https://ubt.opus.hbz-nrw.deOPUS documents
https://ubt.opus.hbz-nrw.de/index/index/
Mon, 14 Jan 2019 17:07:59 +0100Mon, 14 Jan 2019 17:07:59 +0100Optimization Methods and Large-Scale Algorithms in Small Area Estimation
https://ubt.opus.hbz-nrw.de/frontdoor/index/index/docId/1034
Sample surveys are a widely used and cost effective tool to gain information about a population under consideration. Nowadays, there is an increasing demand not only for information on the population level but also on the level of subpopulations. For some of these subpopulations of interest, however, very small subsample sizes might occur such that the application of traditional estimation methods is not expedient. In order to provide reliable information also for those so called small areas, small area estimation (SAE) methods combine auxiliary information and the sample data via a statistical model.
The present thesis deals, among other aspects, with the development of highly flexible and close to reality small area models. For this purpose, the penalized spline method is adequately modified which allows to determine the model parameters via the solution of an unconstrained optimization problem. Due to this optimization framework, the incorporation of shape constraints into the modeling process is achieved in terms of additional linear inequality constraints on the optimization problem. This results in small area estimators that allow for both the utilization of the penalized spline method as a highly flexible modeling technique and the incorporation of arbitrary shape constraints on the underlying P-spline function.
In order to incorporate multiple covariates, a tensor product approach is employed to extend the penalized spline method to multiple input variables. This leads to high-dimensional optimization problems for which naive solution algorithms yield an unjustifiable complexity in terms of runtime and in terms of memory requirements. By exploiting the underlying tensor nature, the present thesis provides adequate computationally efficient solution algorithms for the considered optimization problems and the related memory efficient, i.e. matrix-free, implementations. The crucial point thereby is the (repetitive) application of a matrix-free conjugated gradient method, whose runtime is drastically reduced by a matrx-free multigrid preconditioner.Julian Wagnerdoctoralthesishttps://ubt.opus.hbz-nrw.de/frontdoor/index/index/docId/1034Mon, 14 Jan 2019 17:07:59 +0100Finite Mixture Models for Small Area Estimation in Cases of Unobserved Heterogeneity
https://ubt.opus.hbz-nrw.de/frontdoor/index/index/docId/988
A basic assumption of standard small area models is that the statistic of interest can be modelled through a linear mixed model with common model parameters for all areas in the study. The model can then be used to stabilize estimation. In some applications, however, there may be different subgroups of areas, with specific relationships between the response variable and auxiliary information. In this case, using a distinct model for each subgroup would be more appropriate than employing one model for all observations. If no suitable natural clustering variable exists, finite mixture regression models may represent a solution that „lets the data decide“ how to partition areas into subgroups. In this framework, a set of two or more different models is specified, and the estimation of subgroup-specific model parameters is performed simultaneously to estimating subgroup identity, or the probability of subgroup identity, for each area. Finite mixture models thus offer a fexible approach to accounting for unobserved heterogeneity. Therefore, in this thesis, finite mixtures of small area models are proposed to account for the existence of latent subgroups of areas in small area estimation. More specifically, it is assumed that the statistic of interest is appropriately modelled by a mixture of K linear mixed models. Both mixtures of standard unit-level and standard area-level models are considered as special cases. The estimation of mixing proportions, area-specific probabilities of subgroup identity and the K sets of model parameters via the EM algorithm for mixtures of mixed models is described. Eventually, a finite mixture small area estimator is formulated as a weighted mean of predictions from model 1 to K, with weights given by the area-specific probabilities of subgroup identity.Charlotte Articusdoctoralthesishttps://ubt.opus.hbz-nrw.de/frontdoor/index/index/docId/988Wed, 12 Dec 2018 11:46:16 +0100The Harmonic Faber Operator
https://ubt.opus.hbz-nrw.de/frontdoor/index/index/docId/982
P. K. Suetin points out in the beginning of his monograph "Faber
Polynomials and Faber Series" that Faber polynomials play an important
role in modern approximation theory of a complex variable as they
are used in representing analytic functions in simply connected domains,
and many theorems on approximation of analytic functions are proved
with their help [50].
In 1903, the Faber polynomials were firstly discovered by G. Faber. It was Faber's aim to find a generalisation of Taylor
series of holomorphic functions in the open unit disc D
in the following way. As any holomorphic function in D
has a Taylor series representation
f(z)=\sum_{\nu=0}^{\infty}a_{\nu}z^{\nu} (z\in\D)
converging locally uniformly inside D, for a simply connected
domain G, Faber wanted to determine a system of polynomials (Q_n)
such that each function f being holomorphic in G can be expanded
into a series
f=\sum_{\nu=0}^{\infty}b_{\nu}Q_{\nu}
converging locally uniformly inside G. Having this goal in mind,
Faber considered simply connected domains bounded by an analytic Jordan
curve. He constructed a system of polynomials (F_n)
with this property. These polynomials F_n were named after him
as Faber polynomials. In the preface of [50],
a detailed summary of results concerning Faber polynomials and results
obtained by the aid of them is given.
An important application of Faber polynomials is e.g. the transfer
of known assertions concerning polynomial approximation of functions
belonging to the disc algebra to results of the approximation of functions
being continuous on a compact continuum K which contains at least
two points and has a connected complement and being holomorphic in
the interior of K. In this field, the Faber operator
denoted by T turns out to be a powerful tool (for
an introduction, see e.g. D. Gaier's monograph). It
assigns a polynomial of degree at most n given in the monomial
basis \sum_{\nu=0}^{n}a_{\nu}z^{\nu} with a polynomial of degree
at most n given in the basis of Faber polynomials \sum_{\nu=0}^{n}a_{\nu}F_{\nu}.
If the Faber operator is continuous with respect to the uniform norms,
it has a unique continuous extension to an operator mapping the disc
algebra onto the space of functions being continuous on the whole
compact continuum and holomorphic in its interior. For all f being
element of the disc algebra and all polynomials P, via the obvious
estimate for the uniform norms
||T(f)-T(P)||<= ||T|| ||f-P||,
it can be seen that the original task of approximating F=T(f)
by polynomials is reduced to the polynomial approximation of the function
f. Therefore, the question arises under which conditions the Faber
operator is continuous and surjective. A fundamental result in this
regard was established by J. M. Anderson and J. Clunie who showed
that if the compact continuum is bounded by a rectifiable Jordan curve
with bounded boundary rotation and free from cusps, then the Faber
operator with respect to the uniform norms is a topological isomorphism.
Now, let f be a harmonic function in D.
Similar as above, we find that f has a uniquely determined representation
f=\sum_{\nu=-\infty}^{\infty}a_{\nu}p_{\nu}
converging locally uniformly inside D where p_{n}(z)=z^{n}
for n\in\N_{0} and p_{-n}(z)=\overline{z}^{n}
for n\in\N}. One may ask whether there is an analogue for
harmonic functions on simply connected domains G. Indeed, for a
domain G bounded by an analytic Jordan curve, the conjecture that
each function f being harmonic in G has a uniquely determined
representation
f=\sum_{\nu=-\infty}^{\infty}b_{\nu}F_{\nu}
where F_{-n}(z)=\overline{F_{n}(z\)} for n\inN,
converging locally uniformly inside G, holds true.
Let now K be a compact continuum containing at least two points
and having a connected complement. A main component of this thesis
will be the examination of the harmonic Faber operator mapping a harmonic
polynomial given in the basis of the harmonic monomials \sum_{\nu=-n}^{n}a_{\nu}p_{\nu}
to a harmonic polynomial given as \sum_{\nu=-n}^{n}a_{\nu}F_{\nu}.
If this operator, which is based on an idea of J. Müller,
is continuous with respect to the uniform norms, it has a unique continuous
extension to an operator mapping the functions being continuous on
\partial\D onto the continuous functions on K being
harmonic in the interior of K. Harmonic Faber polynomials and the
harmonic Faber operator will be the objects accompanying us throughout
our whole discussion.
After having given an overview about notations and certain tools we
will use in our consideration in the first chapter, we begin our studies
with an introduction to the Faber operator and the harmonic Faber
operator. We start modestly and consider domains bounded by an analytic
Jordan curve. In Section 2, as a first
result, we will show that, for such a domain G, the harmonic Faber
operator has a unique continuous extension to an operator mapping
the space of the harmonic functions in D onto the space
of the harmonic functions in G, and moreover, the harmonic Faber
operator is an isomorphism with respect to the topologies of locally
uniform convergence. In the further sections of this chapter, we illumine
the behaviour of the (harmonic) Faber operator on certain function
spaces.
In the third chapter, we leave the situation of compact continua bounded
by an analytic Jordan curve. Instead we consider closures of domains
bounded by Jordan curves having a Dini continuous curvature. With
the aid of the concept of compact operators and the Fredholm alternative,
we are able to show that the harmonic Faber operator is a topological
isomorphism.
Since, in particular, the main result of the third chapter holds true
for closures K of domains bounded by analytic Jordan curves, we
can make use of it to obtain new results concerning the approximation
of functions being continuous on K and harmonic in the interior
of K by harmonic polynomials. To do so, we develop techniques applied
by L. Frerick and J. Müller in [11] and adjust them to
our setting. So, we can transfer results about the classic Faber operator
to the harmonic Faber operator.
In the last chapter, we will use the theory of harmonic Faber polynomials
to solve certain Dirichlet problems in the complex plane. We pursue
two different approaches: First, with a similar philosophy as in [50],
we develop a procedure to compute the coefficients of a series \sum_{\nu=-\infty}^{\infty}c_{\nu}F_{\nu}
converging uniformly to the solution of a given Dirichlet problem.
Later, we will point out how semi-infinite programming with harmonic
Faber polynomials as ansatz functions can be used to get an approximate
solution of a given Dirichlet problem. We cover both approaches first
from a theoretical point of view before we have a focus on the numerical
implementation of concrete examples. As application of the numerical
computations, we considerably obtain visualisations of the concerned
Dirichlet problems rounding out our discussion about the harmonic
Faber polynomials and the harmonic Faber operator.Marvin Müllerdoctoralthesishttps://ubt.opus.hbz-nrw.de/frontdoor/index/index/docId/982Tue, 27 Nov 2018 15:59:44 +0100Optimization for Multivariate and Multi-domain Methods in Survey Statistics
https://ubt.opus.hbz-nrw.de/frontdoor/index/index/docId/985
The dissertation deals with methods to improve design-based and model-assisted estimation techniques for surveys in a finite population framework. The focus is on the development of the statistical methodology as well as their implementation by means of tailor-made numerical optimization strategies. In that regard, the developed methods aim at computing statistics for several potentially conflicting variables of interest at aggregated and disaggregated levels of the population on the basis of one single survey. The work can be divided into two main research questions, which are briefly explained in the following sections.
First, an optimal multivariate allocation method is developed taking into account several stratification levels. This approach results in a multi-objective optimization problem due to the simultaneous consideration of several variables of interest. In preparation for the numerical solution, several scalarization and standardization techniques are presented, which represent the different preferences of potential users. In addition, it is shown that by solving the problem scalarized with a weighted sum for all combinations of weights, the entire Pareto frontier of the original problem can be generated. By exploiting the special structure of the problem, the scalarized problems can be efficiently solved by a semismooth Newton method. In order to apply this numerical method to other scalarization techniques as well, an alternative approach is suggested, which traces the problem back to the weighted sum case. To address regional estimation quality requirements at multiple stratification levels, the potential use of upper bounds for regional variances is integrated into the method. In addition to restrictions on regional estimates, the method enables the consideration of box-constraints for the stratum-specific sample sizes, allowing minimum and maximum stratum-specific sampling fractions to be defined.
In addition to the allocation method, a generalized calibration method is developed, which is supposed to achieve coherent and efficient estimates at different stratification levels. The developed calibration method takes into account a very large number of benchmarks at different stratification levels, which may be obtained from different sources such as registers, paradata or other surveys using different estimation techniques. In order to incorporate the heterogeneous quality and the multitude of benchmarks, a relaxation of selected benchmarks is proposed. In that regard, predefined tolerances are assigned to problematic benchmarks at low aggregation levels in order to avoid an exact fulfillment. In addition, the generalized calibration method allows the use of box-constraints for the correction weights in order to avoid an extremely high variation of the weights. Furthermore, a variance estimation by means of a rescaling bootstrap is presented.
Both developed methods are analyzed and compared with existing methods in extensive simulation studies on the basis of a realistic synthetic data set of all households in Germany. Due to the similar requirements and objectives, both methods can be successively applied to a single survey in order to combine their efficiency advantages. In addition, both methods can be solved in a time-efficient manner using very comparable optimization approaches. These are based on transformations of the optimality conditions. The dimension of the resulting system of equations is ultimately independent of the dimension of the original problem, which enables the application even for very large problem instances.Martin Ruppdoctoralthesishttps://ubt.opus.hbz-nrw.de/frontdoor/index/index/docId/985Wed, 21 Nov 2018 12:01:21 +0100The Nonlocal Spatial Ramsey Model with Endogenous Productivity Growth
https://ubt.opus.hbz-nrw.de/frontdoor/index/index/docId/918
The economic growth theory analyses which factors affect economic growth
and tries to analyze how it can last. A popular neoclassical growth model
is the Ramsey-Cass-Koopmans model, which aims to determine how much
of its income a nation or an economy should save in order to maximize its
welfare.
In this thesis, we present and analyze an extended capital accumulation equation of a spatial version of the Ramsey model, balancing diffusive and agglomerative effects. We model the capital mobility in space via a nonlocal
diffusion operator which allows for jumps of the capital stock from one lo-
cation to an other. Moreover, this operator smooths out heterogeneities in
the factor distributions slower, which generated a more realistic behavior of
capital flows. In addition to that, we introduce an endogenous productivity-
production operator which depends on time and on the capital distribution
in space. This operator models the technological progress of the economy.
The resulting mathematical model is an optimal control problem under a
semilinear parabolic integro-differential equation with initial and volume constraints, which are a nonlocal analog to local boundary conditions, and box-constraints on the state and the control variables. In this thesis, we consider
this problem on a bounded and unbounded spatial domain, in both cases with
a finite time horizon. We derive existence results of weak solutions for the
capital accumulation equations in both settings and we proof the existence
of a Ramsey equilibrium in the unbounded case. Moreover, we solve the
optimal control problem numerically and discuss the results in the economic
context.Laura Viktoria Somorowskydoctoralthesishttps://ubt.opus.hbz-nrw.de/frontdoor/index/index/docId/918Tue, 25 Sep 2018 09:44:03 +0200On the stability of portfolio risk - An analysis of the impact of portfolio size and risk based fund classification
https://ubt.opus.hbz-nrw.de/frontdoor/index/index/docId/896
This dissertation is dedicated to the analysis of the stabilty of portfolio risk and the impact of European regulation introducing risk based classifications for investment funds.
The first paper examines the relationship between portfolio size and the stability of mutual fund risk measures, presenting evidence for economies of scale in risk management. In a unique sample of 338 fund portfolios we find that the volatility of risk numbers decreases for larger funds. This finding holds for dispersion as well as tail risk measures. Further analyses across asset classes provide evidence for the robustness of the effect for balanced and fixed income portfolios. However, a size effect did not emerge for equity funds, suggesting that equity fund managers simply scale their strategy up as they grow. Analyses conducted on the differences in risk stability between tail risk measures and volatilities reveal that smaller funds show higher discrepancies in that respect. In contrast to the majority of prior studies on the basis of ex-post time series risk numbers, this study contributes to the literature by using ex-ante risk numbers based on the actual assets and de facto portfolio data.
The second paper examines the influence of European legislation regarding risk classification of mutual funds. We conduct analyses on a set of worldwide equity indices and find that a strategy based on the long term volatility as it is imposed by the Synthetic Risk Reward Indicator (SRRI) would lead to substantial variations in exposures ranging from short phases of very high leverage to long periods of under investments that would be required to keep the risk classes. In some cases, funds will be forced to migrate to higher risk classes due to limited means to reduce volatilities after crises events. In other cases they might have to migrate to lower risk classes or increase their leverage to ridiculous amounts. Overall, we find if the SRRI creates a binding mechanism for fund managers, it will create substantial interference with the core investment strategy and may incur substantial deviations from it. Fruthermore due to the forced migrations the SRRI degenerates to a passive indicator.
The third paper examines the impact of this volatility based fund classification on portfolio performance. Using historical data on equity indices we find initially that a strategy based on long term portfolio volatility, as it is imposed by the Synthetic Risk Reward Indicator (SRRI), yields better Sharpe Ratios (SRs) and Buy and Hold Returns (BHRs) for the investment strategies matching the risk classes. Accounting for the Fama-French factors reveals no significant alphas for the vast majority of the strategies. In our simulation study where volatility was modelled through a GJR(1,1) - model we find no significant difference in mean returns, but significantly lower SRs for the volatility based strategies. These results were confirmed in robustness checks using alternative models and timeframes. Overall we present evidence which suggests that neither the higher leverage induced by the SRRI nor the potential protection in downside markets does pay off on a risk adjusted basis.Martin Ewendoctoralthesishttps://ubt.opus.hbz-nrw.de/frontdoor/index/index/docId/896Tue, 25 Sep 2018 09:30:50 +0200