Refine
Year of publication
Document Type
- Doctoral Thesis (64)
- Habilitation (2)
- Article (1)
Keywords
- Optimierung (7)
- Approximation (6)
- Approximationstheorie (6)
- Funktionentheorie (6)
- Partielle Differentialgleichung (6)
- Universalität (6)
- Funktionalanalysis (5)
- universal functions (5)
- Numerische Strömungssimulation (4)
- Optimale Kontrolle (4)
- Quadratische Optimierung (4)
- Shape Optimization (4)
- Analysis (3)
- Hadamard product (3)
- Kompositionsoperator (3)
- Numerische Mathematik (3)
- Operatortheorie (3)
- Sequentielle quadratische Optimierung (3)
- Trust-Region-Algorithmus (3)
- Universelle Funktionen (3)
- binomial (3)
- functional analysis (3)
- proper orthogonal decomposition (3)
- Adjungierte Differentialgleichung (2)
- Aerodynamic Design (2)
- Approximation im Komplexen (2)
- Baire's theorem (2)
- Binomial (2)
- Binomialverteilung (2)
- Dichtesatz (2)
- Faber series (2)
- Faberreihen (2)
- GPU (2)
- Gestaltoptimierung (2)
- Hadamard, Jacques (2)
- Hadamardprodukt (2)
- Homologische Algebra (2)
- Hyperzyklizität (2)
- Konvexe Optimierung (2)
- Laurentreihen (2)
- Mathematik (2)
- Monte-Carlo-Simulation (2)
- Navier-Stokes equations (2)
- Navier-Stokes-Gleichung (2)
- Nichtlineare Optimierung (2)
- One-Shot (2)
- POD-Methode (2)
- Parameteridentifikation (2)
- Parameterschätzung (2)
- Regularisierung (2)
- Robust optimization (2)
- Simulation (2)
- Statistik (2)
- Stochastischer Prozess (2)
- Strömungsmechanik (2)
- convergence (2)
- laurent series (2)
- optimal control (2)
- partial integro-differential equations (2)
- prescribed approximation curves (2)
- universality (2)
- universelle Funktionen (2)
- vorgegebene Approximationswege (2)
- Überkonvergenz (2)
- Adjoint (1)
- Adjoint Equation (1)
- Adjoint Method (1)
- Allokation (1)
- Alternierende Projektionen (1)
- Analysis, Universality, Fourier series, Dirichlet-type spaces, Potential theory (1)
- Analytisches Funktional (1)
- Arbitrage-Pricing-Theorie (1)
- Asymptotik (1)
- Ausdehnungsoperator (1)
- Auslöschung (1)
- Banach Algebras (1)
- Banach space (1)
- Banach-Algebra (1)
- Banach-Raum (1)
- Berechnungskomplexität (1)
- Berry-Esseen (1)
- Birkhoff functions (1)
- Birkhoff-Funktionen (1)
- Borel transform (1)
- Bregman distance (1)
- Bregman-Distanz (1)
- Brownian Motion (1)
- Brownsche Bewegung (1)
- Buehler, Robert J. (1)
- Bündel-Methode (1)
- Calibration (1)
- Cancellation (1)
- Cesàro-Mittel (1)
- Chaotisches System (1)
- Codebuch (1)
- Combinatorial Optimization (1)
- Composition algebra (1)
- Composition operator (1)
- Computational Fluid Dynamics (1)
- Computational complexity (1)
- Convergence (1)
- Copositive und Vollständig positive Optimierung (1)
- Couple constraints (1)
- Cross-Border-Leasing (1)
- Césaro-Mittel (1)
- Decomposition (1)
- Dekomposition (1)
- Derivat <Wertpapier> (1)
- Dichte <Stochastik> (1)
- Direkte numerische Simulation (1)
- Discontinuous Galerkin (1)
- Diskontinuierliche Galerkin-Methode (1)
- Distribution (1)
- Distribution <Funktionalanalysis> (1)
- Doppelt nichtzentrale F-Verteilung (1)
- Doppelt nichtzentrale t-Verteilung (1)
- Doubly noncentral F-distribution (1)
- Doubly noncentral t-distribution (1)
- Downside Risk (1)
- Downside-Risiko (1)
- Dualitätstheorie (1)
- Elastizität (1)
- Electricity market equilibrium models (1)
- Entire Function (1)
- Error Estimates (1)
- Error function (1)
- Ersatzmodellierung (1)
- Expected Shortfall (1)
- Extended sign regular (1)
- Extensionsoperatoren (1)
- Faltungsoperator (1)
- Fehlerabschätzung (1)
- Fehleranalyse (1)
- Fehlerfunktion (1)
- Finanzmathematik (1)
- Fledermäuse (1)
- Formenräume (1)
- Formoptimierung (1)
- Fréchet-Algebra (1)
- Functor (1)
- Funktor (1)
- Gaussian measures (1)
- Gauß-Maß (1)
- Gebietszerlegung (1)
- Gittererzeugung (1)
- Globale Konvergenz (1)
- Globale Optimierung (1)
- Graphentheorie (1)
- Graphikprozessor (1)
- Grenzüberschreitendes Leasing (1)
- Grundwasserstrom (1)
- Gärung (1)
- HPC (1)
- Hadamard cycle (1)
- Hadamardzyklus (1)
- Hassler Whitney (1)
- Hauptkomponentenanalyse (1)
- Hilbert spaces (1)
- Hypercyclicity (1)
- Hypergeometric 3-F-1 Polynomials (1)
- Hypergeometrische 3-F-1 Polynome (1)
- Hypergeometrische Funktionen (1)
- Hypoelliptischer Operator (1)
- Individuenbasiertes Modell (1)
- Induktiver Limes (1)
- Inkorrekt gestelltes Problem (1)
- Innere-Punkte-Methode (1)
- Integer Optimization (1)
- Integrodifferentialgleichung (1)
- Intervallalgebra (1)
- Kegel (1)
- Kleinman (1)
- Kombinatorische Optimierung (1)
- Komplexe Approximation (1)
- Kompositionsalgebra (1)
- Konfidenzbereich (1)
- Konfidenzintervall (1)
- Konfidenzintervalle (1)
- Konfluente hypergeometrische Funktion (1)
- Kontrolltheorie (1)
- Konvektions-Diffusionsgleichung (1)
- Konvergenz (1)
- Konvergenztheorie (1)
- Korovkin-Satz (1)
- Kriging (1)
- Krylov subspace methods (1)
- Krylov-Verfahren (1)
- LB-Algebra (1)
- Laplace Method (1)
- Laplace Methode (1)
- Level Set Methode (1)
- Level constraints (1)
- Linear complementarity problems (1)
- Lineare Dynamik (1)
- Lineare Funktionalanalysis (1)
- Linearer partieller Differentialoperator (1)
- Lückenapproximation (1)
- Lückenreihe (1)
- Markov Inkrement (1)
- Markov-Kette (1)
- Matching (1)
- Matching polytope (1)
- Matrixcone (1)
- Matrixzerlegung (1)
- Mehrgitterverfahren (1)
- Mellin transformation (1)
- Mellin-Transformierte (1)
- Menage (1)
- Mesh Generation (1)
- Methode der kleinsten Quadrate (1)
- Methode der logarithmischen Barriere (1)
- Mischung (1)
- Mittag-Leffler Funktion (1)
- Mittag-Leffler function (1)
- Modellprädiktive Regelung (1)
- Modified Bessel function (1)
- Modifizierte Besselfunktion (1)
- Monte Carlo Simulation (1)
- Monte-Carlo Methods (1)
- Multinomial (1)
- Multiplikationssatz (1)
- Ménage Polynome (1)
- Ménage Polynomials (1)
- Nash–Cournot competition (1)
- Nebenbedingung (1)
- Newton (1)
- Newton-Verfahren (1)
- Nichtfortsetzbare Potenzreihe (1)
- Nichtglatte Optimierung (1)
- Nichtkonvexe Optimierung (1)
- Nonlinear Optimization (1)
- Normalverteilung (1)
- Nullstellen (1)
- Numerical Optimization (1)
- Numerisches Verfahren (1)
- Optimierung bei nichtlinearen partiellen Differentialgleichungen (1)
- Optimierung unter Unsicherheiten (1)
- Optimization under Uncertainty (1)
- Optionspreis (1)
- Orthogonale Zerlegung (1)
- Overconvergence (1)
- Overconvergent power series and matrix-transforms (1)
- P-Konvexität für Träger (1)
- P-Konvexität für singuläre Träger (1)
- P-convexity for singular supports (1)
- P-convexity for supports (1)
- PDE Beschränkungen (1)
- PDE Constraints (1)
- PDE-constrained optimization (1)
- Parameter dependence of solutions of linear partial differential equations (1)
- Parameterabhängige Lösungen linearer partieller Differentialgeichungen (1)
- Parameterabhängigkeit (1)
- Parametrische Optimierung (1)
- Perfect competition (1)
- Poisson (1)
- Polyeder (1)
- Polynom (1)
- Polynom-Interpolationsverfahren (1)
- Populationsmodellierung (1)
- Potenzialtheorie (1)
- Projective Limit (1)
- Projektiver Limes (1)
- Proper Orthogonal Decomposition (1)
- Proximal-Punkt-Verfahren (1)
- Public Sector Financing (1)
- Quantisierung (1)
- Quantisierungkugel (1)
- Quantisierungsradius (1)
- Quantization (1)
- Randverhalten (1)
- Rechteckwahrscheinlichkeit (1)
- Regularisierungsverfahren (1)
- Robustheit (1)
- Rundungsfehler (1)
- Scan Statistik (1)
- Schalenkonstruktionen (1)
- Schnittebenen (1)
- Selbst-Concordanz (1)
- Semiinfinite Optimierung (1)
- Shape Kalkül (1)
- Shape SQP Methods (1)
- Shape Spaces (1)
- Spektrum <Mathematik> (1)
- Spezielle Funktionen (1)
- Splitting (1)
- Stark stetige Halbgruppe (1)
- Stichprobe (1)
- Stochastic Differential Equation (1)
- Stochastische Approximation (1)
- Stochastische Differentialgleichungen (1)
- Stochastische Konvergenz (1)
- Stochastische Quantisierung (1)
- Stochastische optimale Kontrolle (1)
- Stratified sampling (1)
- Strukturoptimierung (1)
- Survey Statistics (1)
- Survey statistics (1)
- Survey-Statistik (1)
- Taylor Shift Operator (1)
- Taylor shift operator (1)
- Theorie (1)
- Topological Algebra (1)
- Topologieoptimierung (1)
- Topologische Algebra (1)
- Topologische Algebra mit Gewebe (1)
- Topologische Sensitivität (1)
- Transaktionskosten (1)
- Transitivität (1)
- Trust Region (1)
- US-Lease (1)
- Ueberkonvergenz (1)
- Ultradistribut (1)
- Unimodality (1)
- Unimodalität (1)
- Universal approximation (1)
- Universal functions (1)
- Universal overconvergence (1)
- Universal power series (1)
- Universalitäten (1)
- Universelle Approximation (1)
- Universelle Funktion (1)
- Universelle Potenzreihen (1)
- Universelle trigonometrische Reihe (1)
- Universelle ueberkonvergente Potenzreihen und Matrix-Transformierte (1)
- Universelle Überkonvergenz (1)
- Value-at-Risk (1)
- Variationsungleichung (1)
- Versuchsplanung (1)
- Verteilungsapproximation (1)
- Volkszählung (1)
- Vorkonditionierung (1)
- Vorzeichenreguläre Funktionen (1)
- Wahrscheinlichkeitsverteilung (1)
- Webbed Spaces (1)
- Weingärung (1)
- Wertpapie (1)
- Whitney jets (1)
- Whitney's extension problem (1)
- Whitneys Extensionsproblem (1)
- Windkraftwerk (1)
- Zwillingsformel (1)
- alternating projections (1)
- amarts (1)
- analysis (1)
- analytic functional (1)
- approximation (1)
- approximation in the complex plane (1)
- asymptotically optimal codebooks (1)
- asymptotisch optimale Codebücher (1)
- auxiliary problem principle (1)
- boundary behavior (1)
- bundle-method (1)
- combinatorial optimization (1)
- completely positive (1)
- completely positive cone (1)
- completely positive modelling and optimization (1)
- complex analysis (1)
- complex approximation (1)
- complex dynamics (1)
- complexity reduction (1)
- composition operator (1)
- computational fluid dynamics (1)
- confidence intervals (1)
- confidence region (1)
- confluent hypergeometric function (1)
- convergence theory (1)
- convolution operator (1)
- copositive cone (1)
- copositive optimization (1)
- cutting planes (1)
- design of experiments (1)
- domain decomposition (1)
- eigenfunction expansion (1)
- exponential type (1)
- extension operator (1)
- final set (1)
- financial derivatives (1)
- flow control (1)
- frequently hypercyclic operator (1)
- ganze Funktion (1)
- gap power series (1)
- gewöhnliche Differentialgleichungen (1)
- growth (1)
- homological algebra (1)
- homological methods (1)
- homologische Methoden (1)
- hypercyclic operator (1)
- hypercyclicity (1)
- hypergeometric functions (1)
- individual based model (1)
- inexact (1)
- inexact Gauss-Newton methods (1)
- kombinatorische Optimierung (1)
- kommunales Sonderfinanzierungsinstrument (1)
- komplexe Dynamik (1)
- konvexe Reforumlierungen (1)
- kopositiver Kegel (1)
- lacunary approximation (1)
- large scale problems (1)
- linear dynamics (1)
- linear elasticity (1)
- lineare Elastizität (1)
- local quantization error (1)
- logarithmic-quadratic distance function (1)
- logarithmisch-quadratische Distanzfunktion (1)
- lokaler Quantisierungsfehler (1)
- markov increment (1)
- meromorphic functions (1)
- minimal compliance (1)
- minimale Nachgiebigkeit (1)
- mixing (1)
- model order reduction (1)
- model predictive control (1)
- monotone (1)
- multigrid (1)
- multinomial (1)
- n.a. (1)
- nichtnegativ (1)
- nonnegative (1)
- normal approximation (1)
- operator theory (1)
- optimal continuity estimates (1)
- optimal quantization (1)
- optimale Quantisierung (1)
- optimale Stetigkeitsabschätzungen (1)
- optimization (1)
- ordinary differential equations (1)
- orthotrope Materialien (1)
- orthotropic material (1)
- parameter dependence (1)
- parameter estimation (1)
- parameter identification (1)
- partial differential equations (1)
- partial differential operators of first order as generators of C0-semigroups (1)
- partial integro-differential equation (1)
- partielle Differentialgleichungen (1)
- partielle Differentialoperatoren erster Ordnung als Erzeuger von C0-Halbgruppen (1)
- partielle Integro Differentialgleichung (1)
- partielle Integro-Differentialgleichungen (1)
- partielle Integrodifferentialgleichungen (1)
- population modelling (1)
- port-Hamiltonian (1)
- preconditioning (1)
- pricing (1)
- principal component analysis (1)
- quantization ball (1)
- quantization radius (1)
- rationale und meromorphe Approximation (1)
- rectangular probabilities (1)
- reduced order modelling (1)
- reduced-order modelling (1)
- robustness (1)
- scan statistics (1)
- second order cone (1)
- self-concodrance (1)
- series expansion (1)
- shape calculus (1)
- shape optimization (1)
- shell construction (1)
- special functions (1)
- spectral theory (1)
- splitting (1)
- starke und schwache Asymptotiken (1)
- statistics (1)
- stochastic Predictor-Corrector-Scheme (1)
- stochastic processes (1)
- strong and weak asymptotics (1)
- structural optimization (1)
- structure-preserving (1)
- sukzessive Ableitungen (1)
- surrogate modeling (1)
- topological derivative (1)
- topology optimization (1)
- transaction costs (1)
- transitivity (1)
- trust-region method (1)
- trust-region methods (1)
- underdetermined nonlinear least squares problem (1)
- universal (1)
- universal trigonometric series (1)
- universalities (1)
- vollständig positiv (1)
- vollständig positiver Kegel (1)
- wine fermentation (1)
- zeros (1)
Institute
- Mathematik (67) (remove)
Although universality has fascinated over the last decades, there are still numerous open questions in this field that require further investigation. In this work, we will mainly focus on classes of functions whose Fourier series are universal in the sense that they allow us to approximate uniformly any continuous function defined on a suitable subset of the unit circle.
The structure of this thesis is as follows. In the first chapter, we will initially introduce the most important notation which is needed for our following discussion. Subsequently, after recalling the notion of universality in a general context, we will revisit significant results concerning universality of Taylor series. The focus here is particularly on universality with respect to uniform convergence and convergence in measure. By a result of Menshov, we will transition to universality of Fourier series which is the central object of study in this work.
In the second chapter, we recall spaces of holomorphic functions which are characterized by the growth of their coefficients. In this context, we will derive a relationship to functions on the unit circle via an application of the Fourier transform.
In the second part of the chapter, our attention is devoted to the $\mathcal{D}_{\textup{harm}}^p$ spaces which can be viewed as the set of harmonic functions contained in the $W^{1,p}(\D)$ Sobolev spaces. In this context, we will also recall the Bergman projection. Thanks to the intensive study of the latter in relation to Sobolev spaces, we can derive a decomposition of $\mathcal{D}_{\textup{harm}}^p$ spaces which may be seen as analogous to the Riesz projection for $L^p$ spaces. Owing to this result, we are able to provide a link between $\mathcal{D}_{\textup{harm}}^p$ spaces and spaces of holomorphic functions on $\mathbb{C}_\infty \setminus \s$ which turns out to be a crucial step in determining the dual of $\mathcal{D}_{\textup{harm}}^p$ spaces.
The last section of this chapter deals with the Cauchy dual which has a close connection to the Fantappié transform. As an application, we will determine the Cauchy dual of the spaces $D_\alpha$ and $D_{\textup{harm}}^p$, two results that will prove to be very helpful later on. Finally, we will provide a useful criterion that establishes a connection between the density of a set in the direct sum $X \oplus Y$ and the Cauchy dual of the intersection of the respective spaces.
The subsequent chapter will delve into the theory of capacities and, consequently, potential theory which will prove to be essential in formulating our universality results. In addition to introducing further necessary terminologies, we will define capacities in the first section following [16], however in the frame of separable metric spaces, and revisit the most important results about them.
Simultaneously, we make preparations that allow us to define the $\mathrm{Li}_\alpha$-capacity which will turn out to be equivalent to the classical Riesz $\alpha$-capacity. The $\mathrm{Li}_\alpha$-capacity proves to be more adapted to the $D_\alpha$ spaces. It becomes apparent in the course of our discussion that the $\mathrm{Li}_\alpha$-capacity is essential to prove uniqueness results for the class $D_\alpha$. This leads to the centerpiece of this chapter which forms the energy formula for the $\mathrm{Li}_\alpha$-capacity on the unit circle. More precisely, this identity establishes a connection between the energy of a measure and its corresponding Fourier coefficients. We will briefly deal with the complement-equivalence of capacities before we revisit the concept of Bessel and Riesz capacities, this time, however, in a much more general context, where we will mainly rely on [1]. Since we defined capacities on separable metric spaces in the first section, we can draw a connection between Bessel capacities and $\mathrm{Li}_\alpha$-capacities. To conclude this chapter, we would like to take a closer look at the geometric meaning of capacities. Here, we will point out a connection between the Hausdorff dimension and the polarity of a set, and transfer it to the $\mathrm{Li}_\alpha$-capacity. Another aspect will be the comparison of Bessel capacities across different dimensions, in which the theory of Wolff potentials crystallizes as a crucial auxiliary tool.
In the fourth chapter of this thesis, we will turn our focus to the theory of sets of uniqueness, a subject within the broader field of harmonic analysis. This theory has a close relationship with sets of universality, a connection that will be further elucidated in the upcoming chapter.
The initial section of this chapter will be dedicated to the notion of sets of uniqueness that is specifically adapted to our current context. Building on this concept, we will recall some of the fundamental results of this theory.
In the subsequent section, we will primarily rely on techniques from previous chapters to determine the closed sets of uniqueness for the class $\mathcal{D}_{\alpha}$. The proofs we will discuss are largely influenced by [16, p.\ 178] and [9, pp.\ 82].
One more time, it will become evident that the introduction of the $\mathrm{Li}_\alpha$-capacity in the third chapter and the closely associated energy formula on the unit circle, were the pivotal factors that enabled us to carry out these proofs.
In the final chapter of our discourse, we will present our results on universality. To begin, we will recall a version of the universality criterion which traces back to the work of Grosse-Erdmann (see [26]). Coupled with an outcome from the second chapter, we will prove a result that allows us to obtain the universality of a class using the technique of simultaneous approximation. This tool will play a key role in the proof of our universality results which will follow hereafter.
Our attention will first be directed toward the class $D_\alpha$ with $\alpha$ in the interval $(0,1]$. Here, we summarize that universality with respect to uniform convergence occurs on closed and $\alpha$-polar sets $E \subset \s$. Thanks to results of Carleson and further considerations, which particularly rely on the favorable behavior of the $\mathrm{Li}_\alpha$-kernel, we also find that this result is sharp. In particular, it may be seen as a generalization of the universality result for the harmonic Dirichlet space.
Following this, we will investigate the same class, however, this time for $\alpha \in [-1,0)$. In this case, it turns out that universality with respect to uniform convergence occurs on closed and $(-\alpha)$-complement-polar sets $E \subset \s$. In particular, these sets of universality can have positive arc measure. In the final section, we will focus on the class $D_{\textup{harm}}^p$. Here, we manage to prove that universality occurs on closed and $(1,p)$-polar sets $E \subset \s$. Through results of Twomey [68] combined with an observation by Girela and Pélaez [23], as well as the decomposition of $D_{\textup{harm}}^p$, we can deduce that the closed sets of universality with respect to uniform convergence of the class $D_{\textup{harm}}^p$ are characterized by $(1,p)$-polarity. We conclude our work with an application of the latter result to the class $D^p$. We will show that the closed sets of divergence for the class $D^p$ are given by the $(1,p)$-polar sets.