order
to reduce the number of necessary indices, as we did in the previous section.

In the formulation of Algorithm 5.1 (see, especially, Step IV) we claimed that
is can be possible to diminish the size of the hyperrectangleR. In the present

248 PACKING EQUAL CIRCLES IN A SQUARE

section we describe the strategy, which can lead to such a reduction of the size of
the setR.

In the derivation of the theoretical results in Section 5.2 we saw that for Prob-
lem (PP) there always exist optimal solutions satisfying special properties. In par-
ticular, we know that there is an optimal solutionx? = (x?1, . . . , x

?
n)T ∈ Un with

optimal valuet?(n) fulfilling the properties

(P3): either a vertexv of the unit squareU is a member ofx? itself, or there
exist two members ofx? lying on the edge-lines ofU forming the vertex
v, which have exactly the optimal distance (Theorem 5.2.3 and Corollary
5.2.4), and

(P4): two consecutive members ofx? belonging to the same edge ofU have
a distance smaller than two times the optimal one (Theorem 5.2.6).

It is sufficient, if Algorithm 5.1 looks only for optimal solutions satisfying
these properties. This means that we can interpret each pointx ∈ Un, which
does not have these attributes, as an infeasible point for (PP). Doing this we can
further reduce the number of possible optimal solutions of Problem (PP), as it was
the case by applying the special features of the subdivision strategy developed in
the previous section. Indeed, consider the casen = 7. One optimal solution is
displayed in Figure 5.26(a). The pointx7 is not unique. We can choose each point

FIGURE 5.26. Solutions forn = 7

�
�
�
�

x2

x1

x6
x4

t?(7)

10

1
x5

x3

x7

(a)

x2

x1

x6
x4

10

1
x5

x3

x7

(b)

in the shaded region without changing the minimum pairwise distance. However,
only the solution shown in Figure 5.26(b) fulfills Property (P3).

5.6. SIZE REDUCTION STRATEGIES 249

REMARK 5.6.1. Global optimization approaches, in particular branch-and-
bound methods, generally have problems if many global optimal solutions exist.
For example, branch-and-bound methods often have to strongly refine the subdivi-
sion sets in a neighborhood of an optimal solution in order to reduce the distance
between the upper and lower bounds until the required tolerance is reached. There-
fore, it is not surprising that the effort for solving a problem increases significantly
if the number of global optimal solutions grows. On the other hand, we are satis-
fied if the solution method detects oneglobal solution. Consequently, each strategy
reducing the number of possible solutions of a problem can improve the numerical
performance of a global optimization approach. However, such strategies cannot
be derived in general. Nevertheless, exploiting the structure of special problem in-
stances we can expect to obtain suchsolution elimination strategies. Note that the
unique numbering strategy as well as the symmetry avoiding strategy introduced in
the previous section and the strategies enforcing the satisfaction of Property (P3)
and of Property (P4) discussed in the sequel can be interpreted as such solution
elimination strategies.

In the subsequent two subsections we will see, how it is possible to enforce that
a solution of Problem (PP) detected by Algorithm 5.1 has the required attributes
and how this enforcement leads to a reduction of the size ofR. Using Property
(P3) we derive the so-calledcorner rules, which can result in a shrinkage of some
rectanglesRi (i ∈ {1, . . . , n}) – forming the hyperrectangleR – to an interval or
even to a single point. Exploiting Property (P4) we obtain the so-callededge rules.
In Subsection 5.6.2 we will see that the application of these rules can also reduce
some rectangles to intervals. Hence the enforcement of Properties (P3) and (P4)
lead to a reduction of the size ofR through a reduction of the dimension of this set.

We complete the size reduction strategies with a third strategy reducing the
volume of the hyperrectangleR. This strategy does not base on the properties of
an optimal solution mentioned above. As the last special feature of our subdivision
strategies, it uses the knowledge of the current best known valueη. We will see that
the use of this knowledge enables us to eliminate parts ofR, which cannot contain
a pointx ∈ Un with a larger minimum pairwise distance than the best known so
far.

5.6.1. Corner Rules. If we analyze the behavior of the given subdivision set
R = R1 × . . .×Rn in the neighborhood

S(v, µ) = {x ∈ U : ‖x− v‖22 ≤ µ}

250 PACKING EQUAL CIRCLES IN A SQUARE

of the vertexv of the unit squareU , then we recognize that there exist some situa-
tions allowing us to reduce the dimension of selected rectanglesRi
(i ∈ {1, . . . , n}). Remember thatµ is an upper bound for the optimal valuet?(n)
of Problem (PP).

Indeed, letv ∈ IR2 be an arbitrary vertex of the unit squareU and denote by
e1 ande2 the edge-lines ofU forming this vertex, i.e., fori ∈ {1, 2}, there holds
ei = {x ∈ U : xi = vi}. Denote now by

S̃(v, µ) = {Ri : i ∈ {1, . . . , n} with Ri ∩ S(v, µ) 6= ∅
and∃l ∈ {1, 2} satisfyingRi ∩ el 6= ∅}

the set of all two-dimensional rectanglesRi (i ∈ {1, . . . , n}) forming the hyper-
rectangleR, which have a non-empty intersection withS(v, µ) and which, addi-
tionally, touch the edge-linee1 or the edge-linee2 or both. Depending on the car-
dinality of S̃(v, µ) we distinguish four cases (compareS̃(v, µ) with S̄(v, t) used in
the proof of Theorem 5.2.3 in Section 5.2).

Case 1: |S̃(v, µ)| = 0

Sinceµ is an upper bound for the optimal solutiont?(n) of Problem (PP), it follows
immediately that there does not exist a pointx ∈ R fulfilling Property (P3) at ver-
tex v. Hence, it is not necessary to analyzeR further, i.e.,R can be pruned. Note
that we interpret each pointx ∈ Un without Properties (P3) and (P4) as infeasible,
and with respect to this interpretation we know that in this caseR contains only
infeasible points.

Case 2: |S̃(v, µ)| = 1

Assume, without loss of generality, that there holdsS̃(v, µ) = {R1}. If v /∈ R1

(see Figure 5.27(a)), it follows by the same argumentation as in Case 1 thatR is
eliminable. Otherwise (see Figure 5.27(b)) we know that only points
x = (x1, . . . , xn)T ∈ R with x1 = v fulfill Property (P3). Note that (P3b) is
not satisfiable in this case. Thus, we do not lose all optimal solutions of Problem
(PP), if we set

R = R̄1 ×R2 × . . .×Rn
with

R̄1 = {v} = [v1, v1]× [v2, v2] ,

i.e., if we shrinkR1 to a single point.

5.6. SIZE REDUCTION STRATEGIES 251

FIGURE 5.27. Corner rules (Case 2)

√
µ

v

e2

U

e1
Ri

Rj

R1

(a) Eliminable case

√
µ

v

e2

U

e1

Rj

Ri

R1

(b) Adjustable case

Case 3: |S̃(v, µ)| = 2

Assume again, without loss of generality, thatS̃(v, µ) is equal to{R1, R2}. De-
pending on the location ofv with respect toR1 andR2 we have to distinguish two
further subcases.

Case 3.1: v /∈ R1 ∪R2

It is clear that at vertexv Property (P3a) cannot be satisfied by an element
x of R. If R1 andR2 touch the same edge-lineei (i ∈ {1, 2}) (see Figure
5.28(a)), we are able to eliminateR, since in this situation (P3b) is also not
possible. Otherwise (see Figure 5.28(b)) we are able to replaceR1 andR2

by intervals. Setting

R̄1 := R1 ∩ (e1 ∪ e2)
and

R̄2 := R2 ∩ (e1 ∪ e2)
we do not lose any pointx ∈ R fulfilling Property (P3b). Note thatR1

andR2 touches eithere1 or e2, but not both.

Case 3.2: v ∈ R1 ∪R2

In this case it is possible that there exist pointsx ∈ R fulfilling (P3a) and
pointsx ∈ R such that (P3b) is true at vertexv. In general there is no
way to reduce the dimension of both rectanglesR1 andR2, as we did in the

252 PACKING EQUAL CIRCLES IN A SQUARE

FIGURE 5.28. Corner rules (Case 3.1)

v

U

e2

e1
R2R1

Ri

√
µ

(a) Eliminable case

v

R̄1
Ri

U

e2

R2
R̄2

√
µ

e1

R1

(b) Adjustable case

previous subcase. However, ifv belongs to one and only one of the rectan-
glesR1 orR2 (see Figure 5.29), we can shrink the rectangle containingv

to an interval. Assume that there holdsv ∈ R1 \ R2 (see Figure 5.29(a)).
The hyperrectanglēR1 ×R2 × . . .×Rn with

R̄1 :=
{
R1 ∩ e1 , if R2 ∩ e1 = ∅
R1 ∩ e2 , if R2 ∩ e2 = ∅

contains any pointx ∈ R satisfying (P3) at vertexv.

FIGURE 5.29. Corner rules (Case 3.2)

R̄1

e2

U

Ri

R1
v

R2 e1√
µ

(a) Adjustable case

√
ηv

R̄1

R̄2

R2

Ri

U

e2

e1

R1

(b) Adjustable case

5.6. SIZE REDUCTION STRATEGIES 253

If there holds, additionally,R2 ⊂ {x ∈ U : ‖x−v‖22 < η} (see Figure
5.29(b)), we can also reduceR2 to an intervalR̄2 by intersectingR2 with
the touched edge-linee1 or e2. Note that in this situation it is not possible
that v is a member of an optimal solutionx belonging toR. Thus, only
Property (P3b) can be satisfied.

Case 4: |S̃(v, µ)| ≥ 3

If one and only one of the rectanglesRi belonging toS̃(v, µ) touchese1 or e2, we
are in a comparable situation as in Case 3.2. We are able to shrink this rectangle
to an intervalR̄i (see Figures 5.30(a) and 5.30(b)). In situations where at least two
rectangles touch each edge-linee1 ande2 (see Figures 5.30(c) and 5.30(d)), we

FIGURE 5.30. Corner rules (Case 4)

R̄i

RkRi Rj

e2

U

√
µ

e1v

(a) Adjustable case

R̄i

Ri

e2

U

Rj Rk√
µ

e1v

(b) Adjustable case

v
Rk Rl

Rj
Ri

U

e2

√
µ

e1

(c) Not adjustable case

v
Rk Rl

Rj

Ri

e2

U

e1√
µ

(d) Not adjustable case

254 PACKING EQUAL CIRCLES IN A SQUARE

do not reduce the dimension of a rectangleRi ∈ S̃(v, µ). If v does not belong
to the hyperrectangleR, as it is shown in Figure 5.30(d), only Property (P3b) can
be fulfilled. Therefore, it could be possible to shrink some rectangles to intervals.
Since it is not immediately clear which one we have to choose, we decided to do
nothing in such a situation. Our numerical experience showed, moreover, that this
situation almost never occurs.

5.6.2. Edge Rules.We are interested in optimal solutionsx? = (x?1, . . . , x?n)T

satisfying (P3) and (P4). For such points it is obvious that there does not exist a seg-
ment of a boundary line ofU with length greater than or equal to
2
√
µ ≥ 2

√
t?(n), which does not contain a memberx?k (k ∈ {1, . . . , n}) of

x?. Using this fact we are able to reduce the dimension of more rectanglesRi
(i ∈ {1, . . . , n}) formingR than by using the previously described corner rules
alone.

In order to explain the strategy applied in our approach lete be an arbitrary
boundary line ofU , i.e.,

e ∈ {eji : i ∈ {1, 2} , j ∈ {0, 1}}
with eji = {x ∈ U : xi = j}. Furthermore let, for two different pointsv, w ∈ e,
e(µ) = [v, w] be a line segment ofe and assume that this segment has a length of
2
√
µ, i.e.,‖v − w‖22 = 4µ. Denote by

L̃(e, µ) = {Ri : i ∈ {1, . . . , n} andRi ∩ e(µ) 6= ∅}
the set of all rectanglesRi (i ∈ {1, . . . , n}) touchinge(µ).

• If there holdsL̃(e, µ) = ∅, it follows thatR contains no point fulfilling
Property (P4). Hence, as in Case 1 in Subsection 5.6.1, it is not necessary to analyze
R further, i.e.,R can be pruned.
• In the cases where more than one rectangleRi (i ∈ {1, . . . , n}) touches

e(µ), i.e.,L̃(e, µ) > 1 (see Figure 5.31(a)), it is not possible to reduce the size of a
rectangleRi ∈ L̃(e, µ) without running the risk of losing all optimal solutions.
• If there holds

|L̃(e, µ)| = 1 ,

we can shrink the unique rectangleRi0 touchinge(µ), i.e.,Ri0 ∩ e(µ) 6= ∅, to an
interval (see Figure 5.31(b)). Indeed, as mentioned before, we know that any point

5.6. SIZE REDUCTION STRATEGIES 255

FIGURE 5.31. Edge rules

2
√
µ

U

Ri Rj

wve

(a) Not adjustable case

2
√
µ

U

Ri0
R̄i0 Rj

wve

(b) Adjustable case

x ∈ R fulfilling (P3) and (P4) has to satisfy the relation

xi0 ∈ Ri0 ∩ e(µ) .

Therefore, any elementx of the hyperrectangleR, which we are interested in, be-
longs also to the setR1 × . . .×Ri0−1 × R̄i0 ×Ri0+1 × . . .×Rn with

R̄i0 := Ri0 ∩ e(µ) .

These edge rules leads to a change ofR only if L̃(e, µ) contains less than2
elements. With respect to the basic subdivision strategy it is hence not surprising
that the edge rules can be applied more rarely than the corner rules. Nevertheless,
this strategy improves the numerical performance of Algorithm 5.1. Note that the
edge rules are not relevant as long as the current upper boundµ is not smaller than
0.25.

The corner as well as the edge rules use the current upper boundµ in con-
nection with Property (P3) and Property (P4) in order to diminish the size of the
considered hyperrectangleR via a reduction of its dimension. In the next subsec-
tion we will see how it is possible to further reduce the size ofR by exploiting the
knowledge of the best known valueη, i.e., of the current lower bound.

5.6.3. Volume Reduction.The third size reduction strategy used in Step IV
of Algorithm 5.1 is similar to an approach presented in [DGPWM91]. In contrast
to the corner and the edge rules we do not diminish the size of the current hyper-
rectangleR by reducing the dimension of some rectanglesRi (i ∈ {1, . . . , n})
formingR. In this method we reduce the volume of several rectanglesRi by con-
structing smaller rectangles̄Ri ⊂ Ri still containing all feasible points of Subprob-
lem (SP) considered in Step V of Algorithm 5.1, i.e., we design rectanglesR̄i ⊂ U

256 PACKING EQUAL CIRCLES IN A SQUARE

(i ∈ {1, . . . , n}) with the properties

R̄i ⊂ Ri i = 1, . . . , n (5.6.1.a)
and

F ⊂ [η, µ]× R̄1 × . . .× R̄n (5.6.1.b)

whereF = {(t, x) ∈ [η, µ]×R1× . . .×Rn : t−‖xi−xj‖22 ≤ 0, 1 ≤ i < j ≤ n}
denotes the feasible region of (SP).

We compare the rectanglesRi (i ∈ {1, . . . , n}) pairwise and try to cut away a
part of the infeasible areas ofRi while preserving the structure of a rectangle. The
infeasible area ofRi with respect toF is characterized by the fact that, for each
elementxi of such an area, there does exist an indexj ∈ {1, . . . , n} \ {i} such
that each element ofRj has a squared distance toxi smaller thanη. In order to
explain our volume reduction strategy in a general way let, fori, j ∈ {1, . . . , n}
with i 6= j, two polytopesP ⊂ Ri andQ ⊂ Rj be given by their vertex sets, i.e.,

P = [v1, . . . , vmP] ,

Q = [w1, . . . , wmQ] .

Assume that the vertex lists ofP andQ are ordered in such a way thatvi+1 and
wi+1 is a direct neighbor ofvi andwi, respectively (see Figure 5.32). Assume

FIGURE 5.32. Vertex numbering ofP

v5

v4

v3

P

v2

v6

v1

further thatP×Q is a superset of the projection ofF onRi×Rj. We are interested
in the set

F̄ := {(x, y) ∈ P ×Q : ‖x− y‖22 ≥ η} ,

since the projection ofF onRi ×Rj is a subset of̄F . Denote by

C := (P ∩ {x ∈ IR2 : max{‖x− y‖22 : y ∈ Q}︸ ︷︷ ︸
=max{‖x−wi‖2

2:i=1,... ,mQ}=:fQ(x)

< η)

5.6. SIZE REDUCTION STRATEGIES 257

the set of all pointsx ∈ P with a maximal squared distance to each point inQ
smaller thanη, i.e.,C is part of the infeasible area ofP mentioned above. Obvi-
ously, there holds

F̄ ⊂ (P \ C)×Q .

This means that we can cut awayC fromP without eliminating a feasible point of
(SP). C is a convex set. IfC is not empty, then we do not know whetherP \ C
is still a polytope. However, we would like to preserve the linear structure ofP .
Therefore, we look for the smallest polytopeP̄ satisfying

P \ C ⊂ P̄ ⊂ P .

In the sequel we describe the construction of this polytopeP̄ . Assume thatC
is not empty and denote by

Cv := {v1, . . . vmP } ∩ C
the set of all vertices ofP belonging toC. Depending on the structure ofCv we
distinguish three cases.

• If there holdsCv = ∅, it follows that we have to takeP for P̄ itself (see
Figure 5.33), i.e., if no vertexv of P has a maximum squared distance to all vertices

FIGURE 5.33. P̄ = P

��
��
��
��
��
��

��
��
��
��
��
��

Q

P
v4

√
η C

w2

w3

v2
v3

v5
v1

√
η

v6

w1

w4

ofQ smaller thanη, then we are not able to reduce the size ofP without losing the
convexity ofP .

258 PACKING EQUAL CIRCLES IN A SQUARE

• If there holdsCv = {v1, . . . , vmP }, it follows immediatelyP \ C = ∅ and
we can eliminateR. Note that in this situation the feasible regionF of Subproblem
(SP) is empty.
• If Cv is a non-empty real subset of{v1, . . . , vmP }, we can adjustP in the

following way. Assume that there exists an indexr ∈ {1, . . . ,mP − 1} with

Cv = {v1, . . . , vr} , (5.6.2)

i.e., all verticesv of P satisfyingfQ(v) < η are neighboring. Since, for each
j ∈ {1, . . . , r}, there holds

fQ(vj) = max{‖vj − wi‖22 : i = 1, . . . ,mQ} < η ,

it follows that there exist a unique pointv̄1 on the facet ofP defined by the neigh-
boring verticesvmP andv1 with a maximal squared distance to the polytopeQ

equal toη, i.e.,fQ(v̄1) = η. Note that by construction there holdsfQ(v1) < η and
fQ(vmP) ≥ η. Let v̄r be the corresponding point with respect to the facet defined
by vr andvr+1 (see Figure 5.34(a)). The functionfQ is a maximum of convex

FIGURE 5.34. P̄ 6= P

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

w3

v5
v̄r

v6

v4

C
P

Q

w4
v3

v1

v2

v̄1

w2

w1

√
η√

η

(a)

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

w3

v5
v̄r

v6

v4

P̄
Q

w4
v3

v1

v2

v̄1

w2

w1

(b)

functions and hence convex itself. It follows that, for anyx ∈ [v̄1, v1, . . . , vr, v̄r],
there holds

fQ(x) ≤ η

5.6. SIZE REDUCTION STRATEGIES 259

and thus
[v̄1, v1, . . . , vr, v̄r] ⊂ clC .

P is a two-dimensional polytope and, therefore, we obtain

P \ C ⊂ P̄ := [v̄1, v̄r, vr+1, . . . , vmP] 6= P

(compare Figure 5.34(b)). If Assumption (5.6.2) is not fulfilled, we adjustP in
the same way by analyzing each subset ofCv consisting of a sequence of direct
neighboring vertices.

With this general framework we are now able to describe the volume reduction
strategy in a more detailed manner. We use the following iterative process.

INITIALIZATION

Set, fori ∈ {1, . . . , n}, Pi ← Ri, i.e.,

Pi =
[(li1
li2

)
,
(li1
Li2

)
,
(Li1
li2

)
,
(Li1
Li2

)]
LOOP

For i = 1 To n Do
For j = 1 To n Do

If j 6= i Then
ComparePi andPj and construct̄Pi in the described way.

Pi ← P̄i

If Pi = ∅ Then STOP(F is empty)

EndIf
EndFor

EndFor

After the execution of this process we know either thatF is empty, i.e., we can
eliminateR from further considerations, or we obtainn two-dimensional polytopes
Pi given by the list of their vertices. In this situation it is easy to generate, for each
indexi ∈ {1, . . . , n}, the smallest rectanglēRi containing the polytopePi. Setting

R̄ := R̄1 × . . .× R̄n
we obtain a hyperrectanglēR, which is a subset ofR and, additionally, has the
property

F ⊂ [η, µ]× R̄

260 PACKING EQUAL CIRCLES IN A SQUARE

(compare with the required Properties (5.6.1.a) and (5.6.1.b)).
The reason for going back to rectanglesR̄i (i ∈ {1, . . . , n}) instead of using

the better approximation of the feasible regionF by the polytopesPi has differ-
ent aspects. First of all, since the number of vertices describing the polytopePi
(i ∈ {1, . . . , n}) can grow, a strategy using all information given byPi could ex-
tremely increase the storage requirements in an implementation of Algorithm 5.1.
A second reason is that our numerical experience for Algorithm 5.1 showed that
we do not have a gain using the polytopesPi instead of the rectangles̄Ri in the
calculation of the upper bounds for Subproblem (SP). This seems to depend on
the construction of the LP-relaxation for Problem (SP), which is needed in order to
calculate upper bounds, as it is described in Section 5.4.

At this place we would like to pay some attention to a special effect, which
could happen during the execution of the presented iterative process and which we
would like to call thewave effect. Let us illustrate this effect with an example. Fig-
ure 5.35(a) shows the possible adjustment of rectangleP3, if we compareP3 with

FIGURE 5.35. The wave effect

P2

P3

√
η

P2

P̄3

P1P1

(a)

P3

√
η

P2 P̄2 P̄2

P3

√
η

P1 P1P1

P̄3

(b)

5.6. SIZE REDUCTION STRATEGIES 261

P2. However, if we adjust firstP2 usingP1, we are able to cut away a larger part of
P3, as it is displayed in Figure 5.35(b). This effect justifies the substantial effort in
executing our volume reduction strategy. Note that there aren(n− 1) comparisons
between polytopes, and furthermore that the number of vertices describing a poly-
topePi can grow and hence the effort for calculating the adjustments. Taking this
effect into account it seems, moreover, possible that a repetition of the loop-phase
of the iterative process is able to further reduce the size of the relevant hyperrect-
angle. As we will see in Section 5.7 considering some computational results, there
is a trade-off – in the repetition of the volume reduction strategy – between the ad-
vantages of a better size reduction and the disadvantage of a growing running-time
needed for doing this.

REMARK 5.6.2. The presented size reduction strategies, i.e, the corner and
the edge rules and the volume reduction, have two effects on the performance of
Algorithm 5.1. On the one hand, they reduce the size of the linear part of the
feasible regionF of the current Subproblem (SP). Hence, they abate the effort for
solving (SP). Note that the LP-relaxation of (SP) tends to be better if the relevant
hyperrectangleR gets smaller (see Section 5.4).

On the other hand, they work like apruning-rule (see Step VII of Algorithm
5.1 for the classical pruning rule in branch-and-bound methods). We can cut away
many possible subdivision sets, since Algorithm 5.1 using our strategies recognize
that in these sets there do not exist points satisfying (P3) and (P4) and with a mini-
mum pairwise squared distance not smaller thanη.

As mentioned before it is possible that the use of the corner and the edge rules
eliminates optimal solutions of Problem (PP) from further considerations without
detecting them. However, we never throw away all solutions by using these ideas.
Therefore, the presented size reduction strategies are consistent in the sense of
Condition (C3) (see Section 5.3). If we are careful in the implementation of our
approach, especially if we pay attention to the possible interactions between our
diverse subdivision set manipulation strategies (see Remark 5.5.5(b)), we are able
to satisfy Condition (C1) and Condition (C3) required in Section 5.3. This en-
sures a correct functioning and particularly the convergence of Algorithm 5.1 (see
Theorem 5.3.1 and, additionally, Lemma 5.4.1).

262 PACKING EQUAL CIRCLES IN A SQUARE

5.7. Computational Results

The description of Algorithm 5.1 is now complete. The missing details in the
formulation of this approach (Step III - Step V) in Section 5.3 were described in
the foregoing three sections. We derived several strategies exploiting the special
structure of Problem (PP) for the calculation of the upper bounds (see Section 5.4)
as well as for the splitting (Section 5.5) and the adjustment (Section 5.6) of the
subdivision sets considered in this approach. This was necessary in order to obtain
an efficient method for solving (PP) since general approaches fail to determine
approximate solutions of this problem, as we pointed out in the introduction of this
chapter. Even though we will introduce a modified basic partitioning strategy and
some further improvements of Algorithm 5.1 in the next section, we would like to
present first some computational results, which were obtained with Algorithm 5.1
using the strategies developed so far. These results correspond to the numerical
tests reported in [LR98B].

As we did with all algorithms discussed in this thesis until now, Algorithm
5.1 was encoded in C++ with management of subdivision sets by AVL-trees. The
occurring linear problems in Step V were solved withMINOS 5.4 (see also Algo-
rithm 3.1). Note that the LP-relaxation of Subproblem (SP) has a sparse structure
and thatMINOS 5.4 is able to exploit sparsity. With this implementation of Al-
gorithm 5.1 we solved Problem (PP) withn ≤ 27 points. The toleranceε was
chosen as10−5. Using aSUN ULTRA 60 workstation we were able to determine
approximate solutions for each of these problems within less than two and a half
hours.

In order to obtain these good running-time results we applied additional ideas,
which are more heuristically motivated. Before discussing the numerical results in
detail we would like to give some notes on these ideas.

• In the description of the iterative process for the volume reduction strategy
in Section 5.6 we pointed out the existence of the so-called wave effect.
Regarding this effect it seems to be reasonable to repeat the loop-phase of
the iterative process in order to reduce the size of the relevant hyperrectan-
gle as much as possible. However, we have to remember that this process
could be expensive with respect to the running-time. Our numerical tests
showed that it is efficient to repeat the process once, i.e., the advantage of
a bigger size reduction outbalances the disadvantage of a growing running-
time needed for doing this. If we repeat the process again, the disadvantage

5.7. COMPUTATIONAL RESULTS 263

outbalances the advantage. Therefore, we decided to use the size reduction
strategies in the following way. For each hyperrectangleRki remaining af-
ter Step III (see the description of Algorithm 5.1 in Section 5.3), we apply
at first the volume reduction strategy, where we repeat the iterative process
once. After this we use the corner and the edge rules in order to diminish
the dimension of the resulting hyperrectanglesR̄ki . If the dimension re-
duction is successful, we apply the volume reduction process again – now
without a repetition. It might be possible to choose an implementation of
the volume reduction strategy that is less time-consuming than the one we
used. This could allow more than one repetition of the iterative process
without increasing the running-time.

An interesting aspect in our numerical tests was that the combination of
the dimension reduction strategies, i.e., the corner and edge rules, with the
volume reduction strategy led to an extraordinary better running-time per-
formance than the use of one of these strategies alone. There are at least two
reasons for this improvement. First of all, single points or intervals, which
can be the result of the corner and the edge rules, lead in general to a larger
reduction of the size of neighboring rectangles. Hence – via the wave effect
– they have an impact on the size of the whole hyperrectangle. On the other
hand, smaller rectangles forming the relevant hyperrectangle can result in a
successful dimension reduction at an earlier stage of the algorithm. There-
fore, the volume reduction strategy and the dimension reduction strategies
are not independent from each other, rather they interact.
• Our numerical tests showed, furthermore, that we need most of the time

for solving the linear subproblems in Step V in order to calculate the upper
bounds. Moreover, we observed that in many cases there holds
µRkp = µRk , i.e., the upper bound with respect toRk is equal to the up-
per bound of its direct childRkp . For that reason we developed a criterion
in order to decide whether is seems to be useless to calculate a new upper
bound forRkp by solving a linear program instead of taking the old bound
µRk , or not. This criterion is as follows.

LetRkp = R
kp

1 × . . .× Rkp
n ⊂ Un (p ∈ {1, . . . , l}) be the hyperrect-

angle examined in Step V. An upper bound for Problem (SP) with respect

264 PACKING EQUAL CIRCLES IN A SQUARE

to this set is obviously given by

µ̄Rkp = min
1≤i<j≤n

max
xi ∈ R

kp

i

xj ∈ R
kp

j

‖xi − xj‖22 , (5.7.1)

(see the proof of Lemma 5.4.1). Recognize that this value can be calculated
by considering the vertices ofRkp

i (i ∈ {1, . . . , n}). We have to decide
whether it is useful to obtain a boundµRkp by solving the linear program

max t

hij(t, xi, xj) ≤ 0 1 ≤ i < j ≤ n
xi ∈ Rkp

i i = 1, . . . , n

ηk ≤ t ≤ min{µk, µ̄Rkp }

(LSP’)

(see Section 5.4 for the construction ofhij depending onRkp

i andRkp

j), or
whether we should simply setµRkp = min{µk, µ̄Rkp }.

If we are able to construct a feasible point(t̄, x̄) ∈ [ηk, µk] × Rkp for
Problem (LSP’) combining the vertices of the two-dimensional rectangles
R
kp

i (i = 1, . . . , n), we do not solve (LSP’). In this situation it is very
likely that we have to analyzeRkp further in a later iteration, i.e.,Rkp will
not be pruned – at least as long as the lower boundηk is not improved.
Therefore, it seems to be useless to calculate an upper bound forRkp by
solving (LSP’), since we have to solve this LP-relaxation with respect to the
relevant subsets ofRkp in later iterations. The use of this criterion reduced
significantly the running-time of Algorithm 5.1. Applying this criterion we
needed less time for solving the linear subproblems than for executing the
subdivision set manipulation strategies.

Note that in our implementation of this criterion we obtain the value
µ̄Rkp without additional effort. For that reason, we exploited the knowl-
edge of this value throughout the verification of the described criterion, i.e.,
we checked whether it seems to be possible to improve the possibly better
upper boundmin{µk, µ̄Rkp } instead of considering onlyµk.

In the description of Algorithm 5.1 in Section 5.3 we assumed that a point
x̄ ∈ Un with f(x̄) = min1≤i<j≤n ‖x̄i − x̄j‖22 > 0 is given. We use this point
in order to initialize the lower boundη0 (see the initialization phase of Algorithm

5.7. COMPUTATIONAL RESULTS 265

5.1). Since the choice of the integerm in the basic part of our subdivision strategies
depends on the valueη0 (see Subsection 5.5.1), the number of subdivision sets,
which have to be analyzed during the execution of Algorithm 5.1, is very sensitive
to changes in this value. In several papers (see, e.g., [MFP95, GL96, NO97])
good solutions for the point scattering problem are given. Therefore, we decided
to choose the best known solution for Problem (PP) as starting pointx̄. If we were
not able to reproduce the coordinates ofx̄ from a paper, we used a simple multi-
start algorithm developed by Prof. Fabio Schoen at the University of Florence in
order to generate good solutions (for the framework of stochastical approaches in
global optimization we refer again to [BR95]). Because of this choice ofx̄ it was
sufficient to setm = 3 for n ≤ 27.

Another consequence of this choice was that Algorithm 5.1 did not substan-
tially improve the known solutions. The slight improvements displayed in Table
5.3 seem to be rounding differences – for the casen = 12 we did not start with
an optimal solution and, therefore, we had a larger improvement. In Table 5.3

TABLE 5.3. Improvements

n η0 µ0 η? µ? η? − η0

10 0.177399 0.25 0.177468 0.177477 6.9e-5
11 0.158568 0.17743 0.158568 0.158568 0.0
12 0.146713 0.15857 0.151111 0.151121 4.4e-3
13 0.134021 0.15112 0.134021 0.134031 0.0
14 0.121739 0.13403 0.121742 0.121743 3.0e-6
15 0.116329 0.12174 0.116336 0.116338 7.0e-6
16 0.111111 0.11634 0.111111 0.111121 0.0
17 0.0937256 0.11111 0.0937279 0.0937379 2.3e-6
18 0.0902758 0.09425 0.0902778 0.0902876 2.0e-6
19 0.0838326 0.09061 0.0838326 0.0838419 0.0
20 0.0821442 0.08385 0.0821462 0.0821548 2.0e-6
21 0.0738791 0.08219 0.0738791 0.0738891 0.0
22 0.0717971 0.08219 0.0717971 0.0718059 0.0
23 0.0669872 0.07189 0.0669872 0.0669952 0.0
24 0.0646835 0.07189 0.0646853 0.0646950 1.8e-6
25 0.0625 0.067 0.0625 0.0625096 0.0
26 0.0569574 0.0625 0.056989 0.056999 3.16e-5
27 0.055625 0.0625 0.055625 0.055648 0.0

266 PACKING EQUAL CIRCLES IN A SQUARE

we useη0 andµ0 for the first lower respectively upper bound, which was set in
the initialization phase of Algorithm 5.1. The columnsη? andµ? show the last
lower and upper bound fulfilling the stopping criterion (Step I). The last column
displays the improvements made by Algorithm 5.1. Note thatη? is the minimum
pairwise squared distance of the membersx?i (i = 1, . . . , n) of the best solution
x? = (x?1, . . . , x

?
n)T ∈ Un, which was determined by Algorithm 5.1. Note, more-

over, that even though the values displayed in columnη? are slight improvements
of the initial lower bounds, they are not better than those given in [MFP95].

Even though we did not calculate better points, the main advantage of Al-
gorithm 5.1 is that this method can guarantee theε-optimality of the determined
solutions, which was not known at least forn = 21 − 24, 26, 27. Hence, as it
is done in [DGPW90,DGPWM91], our method can be used as a computer aided
proof for the optimality of detected solutions.

REMARK 5.7.1. We have to note that the current implementation of Algo-
rithm 5.1 cannot be used unreserved as a computer aided proof. The main intention
of our current implementation of this method was to show that it is possible to solve
Problem (PP) with more than20 points and acceptable computational effort. In the
sequel we will see that we were able to determine approximate solutions of a global
optimization problem in dimension55 and with351 concave quadratic constraints
within less than one hour. However, if we would like to use Algorithm 5.1 for a
computer aided proof, we have to pay more attention to calculation errors resulting
from the machine precision.

We examined this problem in our volume reduction strategy, which might be
the most sensitive part of our approach with respect to such errors. It is possible to
adjust the implementation of the iterative process such that we can guarantee that
no pointx ∈ Un with a minimum squared distance larger thanηk is eliminated
because of calculation errors. In order to ensure that we never loseε-optimal points
because of such errors, we have to examine each step of our implementation. This
means that in order to obtain acomputer aided proof implementationstill a lot
of work has to be done. Moreover, the proof of the numerical correctness of the
resulting implementation is behind the scope of this thesis. Therefore and in view
of the main intention of our implementation mentioned above, we did not invest this
effort for the numerical results reported here. Only the adjustment of the volume
reduction strategy was applied.

5.7. COMPUTATIONAL RESULTS 267

In Table 5.4 we show the effort for solving Problem (PP) withn ∈ {10, . . . , 27}
points. We use the abbreviation IT for the number of iterations. The column TT
displays the total CPU-time in seconds necessary for determining the approximate
solutions. NLP stands for the number of linear subproblems of type (LSP’), which
had to be solved during the execution of Algorithm 5.1, and TLP shows the running-
time needed for the solution of these linear programs byMINOS 5.4. The abbre-
viation NR is used for the number of hyperrectangles remaining after Step III, i.e.,
this is the number of hyperrectangles, which had to be analyzed by the size reduc-
tion strategies. It it interesting to note that these numbers are mostly smaller than
two times the number of iterations. This means, that even though we had in each
iterationl ∈ {4,m2} possible partition sets, there remained on average only two
hyperrectangles after the application of the special features of our subdivision strat-
egy. In the last column MNPS we report the maximal number of subdivision sets,
which had to be stored in an iterationk ∈ IN in the setRk. These numbers give us
some insight into the storage requirements of our approach.

TABLE 5.4. Numerical effort

n IT TT NLP TLP NR MNPS
10 1,008 2.50 144 0.57 2,997 195
11 792 2.58 162 0.90 2,100 125
12 1,351 7.19 416 3.07 3,415 266
13 2,379 8.26 272 2.45 6,548 332
14 8,457 43.8 1,766 18.9 20,456 1,445
15 1,851 9.47 359 4.56 3,809 251
16 24,127 99.6 1,016 13.5 54,492 3,950
17 38,890 297 10,268 144 80,897 6,230
18 22,429 218 6,545 103 45,727 4,576
19 66,122 548 12,003 247 131,763 10,032
20 22,200 252 6,065 135 43,032 2,343
21 240,210 2,269 35,630 920 472,716 42,977
22 55,005 516 6,838 203 103,903 8,776
23 153,884 2,500 38,417 1,377 268,598 20,873
24 194,497 2,956 38,475 1,484 335,547 25,411
25 109,798 1,759 20,063 868 184,419 14,644
26 669,450 8,941 48,114 2,284 1,038,174 86,950
27 250,102 3,172 13,830 730 364,026 31,918

268 PACKING EQUAL CIRCLES IN A SQUARE

REMARK 5.7.2.

(a) In the next section we will see that a slight change of the selection rule for
the current hyperrectangleRk can significantly reduce the storage require-
ments.

(b) We use nearly optimal solution as starting points of our approach. There-
fore, we do not substantially improve the lower boundsηk (k ∈ IN) during
the execution of Algorithm 5.1. This means that the standard pruning rule in
Step VII of our method is not very successful. Recognize that the main task
of the classical pruning rule is to cut away branches of the tree consisting
of all possible subdivision sets. Hence, with respect to our good starting
points we know that we have to examine almost the whole tree. Regard-
ing this fact we can also use adepth-first-search-strategy. Applying such
a strategy we will examine also the whole tree, but we are able to bound
the storage requirements. We have to store at most the maximal length of
one branch of the tree. Such a strategy was used in order to calculate an
ε-optimal solution for Problem (PP) withn > 27, as we will see also in the
next section.

In Figures 5.36-5.38 we present, finally, the arrangements of the calculated
ε-optimal solutions forn = 21− 24, 26, 27 together with their coordinates. These
can be used for further research on this topic (see Remark 5.7.1). The highly sym-

FIGURE 5.36. Solution forn = 21

1

10

x1 = (0.5176, 0.7384) x2 = (0.0000, 0.6805)

x3 = (0.0000, 0.1349) x4 = (0.4702, 0.4077)

x5 = (0.2354, 0.8165) x6 = (0.2354, 0.5446)

x7 = (0.7077, 1.0000) x8 = (0.7062, 0.5426)

x9 = (0.4821, 0.1154) x10 = (0.0000, 0.4087)

x11 = (0.8539, 0.7708) x12 = (0.0001, 0.9996)

x13 = (1.0000, 0.5416) x14 = (0.4359, 1.0000)

x15 = (0.9768, 0.2708) x16 = (0.7050, 0.7050)

x17 = (1.0000, 0.0000) x18 = (0.7282, 0.0000)

x19 = (1.0000, 1.0000) x20 = (0.2348, 0.2718)

x21 = (0.2360, 0.0000)

metric structure for the solution of the prime number23 is interesting to note.
According to the best known solutions for the point scattering problem with

more than27 points we have to choose the integerm as4 in the second level of
our basic subdivision strategy. This leads to a substantial increase of the possible

5.7. COMPUTATIONAL RESULTS 269

FIGURE 5.37. Solutions forn = 22, 23, 24

1

0 1

(a)n = 22

x1 = (0.0000, 0.1960) x2 = (1.0000, 0.0000)

x3 = (1.0000, 0.4641) x4 = (0.1827, 0.0000)

x5 = (0.0000, 1.0000) x6 = (0.4641, 1.0000)

x7 = (0.4507, 0.0000) x8 = (0.7320, 0.0000)

x9 = (0.2984, 0.2417) x10 = (0.0000, 0.4640)

x11 = (0.4640, 0.4639) x12 = (0.5913, 0.2281)

x13 = (0.8660, 0.8660) x14 = (0.7320, 0.4641)

x15 = (0.2320, 0.5980) x16 = (0.0000, 0.7320)

x17 = (0.4641, 0.7320) x18 = (0.2320, 0.8660)

x19 = (0.7320, 0.7320) x20 = (1.0000, 0.7320)

x21 = (0.7320, 1.0000) x22 = (1.0000, 1.0000)

1

0 1

(b) n = 23

x1 = (0.5000, 1.0000) x2 = (0.0670, 0.7500)

x3 = (0.7500, 0.0670) x4 = (0.3170, 0.6830)

x5 = (0.7500, 0.5670) x6 = (0.4330, 0.2500)

x7 = (0.5000, 0.5000) x8 = (1.0000, 1.0000)

x9 = (1.0000, 0.5000) x10 = (0.9330, 0.7500)

x11 = (0.0000, 0.5000) x12 = (0.0670, 0.2500)

x13 = (0.0000, 1.0000) x14 = (0.6830, 0.3170)

x15 = (0.5670, 0.7500) x16 = (0.0000, 0.0000)

x17 = (0.2500, 0.4330) x18 = (0.9330, 0.2500)

x19 = (0.2500, 0.9330) x20 = (0.5000, 0.0000)

x21 = (1.0000, 0.0000) x22 = (0.2500, 0.0670)

x23 = (0.7500, 0.9330)

0

1

1

(c) n = 24

x1 = (0.0000, 0.0000) x2 = (0.0000, 0.4913)

x3 = (1.0000, 0.4913) x4 = (1.0000, 0.0000)

x5 = (0.4913, 0.0000) x6 = (0.4913, 1.0000)

x7 = (0.0000, 1.0000) x8 = (0.2457, 0.0658)

x9 = (0.0658, 0.2457) x10 = (0.4255, 0.2457)

x11 = (0.2457, 0.4255) x12 = (0.4913, 0.4913)

x13 = (0.7457, 0.0000) x14 = (0.6798, 0.2457)

x15 = (0.9342, 0.2457) x16 = (0.7457, 0.4913)

x17 = (0.0000, 0.7457) x18 = (0.2457, 0.2457)

x19 = (0.4913, 0.7457) x20 = (0.2457, 0.9342)

x21 = (0.7457, 0.7457) x22 = (1.0000, 0.7457)

x23 = (0.7457, 1.0000) x24 = (1.0000, 1.0000)

270 PACKING EQUAL CIRCLES IN A SQUARE

FIGURE 5.38. Solutions forn = 26, 27

1

0 1

(a)n = 26

x1 = (0.0000, 0.8073) x2 = (1.0000, 0.8807)

x3 = (1.0000, 0.1644) x4 = (0.7932, 1.0000)

x5 = (0.8269, 0.0000) x6 = (0.4134, 0.0000)

x7 = (0.0000, 0.0000) x8 = (0.3797, 1.0000)

x9 = (0.2067, 0.1195) x10 = (0.0000, 0.2388)

x11 = (0.4134, 0.2388) x12 = (0.2067, 0.3582)

x13 = (0.6201, 0.1194) x14 = (0.7933, 0.2838)

x15 = (0.5865, 0.4032) x16 = (1.0000, 0.4032)

x17 = (0.1727, 0.6425) x18 = (0.3798, 0.5226)

x19 = (0.3797, 0.7613) x20 = (0.5865, 0.6419)

x21 = (0.7932, 0.5225) x22 = (0.7932, 0.7613)

x23 = (1.0000, 0.6419) x24 = (0.5864, 0.8806)

x25 = (0.0000, 0.4776) x26 = (0.1409, 1.0000)

0

1

1

(b) n = 27

x1 = (0.0000, 0.0000) x2 = (0.0000, 1.0000)

x3 = (1.0000, 0.8750) x4 = (1.0000, 0.1250)

x5 = (0.0000, 0.7500) x6 = (0.0000, 0.5000)

x7 = (1.0000, 0.3750) x8 = (1.0000, 0.6250)

x9 = (0.0000, 0.2500) x10 = (0.8000, 1.0000)

x11 = (0.8000, 0.0000) x12 = (0.4000, 0.0000)

x13 = (0.4000, 1.0000) x14 = (0.2000, 0.1250)

x15 = (0.4000, 0.2500) x16 = (0.2000, 0.3750)

x17 = (0.4000, 0.5000) x18 = (0.6000, 0.1250)

x19 = (0.8000, 0.2500) x20 = (0.6000, 0.3750)

x21 = (0.2000, 0.6250) x22 = (0.4000, 0.7500)

x23 = (0.2000, 0.8750) x24 = (0.6000, 0.6250)

x25 = (0.8000, 0.5000) x26 = (0.8000, 0.7500)

x27 = (0.6000, 0.8750)

partition sets and also to an explosion of the running-times. We were not able to
solve Problem (PP) withn > 27 and the current version of Algorithm 5.1 within
several days.

5.8. Improvements of Algorithm 5.1

We complete the consideration of the packing problem with the description
of some further improvements of Algorithm 5.1. Applying these new ideas we
could significantly reduce the computational effort for solving Problem (PP) with
n ∈ {14, . . . , 27} points. Moreover, we were able to determine approximate solu-
tions of Problem (PP) with more than27 points.

5.8. IMPROVEMENTS OFALGORITHM 5.1 271

At first we discuss a slightly modified basic subdivision strategy. The applica-
tion of this new method results in a reduction of the effort for solving (PP) in all
respects, i.e., with respect to the iteration number, the running-time as well as the
storage requirement. After this we will shortly describe a new criterion in order
to decide whether we should calculate a new upper bound by solving a linear pro-
gram or whether we should take the old one. We will see that this strategy further
reduced substantially the running-times for solving Problem (PP) withn ≤ 27.

5.8.1. Another Basic Partitioning Strategy.As in the description of the old
strategy in Subsection 5.5.1, letRj ⊂ U (j ∈ {1, . . . , n}) be the rectangle chosen
in Step II of Algorithm 5.1. We pointed out that, taking the symmetry avoiding
strategies into account, it is essential that in the first level, i.e., ifRj coincides with
the unit squareU , we use a partition ofRj consisting of squares with equal size.
Therefore, we did not change the basic strategy in the first level.

However, in the second level, i.e., ifRj is equal to one of the squaresUi
(i ∈ {1, . . . , n}) (see (5.5.1)), it is no longer necessary that we use squares with
equal size. We only have to ensure that the partition of each squareUi
(i ∈ {1, . . . , 4}) is invariant with respect to the relevant types of symmetry. Hence
we can use the following subdivision ofRj in the second level.

The integerm ≥ 2 is chosen as in Subsection 5.5.1 andRj is partitioned into
m2 rectangles with a squared diameter less thanη0. This ensures again that each
partition set contains at most one member of an optimal solution of (PP). The
(m − 1)2 rectangles, which are nearest to the vertexv of U belonging toRj , are
chosen as squares with a squared diameter ofη0 − δ, whereδ > 0 is a given small

tolerance, i.e., we choose squares with edge-length
√

η0−δ
2 . Assume that we have

to selectm = 3. The partition of each squareUi (i ∈ {1, . . . , 4}) is done as in
Figure 5.39. Applying this strategy we obtain that the partition of the squaresUi
(i ∈ {1, . . . , 4}) is still invariant with respect to rotations and the relevant reflec-
tions. Moreover, we choose among them2 partition sets(m− 1)2 squares as large
as possible. This strategy has at least two effects on the performance of Algorithm
5.1.

First of all, we obtainm2− (m− 1)2 rectangles, which are smaller than those
given by the old basic strategy. Taking the volume reduction strategy into account
we can expect that this strategy is more successful. Indeed, on the one hand we
can cut away more from neighboring rectangles and on the other hand, it is more
likely that the smaller sets gets empty. A second effect of this new strategy is

272 PACKING EQUAL CIRCLES IN A SQUARE

FIGURE 5.39. New basic partitioning strategy

0.0

1.0

0.5
0.5

=
√

η0 − δ

(a)U3

0.5

1.0

0.5
1.0

=
√

η0 − δ

(b) U4

0.0

0.5

=
√

η0 − δ
0.0

0.5

(c) U1

0.5

0.5

0.0
1.0

=
√

η0 − δ

(d) U2

that the partition sets ofUi (i ∈ {1, . . . , 4}), which are nearest to the vertices of
the unit square, are larger. This can lead to a more successful application of the
corner rules. Remember that, in addition, the dimension and the volume reduction
strategies interact.

The application of this altered basic strategy led to a substantial reduction of
the numerical effort for solving Problem (PP). In Table 5.5 the effort for solving the
problems, where we had to choosem as3, are displayed. It can be seen, especially,
that we obtained an extraordinary reduction of the iterations for solving (PP) with
16 and21 points. For Problem (PP) withn = 26, 27 the new basic strategy led in
the second level nearly to the same partition as the old strategy. Note that in these

situations we had
√

η0−δ
2 = 0.1687 for n = 26 and0.1667 for n = 27, which

is almost equal to0.53 . Therefore, there was no improvement in these two cases.
For the other cases we could nearly halve the effort for determining approximate
solutions.

5.8. IMPROVEMENTS OFALGORITHM 5.1 273

TABLE 5.5. Numerical effort with altered basic strategy
n IT TT NLP TLP NR MNPS
14 6,651 24.1 340 3.97 18,015 702
15 1,532 6.30 158 2.22 3,590 255
16 1,832 7.24 150 2.11 4,401 176
17 17,023 113 2,371 44.0 38,718 1,373
18 10,446 101 2,306 54.3 21,861 494
19 29,046 130 1,239 30.0 60,514 1,927
20 13,374 180 4,440 107 26,161 488
21 82,865 771 11,885 314 161,072 5,590
22 33,644 281 3,331 102 62,579 2,669
23 86,412 1,549 26,750 953 154,418 4,778
24 103,557 1,431 17,285 697 177,526 7,007
25 66,900 1,066 12,324 554 111,056 4,376
26 661,811 9,024 46,472 2,291 1,034,886 36,335
27 251,004 3,204 13,656 799 365,210 15,457

In the implementation of Algorithm 5.1, whose results are reported in Table
5.5, we also altered the selection rule of the current hyperrectangleRk+1 in Step
VII of our method. Instead of choosingRk+1 among all hyperrectanglesR ∈ Rk+1

with a lower bound equal toµk+1, we select, if possible, a child ofRk with this
attribute. Note that in the old strategy we applied the FIFO principle, i.e., first-in-
first-out, and that the new strategy is related to the LIFO principle, i.e., last-in-first-
out. Our numerical experience showed that this selection strategy nearly halved the
maximal number of stored partition sets (see the casesn = 26, 27 in Table 5.5 and
remember that in these cases the new basic strategy had almost no influence).

5.8.2. Altered Decision Criterion. In the previous section we described a
criterion according to which we decide, whether we calculate an upper bound for
the current hyperrectangleRkp (p ∈ {1, . . . , l}) by solving a linear program or
whether we choose the old upper boundµk, respectively the updated oneµRkp =
min{µk, µ̄Rkp} (see (5.7.1)). This criterion based on the check of the feasibility of
a pointx ∈ Un with respect to the linear subproblem (LSP’) (see page 264), where
the members of this point are vertices of the rectangles formingRkp . Taking the
large number of possible points into account the verification of this criterion can be
time-consuming. Nevertheless, the application of this strategy lead to an essential
reduction of the running-times. The following cheap and simple decision criterion
showed even better results.

274 PACKING EQUAL CIRCLES IN A SQUARE

As long as the squared diameterd(Rkp) of the hyperrectangleRkp is not

smaller thanη
0

2 , i.e, as long as there holds

d(Rkp) =
n∑
i=1

2∑
j=1

|Lkp

ij
− lkp

ij
|2 ≥ η0

2
, (5.8.1)

we do not calculate a new upper bound for Problem (SP) with respect to the set
Rkp . We simply setµRkp = µk. Moreover, ifd(Rkp) is smaller thanη

0

2 we check
additionally the old criterion.

At first glance this new criterion might be surprising, since in all strategies
developed so far we never considered the hyperrectangle as a whole. We always
analyzed the rectangles forming these sets. Nevertheless, this criterion worked very
well and is thus at least a good heuristic. Applying this decision criterion we could
almost halve again the running-times of Algorithm 5.1 for solving Problem (PP)
with n ∈ {14, . . . , 27} points (see Table 5.6 and compare with the results in Table
5.5). For determining an approximate solution for the scattering problem with16

TABLE 5.6. Numerical effort with altered basic strategy and al-
tered decision criterion
n IT TT NLP TLP NR MNPS
14 6,777 17.0 3 0.01 18,403 691
15 1,534 3.07 2 0.01 3,596 224
16 1,878 3.49 1 0.01 4,536 177
17 17,176 56.9 52 0.37 39,057 1,478
18 11,229 32.7 27 0.16 23,733 599
19 29,149 85.5 14 0.14 60,717 1,955
20 13,491 41.2 12 0.09 26,838 706
21 83,799 371 993 11.7 162,838 6,057
22 34,772 147 14 0.21 64,851 2,759
23 87,667 382 8 0.13 154,418 5,431
24 104,684 554 29 0.25 179,524 7,853
25 67,742 412 4 0.03 112,534 4,405
26 669,709 6,107 1,883 36.7 1,051,445 40,517
27 252,517 2,187 1,021 24.6 367,854 15,648

points we had to solve only one linear program. It is interesting to note that the
number of iterations did not grow substantially. Hence, the advantage of solving
less linear programs was not outbalanced by the fact that we could obtain worse

5.8. IMPROVEMENTS OFALGORITHM 5.1 275

upper bounds. Note that, if we do not solve (LSP’), we save time since we do
not callMINOS 5.4 and, additionally, we save time since we do not construct the
LP-relaxation of Problem (SP).

A reason for the good performance of Algorithm 5.1 using this criterion might
be the following. Our numerical experience showed that the subdivision set mani-
pulation strategies are really successful in detecting areas ofUn, where no optimal
solution exists. Moreover, they are able to significantly reduce the size of the re-
maining sets containing solutions of Problem (PP). However, if these sets getsmall
and the best known solution is maybe not good enough, the manipulation strategies
do not result in further progress. In this situation it is useful to calculate upper
bounds by solving the LP-relaxation of (SP). Doing this we can obtain slight im-
provements of the best known solution and we diminish the distance between the
lower and the upper bounds. The described criterion seems to be a good choice for
detecting such situations, where the considered hyperrectangles aresmall.

We tested also several other criteria, which were not as keen as the above one.
For instance, we required that each rectangleR

kp

i (i ∈ {1, . . . , n}) was subdivided
twice, i.e., that there held

max
i=1,... ,n

max
j=1,2

|Lkp

ij
− lkp

ij
| <

√
η0

2
.

Using these criteria the running-times always increased on average.
On the other hand we tested additionally a variant of Algorithm 5.1, where we

never calculate an upper bound by solving a linear program. We always chose the
simple upper boundµRkp = min{µk, µ̄Rkp } with µ̄Rkp given as in (5.7.1). Doing
this the running-times explode for the most examples. Hence, even though we have
in comparison with the number of considered hyperrectangles only a small number
of linear problems to solve, the solution of these problems is necessary in order to
obtain an efficient method for solving the point scattering problem.

5.8.3. Solutions of Problem (PP) with more than 27 Points.In the previous
section we pointed out that we were not able to solve Problem (PP) with more than
27 points, at least with the version of Algorithm 5.1 used there. The improvements
of Algorithm 5.1 developed in the present section enabled us to solve such prob-
lems. However, in comparison to the casesn ≤ 27 the running-times still explode.

In order to obtain approximate solutions for Problem (PP) withn > 27 we
used a"parallelized"variant of Algorithm 5.1. At first we generated all possible
hyperrectanglesR = R1 × . . .×Rn with the property that each rectangleRj was

276 PACKING EQUAL CIRCLES IN A SQUARE

subdivided once, i.e., coincides with one of the squaresUj (j ∈ {1, . . . , 4}, see
(5.5.1)). After this we used each of these hyperrectangles as the initialization set
for Algorithm 5.1. In this way we could use several machines in order to solve
Problem (PP). Apart form theSUN ULTRA 60 workstations used till now, we
additionally appliedSUN Server 1000workstations. These machines are – with
our code – on average 4 times slower.

In order to avoid excessive storage requirements we used the depth-first-search-
strategy mentioned in Remark 5.7.2(b). Since we did not know the coordinates of
the best known solutions for Problem (PP) withn > 27 we did not initializex0.
We initialized onlyη0.

REMARK 5.8.1. The coordinates of̄x, which is used for the initialization of
x0, are not substantial for Algorithm 5.1. This methods needs only a good ap-
proximation forη0. Therefore, it is sufficient if we setη0 without knowing the
coordinates of̄x. Moreover, if we initializeη0 with η̄ − ε, whereη̄ is the best pub-
lished value, we can guarantee that Algorithm 5.1 delivers the coordinates of an
ε-optimal solution.

Since we used the best known solutions given in [NO97] we had to choose
m = 4 in the second level of our basic partitioning strategy in order to solve Prob-
lem (PP) with more than27 points. According to our new partitioning strategy the
rectanglesUi (i ∈ {1, . . . , 4}) were hence partitioned into9 squares with edge-

length
√

η0−δ
2 and7 additional rectangles. Thus the number of possibilities for

settingRki

j (j ∈ {1, . . . , n}, i ∈ {1, . . . , l}, k ∈ IN) in Step III of Algorithm 5.1
was substantially larger than by choosingm = 3, as it was the case forn ≤ 27.
With respect to our subdivision set manipulation strategies and the fact that there
were7 small rectangles we still hoped to be able to solve (PP) with acceptable
computational effort. However, even the fastest one (see casen = 30 in Table 5.7)
could not be solved within one day, and hence we could not expect to solve many
cases withn > 27.

The numerical effort for solving Problem (PP) withn ∈ {28, 29, 30, 31} is
shown in Table 5.7. We used again the accuracyε = 10−5, except forn = 31
we appliedε = 5 ∗ 10−5. The abbreviations are the same as before. However, the
running-times are given in hours. The additional column NP shows the number of
possible hyperrectangles after the first level, i.e., the number of different problems
we solved in order to obtain an approximate solution of the corresponding point
scattering problem. Since we solved each problem using different machines we

5.8. IMPROVEMENTS OFALGORITHM 5.1 277

TABLE 5.7. Numerical effort for solving (PP) withn > 27
n NP IT TT NLP TLP NR η?

28 29 86,848,406 205.44 7,149 0.04 206,979,450 0.0531427
29 21 38,423,801 103.23 109 0.01 96,339,168 0.0514739
30 16 11,034,381 27.71 8 0.00 24,955,286 0.0503987
31 9 76,263,071 229.39 4,802,901 42,57 164,774,004 0.047324

added the effort needed for each process. In order to obtain comparable running-
times we scaled the times obtained with theSUN Server 1000workstations with the
speedup-factor4.0 mentioned before. Thus the running-times displayed in Table
5.7 are approximations of the necessary time for completely solving these problems
on aSUN ULTRA 60 workstation.

It is interesting to note that even though there are nearly double as much pos-
sibilities in the second partitioning level as for the casesn ≤ 27, the number of
considered hyperrectangles in Step IV is still less than three times the number of
iterations. This corroborates again the success of the special features of the subdi-
vision strategy. As in the cases considered in the previous section we did not de-
termine solutions of Problem (PP) (see columnη?) with a larger minimum squared
pairwise distance than the best known so far.

Our numerical experience for the casen = 31 showed that in this case a sym-
metry avoiding strategy in the third level could improve the numerical performance
of Algorithm 5.1. Note that for the casesn ≤ 27 we pointed out that it was not
useful to use this strategy in deeper levels than the second one. In Figures 5.40-5.42
we show again the arrangements of the calculatedε-optimal solutions together with

FIGURE 5.40. Solution forn = 28

0

1

1

x1 = (0.0000, 1.0000) x2 = (1.0000, 1.0000)

x3 = (0.0000, 0.0060) x4 = (1.0000, 0.2170)

x5 = (0.0000, 0.6333) x6 = (1.0000, 0.6163)

x7 = (0.0000, 0.2365) x8 = (0.2305, 0.0000)

x9 = (0.9221, 0.0000) x10 = (0.2833, 1.0000)

x11 = (0.7444, 1.0000) x12 = (0.2305, 0.2305)

x13 = (0.4601, 0.0000) x14 = (0.4996, 0.2273)

x15 = (0.1175, 0.4349) x16 = (0.3672, 0.4161)

x17 = (0.6915, 0.0000) x18 = (0.7695, 0.2170)

x19 = (0.6417, 0.4088) x20 = (0.8847, 0.4166)

x21 = (0.2569, 0.6185) x22 = (0.1417, 0.8181)

x23 = (0.3986, 0.8003) x24 = (0.5119, 0.5994)

x25 = (0.7569, 0.6085) x26 = (0.6291, 0.8003)

x27 = (0.5139, 1.0000) x28 = (0.8722, 0.8081)

278 PACKING EQUAL CIRCLES IN A SQUARE

their coordinates.

FIGURE 5.41. Solutions forn = 29, 30

1

10

(a)n = 29

x1 = (0.0000, 1.0000) x2 = (0.0000, 0.0450)

x3 = (1.0000, 0.2051) x4 = (1.0000, 0.5981)

x5 = (1.0000, 1.0000) x6 = (0.0000, 0.7237)

x7 = (0.0000, 0.4969) x8 = (0.2224, 0.0000)

x9 = (0.9030, 0.0000) x10 = (0.3193, 1.0000)

x11 = (0.0204, 0.2709) x12 = (0.3194, 0.2051)

x13 = (0.4493, 0.0000) x14 = (0.2059, 0.4016)

x15 = (0.4328, 0.4016) x16 = (0.6761, 0.0000)

x17 = (0.5462, 0.2051) x18 = (0.7731, 0.2051)

x19 = (0.6597, 0.4016) x20 = (0.8860, 0.4016)

x21 = (0.3194, 0.5981) x22 = (0.2140, 0.7990)

x23 = (0.4409, 0.7990) x24 = (0.5462, 0.5981)

x25 = (0.7731, 0.5981) x26 = (0.6678, 0.7790)

x27 = (0.5462, 1.0000) x28 = (0.8947, 0.7790)

x29 = (0.7731, 1.0000)

0

1

1

(b) n = 30

x1 = (1.0000, 0.2000) x2 = (0.0000, 0.8000)

x3 = (0.0000, 0.4000) x4 = (0.0000, 0.0000)

x5 = (1.0000, 0.6000) x6 = (1.0000, 1.0000)

x7 = (0.8980, 0.0000) x8 = (0.1020, 1.0000)

x9 = (0.2245, 0.0000) x10 = (0.1020, 0.2000)

x11 = (0.4490, 0.0000) x12 = (0.3265, 0.2000)

x13 = (0.2245, 0.4000) x14 = (0.4490, 0.4000)

x15 = (0.6735, 0.0000) x16 = (0.5510, 0.2000)

x17 = (0.7755, 0.2000) x18 = (0.6735, 0.4000)

x19 = (0.8980, 0.4000) x20 = (0.1020, 0.6000)

x21 = (0.3265, 0.6000) x22 = (0.2245, 0.8000)

x23 = (0.4490, 0.8000) x24 = (0.3265, 1.0000)

x25 = (0.5510, 0.6000) x26 = (0.7755, 0.6000)

x27 = (0.6735, 0.8000) x28 = (0.5510, 1.0000)

x29 = (0.8980, 0.8000) x30 = (0.7755, 1.0000)

We also tried to solve even larger problems. However, the point scattering
problem with32 points could not be solved within two weeks. Hence we do not
expect that the current version of Algorithm 5.1 is able to solve Problem (PP) with
n > 31 within several days, and we did not try this until now. Nevertheless, in this
section we saw that slight changes of some strategies can essentially improve the
numerical performance of Algorithm 5.1. Consequently, we hope that it is possible
to modify the presented strategies as well as to develop new strategies in order to

5.8. IMPROVEMENTS OFALGORITHM 5.1 279

FIGURE 5.42. Solution forn = 31

1

0 1

x1 = (1.0000, 0.7828) x2 = (1.0000, 0.1061)

x3 = (0.0000, 0.8101) x4 = (0.0000, 0.4351)

x5 = (1.0000, 0.5497) x6 = (1.0000, 0.3292)

x7 = (0.9870, 1.0000) x8 = (0.8101, 0.0000)

x9 = (0.1061, 1.0000) x10 = (0.4351, 0.0000)

x11 = (0.5496, 1.0000) x12 = (0.3290, 1.0000)

x13 = (0.0000, 0.0000) x14 = (0.2175, 0.0000)

x15 = (0.0000, 0.2175) x16 = (0.2175, 0.2175)

x17 = (0.4351, 0.2206) x18 = (0.2206, 0.4351)

x19 = (0.4382, 0.4382) x20 = (0.6226, 0.1103)

x21 = (0.8132, 0.2176) x22 = (0.6257, 0.3279)

x23 = (0.8125, 0.4394) x24 = (0.1103, 0.6226)

x25 = (0.3279, 0.6257) x26 = (0.2175, 0.8132)

x27 = (0.4393, 0.8125) x28 = (0.6115, 0.5696)

x29 = (0.8107, 0.6570) x30 = (0.6568, 0.8107)

x31 = (0.7685, 0.9979)

further improve the suggested method. This might lead to an approach, which is
even able to solve larger problems with acceptable effort. Recognize that Problem
(PP) withn > 30 is – from a deterministic global optimization point of view –
a huge problem. The small numbers of linear programs, which had to be solved
during the execution of Algorithm 5.1 (see the corresponding columns in Table 5.6
and Table 5.7), let expect that a further modification of the upper bounds will not
lead to a faster approach. The key for the acceleration of Algorithm 5.1 are the
subdivision set manipulation strategies.

Let us finish this chapter with a good solution of Problem (PP) with32 points

FIGURE 5.43. Good solution forn = 32

0

1

1

x1 = (1.0000, 1.0000) x2 = (1.0000, 0.0594)

x3 = (0.0000, 0.7953) x4 = (1.0000, 0.6987)

x5 = (0.0000, 0.4262) x6 = (0.7953, 0.0000)

x7 = (0.0594, 1.0000) x8 = (0.6987, 1.0000)

x9 = (0.4262, 0.0000) x10 = (0.0000, 0.0000)

x11 = (0.2131, 0.0000) x12 = (0.0000, 0.2131)

x13 = (0.2131, 0.2131) x14 = (0.4262, 0.2131)

x15 = (0.2131, 0.4262) x16 = (0.4262, 0.4262)

x17 = (0.6108, 0.1066) x18 = (0.7953, 0.2131)

x19 = (1.0000, 0.2725) x20 = (0.6108, 0.3197)

x21 = (0.7953, 0.4262) x22 = (1.0000, 0.4856)

x23 = (0.1066, 0.6108) x24 = (0.3197, 0.6108)

x25 = (0.2131, 0.7953) x26 = (0.2725, 1.0000)

x27 = (0.4262, 0.7953) x28 = (0.4856, 1.0000)

x29 = (0.5872, 0.5872) x30 = (0.7938, 0.6393)

x31 = (0.6393, 0.7938) x32 = (0.8459, 0.8459)

280 PACKING EQUAL CIRCLES IN A SQUARE

detected during our numerical tests. The solution displayed in Figure 5.43 has a
minimum squared pairwise distance ofmin1≤i<j≤32 ‖xi − xj‖22 = 0.0454068,
which is slightly better than the one given in [NO97] (0.04540409). This is the
only case, where we detected by applying Algorithm 5.1 a better solution than the
best known so far.

CHAPTER 6

Conclusion

We would like to complete this doctoral thesis with a short review of the topics we
treated. What have we reached and which questions are still to be answered?

The main aim of this dissertation was the development and the theoretical as
well as numerical examination of solution methods for so-callednonconvex all-
quadratic optimization problems, i.e., for problems of type

min xTQ0x+ (d0)Tx

xTQlx+ (dl)Tx+ cl ≤ 0 l = 1, . . . , p

x ∈ P ,

(QP)

with Ql ∈ IRn×n symmetric,dl ∈ IRn (l = 0, . . . , p), cl ∈ IR (l = 1, . . . , p)
andP = {x ∈ IRn : Ax ≤ b} a non-empty, full-dimensional polytope with
A ∈ IRm×n andb ∈ IRm. We proposed two, respectively three new approaches for
solving this class of global optimization problems.

The first method was developed for the solution of so-calledunary problems.
This class of optimization problem was of interest, since each problem of type
(QP) can be transformed into a unary program. With some technical effort we de-
rived several convergent solution approaches for this type of global optimization
problems. Hence we overcome the theoretical deficiency of an outer approxima-
tion scheme given by Ramana [RAM 93], which was the only solution approach for
unary problems known so far. Our algorithms are combinations of outer approx-
imations and – branch-and-bound like – successive subdivisions of the feasible
region. One variant of these new methods uses a regularn-simplex with all its
vertices on the boundary of the Euclidean unit ball. Even though the properties of
such ann-simplex are known in the literature, to the author’s knowledge there is
no explicit construction of such a set – except in the present work and in [HR98].

281

282 CONCLUSION

Unfortunately, the indirect approach for solving (QP) via the solution of the
corresponding unary program is only of theoretical interest. The numerical results
showed that this method is not able to solve all-quadratic problems with accept-
able computational effort. Excessive numerical effort was needed in order to solve
the unary problems resulting from the transformation of the all-quadratic problems
belonging to our randomly generated test set.

The numerical effort for solving a unary problem depends substantially on
the structure of the affine matrix mapping forming the single nonlinear constraint.
For unary problems resulting from the transformation of all-quadratic problems
this mapping has an unpleasant structure. If unary problems with an easier matrix
mapping are considered it is likely that our methods show a substantially better
numerical performance. Moreover, in such a case it could even be interesting to
change some features of Algorithm 2.3 in order to further improve its numerical
performance (see the considerations at the end of Chapter 2). However, another
application of unary problems, which could lead to a simpler matrix mapping, is
not known to our knowledge.

As mentioned before, we developed a new method for the solution of unary
problems since the convergence of the outer approximation scheme proposed by
Ramana is not provable. This is a theoretical problem of several algorithms, which
base on cutting planes, developed for global optimization problems (see, e.g.,
[HT96B]). It might be that the ideas used in Chapter 2 in order to obtain a con-
vergent algorithm can also be applied for other problem classes, where the conver-
gence of corresponding outer approximation schemes is not known. Hence, there
are some theoretically interesting aspects of the content of Chapter 2, even though
we did not reach our main goal to obtain practicable solution methods for problems
of type (QP).

The second solution approach for Problem (QP) suggested in Chapter 3 was
more successful with respect to this main intention of the present thesis. The
presented simplicial branch-and-bound method showed a good numerical perfor-
mance, at least for the solution of arbitrary problems of type (QP) with a dimension
less than10. Beside the rectangular branch-and-bound algorithm introduced in
[AKLV95] our simplicial method belongs to the rare approaches in the literature,
which consider Problem (QP) directly. Other solution approaches for all-quadratic
problems mostly interpret this type of programs as a special instance of a more gen-
eral problem class, like bilinear problems [AK92], polynomial problems [ST92],

CONCLUSION 283

problems involving biconvex functions [FV93B], general d.c. problems (see Chap-
ter 4) or – as we did in Chapter 2 – unary problems [RAM 93].

As long as an exhaustive subdivision rule for then-simplices considered in our
algorithm is used the convergence of our method can be ensured. Hence, this sim-
plicial algorithm has the same theoretical properties as the comparable rectangular
approach by Al-Khayyal et al. [AKLV95]. Moreover, numerically, our method
often outperforms this rectangular approach, in particular when all-quadratic prob-
lems with more quadratic constraints than the dimensions, i.e.,p > n, have to be
solved. The complexity of the LP-relaxations used in our approach, i.e., their di-
mension and number of linear constraints, depends linearly onp andn. In contrast
to this the LP-relaxations applied in Al-Khayyal et al.’s method for the calculation
of lower bounds have a dimension of(p+ 2)n and4(p+ 1)n+ p+m linear con-
straints. The less complex relaxations in our approach are the main reason for the
better numerical performance.

If we are interested in a practicable approach for solving (QP), convergence of
such an algorithm is not sufficient. In addition we need that the method is finite.
However, this can only be obtained, if we are satisfied with approximate solutions.
In particular, we have to be satisfied with solutions of Problem (QP), which are ap-
proximately feasible, i.e., fulfill the constraints up to a prespecified tolerance, and
which are, additionally, approximately optimal. The solution methods considered
in this thesis can determine such approximate solutions in finite time. In contrast
to other global optimization problems, like concave minimization, it is in general
not possible to require that the determined approximate solution of Problem (QP)
is at least feasible. Note that the problem of detecting a feasible point for this type
of problems is as hard as the solution of (QP) itself. However, under additional as-
sumptions the feasibility of calculated solutions could be guaranteed. For instance,
if we require that the feasible region of (QP) contains a ball with known radius, then
it is possible to choose the accuracies in our simplicial method such that Algorithm
3.1 determines a feasible point in finite time. Our first method and the general-
ization of the simplicial branch-and-bound approach considered in Chapter 4 can
also be adapted in this way. However, the verification of such a strict assumption is
again a hard problem, unless the examined instance of Problem (QP) has a special
structure.

In the definition of our simplicial branch-and-bound method there are still
some features, which could be modified or changed in order to affect the numeri-
cal behavior of this approach. At the end of Chapter 3 we saw, for example, that

284 CONCLUSION

the exploitation of the fact that the LP-relaxations applied in our approach are not
uniquely determined can improve the performance of Algorithm 3.1. Another fea-
ture of this method, which could be changed, is the subdivision rule. We usebisec-
tion, where a partition of the currentn-simplex is performed by a radial subdivision
with respect to the midpoint of the longest edge. This subdivision rule is exhaus-
tive. The same holds for thegeneralized bisectionmentioned on page 127. Hence,
this rule could also be applied without altering the theoretical properties of our
approach.

In the context of simplicial branch-and-bound methods for the minimization
of concave functions with respect to polytopes, i.e., forconcave minimization
problems, the so-calledω-subdivision is favored by some authors. In this rule
the currentn-simplexS is partitioned into up ton + 1 subsimplices by applying
a radial subdivision with respect to the point, where the optimal solution of the
LP-relaxation on the setS is attained. Using this rule one hopes to obtain bet-
ter numerical results, since the subdivision point is more related to the problem
than the midpoint of the longest edge used in the bisection rule. However, it was
an open question, whether simplicial branch-and-bound methods employing only
ω-subdivisions are convergent, since this subdivision rule is not necessarily exhaus-
tive.

We were first of all interested in convergent solution approaches for Problem
(QP). Therefore, we had to answer this open question, if we wanted to apply the
ω-subdivision rule in our simplicial branch-and-bound method. The ideas used in
Chapter 3 in order to develop a solution approach for (QP) could analogously be
used for deriving a simplicial branch-and-bound algorithm for the solution of so-
calledgeneralized d.c. problemscontaining the class of all-quadratic problems as
well as the class of concave minimization problems. Therefore, we tried to answer
the open question mentioned above for the generalized algorithm introduced in
Chapter 4, which is able to solve such d.c. programs.

We proved that for general d.c. problems and in particular for general all-
quadratic problems our algorithm can fail to converge, if onlyω-subdivisions are
employed. However, if this method is applied for concave minimization problems
or for problems with a d.c. objective function – consisting of a quadratic convex
part and a strictly concave part – and with concave and linear constraints, the con-
vergence even withω-subdivisions can be guaranteed. This was the main result
in Chapter 4. Note that the convergence of this method could only be guaranteed

CONCLUSION 285

in the sense that this approach detects for arbitrary accuraciesε, δ > 0 either the
emptiness of the feasible region or an (ε, δ, 0)-solution of the considered problem
in finite time. This convergence result was theoretically weaker than the other con-
vergence results examined in this thesis. Nevertheless, – from a practical point of
view – all results have the same quality. They ensure the finiteness of our methods,
if we are satisfied with approximate solutions.

Apart from these convergence results we were, furthermore, able to prove that
this method withω-subdivisions delivers in finite time even the optimal solution
of a concave minimization problem, if two additional assumptions are fulfilled. It
does not seem that this finiteness result can be extended to more general problem
classes, since for the proofs it was essential that the feasible set is a polytope. On
the other hand, it is an interesting question whether the additional assumptions
could be weakened without losing the finiteness result.

We also examined the numerical performance of the introduced generalized
simplicial branch-and-bound Algorithm 4.1 with respect to problems of type (QP).
Since this algorithm uses convex relaxations instead of LP-relaxations applied by
Algorithm 3.1, we were at first interested in a numerical comparison of both ap-
proaches only using bisections. Note that the generalized algorithm is always con-
vergent, if an exhaustive subdivision rule is used – as it is the case for Algorithm
3.1. We observed that the version of Algorithm 4.1, which employs only bisec-
tions, can be expected to be numerically more efficient than Algorithm 3.1, at least
as long as a solver for the convex relaxations is used, which exploits the quadratic
structure of the involved functions.

The main aim for consideringω-subdivisions in Chapter 4 was the hope to ob-
tain an algorithm showing a better numerical performance than a method, which
simply chooses bisection. As mentioned before, we know that in general the con-
vergence of an approach, which employs onlyω-subdivisions, cannot be ensured.
However, our theoretical results derived in Chapter 4 enabled us to develop a mixed
subdivision strategy (MGWSR) – consisting of bisections andω-subdivisions –
leading to a convergent approach for solving general d.c. problems. Note that
(MGWSR) is different form the mixed strategy used in the so-callednormal sim-
plicial branch-and-bound algorithms. Unfortunately, the numerical tests using this
mixed strategy (MGWSR) and variants of it were really disappointing. Even though
Algorithm 4.1 using (MGWSR) had a good performance for a few test examples,
on average the application of this rule results in a substantially worse numeri-
cal performance than the use of bisection. We did not find a strategy based on

286 CONCLUSION

(MGWSR), which has the best numerical performance in all test examples, i.e.,
which is the fastest one, if (MGWSR) leads faster to a solution than bisection as
well as if bisection is faster than (MGWSR). It is hence still an open question
whether there exists a subdivision rule for simplicial branch-and-bound methods,
which always shows the best numerical behavior. We believe that such a rule does
not exist in general. Taking the structure of special problem instances into account
it might be non the less possible to develop a subdivision rule, which has this prop-
erty, at least as long as the resulting algorithm is applied for the solution of these
instances.

Till Chapter 4 we developed two new approaches for the solution of the gen-
eral form of Problem (QP). Note that Algorithm 3.1 can be interpreted as a special
case of Algorithm 4.1. In the introduction of this thesis (see Section 1.1) we saw
that there are many applications of this type of global optimization problems. Con-
sequently, it was interesting to examine such a special instance of Problem (QP).
We chose the problem of packingn ∈ IN equal and non-overlapping circles with
maximum radius into the two-dimensional unit square, which we called thepacking
problem. The optimal solutions of this problem with up to20 circles are reported to
be known. Hence, we had to solve an all-quadratic problem (see page 189) with a
dimension higher than40, if we wanted to determine new global optimal solutions.
From a global optimization point of view, such problems are very large. Thus, it
was not really surprising that our general methods for (QP) developed so far fail to
solve the packing problem with more than20 circles and acceptable effort.

In the considerations of our general schemes we often claimed that the ex-
ploitation of the structure of special problem instances can improve their numer-
ical performance. This was particularly the case with the packing problem. We
suggested a rectangular branch-and-bound algorithm, which was able to solve the
packing problem with up to27 circles within two hours.

We exploited the special structure of the packing problem, respectively of the
all-quadratic formulation (PP) of the equivalentpoint scattering problemin differ-
ent ways. First of all we derived some new theoretical results showing the existence
of a solution of this problem with a special behavior on the boundary of the unit
square. In particular, we proved that there is an optimal solutionx? consisting of
n two-dimensional membersx?i (i = 1, . . . , n) such that for each vertexv of the
unit square there holds: Either the vertexv is itself a member ofx? or there are
two members of this solution belonging to the boundary lines of the unit square

CONCLUSION 287

forming this vertex, which have exactly the optimal distance from each other. Even
though we do not know an optimal solution of the point scattering problem with the
property that no vertex of the unit square is a member of this solution, we were not
able to prove this fact. We could not show that at least one vertex has to belong to
an optimal solution of the point scattering problem. This is still an open question.
The existence of optimal solutions with the proven behavior on the boundary of the
unit square could be used in order to reduce the number of possible solutions of the
considered problem, which our algorithm has to look for.

Apart from the derivation of these theoretical results we exploited the structure
of the packing problem in the construction of LP-relaxations, which are needed
for the calculation of bounds. These special relaxations are better than those ob-
tained by general approaches. We could also use the structure of the considered
instance of (QP) in order to develop special subdivision strategies for the relevant
hyperrectangles. Moreover, we were able to derive further powerful subdivision set
manipulation strategies. Note that the derivation of such strategies is mostly not
possible, if general problem classes are considered.

The combination of all these adjustments of a general rectangular branch-and-
bound scheme to a special problem instance led to a really successful solution
approach for the packing problem. The proposed algorithm is able to prove the
ε-optimality of determined approximate solutions. Hence, this approach could be
used as a computer aided proof, since the optimal solutions of the packing problem
for more than20 circles are mostly not known and since our numerical experience
showed that Algorithm 5.1 is able to solve problems with these sizes and acceptable
effort. We pointed out that our current implementation of Algorithm 5.1 cannot be
used without reservation as a computer aided proof. Nevertheless, it is possible to
adapt this implementation such that the required precision can be reached.

The performance of the proposed method depends essentially on the quality
of the solutions of the examined problem known in advance. Algorithm 5.1 is
not applicable in order to determine new solutions of the packing problem with-
out knowing good initial approximations. The main advantage of our method is
the possible guarantee of theε-optimality of determined points mentioned before.
Nevertheless, this approach can also detect better solutions than the best known so
far, as we saw for the case with32 circles.

288 CONCLUSION

The suggested strategies for improving the performance of Algorithm 5.1 are
surely not yet the best ones. We believe that there are still further possible im-
provements, especially for the subdivision set manipulation strategies, such that
even larger examples of the packing problem can be solved globally.

The last chapter of this thesis showed that an adjustment of a general solution
scheme to a special problem instance can significantly improve the numerical per-
formance of the method applied for the solution of this instance. Moreover, we saw
that in global optimization general approaches are – from a practical point of view
– often not able to solve problems resulting from applications, since the sizes of
these problems are too large. Another interesting aspect of Chapter 5 is that the key
for the acceleration of the branch-and-bound Algorithm 5.1 was not the develop-
ment of good relaxations for calculating bounds. The subdivision set manipulation
strategies were decisive. Also for other problem instances it is possible that the
examination of the structure of the feasible region and the resulting derivation of
subdivision set manipulation strategies is – with respect to the numerical perfor-
mance of a branch-and-bound method – more successful than the development of
special bounds.

APPENDIX A

Proofs for Section 4.4

Before expatiating the longer and more technical proofs of some results proposed
in Section 4.4 we first establish a lemma, which will ease our work. The statement
of this lemma does not depend on the problem class which we would like to solve
with Algorithm 4.1.

LEMMA A.1. Let{Sk}k∈IN be an infinite nested simplex sequence generated
by Algorithm 4.1 with Properties (4.4.2.a) and (4.4.2.b), and let{xk}k∈IN be a
point sequence withxk ∈ Sk (k ∈ IN). Chooseλk ∈ Bn such that, for allk ∈ IN,

xk =
n∑
i=0

λki v
k
i . (A.0.1)

Assume that there is an indexi′ ∈ {0, . . . , n} such that the verticesvki′ (k ∈ IN)
change infinitely often, i.e.,

|{k ∈ IN : vk+1
i′ 6= vki′}| = ∞ , (A.0.2)

and such that there holds

λki′ 6→ 0 (k →∞) . (A.0.3)

Then there exist an indexl ∈ {0, . . . , p}, a positive real numberτ and a subse-
quence{kq}q∈IN of {k}k∈IN satisfying, for allq ∈ IN,

ϕl
Skq (xkq) ≥ ϕl

Skq−1 (xkq) + τ . (A.0.4)

In particular, there holds

ϕ0
Skq (xkq) ≥ ϕ0

Skq−1 (xkq) + τ ,

if all elements of the vertex sequence{vki′}k∈IN are (δ, 0)-feasible.

289

290 PROOFS FORSECTION 4.4

PROOF FOR (DCP1) AND (DCP2): The boundedness of the sequence
{λki′}k∈IN implies that there is a convergent subsequence{λkq

i′ }q∈IN satisfying

λ
kq

i′ → 2ν (q →∞)

for a positive real valueν. It follows that there exists a numberQ ∈ IN with the
property that, for allq ≥ Q, there holds

λ
kq

i′ > ν .

We assume, without loss of generality, thatQ = 1. Regarding (A.0.2) we are
able to choose the subsequence{λkq

i′ }q∈IN in a way such that each member of the

corresponding vertex sequence{vkq

i′ }q∈IN is different from his successor, i.e.,

∀q ∈ IN v
kq+1
i′ 6= v

kq

i′ .

Therefore, we know that, for allq ∈ IN, there exists an indexkq(i′) < kq,
kq(i′) ≥ kq−1 – not necessarily belonging to the subsequence{kq}q∈IN – with

v
kq

i′ = ω(Skq(i′)) .

Thus, for eachq ∈ IN, there holds

Skq(i′)+1 = [vkq(i′)
0 , . . . , v

kq(i′)
i′−1 , v

kq

i′ , v
kq(i′)
i′+1 , . . . , v

kq(i′)
n] and

Skq ⊆ Skq(i′)+1 . (A.0.5)

It follows that each vertexvkq

j (j ∈ {0, . . . , n}\{i′}) of then-simplexSkq can be

represented as a convex combination of the vertices ofSkq(i′)+1 , i.e., there exists

a vectorγkq(i′)
j ∈ Bn satisfying

v
kq

j =
n∑

i=0,i6=i′
(γkq(i′)
j)iv

kq(i′)
i + (γkq(i′)

j)i′v
kq

i′ . (A.0.6)

By substituting eachvkq

j (j ∈ {0, . . . , n}\{i′}) in (A.0.1) with (A.0.6) we obtain
a vectorαkq ∈ Bn satisfying

xkq =
n∑

i=0,i6=i′
α
kq

i v
kq(i′)
i + α

kq

i′ v
kq

i′

PROOFS FORSECTION 4.4 291

with

α
kq

i′ = λ
kq

i′ +
n∑

j=0,j 6=i′
λ
kq

j (γkq(i′)
j)i′

︸ ︷︷ ︸
≥0

≥ ν .

Denote by

Fea := {vkq

i′ : vkq

i′ is (δ, 0)-feasible,q ∈ IN}
the set of all (δ, 0)-feasible elements of the sequence{vkq

i′ }q∈IN. Note that there

holdsFea = {vkq

i′ : q ∈ IN} in the case of problem type (DCP1). If the setFea
contains an infinite number of elements, then we can assume, without loss of gen-
erality, that each vertexvkq

i′ (q ∈ IN) is (δ, 0)-feasible. From Lemma 4.4.1 we obtain

ϕ0
Skq (xkq) ≥ ϕ0

Skq(i′)+1
(xkq)

(A.0.5) and (4.4.3)

≥ ϕ0
Skq(i′)(xkq) + α

kq

i′︸︷︷︸
≥ν

ε

Lemma 4.4.1

≥ ϕ0
Skq−1 (xkq) + νε︸︷︷︸

:=τ

.
Skq−1 ⊃ Skq(i′)

If Fea contains a finite number of elements, then there exists an index
l ∈ {1, . . . , p} such that the constraint

gl(x) + f l(x) ≤ δ (A.0.7)

is violated infinitely often by the elements of the sequence{vkq

i′ }q∈IN. In this case

we can assume, again without loss of generality, that each vertexv
kq

i′ (q ∈ IN)
violates the constraint (A.0.7) for a fixedl ∈ {1, . . . , p}. Taking Lemma 4.4.1 into
account (see, in particular, the proof of this lemma) we obtain now in an analogous
way

ϕl
Skq (xkq) ≥ ϕl

Skq−1 (xkq) + νδ︸︷︷︸
:=τ

,

which completes the proof. �

REMARK A.1. The proof of Lemma A.1 in connection with the proof of Lemma
4.4.1 shows that, in addition, there exist a further subsequence{kq(i′)}q∈IN of

292 PROOFS FORSECTION 4.4

{k}k∈IN and a positive real valueν with the properties, for allq ∈ IN,

kq−1 ≤ kq(i′) < kq , v
kq

i′ = ω(Skq(i′)) = v
kq(i′)+1
i′ (A.0.8.a)

and

λ
kq

i′ ≥ ν ,

ϕ0
Skq(i′)+1(xkq) ≥ ϕ0

Skq(i′)(xkq) + λ
kq

i′ (f0(vkq

i′)− ϕ0
Skq(i′)(v

kq

i′)) .
(A.0.8.b)

This additional subsequence and the real valueν are useful in the proof of Lemma
4.4.5 for (DCP2).

A.1. Proof of Lemma 4.4.2 for (DCP1) and (DCP2)

PROOF: Since{Sk}k∈IN is a nested sequence of compact and non-empty sets
Sk = [vk0 , . . . , v

k
n] (k ∈ IN) we know that the set

⋂
k∈IN S

k is not empty. Choose a
pointx ∈ ⋂k∈IN S

k and, for eachk ∈ IN, an (n+ 1)-dimensional vectorλk ∈ Bn
satisfying

x =
n∑
i=0

λki v
k
i .

Denote by

I := {i ∈ {0, . . . , n} : |{k ∈ IN : vk+1
i 6= vki }| =∞}

the index set of the vertices which change infinitely often. In the following we show
that, for eachk ∈ I, there holds

λki → 0 (k →∞) . (A.1.1)

Assume, by contradiction, that there exists an indexi′ ∈ I with the property

λki′ 6→ 0 (k →∞) .

It follows by Lemma A.1 that there exist an indexl ∈ {0, . . . , p}, a real number
τ > 0 and a subsequence{kq}q∈IN of {k}k∈IN satisfying, for allq ∈ IN,

ϕl
Skq (x) ≥ ϕl

Skq−1 (x) + τ .

Therefore, we obtain, for eachq ∈ IN,

ϕl
Skq (x) ≥ ϕlSk1 (x) + (q − 1)τ ,

and, in particular,

ϕl
Skq (x) → ∞ (q →∞) . (A.1.2)

A.2. PROOF OFLEMMA 4.4.3FOR (DCP1) AND (DCP2) 293

Because ofx ∈ Sk (k ∈ IN) we know – in view of the properties of the convex
envelope – that, for allk ∈ IN, there holds

ϕlSk(x) ≤ f l(x) < ∞ ,

which contradicts (A.1.2) and proves (A.1.1).
By construction we know thatλk ∈ Bn and, hence, it is not possible that

(A.1.1) is satisfied by each indexi ∈ {0, . . . , n}, i.e., it must exist an index
j, which is not contained inI. Using an adequate numbering of the vertices of
Sk (k ∈ IN) we are able to assume, without loss of generality, that there holds
I = {r + 1, . . . , n} for somer ∈ {0, . . . , n− 1}. Hence, we obtain the existence
of a numberK ∈ IN and an integer0 ≤ r < n satisfying (4.4.5). Moreover, we
obtain that there holds

x ∈ [v0, . . . , vr] = S (A.1.3)

and, in particular, fork ≥ K andi ∈ {r+1, . . . , n}, thatλki vanishes, i.e.,λki = 0.
Note that the representation of a point in a simplex as a convex combination of its
vertices is unique. With (A.1.3) we see⋂

k∈IN

Sk ⊂ S ,

and, on the other hand, fork ≥ K, we know

S ⊂ Sk = [v0, . . . , vr, vkr+1, . . . , v
k
n] ,

which proves (4.4.6). �

A.2. Proof of Lemma 4.4.3 for (DCP1) and (DCP2)

PROOF: Let ω̄ be an accumulation point of{ω(Sk)}k∈IN, and let
{ω(Skq)}q∈IN be a subsequence converging toω̄ with the additional property
k1 ≥ K. Since{Skq}q∈IN is a nested sequence of compact, non-empty sets it
follows immediately that

ω̄ ∈
⋂
q∈IN

Skq =
⋂
k∈IN

Sk = S .

Assume, by contradiction, that there is an indexi′ ∈ {0, . . . , r} with

vi′ = ω̄ . (A.2.1)

294 PROOFS FORSECTION 4.4

Using the properties of a convex envelope (see, especially, Relation (4.4.3)) we
obtain, forl ∈ {0, . . . , p} andq ∈ IN,

ϕlSk1 (ω(Skq)) ≤ ϕl
Skq (ω(Skq)) ≤ f l(ω(Skq)) .

The functionsϕl
Sk1 andf l (l = 0, . . . , p) are continuous (for continuity off l see,

e.g., [ROC70, Theorem 10.1]) and, furthermore, we know from Assumption (A.2.1)
that there holdsϕl

Sk1 (ω̄) = f l(ω̄). Therefore, we see that, for eachl ∈ {0, . . . , p},
ϕl
Skq (ω(Skq)) → f l(ω̄) (q →∞) . (A.2.2)

The pointω(Skq) is feasible for the convex subproblem (DCPSkq
) (q ∈ IN). With

(A.2.2) we obtain, forl ∈ {1, . . . , p}, by continuity ofgl

gl(ω(Skq)) + ϕl
Skq (ω(Skq)) ≤ 0

↓ (q →∞) ↓
gl(ω̄) + f l(ω̄) ≤ 0 ,

i.e., ω̄ is feasible. It follows that there exists an integerQ ∈ IN such that, for any
q ≥ Q, ω(Skq) is (δ, 0)-feasible. Though in the case of problem class (DCP1) we
assumedδ = 0, we know that each pointω(Sk) (k ∈ IN) is (0, 0)-feasible, and
hence the (δ, 0)-feasibility ofω(Skq) (q ≥ Q) is also guaranteed in this case.

This means thatω(Skq) was used for updating the upper boundηkq . With
respect to Property (4.4.2.b) of the simplex sequence we obtain, forq ≥ Q,

µkq = µ(Skq) = g0(ω(Skq)) + ϕ0
Skq (ω(Skq))

< ηkq − ε ≤ g0(ω(Skq)) + f0(ω(Skq))− ε .

This contradicts (A.2.2) forl = 0. Thus we have proved

ω̄ 6∈ {v0, . . . , vr} .

�

REMARK A.2. As we pointed out at the end of Section 4.4 it is possible to
prove some of the results of this section also for problems of the general type
(DCP3). Therefore, as long as we do not need more technical effort, we do not
eliminate the convex partsgl (l ∈ {1, . . . , p}) of the nonlinear constraints in the
proofs in this appendix, even though there holdsgl ≡ 0 (l ∈ {1, . . . , p}) in the
proper relevant cases (DCP1) and (DCP2).

A.3. PROOF OFLEMMA 4.4.5 295

A.3. Proof of Lemma 4.4.5

The proof of this lemma is different, depending on the considered problem
class. In the proof for problem class (DCP1) we are able to exploit the feasibility
of each generated pointω(Sk). In the case of problems of type (DCP2) we do not
have this property. However, exploiting the strict concavity off0 in connection
with the result of the foregoing Lemma 4.4.3 we are still able to show the required
result.

PROOF FOR(DCP1): From Lemma 4.4.2 we know that, for eachk ≥ K,

Sk = [v0, . . . , vr, vkr+1, . . . , v
k
n] ,

where, for eachj ∈ {r + 1, . . . , n}, the verticesvkj (k ≥ K) change infinitely
often, i.e.,

|{k ∈ IN : vk+1
j 6= vkj }| = ∞ . (A.3.1)

For eachk ∈ IN with k ≥ K, chooseλk ∈ Bn such that

ω(Sk) =
r∑
j=0

λkj vj +
n∑

j=r+1

λkj v
k
j . (A.3.2)

Assume, by contradiction, that there exists an indexi′ ∈ {r + 1, . . . , n} with

λki′ 6→ 0 (k →∞) . (A.3.3)

In the considered situation there holdsg0 ≡ 0, ρ = 0 andδ = 0. Therefore, we
know that each solutionω(Sk) of the linear subproblem (DCPS

k

1) is feasible for
(DCP1). It follows that we can assume, without loss of generality, that each vertex
vki′ (k ≥ K) is feasible. Using Lemma A.1 we obtain the existence of a positive
real valueτ and a subsequence{kq}q∈IN of {k}k∈IN satisfying, for allq ∈ IN,

ϕ0
Skq (ω(Skq)) ≥ ϕ0

Skq−1 (ω(Skq)) + τ .

Because of the feasibility ofω(Skq), i.e.,ω(Skq) ∈ Skq−l ∩ F (l ∈ IN, l < q), and

the optimality ofω(Skq−1) with respect to the subproblem (DCPS
kq−1

1) we obtain,
for eachq ∈ IN,

µkq = µ(Skq) = ϕ0
Skq (ω(Skq))

≥ ϕ0
Skq−1 (ω(Skq)) + τ

≥ ϕ0
Skq−1 (ω(Skq−1)) + τ

= µ(Skq−1) + τ = µkq−1 + τ .

296 PROOFS FORSECTION 4.4

It follows that

µkq → ∞ (q →∞)

and, in particular,

µkq ≥ ηkq

for q big enough, since{ηk}k∈IN is by construction a non-increasing sequence.
This contradicts Property (4.4.2.b) of the nested simplex sequence{Sk}k∈IN. �

PROOF FOR(DCP2): As in the foregoing proof for (DCP1) let λk ∈ Bn
be chosen such that we have the representation (A.3.2) ofω(Sk) (k ≥ K), and
assume, by contradiction, that there is an indexi′ ∈ {r + 1, . . . , n} with Property
(A.3.3). Since we do not know anything about the feasibility ofvki′ (k ∈ IN) Lemma
A.1 only delivers the existence of an indexl̄ ∈ {0, . . . , p}, a positive real valueτ
and a subsequence{kq}q∈IN of {k}k∈IN satisfying, for allq ∈ IN

ϕl̄
Skq (ω(Skq)) ≥ ϕl̄

Skq−1 (ω(Skq)) + τ . (A.3.4)

There holdsρ = 0 and from Property (4.4.3) of the convex envelopes we see that
ω(Skq) is feasible for the convex optimization problem (DCPSkq−1

2). Therefore, if
there holds̄l = 0 in Relation (A.3.4), we obtain, forq ∈ IN, by the same arguments
as in the proof for the case (DCP1)

µkq = µ(Skq) = g0(ω(Skq)) + ϕ0
Skq (ω(Skq))

≥ g0(ω(Skq)) + ϕ0
Skq−1 (ω(Skq)) + τ

≥ g0(ω(Skq−1)) + ϕ0
Skq−1 (ω(Skq−1)) + τ

= µ(Skq−1) + τ = µkq−1 + τ .

In this situation it follows again thatµkq ≥ ηkq for q big enough, contradicting
Property (4.4.2.b) of the sequence{Sk}k∈IN.

In the casēl > 0 it is necessary to exploit the strict concavity off0 in order
to obtain the required result. In view of Remark A.1 we know that there exist a
further subsequence{kq(i′)}q∈IN of {k}k∈IN and a real valueν > 0 with Properties

(A.0.8.a) and (A.0.8.b). Let̄vi′ be an accumulation point of the sequence{vkq

i′ }q∈IN

and assume, without loss of generality, that this sequence converges tov̄i′ . For each
l ∈ {1, . . . , p}, q ∈ IN andk ∈ IN with k ≤ kq(i′) we obtain by Property (4.4.3)

A.3. PROOF OFLEMMA 4.4.5 297

of the convex envelopes and by using the feasibility ofω(Sk) with respect to the
convex subproblem (DCPS

k

) that

gl(vkq

i′) + ϕlSk(vkq

i′) ≤ gl(vkq

i′) + ϕl
Skq(i′)(v

kq

i′)

= gl(ω(Skq(i′))) + ϕl
Skq(i′)(ω(Skq(i′))) ≤ 0 .

(A.3.5)

The functionsgl andϕlSk (k ≤ kq(i′), l ∈ {1, . . . , p}) are continuous (for con-
tinuity of gl see again [ROC70, Theorem 10.1]). Therefore, for eachk ∈ IN, it
follows

gl(v̄i′) + ϕlSk(v̄i′) ≤ 0 ,

i.e., v̄i′ is feasible with respect to (DCPS
k

). The pointv̄i′ is obviously an accumu-
lation point of the sequence{ω(Sk)}k∈IN. From Lemma 4.4.3 we know that

v̄i′ ∈ [v0, . . . , vr] \ {v0, . . . , vr} .

Therefore, it follows by the strict concavity off0 that there exists a real valueς > 0
satisfying

f0(v̄i′) ≥
r∑
i=0

λif
0(vi) + ς (A.3.6)

with λ ∈ Br, v̄i′ =
∑r

i=0 λivi. For eachk ≥ K, we know that the functionsϕ0
Sk

have the same function values on ther-simplexS = [v0, . . . , vr] independent ofk,
i.e.,

ϕ0
Sk(v̄i′) =

r∑
i=0

λif
0(vi) . (A.3.7)

Sincev̄i′ is feasible we obtain with (A.3.6) and (A.3.7)

g0(ω(Skq(i′))) + ϕ0
Skq(i′)(ω(Skq(i′))) ≤ g0(v̄i′) + ϕ0

Skq(i′)(v̄i′)

≤ g0(v̄i′) + f0(v̄i′)− ς .
(A.3.8)

The functionsg0 andf0 are continuous, thus, there exists a numberQ ∈ IN such
that, for allq ≥ Q,

|g0(vkq

i′) + f0(vkq

i′) − g0(v̄i′)− f0(v̄i′)| ≤ ς

2
.

298 PROOFS FORSECTION 4.4

Hence we obtain, for allq ≥ Q, by using Relation (A.3.8)

g0(ω(Skq(i′))) + ϕ0
Skq(i′)(ω(Skq(i′))) ≤ g0(vkq

i′) + f0(vkq

i′)− ς
2 ,

i.e.,f0(vkq

i′)− ϕ0
Skq(i′)(v

kq

i′) ≥ ς
2 .

With (A.0.8.b) it follows, for eachq ≥ Q,

ϕ0
Skq(i′)+1(ω(Skq)) ≥ ϕ0

Skq(i′)(ω(Skq)) + λ
kq

i′
ς

2︸ ︷︷ ︸
≥ν ς

2 =:τ̄ > 0

.

Thus, by using the relationskq ≥ kq(i′) + 1 andkq−1 ≤ kq(i′) and the fact that

ω(Skq) is feasible for (DCP
Skq−1
2) there holds

µkq = µ(Skq) = g0(ω(Skq)) + ϕ0
Skq (ω(Skq))

≥ g0(ω(Skq)) + ϕ0
Skq(i′)+1(ω(Skq))

≥ g0(ω(Skq)) + ϕ0
Skq(i′)(ω(Skq)) + τ̄

≥ g0(ω(Skq)) + ϕ0
Skq−1 (ω(Skq)) + τ̄

≥ g0(ω(Skq−1)) + ϕ0
Skq−1 (ω(Skq−1)) + τ̄

= µ(Skq−1) + τ̄ = µkq−1 + τ̄ .

By the same arguments as in the casel̄ = 0, we see that the last relation is a
contradiction to Property (4.4.2.b) of the nested simplex sequence{Sk}k∈IN, and
the proof is complete. �

A.4. Proof of Lemma 4.4.7

The proof of Lemma 4.4.7 depends again on the considered problem class. A
part of the proof is the same for both classes and a part is different. In order to make
this proof more structured we split it. In Lemma A.3 we prove a technical result,
which is the substantial part of the proof of Lemma 4.4.7. Only for this result we
need different argumentation depending on the problem type. After proving this
lemma for both classes we are able to show the existence of a pointrk ∈ S with
Properties (4.4.14.a)-(4.4.14.c) in one proof, i.e., independent of the considered
problem class.

However, first of all, we present and prove a result in Lemma A.2, which will
ease the proof of the technical Lemma A.3 in the case of (DCP2). This lemma

A.4. PROOF OFLEMMA 4.4.7 299

does not depend on Algorithm 4.1. It is a general result concerning strictly concave
functions over simplices.

LEMMA A.2. Let S = [v0, . . . , vr] ⊂ IRn be an r-simplex (r ≤ n),
f : IRn → IR be a strictly concave function, and{xk}k∈IN be a sequence in
S. Let furtherγk ∈ Br be the barycentric coordinates ofxk (k ∈ IN) with respect
to S. Assume that each accumulation pointx̄ of the sequence{xk}k∈IN is not a
member of the vertex set ofS, i.e.,

x̄ ∈ S \ {v0, . . . , vr} .

Then there exist an integerK ∈ IN and a positive real valueν such that, for all
k ≥ K, there holds

f(xk) ≥
r∑
i=0

γki f(vi) + ν . (A.4.1)

PROOF: Assume that there do not exist a numberK ∈ IN and a real value
ν > 0 with the required property. Let{νq}q∈IN be a non-increasing sequence of
positive real values converging to0. It follows that, for eachq ∈ IN, there exists a
numberkq ∈ IN with

f(xkq) ≤
r∑
i=0

γ
kq

i f(vi) + νq .

We can assume, without loss of generality, that the sequence{kq}q∈IN is monoton-
ously increasing. The corresponding subsequence{xkq}q∈IN is bounded. There-
fore, there exists an accumulation pointx̄ of this sequence. Assume, again with-
out loss of generality, that the sequence{xkq}q∈IN converges tōx, and, moreover,
that the sequence of the barycentric coordinates{γkq}q∈IN is converging to a point
γ̄ ∈ Br, i.e., x̄ =

∑r
i=0 γ̄ivi. Then, we obtain by continuity and concavity off

(for continuity of a concave function see, e.g., [ROC70, Theorem 10.1])
r∑
i=0

γ
kq

i f(vi) ≤ f(xkq)≤
r∑
i=0

γ
kq

i f(vi) + νq

↓ ↓ ↓ ↓ (q →∞)
r∑
i=0

γ̄if(vi) ≤ f(x̄) ≤
r∑
i=0

γ̄if(vi) + 0 . (A.4.2)

The accumulation point̄x of the subsequence{xkq}q∈IN is obviously an accumu-
lation point of the whole sequence{xk}k∈IN. Therefore, we know that̄x does not

300 PROOFS FORSECTION 4.4

belong to the vertex set ofS, and we obtain by the strict concavity off

f(x̄) >

r∑
i=0

γ̄if(vi) .

This contradicts (A.4.2) and completes the proof. �

As mentioned before, we are now able to show a technical result, which will
be substantial for the final proof of Lemma 4.4.7. In the proof of this lemma we
have to distinguish between both problem classes.

LEMMA A.3. Let {Sk}k∈IN be an infinite nested sequence of simplices gen-
erated by Algorithm 4.1 with Properties (4.4.2.a) and (4.4.2.b). LetK̃ ∈ IN be
chosen as in Corollary 4.4.6 and let0 ≤ r < n be chosen as in Lemma 4.4.2, i.e.,

Sk = [v0, . . . , vr, vkr+1, . . . , v
k
n] (k ≥ K)

and

|{k ∈ IN : vk+1
j 6= vkj }| =∞ (j ∈ {r + 1, . . . , n}) .

Then there exist an integer̄K ∈ IN, a positive real valueσ and, for each index
j ∈ {r + 1, . . . , n}, an integer sequence{k(j)}k∈IN ⊂ {k}k∈IN, point sequences
{γk(j)}k∈IN and{ςk(j)}k∈IN, and, additionally, for each indexl ∈ {0, . . . , p}, real
value sequences{τkl,j}k∈IN such that, for allk ≥ K̄ andj ∈ {r+1, . . . , n} , there
holds

vkj = ω(Sk(j)) , γk(j) ∈ Br , ςk(j) ∈ IRn , vkj =
r∑
i=0

γ
k(j)
i vi + ςk(j) , (A.4.3.a)

f0(vkj) ≥ τk0,j +
r∑
i=0

γ
k(j)
i f0(vi) + σ (A.4.3.b)

and

f l(vkj) = τkl,j + f l

(
r∑
i=0

γ
k(j)
i vi

)
l = 1, . . . , p . (A.4.3.c)

Furthermore, the involved sequences have, for eachj ∈ {r + 1, . . . , n}, the fol-
lowing convergence properties

k(j) → ∞ (k →∞) , (A.4.3.d)

‖ςk(j)‖2 → 0 (k →∞) (A.4.3.e)

A.4. PROOF OFLEMMA 4.4.7 301

and

τkl,j → 0 (k →∞) l = 0, . . . , p . (A.4.3.f)

PROOF FOR(DCP1) AND (DCP2): Even though the proof of Lemma A.3 is
different for the considered problem classes, the choice of the involved sequences
{k(j)}k∈IN, {γk(j)}k∈IN, {ςk(j)}k∈IN and {τkl,j}k∈IN (j ∈ {r + 1, . . . , n},
l ∈ {0, . . . , p}) is the same. Therefore, the beginning of the proof holds for both
problem classes.

ChooseK̂ ∈ IN such that, for allk ≥ K̂ andj ∈ {r + 1, . . . , n}, there exists
an integerk(j) ≥ K̃, k(j) < k with

vkj = ω(Sk(j)) .

Since, for each indexj ∈ {r+1, . . . , n}, the verticesvkj (k ∈ IN) change infinitely
often Property (A.4.3.d) of the sequence{k(j)}k∈IN follows immediately.

Select now an arbitrary, but fixed indexj ∈ {r + 1, . . . , n}. From result
(4.4.12) of Corollary 4.4.6 we know that, for eachk ≥ K̂, there exist a point
γk(j) ∈ Br and a residualςk(j) ∈ IRn satisfying

vkj =
r∑
i=0

γ
k(j)
i vi + ςk(j) (A.4.4)

and, additionally,

‖ςk(j)‖2 → 0 (k →∞) . (A.4.5)

The functionsf l (l ∈ {0, . . . , p}) are continuous. Therefore, there must exist, for
each indexl ∈ {0, . . . , p}, a sequence{τkl,j}k∈IN with the properties

f l(vkj) = f l

(
r∑
i=0

γ
k(j)
i vi

)
+ τkl,j , (A.4.6)

and

τkl,j → 0 (k →∞) . (A.4.7)

The choice of the positive real valueσ and the verification of Property (A.4.3.b)
depends now on the considered problem class.

PROOF FOR(DCP1): In this situation we know that each pointω(Sk)
(k ∈ IN) is used for calculating the current upper boundηk, i.e., for each
k ≥ K̂, there holds

302 PROOFS FORSECTION 4.4

ηk ≤ f0(ω(Sk(j))) = f0(vkj) = f0

(
r∑
i=0

γ
k(j)
i vi

)
+ τk0,j . (A.4.8)

Moreover, in view of Property (4.4.2.b) of the simplex sequence{Sk}k∈IN,
we knowµk = µ(Sk) < ηk − ε. Therefore, by using result (4.4.13) of
Corollary 4.4.6 we obtain, for eachk ≥ K̂, a real valueσkj satisfying

r∑
i=0

γ
k(j)
i f0(vi) = ϕ0

Sk(j)(
r∑
i=0

γ
k(j)
i vi) = ϕ0

Sk(j) (ω(Sk(j)))︸ ︷︷ ︸
=µk(j)

−σkj

< ηk(j) − ε− σkj , (A.4.9)

and, furthermore,

σkj → 0 (k →∞) . (A.4.10)

From (A.4.7) and (A.4.10) we know that there exists a numberK̄(j) ∈ IN,
K̄(j) ≥ K̂ such that, for allk ≥ K̄(j), there holds

|τk0,j | ≤
ε

4
and|σkj | ≤

ε

4
.

If we setσ(j) := ε
2 , then we obtain, for eachk ≥ K̄(j),

f0

(
r∑
i=0

γ
k(j)
i vi

)
≥ ηk − τk0,j

(A.4.8)

>
r∑
i=0

γ
k(j)
i f0(vi) + ε+ σkj − τk0,j︸ ︷︷ ︸

≥ ε
2

(A.4.9)

≥
r∑
i=0

γ
k(j)
i f0(vi) + σ(j) . (A.4.11)

Combining this result and (A.4.8) we see that Property (A.4.3.b) is fulfilled
for indexj ∈ {r + 1, . . . , n} in the case of problems of type (DCP1). 2

PROOF FOR(DCP2): Because of the possible infeasibility ofω(Sk) the
left-hand side of Relation (A.4.8) is no longer true. In order to prove the
existence of a positive real valueσ with Property (A.4.11) in this situation,
it is necessary to exploit the strict concavity off0. Denote fork ≥ K̂ by

xk :=
r∑
i=0

γ
k(j)
i vi

the part of the representation (A.4.4) ofvkj contained inS = [v0, . . . , vr].

A.4. PROOF OFLEMMA 4.4.7 303

Since the residualςk(j) vanishes, if k tends to infinity, it is obvi-
ous, that each accumulation point of the sequence{xk}k≥K̂ is also an

accumulation point of{vkj }k≥K̂ . The sequence{vkj }k≥K̂ is by construc-

tion a subsequence of{ω(Sk)}k∈IN. Therefore, according to Lemma 4.4.3
we know that, for each accumulation pointx̄ of {xk}k≥K̂ , there holds

x̄ ∈ S \ {v0, . . . , vr} .

Using Lemma A.2 we obtain a number̄K(j) ∈ IN, K̄(j) ≥ K̂ and a real
valueσ(j) > 0 satisfying, for allk ≥ K̄(j),

f0(xk) ≥
r∑
i=0

γ
k(j)
i f0(vi) + σ(j) . (A.4.12)

Combining (A.4.12) with Relation (A.4.6) forl = 0 we see that Property
(A.4.3.b) is also satisfied forj ∈ {r + 1, . . . , n} in the case of problems
of type (DCP2) with a strictly concave part of the objective function.2

SettingK̄ := maxj=r+1,... ,n K̄(j) andσ := minj=r+1,... ,n σ(j) completes the
proof. �

REMARK A.3.

(a) In order to prove Relation (A.4.3.b) we needed aspecialstrict concavity
result forf0 at the pointsxk =

∑r
i=0 γ

k(j)
i vi (k ∈ IN; j = r + 1, . . . , n),

i.e., we need the existence of a positive real valueσ(j) satisfying

f0(xk) ≥
r∑
i=0

γ
k(j)
i f0(vi) + σ(j) .

As long as the pointsω(Sk) (k ∈ IN) are feasible for the original problem
(DCP) and hence used for updating the upper boundηk, as it is the case
for the class (DCP1), this result follows by the definition of Algorithm 4.1
and the existence of an infinite nested sequence of simplices with Proper-
ties (4.4.2.a) and (4.4.2.b). By applying Algorithm 4.1 to problems of type
(DCP2) we do not have the guaranteed feasibility ofω(Sk) (k ∈ IN) any-
more. In order to ensure also in this case the above relation we need the
additional requirement thatf0 is strictly concave itself.

(b) In the part of the proof of the previous lemma concerning (DCP1) the value
σ is chosen in a constructive way, i.e.,σ can be determined in advance,
where in case of (DCP2) we were only able to show the existence of such a
value with the required properties.

304 PROOFS FORSECTION 4.4

After the verification of the statements of the technical Lemma A.3 we are now
able to prove Lemma 4.4.7 independent of the considered problem class.

PROOF OF LEMMA 4.4.7 FOR (DCP1) AND (DCP2): In view of Lemma
A.3 we know that there exist sequences{k(j)}k∈IN, {γk(j)}k∈IN, {ςk(j)}k∈IN,
{τkl,j}k∈IN (j ∈ {r + 1, . . . , n} and l ∈ {0, . . . , p}), an integerK̄ ∈ IN and a
real valueσ > 0 with Properties (A.4.3.a)-(A.4.3.f). In particular, fork ≥ K̄ and
j ∈ {r + 1, . . . , n}, there holds

vkj =
r∑
i=0

γ
k(j)
i vi + ςk(j) . (A.4.13)

By substituting (A.4.13) in the representation (4.4.10) ofω(Sk) we obtain,
for eachk ≥ K̄,

ω(Sk) =
r∑
i=0

λki +

n∑
j=r+1

λkj γ
k(j)
i

 vi

︸ ︷︷ ︸
=: rk

+
n∑

i=r+1

λki ς
k(i) .

It follows thatrk belongs to[v0, . . . , vr]. With Property (A.4.3.e) of the sequences
{ςk(j)}k∈IN (j ∈ {r + 1, . . . , n}) we obtain further

n∑
i=r+1

λki ‖ςk(i)‖2 = o(Λk) ,

with Λk defined as in (4.4.11). Thus, (4.4.14.c) is proved, i.e.,

‖ω(Sk)− rk‖2 = o(Λk) . (A.4.14)

Using Properties (A.4.3.b) and (A.4.3.f) it follows, for eachk ≥ K̄,

ϕ0
Sk(ω(Sk)) =

r∑
i=0

λki f
0(vi) +

n∑
i=r+1

λki f
0(vki)

≥
r∑
i=0

λki f
0(vi) +

n∑
i=r+1

λki

τk0,i +

r∑
j=0

γ
k(i)
j f0(vj) + σ

=
r∑
i=0

λki +

n∑
j=r+1

λkj γ
k(j)
i

 f0(vi) +

n∑
i=r+1

λki τ
k
0,i + Λkσ

= ϕ0
Sk(rk) + Λkσ + o(Λk) . (A.4.15)

A.4. PROOF OFLEMMA 4.4.7 305

The functiong0 is convex on the whole spaceIRn. Therefore, we know that for
each compact, non-empty subsetC ⊂ IRn, g0 is Lipschitz continuous onC with
Lipschitz constant

LC = sup{‖ξ‖2 : ξ ∈ ∂g0(x), x ∈ C} ,

where∂g0(x) denotes the subdifferential ofg0 at the pointx (see, e.g., [ROC70,
Theorem 24.7]). Taking Relation (A.4.14) into account it follows that

g0(rk) ≤ g0(ω(Sk)) + LP‖ω(Sk)− rk‖2
= g0(ω(Sk)) + o(Λk) . (A.4.16)

Combining this result with (A.4.15) we obtain the postulated result (4.4.14.a) of
Lemma 4.4.7.

In order to complete the proof, we have to show that (4.4.14.b) is also true.
The pointω(Sk) is feasible with respect to (DCPS

k

). Therefore, it follows from
(A.4.3.c), forl ∈ {1, . . . , p},

ϕlSk(rk) = ϕlSk(rk)− ϕlSk(ω(Sk)) + ϕlSk(ω(Sk))︸ ︷︷ ︸
≤ 0

≤
r∑
i=0

λki +

n∑
j=r+1

λkj γ
k(j)
i

 f l(vi)−

r∑
i=0

λki f
l(vi)−

n∑
i=r+1

λki f
l(vki)

=
r∑
i=0

 n∑
j=r+1

λkj γ
k(j)
i

 f l(vi)−

n∑
i=r+1

λki

τkl,i + f l(

r∑
j=0

γ
k(i)
j vj)

 .

In view of the concavity off l we obtain

f l(
r∑
j=0

γ
k(i)
j vj) ≥

r∑
j=0

γ
k(i)
j f l(vj) ,

and from Property (A.4.3.f) of the sequences{τkl,j}k∈IN we can conclude

ϕlSk(rk) ≤ −
n∑

i=r+1

λki τ
k
l,i = o(Λk) .

�

306 PROOFS FORSECTION 4.4

A.5. Proof of Lemma 4.4.8

The proof of Lemma 4.4.8, which does not depend explicitly on the considered
problem class, is again a technical one. Therefore, we decided to split this proof in
three steps. First of all, we establish a technical result concerning finite point sets
and the cones generated by these sets. We will obtain this result in Corollary A.6
after introducing two lemmata, where each lemma itself is of some interest.

In the proof of Lemma 4.4.7 the precedent Lemma A.3 contained the substan-
tial and most technical part. We repeat here this strategy in order to obtain a more
structured proof. We show again the essential part of the proof of Lemma 4.4.8 in
the independent technical Lemma A.7. Then we derive the results of Lemma 4.4.8
in a short and clear way.

LEMMA A.4. LetL = {y1, . . . , yq} ⊂ IRn (q ∈ IN) be an arbitrary finite set
of n-dimensional points. Then there exist two positive real valuesτ1 and τ2 with
the property that, for each linear independent subsetLI = {yi0 , . . . , yir} (r < n)
ofL, there holds

τ1 ≤ ‖x‖2 ≤ τ2 ∀x ∈ SLI , (A.5.1)

where SLI := [yi0 , . . . , yir] ⊂ IRn denotes ther-simplex with the vertices
yi0 , . . . , yir .

PROOF: Let LI ⊂ L be an arbitrary linear independent subset ofL. Since
SLI is a compact set not-containing the origin, it follows immediately that there
exist real valuesτ1(LI), τ2(LI) > 0 satisfying, for allx ∈ SLI ,

τ1(LI) ≤ ‖x‖2 ≤ τ2(LI) .

The setL is finite. Therefore, we know that there is only a finite number of linear
independent subsets ofL. By setting

τ1 := min{τ1(LI) : LI ⊂ L , LI linear independent} ,

τ2 := max{τ2(LI) : LI ⊂ L , LI linear independent}
we obtain thatτ1 andτ2 have Property (A.5.1) for each linear independent subset
LI, and, in particular, there holds

τ1 , τ2 > 0 .
�

A.5. PROOF OFLEMMA 4.4.8 307

LEMMA A.5. LetL = {y1, . . . , yq} ⊂ IRn (q ∈ IN) be an arbitrary finite set
of n-dimensional points. Denote by

CO := {x ∈ IRn : x =
q∑
i=1

γiyi , γ ∈ IRq+ , i = 1, . . . , q}

the cone generated by the elements ofL. Denote further by

COLI := {x ∈ IRn : x =
r∑
j=0

γjyij , γ ∈ IRr+1
+ , j = 0, . . . , r}

the cone generated by the elements of a linear independent (l.i.) subsetLI =
{yi0 , . . . , yir} (r < n) ofL. Then there holds

CO =
⋃

LI ⊂ L
LI l.i.

COLI . (A.5.2)

PROOF: The relation
⋃

LI ⊂ L
LI l.i.

COLI ⊂ CO is immediately clear. In order to

prove the inverse relation, we choose an arbitrary pointx ∈ CO. From definition
of CO we know that there exists a vectorγ ∈ IRq satisfying

x =
q∑
i=1

γiyi (A.5.3)

and

γi ≥ 0 i = 1, . . . , q .

Denote byI := {i ∈ {1, . . . , q} : γi > 0} the index set of all positiveγi‘s.
Assume that the set{yi : i ∈ I} is linear dependent. It follows that there exists a
vectorβ ∈ IR|I|, β 6= 0, with

0 =
∑
i∈I
βiyi ,

i.e., there exists a non-trivial representation of the origin by the elements of
{yi : i ∈ I}. We assume further, without loss of generality, that

max
i∈I

βi > 0 .

Setα := mini∈I{ γi

βi
: βi > 0} and leti′ ∈ I be one of the indices where this

minimum is attained, i.e.,α = γi′
βi′

. We obtain

γi − αβi ≥ 0 i ∈ I , (A.5.4)

γi′ − αβi′ = 0 (A.5.5)

308 PROOFS FORSECTION 4.4

and

x =
∑
i∈I
γiyi =

∑
i∈I
γiyi − α

∑
i∈I
βiyi =

∑
i∈I\{i′}

(γi − αβi)yi . (A.5.6)

This means thatx is an element of the cone generated by the pointsyi (i ∈ I\{i′}).
In this way we see that as long as the set{yi : i ∈ I} is linear dependent we are
able to reduce the number of necessary elements in the representation (A.5.3) ofx,
i.e., of elementsyi with γi > 0, by at least one. Therefore, the required relation
can be deduced by induction. �

With these two lemmas we are now able to develop the pronounced result of
the following Corollary A.6. This result, though really technical, will ease the proof
of the subsequent Lemma A.7.

COROLLARY A.6. Let L = {y1, . . . , yq} ⊂ IRn (q ∈ IN) be an arbitrary
finite set ofn-dimensional points, and letCO ⊂ IRn be defined as in Lemma A.5.
Let further{xk}k∈IN be a point sequence inCO. Then there exist a positive real
valueτ , and, for eachk ∈ IN, a linear independent subsetLIk = {yki0 , . . . , ykiq̄(k)

},
a pointwk ∈ [yki0 , . . . , y

k
iq̄(k)

] and a real valueβk ≥ 0 satisfying

xk = βkwk (A.5.7)
and

‖wk‖2 ≥ τ . (A.5.8)

PROOF: Choose a fixedk ∈ IN. Sincexk is contained in the coneCO
we know, in view of Lemma A.5, that there exists a linear independent subset
LIk = {yki0 , . . . , ykiq̄(k)

} (q̄(k) < n) of L such that

xk ∈ COLIk = {x ∈ IRn : x =
q̄(k)∑
j=0

γjyij , γ ∈ IRq̄(k)+1
+ } .

Therefore, there is a vectorγk ∈ IRq̄(k)+1
+ with

xk =
q̄(k)∑
j=0

γkj yij .

Lemma A.4 yields the existence of a real valueτ > 0 independent of the setLIk

satisfying, for allx ∈ [yi0 , . . . , yiq̄(k)],

‖x‖2 ≥ τ . (A.5.9)

A.5. PROOF OFLEMMA 4.4.8 309

If there holds
∑q̄(k)

j=0 γ
k
j = 0, then we can choose forwk an arbitrary element of

the q̄(k)-simplex[yi0 , . . . , yiq̄(k)]. By settingβk = 0 we obtain the required value,
and in view of (A.5.9) it follows thatwk is a point satisfying Properties (A.5.7) and
(A.5.8). In the case that

∑q̄(k)
j=0 γ

k
j = γ̄k > 0 is true, we obtain by setting

wk :=
q̄(k)∑
j=0

γkj
γ̄k
yij ∈ [yi0 , . . . , yiq̄(k)]

and

βk := γ̄k > 0

the postulated results. �

Using this corollary we prove now the substantial part for the proof of Lemma
4.4.8. This will be done with the next lemma.

LEMMA A.7. Let S = [v0, . . . , vr] ⊂ IRn be anr-simplex with1 ≤ r < n

andP̄ := {x ∈ IRn : Āx ≤ b̄} be a polytope withĀ = (ā1, . . . , ām̄)T ∈ IRm̄×n

andb̄ ∈ IRm̄. Let further{rk}k∈IN be a point sequence satisfying, for eachk ∈ IN,

rk ∈ S (A.5.10.a)

and

āTj r
k ≤ b̄j + νk j = 1, . . . , m̄ (A.5.10.b)

with a positive real-valued sequence{νk}k∈IN converging to0.
Then there exist a real valueC > 0 and a point sequence{r̄k}k∈IN with the

properties, for allk ∈ IN,

r̄k ∈ S ∩ P̄ (A.5.11.a)

and

‖rk − r̄k‖2 ≤ Cνk . (A.5.11.b)

Moreover, there is an affiner-dimensional subspaceH containingS and a matrix
H ∈ IR(n−r)×n with linear independent rowshr+i ∈ IRn (i = 1, . . . , n − r)
satisfying

H = {x ∈ IRn : Hx = Hv0} (A.5.12.a)

and, forx ∈ S,

hTr+ix = 0 i = 1, . . . , n− r . (A.5.12.b)

310 PROOFS FORSECTION 4.4

PROOF: We will show that the projection ofrk on the setS∩ P̄ has Properties
(A.5.11.a) and (A.5.11.b). However, first of all, we have to show that such a pro-
jection exists, i.e., that the setS ∩ P̄ is not empty. The setS is compact. Therefore,
there exists a convergent subsequence{rkq}q∈IN of {rk}k∈IN, i.e.,

rkq → r ∈ S (q →∞) .

With Property (A.5.10.b) of the sequence{rk}k∈IN we obtain, for each
j ∈ {1, . . . , m̄},

āTj r
kq ≤ b̄j + νkq

↓ (q →∞) ↓
āTj r ≤ b̄j + 0 ,

and, thus,r is contained also in̄P , i.e.,

S ∩ P̄ 6= ∅ .

In order to prove that the projection̄rk on the setS ∩ P̄ has Property (A.5.11.b) we
use the Karush-Kuhn-Tucker (KKT) optimality conditions of the convex optimiza-
tion problem, which delivers this projection as its solution. Therefore, we need a
representation of this optimization problem. This will be done in the following.

Let H = {x ∈ IRn : x =
∑r
i=0 λivi, λ ∈ IRr+1 ,

∑r
i=0 λi = 1} be the

r-dimensional affine subspace ofIRn containing the simplexS = [v0, . . . , vr] and
{h1, . . . , hr} be a base ofH. Let furtherH⊥ be the orthogonal complement ofH
with base{hr+1, . . . , hn}. If we denote byH ∈ IR(n−r)×n the matrix with rows
hr+i (i = 1, . . . , n− r), there holds

H = {x ∈ IRn : Hx = Hv0} . (A.5.13)

In order to describe ther-simplexS by a system of linear equalities and inequalities
let, for eachi ∈ {0, . . . , r}, v̄i ∈ IRn be the normed normal of the facetSi =
[v0, . . . , vi−1, vi+1, . . . , vr] with respect to the subspaceH, i.e., the point̄vi is the
unique solution of the following system

(vj − vi′)T v̄i = 0 j ∈ {0, . . . , r} \ {i, i′} , (A.5.14.a)

hTr+j v̄i = 0 j ∈ {1, . . . , n− r} (A.5.14.b)

and

‖v̄i‖2 = 1 , v̄Ti vi < v̄Ti vi′ =: ci (A.5.14.c)

A.5. PROOF OFLEMMA 4.4.8 311

for an arbitrary, but fixedi′ ∈ {0, . . . , r}\{i}. Note that there holdsr ≥ 1 and thus
{0, . . . , r} \ {i} 6= ∅. A solution of this system always exists. Indeed, the solution
of the systems (A.5.14.a) and (A.5.14.b) of linear equations is a line, since the set
L̂ = {(vj − vi), j ∈ {0, . . . , r} \ {i, i′} , hr+j, j ∈ {1, . . . , n − r}} is linear
independent with|L̂| = n − 1. The constraints (A.5.14.c) guarantees the unique-
ness of the solution and, additionally, that, for allx ∈ S, there holds̄vTi x ≤ ci
(i ∈ {0, . . . , r}).

With these normal vectors and the representation (A.5.13) ofH we obtain a
description ofS by linear equalities and inequalities. There holds

S = {x ∈ IRn : Hx = Hv0 , v̄
T
i x ≤ ci , i = 0, . . . , r} .

Now we are able to formulate in the following way the convex optimization prob-
lem (OPP), which has the orthogonal projection ofrk on the setS ∩ P̄ as its solu-
tion.

min ‖rk − x‖22
Āx ≤ b̄

Hx = Hv0

v̄Ti x ≤ ci i = 0, . . . , r

x ∈ IRn

(OPP)

Using the KKT optimality conditions for the optimal solution̄rk of (OPP) (see,
for example, [HOR79, FLE87, MAN94]) we obtain that there exist index sets
Ik1 ⊂ {1, . . . , m̄} andIk2 ⊂ {1, . . . , r} satisfying

āTi r̄
k = b̄i i ∈ Ik1 ,

v̄Ti r̄
k = ci i ∈ Ik2 ,

and, additionally, there are real vectorsγ1 ∈ IR|Ik
1 |

+ , γ2 ∈ IR|Ik
2 |

+ andγ3 ∈ IRn−r

with

rk − r̄k =
∑
i∈Ik

1

γ1
i āi +

∑
i∈Ik

2

γ2
i v̄i +

n−r∑
i=1

γ3
i hr+i .

It follows that the vectorrk− r̄k is contained in the cone generated by the elements
of the finite set

Lk = {āi, i ∈ Ik1 } ∪ {v̄i, i ∈ Ik2 }
∪ {hr+i, i = 1, . . . , n− r} ∪ {−hr+i, i = 1, . . . , n− r} .

312 PROOFS FORSECTION 4.4

From Corollary A.6 we know that there exists a linear independent subsetLIk =
{yk0 , . . . , ykq̄(k)} ⊂ Lk (q̄(k) < n), a pointwk = [yk0 , . . . , ykq̄(k)] and a real value

βk with

rk − r̄k = βkwk ,

in particular,

βk =
‖rk − r̄k‖2
‖wk‖2 . (A.5.15)

Moreover, since there is only a finite number of possibilities for the setLk, Corol-
lary A.6 yields the existence of a positive real valueτ , independent ofk, satisfying

‖wk‖2 ≥ τ . (A.5.16)

Select now a point̄λ ∈ Bq̄(k) with wk =
∑q̄(k)
i=0 λ̄iy

k
i and setJ1 := {i :

yki ∈ {āj , j ∈ Ik1 }}, J2 := {i : yki ∈ {v̄j , j ∈ Ik2 }}, J3 = {i : yki ∈ {hr+j,
j = 1, . . . , n− r}} andJ4 = {i : yki ∈ {−hr+j, j = 1, . . . , n− r}}. It follows

0 ≤ ‖rk − r̄k‖22 = βk(wk)T (rk − r̄k)

= βk
q̄(k)∑
i=0

λ̄i(yki)
T (rk − r̄k)

= βk

∑
i∈J1

λ̄i(āTi r
k︸ ︷︷ ︸

≤b̄i+νk

− āTi r̄k︸ ︷︷ ︸
=b̄i

) +
∑
j∈J2

λ̄i(v̄Ti r
k︸ ︷︷ ︸

≤ci

− v̄Ti r̄k︸ ︷︷ ︸
=ci

)

+
∑
i∈J3

λ̄i h
T
r+i(r

k − r̄k)︸ ︷︷ ︸
= 0

−
∑
i∈J4

λ̄i h
T
r+i(r

k − r̄k)︸ ︷︷ ︸
= 0

≤ βk
∑
i∈J1

λ̄i

︸ ︷︷ ︸
≤1

νk ≤ βkνk .

By substitutingβk with (A.5.15) we obtain

‖rk − r̄k‖2‖wk‖2 ≤ νk .

Hence, with (A.5.16) andC := 1
τ it follows, for eachk ∈ IN,

‖rk − r̄k‖2 ≤ Cνk .
�

A.5. PROOF OFLEMMA 4.4.8 313

Now we complete the proof of Lemma 4.4.8 for both considered problem
classes.

PROOF OF LEMMA 4.4.8 FOR (DCP1) AND (DCP2): If we denote by
S = [v0, . . . , vr] the r-simplex, which is the fixed face of the residual simplices
{Sk}k≥K̄ , then – in view of Lemma 4.4.7 – we know that, for eachk ≥ K̄, there
is a pointrk ∈ S with Properties (4.4.14.a)-(4.4.14.c). The set

P̄ := {x ∈ P :
∑r

i=0λif
l(vi) ≤ 0 , l = 1, . . . , p

with λ ∈ Br , x =
∑r

i=0λivi} .

is a polytope. In order to describe the functions
∑r

i=0 λif
l(vi) (l = 0, . . . , p)

by an inner product ofx =
∑r

i=0 λivi ∈ IRn and a vectorsl ∈ IRn we use the
representation (A.5.12.a) of the affine subspaceH containingS, which is given
by Lemma A.7. Letsl ∈ IRn, for l ∈ {0, . . . , p}, be the unique solution of the
following system of linear equations

(sl)T (vi − v0) = f l(vi)− f l(v0) i = 1, . . . , r

(sl)Thr+i = 0 i = 1, . . . , n− r
with hr+i (i = 1, . . . , n − r) given by Lemma A.7. Note that the set
{(vi − v0), i = 1, . . . , r} is a base ofH and{hr+i, i = 1, . . . , r} is a base of
the orthogonal complement ofH (see Property (A.5.12.b)). Then we obtain, for
l ∈ {0, . . . , p} andx ∈ S,

(sl)T (x− v0) + f l(v0) =
r∑
i=0

λif
l(vi) (A.5.17)

with λ ∈ Br, x =
∑r
i=0 λivi. With (A.5.17) we are able to describe the polytope

P̄ in the following way

P̄ = {x ∈ IRn : aTi x ≤ bi , i = 1, . . . ,m ,

(sl)Tx ≤ f l(v0) + (sl)T v0 , l = 1, . . . , p} .

Because of Lemma 4.4.2 we know that, for eachk ≥ K̄ ≥ K, the vertices
v0, . . . , vr of the simplexSk are fixed. Therefore, for eachx ∈ S = [v0, . . . , vr],
there holds that the function value of the convex envelopeϕlSk (l = 0, . . . , p) does
not depend onk.

314 PROOFS FORSECTION 4.4

Actually, forλ ∈ Br with x =
∑r

i=0 λivi andk ≥ K̄, there holds

ϕlSk(x) =
r∑
i=0

λif
l(vi) . (A.5.18)

Combining (A.5.17) and (A.5.18) and by using Property (4.4.14.b) ofrk we obtain,
for k ≥ K̄ andl ∈ {1, . . . , p},

(sl)T rk ≤ f0(v0) + (sl)T v0 + o(Λk) . (A.5.19)

Furthermore, fori ∈ {1, . . . ,m}, it follows from Property (4.4.14.c) ofrk that

aTi r
k = aTi (rk − ω(Sk)) + aTi ω(Sk)︸ ︷︷ ︸

≤bi sinceω(Sk) ∈ P

≤ ‖ai‖2‖rk − ω(Sk)‖2 + bi

≤ o(Λk) + bi . (A.5.20)

From (A.5.19) and (A.5.20) we see, that the sequence{rk}k≥K̄ fulfills the assump-
tions of Lemma A.7 with respect to the polytopeP̄ and ther-simplexS. Thus, this
lemma provides the existence of a sequence{r̄k}k∈IN satisfying, for allk ≥ K̄,

r̄k ∈ S ∩ P̄
and, additionally,

‖ω(Sk)− r̄k‖2 ≤ ‖ω(Sk)− rk‖2 + ‖rk − r̄k‖2 = o(Λk) ,

i.e., r̄k is an element of̄F and fulfills condition (4.4.16.b).
In order to prove that̄rk has also Property (4.4.16.a) we use Relations (A.5.17)

and (A.5.18) forl = 0, and exploit again the Lipschitz continuity ofg0 on the
compact setP (see the proof of Lemma 4.4.7). IfLP is a Lipschitz constant ofg0

onP , then, fork ≥ K̄, there holds

|g0(rk)− g0(r̄k)| ≤ LP ‖rk − r̄k‖2 = o(Λk)

and

|ϕ0
Sk(rk)− ϕ0

Sk(r̄k)| = |(s0)T (rk − r̄k)| ≤ ‖s0‖2‖rk − r̄k‖2 = o(Λk) .

Therefore, it follows

g0(r̄k) + ϕ0
Sk(r̄k) = g0(rk) + ϕ0

Sk(rk) + o(Λk) ,

and the use of Property (4.4.14.a) concludes the proof. �

APPENDIX B

Solution Methods for (DCPS)

In this appendix we are interested in some solution methods for the convex opti-
mization problem

min g0(x)

gl(x) ≤ 0 l = 1, . . . , p

x ∈ P ∩ S ,

(CP)

wheregl : IRn → IR (l = 0, . . . , p) are convex functions,P = {x ∈ IRn :
Ax ≤ b} with A = (a1, . . . , am)T ∈ IRm×n and b ∈ IRm is a non-empty
full-dimensional polytope, andS = [v0, . . . , vn] = {x ∈ IRn : (v̄Si)Tx ≤ cSi ,

i = 0, . . . , n} is ann-simplex (see Problem (DCPS) in Section 4.2 and see also
(4.2.3.a), (4.2.3.b) for the construction ofv̄Si andcSi (i = 0, . . . , n)). These solu-
tion methods should detect in finite time either the emptiness of the feasible region
F := {x ∈ P ∩ S : gl(x) ≤ 0 , l = 1, . . . , p} or an (ε, δ, 0)-solutionx̄ ∈ IRn (see
Definition 4.2.1), i.e., a point with the properties

x̄ ∈ P ∩ S , (B.a)

gl(x̄) ≤ δ l = 1, . . . , p (B.b)
and

g0(x̄)− ε ≤ min
x∈F

g0(x) (B.c)

for prespecified tolerancesε, δ > 0 (see also the definition of aCONVEXSOL-
VERε,δ,0 in Section 4.2).

In the first section of this appendix we use the concept of subgradients of con-
vex functions (see, e.g., [ROC70, ROC81, SHO85]) to develop a solution method
following the cutting-plane approach given, for example, in [KEL60] (see Remark
4.2.1(c)). In Section B.2 we assume that a solution method for (CP) is given, which

315

316 SOLUTION METHODS FOR(DCPS)

detects in finitely many iterations either the emptiness ofF or an (̃ε, δ̃, ρ̃)-solution
x̃ ∈ IRn (see again Definition 4.2.1), i.e., a point with the properties

aTj x̃− bj ≤ ρ̃ j = 1, . . . ,m ,

(v̄Si)T x̃− cSi ≤ ρ̃ i = 0, . . . , n ,
(B.a‘)

gl(x̃) ≤ δ̃ l = 1, . . . , p (B.b‘)
and

g0(x̃)− ε̃ ≤ min
x∈F

g0(x) (B.c‘)

for arbitrary accuracies̃ε, δ̃ , ρ̃ > 0. We show that in this situation it is possible to
construct an (ε, δ, 0)-solutionx̄ ∈ IRn of (CP) by using the orthogonal projection
of x̃ on the setP ∩S, and, in particular, we are able to specify the necessary values
ε̃, δ̃ andρ̃.

B.1. The Kelley-Cheney-Goldstein Cutting-Plane Approach

A subgradient ξ of a convex functiong : IRn → IR at a pointy ∈ IRn is
defined as ann-dimensional vector with the property

g(x) ≥ g(y) + ξT (x − y) , ∀x ∈ IRn . (B.1.1)

As customary we denote by∂g(y) the set of all subgradients ofg at the pointy.
This set is called thesubdifferential of g at y. It is known that, for an arbitrary
convex functiong and an arbitrary pointy ∈ IRn, the subdifferential∂g(y) is
non-empty, bounded, convex and closed [SHO85, Theorem 1.7]. In general it can
be a hard problem to calculate a subgradient, but for some interesting classes of
convex functions the subgradients are known (see, e.g., [SHO85, Section 1.3]). If
the functiong is differentiable, then there holds∂g(y) = {∇g(y)} for eachy ∈ IRn

[ROC70, Theorem 25.1].
In the following we assume that the linear setP ∩S is not empty. This assump-

tion can be verified by the first phase of the Simplex-Algorithm. We do not require
that a feasible point̄x ∈ F for Problem (CP) exists, since in our branch-and-bound
Algorithm 4.1 in Section 4.2 we are not able to verify such an assumption for all
convex subproblems of the form (DCPS). This is the main reason for the descrip-
tion of a CONVEXSOLVERε,δ,0 for Problem (CP) in this appendix, even though
this method is very similar to the KCG-method [CG59, KEL60] or to other outer
approximation methods for optimization problems with convex feasible sets given,
for example, in [HTT87, HT96B].

The algorithm is as follows.

B.1. THE KELLEY-CHENEY-GOLDSTEIN CUTTING-PLANE APPROACH 317

ALGORITHM B.1 (A CONVEXSOLVERε,δ,0 for (CP)).

Initialization
Choose real numbersε, δ ≥ 0 and a pointx0 ∈ P ∩ S.
Compute a vectorξ0,0 ∈ ∂g0(x0) and set
F 1 ← {(xt) ∈ IRn+1 : x ∈ P ∩ S , g0(x0) + (ξ0,0)T (x − x0)− t ≤ 0},
STOP← False, k ← 1

While STOP= False Do

If F k = ∅ Then (SC1)

STOP← True (F = ∅)
Else

Solve the linear optimization problemmin(x
t)∈Fk t and let

(
xk

tk

)
be

an optimal solution.

If (gl(xk) ≤ δ , l = 1, . . . , p) AND (g0(xk)− tk ≤ ε) Then (SC2)

STOP← True (xk is an (ε, δ, 0)-solution of (CP))
Else
F k+1 ← F k

For l = 1 To p Do
If gl(xk) > 0 Then

Computeξk,l ∈ ∂gl(xk).
If ξk,l = 0 Then (SC3)

STOP← True (F = ∅)
Else
F k+1 ← F k+1 ∩ {(xt) ∈ IRn+1 : gl(xk) + (ξk,l)T (x− xk) ≤ 0}

EndIf
EndIf

EndFor
If g0(xk)− tk > 0 Then

Computeξk,0 ∈ ∂g0(xk) and set
F k+1 ← F k+1 ∩ {(xt) ∈ IRn+1 : g0(xk) + (ξk,0)T (x− xk)− t ≤ 0}.

EndIf
EndIf

EndIf
k ← k + 1

EndWhile

318 SOLUTION METHODS FOR(DCPS)

Algorithm B.1 does not solve Problem (CP) directly. Indeed, this method
solves the equivalent problem

min t

g0(x) ≤ t

gl(x) ≤ 0 l = 1, . . . , p

x ∈ P ∩ S ,

(CP)

which has a linear objective function. If we denote byF̄ the feasible region of
(CP), i.e.,

F̄ = {(xt) ∈ IRn+1 : x ∈ P ∩ S , g0(x) ≤ t , gl(x) ≤ 0 , l = 1, . . . , p} ,

then it follows immediately from Property (B.1.1) of the subgradients that, for each
k ∈ IN, the setF k is an outer approximation of̄F , i.e.,

F̄ ⊂ F k+1 ⊂ F k (k ∈ IN) . (B.1.2)

Therefore, the emptiness of̄F follows if F k is empty, and because of

F̄ = ∅ ⇔ F = ∅
we obtain, in particular, the emptiness ofF (see stopping criterion (SC1) in Algo-
rithm B.1).

If a pointxk ∈ P∩S is infeasible with respect to a convex constraintgl(x) ≤ 0
(l ∈ {1, . . . , p}) and there holds0 ∈ ∂gl(xk), then it follows by (B.1.1), for each
x ∈ IRn,

gl(x) ≥ gl(xk) > 0 .

This is the second possibility to detect the emptiness ofF (see stopping criterion
(SC3) in Algorithm B.1).

As long asF k is not empty, we know in view of (B.1.2) thattk (k ∈ IN),
which is the solution value of the linear optimization problemmin(x

t)∈Fk t, is a

lower bound for the optimal valuet? of Problem (CP). Note that the optimal value
of (CP) is∞, if no feasible point

(
x
t

) ∈ F̄ exists. If the stopping criterion (SC2) is
satisfied, it is clear thatxk is a (δ, 0)-feasible point for Problem (CP). Furthermore,
we know

g0(xk)− ε ≤ tk ≤ min
(x

t)∈F̄
t = min

x∈F
g0(x) , (B.1.3)

B.1. THE KELLEY-CHENEY-GOLDSTEIN CUTTING-PLANE APPROACH 319

and, therefore,xk fulfills Conditions (B.a)-(B.c), i.e.,xk is an (ε, δ, 0)-solution of
Problem (CP).

Because of the previous notes we know that, when finite, Algorithm B.1 will
solve Problem (CP) in the required way. In order to obtain the correctness of the
presented method, we still have to prove that Algorithm B.1 is always finite, if
the tolerancesε andδ are chosen greater than0. This will be done by showing
the convergence of Algorithm B.1 forε = δ = 0, which is the result of the next
theorem.

THEOREM B.1. Assume thatε = δ = 0 and that Algorithm B.1 generates an

infinite point sequence{(xk

tk

)}k∈IN. Then each accumulation pointx? ∈ IRn of the
sequence{xk}k∈IN is an optimal solution of Problem (CP).

PROOF: Let x? be an accumulation point of the sequence{xk}k∈IN and let
{xkq}q∈IN be a subsequence of{xk}k∈IN converging tox?. Since there holds, for
eachq ∈ IN, thatxkq is an element ofP ∩ S we obtainx? ∈ P ∩ S. Denote by

I := {l ∈ {1, . . . , p} : |{q ∈ IN : gl(xkq) > 0}| =∞}
the index set of all convex constraints of (CP), which are infinitely often violated
by the sequence{xkq}q∈IN. If I is empty, then it follows immediately thatx? is a
feasible point. Indeed, in this case, there must exist a numberQ ∈ IN with

gl(xkq) ≤ 0 l = 1, . . . , p , q ≥ Q ,

and, in particular, because of the continuity of the convex functionsgl

(l = 1 . . . , p) (see, e.g., [ROC70, Theorem 10.1]) it follows

gl(x?) ≤ 0 l = 1, . . . , p .

If I is not empty, then we are still able to prove the feasibility ofx?. Indeed,
choosel ∈ I and assume, without loss of generality, that there holdsgl(xkq) > 0,
for all q ∈ IN. The set{xkq : q ∈ IN} is bounded. Therefore, it follows by [ROC70,
Theorem 24.7] that the set{ξkq,l : q ∈ IN} is also bounded. We assume further that
the sequence{ξkq,l}q∈IN is convergent to a pointξ?,l ∈ IRn. (There always exists a
subsequence of{ξkq,l}q∈IN with this property.) With respect to [ROC70, Theorem
24.4] there even holdsξ?,l ∈ ∂gl(x?). Because ofxkq+1 ∈ F kq+1−1 ⊂ F kq

(q ∈ IN) we obtain

320 SOLUTION METHODS FOR(DCPS)

gl(xkq) + (ξkq,l)T (xkq+1−xkq) ≤ 0
↓ ↓ ↓ ↓ (q →∞)

gl(x?) + (ξ?,l)T (x? − x?) ≤ 0 . (B.1.4)

Relation (B.1.4) is true for eachl ∈ I. This shows the feasibility ofx?.
In order to complete the proof we have to show the optimality ofx?. If there

holds

|{q ∈ IN : g0(xkq)− tkq > 0}| < ∞ , (B.1.5)

then there exists a numberQ ∈ IN such that, for eachq ≥ Q,

g0(xkq) ≤ tkq ≤ min
x∈F

g0(x) ≤ g0(x?)

(compare with (B.1.3)). Using the continuity ofg0 we obtain the optimality ofx?.
If (B.1.5) is not fulfilled, then it follows by the same argumentation as before

g0(xkq) + (ξkq ,0)T (xkq+1−xkq) ≤ tkq ≤ min
x∈F

g0(x)

↓ ↓ ↓ ↓ (q →∞)
g0(x?) + (ξ?,0)T (x? − x?) ≤ min

x∈F
g0(x) ≤ g0(x?) .

Therefore, in each casex? is an optimal solution of Problem (CP). �

As a direct consequence of the previous proof we are able to conclude that
Algorithm B.1 with ε = δ = 0 will stop after a finite number of iterations, if no
feasible point exists, i.e., ifF = ∅. A second consequence is that the presented so-
lution method for Problem (CP) is always finite, if the tolerancesε andδ are chosen
greater than0. Therefore, Algorithm B.1 can be used as aCONVEXSOLVERε,δ,0

for solving the convex subproblems of the form (DCPS) in Algorithm 4.1 proposed
in Section 4.2.

B.2. Another Approach for Obtaining an (ε, δ, 0)-solution

We assume now that aCONVEXSOLVERε̃,δ̃,ρ̃ is given, i.e., a solution method
for Problem (CP) which detects in finite time either the emptiness ofF or a point
x̃ ∈ IRn with properties (B.a‘)-(B.c‘), and we assume again thatP ∩S is not empty.
In this section we show that it is possible to choose the accuraciesε̃, δ̃, ρ̃ > 0 such
that the orthogonal projection̄x of x̃ on the setP ∩ S is an (ε, δ, 0)-solution of
Problem (CP) (see (B.a)-(B.c)) for arbitrary tolerancesε, δ > 0. Sincex̄ is the op-
timal solution of a quadratic convex optimization problem with linear constraints,
this point can be calculated exactly in finite time (see Remark 4.2.1(b)). Therefore,

B.2. ANOTHER APPROACH FOROBTAINING AN (ε, δ, 0)-SOLUTION 321

by combining the givenCONVEXSOLVERε̃,δ̃,ρ̃ , with appropriate accuracies, with
a finite solver for convex quadratic optimization problems we obtain aCONVEX-
SOLVERε,δ,0 .

In order to prove that the orthogonal projectionx̄ of x̃ on the setP ∩S has the
required properties we use an analogous argumentation as in the proof of Lemma
A.7. In the proof of this lemma it is sufficient that we have the existence of Lip-
schitz constants for the involved convex functions and the existence of a positive
real valueτ delivered by Corollary A.6. In the present section we would like to
quantify the values of̃ε, δ̃ and ρ̃ depending onε andδ. Therefore, we have to
show that it is possible to calculate Lipschitz constants for the convex functionsgl

(l ∈ {0, . . . , p}) and, furthermore, that we are able to calculate the valueτ .
Due to [ROC70, Theorem 24.7] we know that the convex functionsgl

(l ∈ {0, . . . , p}) are Lipschitz continuous on each compact setC ⊂ IRn with
Lipschitz constant

LlC = max{‖ξ‖2 : ξ ∈ ∂gl(y) , y ∈ C} . (B.2.1)

Note that the set{ξ : ξ ∈ ∂g(y), y ∈ C} is compact (see also [ROC70, Theorem
24.7]). If gl (l ∈ {0, . . . , p}) is differentiable and the setC is a polytope with
known vertex setV (C), then, as long as‖∇gl(x)‖2 is a convex function, we are
able to calculate the valueLlC by using the following relation

LlC = max
x∈C

‖∇gl(x)‖2 = max
x∈V (C)

‖∇gl(x)‖2 .

In general, we do not know how to solve the optimization problem given in (B.2.1).
Nevertheless, the following lemma yields an upper bound forLlC , which is com-
putable if aCONVEXSOLVERε̃,δ̃,ρ̃ is known.

LEMMA B.2. Letg : IRn → IR be a convex function,Q,Z ⊂ IRn be polytopes
with known vertex setsV (Q) andV (Z) and the additional property thatZ contains
the unit ballB = {x ∈ IRn : ‖x‖2 ≤ 1}. Let furtherx̄ ∈ IRn be an (̄ε, 0, ρ̄)-
solution of the convex optimization problemminx∈Q g(x) with ε̄, ρ̄ ≥ 0. Then an
upper bound for the Lipschitz constantLQ of g on the setQ is given by

L̄Q := max
x∈V (Q)

max
z∈V (Z)

g(x+ z) − g(x̄) + ε̄ . (B.2.2)

PROOF: In view of Property (B.1.1) of a subgradient we know that, for each
y ∈ IRn andξ ∈ ∂g(y), there holds

ξT z ≤ g(y + z)− g(y) ∀z ∈ IRn

322 SOLUTION METHODS FOR(DCPS)

and, therefore,

max
ξ∈∂g(y)

ξT z ≤ g(y + z)− g(y) ∀z ∈ IRn . (B.2.3)

Furthermore, it is immediately clear that the following relation holds for the Eu-
clidean norm. Letx ∈ IRn be an arbitrary point. Then we know that

‖x‖2 = max
z ∈ IRn

‖z‖2 = 1

xT z . (B.2.4)

Combining Relation (B.2.3) with Relation (B.2.4) we obtain an upper bound
for LQ.

LQ = max
ξ ∈ ∂g(y)

y ∈ Q

‖ξ‖2 = max
y∈Q

max
ξ∈∂g(y)

max
z ∈ IRn

‖z‖2 = 1

ξT z

= max
y∈Q

max
z ∈ IRn

‖z‖2 = 1

max
ξ∈∂g(y)

ξT z︸ ︷︷ ︸
≤g(y+z)−g(y)

≤ max
y∈Q

max
z ∈ IRn

‖z‖2 = 1

g(y + z)−min
y∈Q

g(y)︸ ︷︷ ︸
≥g(x̄)−ε̄

≤ max
y∈Q

max
z∈Z

g(y + z)− g(x̄) + ε̄ = L̄Q .

The functiong(y + ·) : IRn → IR is convex fory ∈ IRn. Using the facts that a
convex function attains its maximum over a polytope in a vertex of this polytope
[HPT95, Theorem 1.19] and that the maximum over an arbitrary family of convex
functions is again a convex function, it follows

max
y∈Q

max
z∈Z

g(y + z) = max
y∈Q

(max
z∈V (Z)

g(y + z)︸ ︷︷ ︸
convex iny

) = max
y∈V (Q)

max
z∈V (Z)

g(y + z) ,

which proves (B.2.2). �

REMARK B.1. A polytope which contains the unit ballB is obviously the
hypercube

Z = {x ∈ IRn : ‖x‖∞ ≤ 1} .

This polytope is a good approximation ofB0,1, but it has2n vertices. Another
possible polytope which has the required properties and which has onlyn + 1
vertices is the regular simplex given in Chapter 2 (see, in particular, Subsection

B.2. ANOTHER APPROACH FOROBTAINING AN (ε, δ, 0)-SOLUTION 323

2.6.2). It is immediately clear using the same ideas as in Section 2.6 that this
regular simplex can be enlarged such that it containsB. Admittedly, this simplex
is in general a worse approximation of the setB than the hypercubeZ.

Apart from the Lipschitz constants we also need a way to quantify a value
τ > 0 with the property that, for each linear independent subset{y0, . . . , yq}
(q < n) of the set

L = {aj, j = 1, . . . ,m} ∪ {v̄Si , i = 0, . . . , n} ,

there holds

‖x‖2 ≥ τ ∀x ∈ [y0, . . . , yq] . (B.2.5)

This value can be calculated in the following way. Letei (i ∈ {1, . . . , n}) be the
i-th unit vector and denote by

R := {B = (b1, . . . , bn)T ∈ IRn×n : bi ∈ L, i = 1, . . . , r ,

bi ∈ {e1, . . . , en}, i = r + 1, . . . , n , B regular , 1 ≤ r ≤ n}
the finite set of all regular matrices with at least one rowbi ∈ L (i ∈ {1, . . . , n}).
Set

τ :=
1√
n

min
B∈R

1
‖B−1‖ , (B.2.6)

where‖·‖ : IRn×n → IR denotes an arbitrary norm on the space of (n×n)-matrices,
which is compatible with the Euclidean norm. Then there holds the following.

Let {y0, . . . , yq} (q ≤ n) be a linear independent subset ofL, and letx be
an element of theq-simplex[y0, . . . , yq]. Then there exists a matrixB ∈ R with
bi = yi−1 (i = 1, . . . , q + 1) andbi ∈ {e1, . . . , en} (i = q + 2, . . . , n), and there
is a vector̄λ ∈ Bn−1 with

x =
q+1∑
i=1

λ̄iyi−1 = Bλ̄

and

λ̄i = 0 i = q + 2, . . . , n .

Using the facts that there hold̄λ = B−1x andminλ∈Bn−1 ‖λ‖2 = 1√
n

we obtain

‖x‖2 ≥ ‖λ̄‖2
‖B−1‖ ≥

1√
n

1
‖B−1‖ ≥ τ .

324 SOLUTION METHODS FOR(DCPS)

Therefore, the valueτ defined in (B.2.6) has Property (B.2.5) for each linear inde-
pendent subset{y0, . . . , yq} (q < n) of L. The final theorem quantifies now the
necessary values ofε̃, δ̃ andρ̃.

THEOREM B.3. Let ε, δ > 0. Let furtherLl
S̄

be a Lipschitz constant ofgl

(l ∈ {0, . . . , p}) on the simplexS̄ := {x ∈ IRn : (v̄Si)Tx ≤ cSi + 1 ,
i = 0, . . . , n} ⊃ S and let the real valueτ > 0 be given by (B.2.6). Assume
that x̃ is an (̃ε, δ̃, ρ̃)-solution of (CP) with

ρ̃ := min{1 , ετ

2L0
S̄

,
δτ

2Ll
S̄

, l = 1, . . . , p} > 0 ,

δ̃ := δ − ρ̃

τ
max

l=1,... ,p
LlS̄ ≥

δ

2
and

ε̃ := ε− ρ̃

τ
L0
S̄ ≥

ε

2
.

Then the orthogonal projection̄x of x̃ on the setP ∩ S is an (ε, δ, 0)-solution of
Problem (CP).

PROOF: The orthogonal projection̄x of x̃ on the setP ∩ S is the solution
of the following convex optimization problem (compare with the proof of Lemma
A.7)

min ‖x̃− x‖22
aTj x ≤ bi j = 1, . . . ,m

(v̄Si)Tx ≤ ci i = 0, . . . , n

x ∈ IRn .

(OP)

Using the same argumentation as in the proof of Lemma A.7 (see pages 311f.) we
know that there exist two index setsI1 ⊂ {1, . . . ,m} andI2 ⊂ {0, . . . , n} with

aTi x̄ = bi i ∈ I1 , (v̄Si)T x̄ = cSi i ∈ I2 ,

and, additionally, a linear independent subset{y0, . . . , yq} (q < n) of the set
L := {ai, i ∈ I1} ∪ {v̄Si , i ∈ I2}, a pointw ∈ [y0, . . . , yq] and a real valueβ
with

x̃− x̄ = βw , β =
‖x̃− x̄‖2
‖w‖2 . (B.2.7)

B.2. ANOTHER APPROACH FOROBTAINING AN (ε, δ, 0)-SOLUTION 325

Sinceτ has Property (B.2.5) with respect to each linear independent subset ofL,
we obtain

‖w‖ ≥ τ . (B.2.8)

Selectλ̄ ∈ Bq with w =
∑q

i=0 λ̄iyi, and setJ1 := {j : yj ∈ {ai, i ∈ I1}} and
J2 := {j : yj ∈ {v̄Si , i ∈ I2}}. By using the fact that̃x is an (̃ε, δ̃, ρ̃)-solution of
(CP) it follows

‖x̃− x̄‖22 = βwT (x̃− x̄)

= β

(
q∑
i=0

λ̄iy
T
i (x̃− x̄)

)

= β

∑
i∈J1

λ̄i(aTi x̃︸︷︷︸
≤bi+ρ̃

− aTi x̄︸︷︷︸
=bi

) +
∑
i∈J2

λ̄i((v̄Si)T x̃︸ ︷︷ ︸
≤cS

i
+ρ̃

− (v̄Si)T x̄︸ ︷︷ ︸
=cS

i

)

≤ β

q∑
i=0

λ̄i︸ ︷︷ ︸
=1

ρ̃ = βρ̃ .

Substitutingβ with (B.2.7) and using (B.2.8) we obtain

‖x̃− x̄‖2 ≤ ρ̃

‖w‖2 ≤
ρ̃

τ
.

The real valueLl
S̄

is by assumption a Lipschitz constant ofgl (l ∈ {0, . . . , p}) on

the setS̄. Therefore, using the definition of̃ε and δ̃ and the fact that there holds
x̃, x̄ ∈ S̄, it follows

g0(x̄)− ε ≤ g0(x̃) + L0
S̄

ρ̃

τ
− ε︸ ︷︷ ︸

=−ε̃

≤ min
x∈F

g0(x)

and, forl ∈ {1, . . . , p},

gl(x̄) ≤ gl(x̃) + LlS̄
ρ̃

τ
≤ δ̃ +

Ll
S̄
ρ̃

τ
≤ δ .

This means that̄x is an (ε, δ, 0)-solution of Problem (CP). �

326 SOLUTION METHODS FOR(DCPS)

This theorem shows that it is always possible to adjust eachCONVEXSOLVERε̃,δ̃,ρ̃

in order to obtain a solver for Problem (CP), which delivers in finite time a so-
lution with the same quality as Algorithm B.1 does. Whether this is numerically
practicable depends on the effort which is necessary for calculating the Lipschitz
constants and the valueτ . Note that the calculation of these values must be done
only with respect to the start simplexS0, if we apply such an adjustedCONVEX-
SOLVERε̃,δ̃,ρ̃ for solving the subproblem (DCPS) in Algorithm 4.1. Nevertheless,
these calculations are in general expensive.

Bibliography

[AK92] Faiz A. Al-Khayyal. Generalized Bilinear Programming: Part I. Models, Applica-
tions and Linear Programming Relaxation.European Journal of Operational Research,
60:306–314, 1992.

[AKF83] Faiz A. Al-Khayyal and J.E. Falk. Jointly Constrained Biconvex Programming.Annals of
Operations Research, 25:169–180, 1983.

[AKHP92] Faiz A. Al-Khayyal, R. Horst, and P.M. Pardalos. Global Optimization of Concave Func-
tions subject to Quadratic Constraints: An Application in Nonlinear Bilevel Program-
ming.Annals of Operations Reserach, 34:125–147, 1992.

[AKLV95] Faiz A. Al-Khayyal, C. Larsen, and T. van Voorhis. A Relaxation Method for Nonconvex
Quadratically Constrained Quadratic Programs.Journal of Global Optimization, 6:215–
230, 1995.

[AKV96] Faiz A. Al-Khayyal and T. van Voorhis. Accelerating Convergence of Branch-and-Bound
Algorithms for Quadratically Constrained Optimization Problems. In C.A. Floudas, ed-
itor, State of the Art in Global Optimization: Computational Methods and Applications.
Kluwer Academic Publishers, Dordrecht/Boston/London, 1996.

[Ali95] F. Alizadeh. Interior Point Methods in Semidefinite Programming with Applications to
Combinatorial Optimization.SIAM Journal in Optimization, 5(1):13–51, 1995.

[AT98] Le Thi An and Pham Dinh Tao. A Branch-and-Bound Method via D.C. Optimization Al-
gorithms and Ellipsoidal Technique for Box Constrained Nonconvex Quadratic Problems.
Journal of Global Optimization, 13(2):171–206, 1998.

[Bar72] D.P. Baron. Quadratic Programming with Quadratic Constraints.Naval Research Quar-
terly, 19:253–260, 1972.

[Ben85] H.P. Benson. A Finite Algorithm for Concave Minimization over a Polyhedron.Naval
Research Logistics Quaterly, 32:165–177, 1985.

[Ben95] H.P. Benson. Concave Minimization: Theory, Applications and Algorithms. In R. Horst
and P.M. Pardalos, editors,Handbook of Global Optimization. Kluwer Academic Pub-
lishers, Dordrecht/Boston/London, 1995.

[Bom97] I.M. Bomze. Global Escape Strategies for Maximizing Quadratic Forms over a Simplex.
Journal of Global Optimization, 11(2):325–338, 1997.

327

328 BIBLIOGRAPHY

[BR95] C.G.E. Boender and H.E. Romeijn. Stochastic Methods. In R. Horst and P.M. Parda-
los, editors,Handbook of Global Optimization. Kluwer Academic Publishers, Dor-
drecht/Boston/London, 1995.

[BS94] H.P. Benson and S. Sayin. A Finite Concave Minimization Algorithm using Branch-and-
Bound and Neighbor Generation.Journal of Global Optimization, 5:1–14, 1994.

[CG59] E.W. Cheney and A.A. Goldstein. Newton’s Method of Convex Programming and
Tchebycheff Approximation.Numerische Mathematik, 1:253–268, 1959.

[CPS92] R.W. Cottle, Jong-Shi Pang, and R.E. Stone.The Linear Complementarity Problem. Aca-
demic Press, Inc., San Diego, USA, 1992.

[Dan63] G.B. Dantzig.Linear Programming and Extensions. Princeton University Press, Prince-
ton, 1963.

[DAPT97] P.L. De Angelis, P.M. Pardalos, and G. Toraldo. Quadratic Programming with Box Con-
straints. In I.M. Bomze, T. Csendes, R. Horst, and P.M. Pardalos, editors,Developments
in Global Optimization. Kluwer Academic Publishers, Dordrecht, 1997.

[dGPW90] C. de Groot, R. Peikert, and D. Würtz. The Optimal Packing of Ten Equal Circles in a
Square. IPS Research Report 90-12, ETH Zürich, 1990.

[dGPWM91] C. de Groot, R. Peikert, D. Würtz, and M. Monagan. Packing Circles in a Square: A
Review and New Results. In P. Kall, editor,System Modelling and Optimization, pages
45–54. Proc. 15th IFIP Conf. Zürich, 1991.

[DT92] E.V. Donardo and C.S. Tang. Linear Control of a Markov Production System.Operations
Research, 40(2):259–278, 1992.

[EN75] J.G. Ecker and R.D. Niemi. A Dual Method for Quadratic Programs with Quadratic Con-
straints.SIAM Journal on Applied Mathematics, 28(3):568–576, 1975.

[Eva63] D.H. Evans. Modular Design – A Special Case in Nonlinear Programming.Operations
Research, 11:637–647, 1963.

[Eva70] D.H. Evans. A Note on "Modular Design – A Special Case in Nonlinear Programming".
Operations Research, 18:562–564, 1970.

[FK97] T. Fujie and M. Kojima. Semidefinite Programming Relaxation for Nonconvex Quadratic
Programs.Journal of Global Optimization, 10:367–380, 1997.

[Fle87] R. Fletcher.Practical Methods of Optimization. Princeton University Press, John Wiley
and Sons, 2nd edition, 1987.

[FM68] A.V. Fiacco and G.P. McCormick.Nonlinear Programming. John Wiley, New York, 1968.
[FS69] J.E. Falk and R.M. Soland. An Algorithm for Separable Nonconvex Programming Prob-

lems.Management Science, 15:550–569, 1969.
[FS87] J.A. Filar and T.A. Schultz. Bilinear Programming and Structured Stochastic Games.

Journal of Optimization Theory and Applications, 53(1):85–104, 1987.
[FV90a] C.A. Floudas and V. Visweswaran. A Global Optimization Algorithm (GOP) for Certain

Classes of Nonconvex NLP’s: II. Applications of Theory and Test Problems.Computers
and Chemical Engineering, 14:1417–1434, 1990.

[FV90b] C.A. Floudas and V. Visweswaran. A Global Optimization Algorithm (GOP) for Cer-
tain Classes of Nonconvex NLP’s: I. Theory.Computers and Chemical Engineering,
14:1397–1417, 1990.

BIBLIOGRAPHY 329

[FV93a] C.A. Floudas and V. Visweswaran. New Properties and Computational Improvement of
the GOP Algorithm for Problems with Quadratic Objective Function and Constraints.
Journal of Global Optimization, 3:439–462, 1993.

[FV93b] C.A. Floudas and V. Visweswaran. Primal-Relaxed Dual Global Optimization Approach.
Journal of Optimization Theory and Applications, 78(2):187–225, 1993.

[FV95] C.A. Floudas and V. Visweswaran. Quadratic Optimization. In R. Horst and P.M. Parda-
los, editors,Handbook of Global Optimization. Kluwer Academic Publishers, Dor-
drecht/Boston/London, 1995.

[GKL95] P. Gritzmann, V. Klee, and D. Larman. Largestj-Simplices inn-Polytopes.Discrete
Comput. Geom., 13:477–513, 1995.

[GL96] R.L. Graham and B.D. Lubachevsky. Repeated Patterns of Dense Packings of Equal Disks
in a Square.The Electronic J. of Comb., 3:1–16, 1996.

[GMW81] P.E. Gill, W. Murray, and M.H. Wright.Practical Optimization. Academic Press, Inc.,
San Diego, USA, 1981.

[Gol70] M. Goldberg. The Packing of Equal Circles in a Square.Math. Mag., 43:24–30, 1970.
[GVL89] G.H. Golub and C.F. Van Loan.Matrix Computations. John Hopkins University Press,

Baltimore, 2nd edition, 1989.
[Her94] D.den Hertog.Interior Point Approach to Linear, Quadratic and Convex Programming:

Algorithms and Complexity. Kluwer Academic Publishers, Dordrecht/Boston/London,
1994.

[HJ85] R. Horn and C.R. Johnson.Matrix Analysis. Cambridge University Press, Cambridge,
1985.

[HJ92] P. Hansen and B. Jaumard. Reduction of Indefinite Quadratic Programs to Bilinear Pro-
grams.Journal of Global Optimization, 2:41–60, 1992.

[Hor76] R. Horst. An Algorithm for Nonconvex Programming Problems.Mathematical Program-
ming, 10:312–321, 1976.

[Hor79] R. Horst.Nonlinear Optimization. Carl Hanser Verlag, München, 1979. in German.
[Hor84] R. Horst. On the Global Minimization of Concave Functions. Introduction and Survey.

Operations Research Spektrum, 6:195–205, 1984.
[Hor97] R. Horst. On Generalized Bisection ofn-Simplices. Mathematics of Computation,

66(218):691–698, 1997.
[HPT95] R. Horst, P.M. Pardalos, and N.V. Thoai.Introduction to Global Optimization. Kluwer

Academic Publishers, Dordrecht/Boston/London, 1995.
[HR98] R. Horst and U. Raber. Convergent Outer Approximation Algorithms for Solving Unary

Problems.Journal of Global Optimization, 13:123–149, 1998.
[HT96a] R. Horst and N.V. Thoai. A new Algorithm for Solving the General Quadratic Program-

ming Problem.Computational Optimization and Applications, 5:39–48, 1996.
[HT96b] R. Horst and H. Tuy.Global Optimization: Deterministic Approaches. Springer, Heidel-

berg, 3rd enlarged edition, 1996.
[HT99] R. Horst and N.V. Thoai. D.C. Programming: An Overview with New Results.Journal

of Optimization Theory and Applications, 1999. to appear.
[HTT87] R. Horst, N.V. Thoai, and H. Tuy. Outer Approximation by Polyhedral Convex Sets.OR

Spektrum, 9:153–159, 1987.

330 BIBLIOGRAPHY

[HW53] J. Hoffman and H.W. Wielandt. The Variation of the Spectrum of a Normal Matrix.Duke
Mathematical Journal, 20:37–39, 1953.

[ILM88] H. Idrissi, P. Loridan, and C. Michelot. Approximation of Solutions for Location Prob-
lems.Journal of Optimization Theory and Applications, 56:127–143, 1988.

[Jar96] F. Jarre. Interior-Point Methods for Classes of Convex Programming. In T. Terlaky, edi-
tor, Interior Point Methods of Mathematical Programming. Kluwer Academic Publishers,
Dordrecht/Boston/London, 1996.

[JM98] B. Jaumard and C. Meyer. A Simplified Convergence Proof for the Cone Partitioning
Algorithm. Journal of Global Optimization, 13(4):407–416, 1998.

[JRA93] L.W. Johnson, R.D. Riess, and J.T. Arnold.Introduction to Linear Algebra. Addison-
Wesley Publishing Company, 3rd edition, 1993.

[Kea78] B. Kearfott. A Proof of Convergence and an Error Bound for the Method of Bisection in
IRn. Mathematics of Computation, 32:1147–1153, 1978.

[Kel60] J.E. Kelley. The Cutting-Plane Method for Solving Convex Programs.SIAM Journal on
Applied Mathematics, 8:703–712, 1960.

[Loc97] M. Locatelli. Finiteness of Conical Algorithms withω-Subdivisions. submitted, 1997.
[LR97a] M. Locatelli and U. Raber. A Finiteness Result for the Simplicial Branch-and-Bound

Algorithm based onω-Subdivisions. Technical Note, submitted, 1997.
[LR97b] M. Locatelli and U. Raber. On the Convergence of the Simplicial Branch-and-Bound

Algorithm based onω-Subdivisions. submitted, 1997.
[LR98a] M. Locatelli and U. Raber. Packing Equal Circles in a Square: I. Theoretical Results.

1998. submitted.
[LR98b] M. Locatelli and U. Raber. Packing Equal Circles in a Square: II. A Deterministic Global

Optimization Approach. 1998. submitted.
[Man94] O. L. Mangasarian. Nonlinear programming. InClassics in Applied Mathematics, vol-

ume 10. SIAM, Philadelphia, 1994.
[MFP95] C.D. Maranas, C.A. Floudas, and P.M. Pardalos. New Results in the Packing of Equal

Circles in a Square.Discrete Mathematics, 142:287–293, 1995.
[Nas96] M. Nast. Subdivision of Simplices Relative to a Cutting Plane and Finite Concave Mini-

mization.Journal of Global Optimization, 9:65–93, 1996.
[Nes98] Y. Nesterov. Semidefinite Relaxation and Nonconvex Quadratic Optimization.Optimiza-

tion Methods & Software, 9(1-3):141–160, 1998.
[NN94] J.E. Nesterov and A. Nemirovskii.Interior Point Polynomial Algorithms in Convex Pro-

gramming. SIAM, Philadelphia, 1994.
[NO97] K.J. Nurmela and P.R.J. Oestergard. Packing up to 50 Equal Circles in a Square.Discrete

Comput. Geom., 18:111–120, 1997.
[NS92] V.H. Nguyen and J.J. Strodiot. Computing a Global Optimal Solution to a Design Cen-

tering Problem.Mathematical Programming, 53:111–123, 1992.
[PhH82] E. Phan-huy Hao. Quadratically Constrained Quadratic Programming: Some Applica-

tions and a Method for Solution.Zeitschrift für Operations Research, 26:105–119, 1982.
[PR86] P.M. Pardalos and J.B. Rosen. Methods for Global Concave Optimization: A Biblio-

graphic Survey.SIAM Review, 26:367–379, 1986.

BIBLIOGRAPHY 331

[PRW95] S. Poljak, F. Rendl, and H. Wolkowicz. A Recipe for Semidefinite Relaxation for(0, 1)-
Quadratic Programming.Journal of Global Optimization, 7:51–73, 1995.

[PS76] P.M. Pardalos and G. Schnitger. Connections between Nonlinear and Integer Program-
ming Problems.Symposia Mathematica, 19:161–176, 1976.

[PS88] P.M. Pardalos and G. Schnitger. Checking Local Optimality in Constrained Quadratic
Programming isNP-hard.Operations Research Letters, 7:33–35, 1988.

[PTA94] Thai Quynh Phing, Pham Dinh Tao, and Le Thi Hoai An. A Method for Solving D.C. Pro-
gramming Problems, Application to Fuel Mixture Nonconvex Optimization Problems.
Journal of Global Optimization, 6:87–105, 1994.

[PV91] P.M. Pardalos and S.A. Vavasis. Quadratic Programming with one Negative Eigenvalue
is NP-hard.Journal of Global Optimization, 1:15–22, 1991.

[QdKRT98] A.J. Quist, E. de Klerk, C. Roos, and T. Terlaky. Copositive Relaxation for General Qua-
dratic Programming.Optimization Methods & Software, 9(1-3):185–208, 1998.

[Rab98] U. Raber. A Simplicial Branch-and-Bound Method for Solving Nonconvex All-Quadratic
Programs.Journal of Global Optimization, 13:417–432, 1998.

[Ram93] M. Ramana.An Algorithmic Analysis of Multiquadratic and Semidefinite Programming
Problems. PhD thesis, The John Hopkins University, Baltimore, 1993.

[Ree75] G.R. Reeves. Global Minimization in Nonconvex All-Quadratic Programming.Manage-
ment Science, 22(1):76–86, 1975.

[Roc70] R.T. Rockafellar.Convex Analysis. Princeton University Press, Princeton, New Jersey,
1970.

[Roc81] R.T. Rockafellar.The Theory of Subgradients and its Applications to Problems of Opti-
mization and Nonconvex Functions. Heldermann Verlag, Berlin, 1981.

[RS71] D.P. Rutenberg and T.L. Shaftel. Product Design: Subassemblies for Multiple Markets.
Management Science, 18(4):B–220–B–231, 1971.

[SA92] H.D. Sherali and A. Alameddine. A new Reformulation-Linearization Technique for Bi-
linear Programming Problems.Journal of Global Optimization, 2:379–410, 1992.

[SA99] H.D. Sherali and W.P. Adams.A Reformulation-Linearization Technique for Solving Dis-
crete and Continuous Nonconvex Programs. Kluwer, Dordrecht/Boston/London, 1999.

[Sch65] J. Schaer. The Densest Packing of Nine Circles in a Square.Canad.Math.Bull., 8:273–
277, 1965.

[Sho85] N.Z. Shor.Minimization Methods for Non-Differentiable Functions. Springer, Heidel-
berg, 1985.

[Sho87] N.Z. Shor. Quadratic Optimization Problems.Soviet J. Computer and Systems Sciences,
25:1–11, 1987.

[Sho98] N.Z. Shor.Nondifferentiable Optimization and Polynomial Problems. Kluwer Academic
Publishers, Dordrecht/Boston/London, 1998.

[Sle69] D. Slepan. The Content of some Extreme Simplices.Pacific J. Math., 31:795–808, 1969.
[SM65] J. Schaer and A. Meir. On a Geometric Extremum Problem.Canad.Math.Bull., 8:21–27,

1965.
[Sol71] R.M. Soland. An Algorithm for Separable Nonconvex Programming Problems II: Non-

convex Constraints.Management Science, 17(11):759–773, 1971.

332 BIBLIOGRAPHY

[Som29] D.M.Y. Sommerville.An Introduction to the Geometry ofN Dimensions. Methuen, Lon-
don, 1929.

[ST92] H.D. Sherali and C.H. Tuncbilek. A Global Optimization Algorithm for Polynomial Pro-
gramming Problems Using a Reformulation-Linearization Technique.Journal of Global
Optimization, 2:101–112, 1992.

[Ste98] I. Stewart. Mathematical Recreations.Scientific American, pages 80–82, February 1998.
[TB85] B.T. Tam and V.T. Ban. Minimization of a Concave Function under Linear Constraints.

Economika i Mathematicheskie Metody, 21:709–714, 1985. in Russian.
[Tha88] P.T. Thach. The Design Centering Problem as a D.C. Programming Problem.Mathemat-

ical Programming, 41:229–248, 1988.
[TT85] N.V. Thuong and H. Tuy. Minimizing a Convex Function over the Complement of a

Convex Set.Methods of Operations Research, 49:85–89, 1985.
[Tuy64] H. Tuy. Concave Programming under Linear Constraints.Soviet Mathematics, 5:1437–

1440, 1964.
[Tuy91a] H. Tuy. Effect of the Subdivision Strategy on Convergence and Efficiency of some Global

Optimization Algorithms.Journal of Global Optimization, 1:23–36, 1991.
[Tuy91b] H. Tuy. Normal Conical Algorithm for Concave Minimization over Polytopes.Mathe-

matical Programming, 51:229–245, 1991.
[Tuy95] H. Tuy. D.C. Optimization: Theory, Methods and Applications. In R. Horst and P.M.

Pardalos, editors,Handbook of Global Optimization. Kluwer Academic Publishers, Dor-
drecht/Boston/London, 1995.

[VB96] L. Vandenberghe and S. Boyd. Semidefinite Programming.SIAM Review, 38:49–95,
1996.

[vdP66] C. van de Panne. Programming with a Quadratic Constraint.Management Science,
12(11):798–815, 1966.

[VS82] L. Vidigal and Director S. A Design Centering Algorithm for Nonconvex Regions of
Acceptability. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, pages 13–24, 1982.

[Wen83] G. Wengerodt. Die dichteste Packung von 16 Kreisen in einem Quadrat.Beiträge Algebra
Geom., 16:173–190, 1983.

[Wen87a] G. Wengerodt. Die dichteste Packung von 14 Kreisen in einem Quadrat.Beiträge Algebra
Geom., 25:25–46, 1987.

[Wen87b] G. Wengerodt. Die dichteste Packung von 25 Kreisen in einem Quadrat.
Ann.Univ.Sci.Budapest Eötvös Sect. Math., 30:3–15, 1987.

[WK87] G. Wengerodt and K. Kirchner. Die dichteste Packung von 36 Kreisen in einem Quadrat.
Beiträge Algebra Geom., 25:147–159, 1987.

[WV91] A. Weintraub and J. Vera. A Cutting Plane Approach for Chance Constrained Linear
Programs.Operations Research, 39(5):776–785, 1991.

[YF98] Y. Yajima and T. Fujie. A Polyhedral Approach for Nonconvex Quadratic Programming
Problems with Box Constraints.Journal of Global Optimization, 13(2):151–170, 1998.

[Zur64] R. Zurmühl.Matrices. Springer, Heidelberg, 4th edition, 1964. in German.

List of Tables

2.1 Effort for solving (UPE) with Algorithm 2.2 71

2.2 Effort for solving (UPE) by applyingSk 71

2.3 Comparison of the numerical effort for solving2-dimensional
all-quadratic problems with the accuracyε = 0.1 76

2.4 Comparison of the numerical effort for solving2-dimensional
all-quadratic problems with the accuracyε = 0.01 77

2.5 Comparison of the numerical effort for solving2-dimensional
all-quadratic problems with the accuracyε = 0.1 79

2.6 Comparison of the numerical effort for solving2-dimensional
all-quadratic problems with the accuracyε = 0.01 80

2.7 Minimal running-times of unsolved3-dimensional all-quadratic
problems withε = 0.5 82

3.1 All test results forn = 2, 3, 4 104

3.2 Some test results forn = 5, 6, 7, 8 105

3.3 A comparison of the medians of the running-times 108

3.4 Proportional reduction of the average number of LP’s by
applying a special selection rule for the first vertexvk0 110

4.1 All test results forn = 2, 3, 4 155

4.2 Some test results forn = 5, 6, 7, 8 156

4.3 Comparison of the medians of the running-times of Algorithm
4.1 based on bisection and of Algorithm 3.1 157

333

334 LIST OF TABLES

4.4 Comparison of (MGWSR) and bisection 168

4.5 Different strategies and the used subdivision rules 173

4.6 Comparison of the average running-time in seconds for all
strategies andn = 2, 3, 4 174

4.7 Comparison of the average running-times in seconds for all
strategies andn = 5, 6, 7, 8 175

4.8 Comparison of the average proportional part of subdivisions,
wherewk is chosen by (SR3), forn = 2, 3, 4 176

4.9 Comparison of the average proportional part of subdivisions,
wherewk is chosen by (SR3), forn = 5, 6, 7, 8 177

5.1 Possible subcases 224

5.2 Maximum number of affine functions 227

5.3 Improvements 265

5.4 Numerical effort 267

5.5 Numerical effort with altered basic strategy 273

5.6 Numerical effort with altered basic strategy and altered decision
criterion 274

5.7 Numerical effort for solving (PP) withn > 27 277

List of Figures

2.1 Feasible regions of (QPE) and (UPE) 27

2.2 Ramana’s cut for (UPE) 32

2.3 First quadratic cut for (UPE) 39

2.4 First iteration of Algorithm 2.2 applied for (UPE) 43

2.5 First iteration of Algorithm 2.2 with a regular simplex applied
for (UPE) 53

2.6 The hyperplaneH0 in the case of Problem (UPE) 54

2.7 Subdivision ofP 0 with the polyhedronQ̄0 in Algorithm 2.2
applied for Problem (UPE) 60

2.8 Modification of the subdivision process applied for (UPE) 70

2.9 Number of3-dimensional all-quadratic test problems where
Algorithm 2.3 exceeded the given storage capacity 82

3.1 Number of test problems in percent where Algorithm 3.1 is
faster than Al-Khayyal et al.’s rectangular approach 106

3.2 Speedup 107

4.1 The feasible setF of Problem (CE) 145

4.2 Subdivision ofS0 with respect toω(S0) 146

4.3 Situation in Lemma 4.5.1 148

4.4 Situation in Lemma 4.5.2 151

4.5 Number of test problems where Algorithm 4.1 using (MGWSR)
needed more than200, 000 convex subproblems 169

335

336 LIST OF FIGURES

4.6 Number of test problems where Algorithm 4.1 using (MGWSR4)
needed more than200, 000 convex subproblems 172

5.1 Solutions forn = 3 189

5.2 Normal cones 193

5.3 Known solutions forn = 2, . . . , 5 196

5.4 Vertex situation 198

5.5 Known solutions forn = 6, . . . , 9 201

5.6 Numbering 203

5.7 The relevant function 221

5.8 Case 1 222

5.9 Case 2 and 3 222

5.10 Case 4 223

5.11 Caseµ0η1 224

5.12 µ1η0 226

5.13 Basic subdivision strategy 231

5.14 Same solutions with different numbering 232

5.15 Solutions differing by rotation 233

5.16 Solutions differing by reflection 234

5.17 A solution of Problem (PP) forn = 10 235

5.18 Unique numbering 236

5.19 Different numberings 236

5.20 Hyperrectangles containing an optimal solution 240

5.21 Numbering ofC1, C2, C3, C4 for rotation symmetries and
m = 2 241

5.22 Numbering ofC1, C2, C3, C4 for reflection symmetries and
m = 2 242

5.23 Possible children ofR1 for n = 6 243

5.24 Possible children ofR6 for n = 6 244

5.25 Eliminable case 246

LIST OF FIGURES 337

5.26 Solutions forn = 7 248

5.27 Corner rules (Case 2) 251

5.28 Corner rules (Case 3.1) 252

5.29 Corner rules (Case 3.2) 252

5.30 Corner rules (Case 4) 253

5.31 Edge rules 255

5.32 Vertex numbering ofP 256

5.33 P̄ = P 257

5.34 P̄ 6= P 258

5.35 The wave effect 260

5.36 Solution forn = 21 268

5.37 Solutions forn = 22, 23, 24 269

5.38 Solutions forn = 26, 27 270

5.39 New basic partitioning strategy 272

5.40 Solution forn = 28 277

5.41 Solutions forn = 29, 30 278

5.42 Solution forn = 31 279

5.43 Good solution forn = 32 279

Tabellarischer Bildungsweg

Name: Ulrich Raber
Geburtstag: 30.12.1971
Geburtsort: Losheim am See

09/1978–08/1982: Grundschule Losheim

09/1982 –05/1991: Hochwald–Gymnasium Wadern

10/1991 –11/1996: Studium der Wirtschaftsmathematik an der
Universität Trier mit Abschluß Diplom

01/1997–09/1999: Wissenschaftlicher Mitarbeiter in der Abteilung
Mathematik im Fachbereich IV der Universität Trier

09/99: Promotion zum Dr. rer. nat.

