Refine
Year of publication
Document Type
- Doctoral Thesis (870) (remove)
Language
- German (499)
- English (360)
- Multiple languages (7)
- French (4)
Keywords
- Stress (37)
- Deutschland (35)
- Optimierung (21)
- Modellierung (19)
- Fernerkundung (17)
- Hydrocortison (16)
- stress (15)
- Motivation (12)
- Stressreaktion (12)
- cortisol (12)
Institute
- Psychologie (181)
- Raum- und Umweltwissenschaften (148)
- Fachbereich 4 (68)
- Mathematik (64)
- Wirtschaftswissenschaften (61)
- Fachbereich 1 (31)
- Geschichte, mittlere und neuere (28)
- Informatik (27)
- Germanistik (26)
- Kunstgeschichte (22)
Forest inventories provide significant monitoring information on forest health, biodiversity,
resilience against disturbance, as well as its biomass and timber harvesting potential. For this
purpose, modern inventories increasingly exploit the advantages of airborne laser scanning (ALS)
and terrestrial laser scanning (TLS).
Although tree crown detection and delineation using ALS can be seen as a mature discipline, the
identification of individual stems is a rarely addressed task. In particular, the informative value of
the stem attributes—especially the inclination characteristics—is hardly known. In addition, a lack
of tools for the processing and fusion of forest-related data sources can be identified. The given
thesis addresses these research gaps in four peer-reviewed papers, while a focus is set on the
suitability of ALS data for the detection and analysis of tree stems.
In addition to providing a novel post-processing strategy for geo-referencing forest inventory plots,
the thesis could show that ALS-based stem detections are very reliable and their positions are
accurate. In particular, the stems have shown to be suited to study prevailing trunk inclination
angles and orientations, while a species-specific down-slope inclination of the tree stems and a
leeward orientation of conifers could be observed.
Agricultural monitoring is necessary. Since the beginning of the Holocene, human agricultural
practices have been shaping the face of the earth, and today around one third of the ice-free land
mass consists of cropland and pastures. While agriculture is necessary for our survival, the
intensity has caused many negative externalities, such as enormous freshwater consumption, the
loss of forests and biodiversity, greenhouse gas emissions as well as soil erosion and degradation.
Some of these externalities can potentially be ameliorated by careful allocation of crops and
cropping practices, while at the same time the state of these crops has to be monitored in order
to assess food security. Modern day satellite-based earth observation can be an adequate tool to
quantify abundance of crop types, i.e., produce spatially explicit crop type maps. The resources to
do so, in terms of input data, reference data and classification algorithms have been constantly
improving over the past 60 years, and we live now in a time where fully operational satellites
produce freely available imagery with often less than monthly revisit times at high spatial
resolution. At the same time, classification models have been constantly evolving from
distribution based statistical algorithms, over machine learning to the now ubiquitous deep
learning.
In this environment, we used an explorative approach to advance the state of the art of crop
classification. We conducted regional case studies, focused on the study region of the Eifelkreis
Bitburg-Prüm, aiming to develop validated crop classification toolchains. Because of their unique
role in the regional agricultural system and because of their specific phenologic characteristics
we focused solely on maize fields.
In the first case study, we generated reference data for the years 2009 and 2016 in the study
region by drawing polygons based on high resolution aerial imagery, and used these in
conjunction with RapidEye imagery to produce high resolution maize maps with a random forest
classifier and a gaussian blur filter. We were able to highlight the importance of careful residual
analysis, especially in terms of autocorrelation. As an end result, we were able to prove that, in
spite of the severe limitations introduced by the restricted acquisition windows due to cloud
coverage, high quality maps could be produced for two years, and the regional development of
maize cultivation could be quantified.
In the second case study, we used these spatially explicit datasets to link the expansion of biogas
producing units with the extended maize cultivation in the area. In a next step, we overlayed the
maize maps with soil and slope rasters in order to assess spatially explicit risks of soil compaction
and erosion. Thus, we were able to highlight the potential role of remote sensing-based crop type
classification in environmental protection, by producing maps of potential soil hazards, which can
be used by local stakeholders to reallocate certain crop types to locations with less associated
risk.
In our third case study, we used Sentinel-1 data as input imagery, and official statistical records
as maize reference data, and were able to produce consistent modeling input data for four
consecutive years. Using these datasets, we could train and validate different models in spatially
iv
and temporally independent random subsets, with the goal of assessing model transferability. We
were able to show that state-of-the-art deep learning models such as UNET performed
significantly superior to conventional models like random forests, if the model was validated in a
different year or a different regional subset. We highlighted and discussed the implications on
modeling robustness, and the potential usefulness of deep learning models in building fully
operational global crop classification models.
We were able to conclude that the first major barrier for global classification models is the
reference data. Since most research in this area is still conducted with local field surveys, and only
few countries have access to official agricultural records, more global cooperation is necessary to
build harmonized and regionally stratified datasets. The second major barrier is the classification
algorithm. While a lot of progress has been made in this area, the current trend of many appearing
new types of deep learning models shows great promise, but has not yet consolidated. There is
still a lot of research necessary, to determine which models perform the best and most robust,
and are at the same time transparent and usable by non-experts such that they can be applied
and used effortlessly by local and global stakeholders.
This thesis is concerned with two classes of optimization problems which stem
mainly from statistics: clustering problems and cardinality-constrained optimization problems. We are particularly interested in the development of computational techniques to exactly or heuristically solve instances of these two classes
of optimization problems.
The minimum sum-of-squares clustering (MSSC) problem is widely used
to find clusters within a set of data points. The problem is also known as
the $k$-means problem, since the most prominent heuristic to compute a feasible
point of this optimization problem is the $k$-means method. In many modern
applications, however, the clustering suffers from uncertain input data due to,
e.g., unstructured measurement errors. The reason for this is that the clustering
result then represents a clustering of the erroneous measurements instead of
retrieving the true underlying clustering structure. We address this issue by
applying robust optimization techniques: we derive the strictly and $\Gamma$-robust
counterparts of the MSSC problem, which are as challenging to solve as the
original model. Moreover, we develop alternating direction methods to quickly
compute feasible points of good quality. Our experiments reveal that the more
conservative strictly robust model consistently provides better clustering solutions
than the nominal and the less conservative $\Gamma$-robust models.
In the context of clustering problems, however, using only a heuristic solution
comes with severe disadvantages regarding the interpretation of the clustering.
This motivates us to study globally optimal algorithms for the MSSC problem.
We note that although some algorithms have already been proposed for this
problem, it is still far from being “practically solved”. Therefore, we propose
mixed-integer programming techniques, which are mainly based on geometric
ideas and which can be incorporated in a
branch-and-cut based algorithm tailored
to the MSSC problem. Our numerical experiments show that these techniques
significantly improve the solution process of a
state-of-the-art MINLP solver
when applied to the problem.
We then turn to the study of cardinality-constrained optimization problems.
We consider two famous problem instances of this class: sparse portfolio optimization and sparse regression problems. In many modern applications, it is common
to consider problems with thousands of variables. Therefore, globally optimal
algorithms are not always computationally viable and the study of sophisticated
heuristics is very desirable. Since these problems have a discrete-continuous
structure, decomposition methods are particularly well suited. We then apply a
penalty alternating direction method that explores this structure and provides
very good feasible points in a reasonable amount of time. Our computational
study shows that our methods are competitive to
state-of-the-art solvers and heuristics.
Even though in most cases time is a good metric to measure costs of algorithms, there are cases where theoretical worst-case time and experimental running time do not match. Since modern CPUs feature an innate memory hierarchy, the location of data is another factor to consider. When most operations of an algorithm are executed on data which is already in the CPU cache, the running time is significantly faster than algorithms where most operations have to load the data from the memory. The topic of this thesis is a new metric to measure costs of algorithms called memory distance—which can be seen as an abstraction of the just mentioned aspect. We will show that there are simple algorithms which show a discrepancy between measured running time and theoretical time but not between measured time and memory distance. Moreover we will show that in some cases it is sufficient to optimize the input of an algorithm with regard to memory distance (while treating the algorithm as a black box) to improve running times. Further we show the relation between worst-case time, memory distance and space and sketch how to define "the usual" memory distance complexity classes.
The Second Language Acquisition of English Non-Finite Complement Clauses – A Usage-Based Perspective
(2022)
One of the most essential hypotheses of usage-based theories and many constructionist approaches to language is that language entails the piecemeal learning of constructions on the basis of general cognitive mechanisms and exposure to the target language in use (Ellis 2002; Tomasello 2003). However, there is still a considerable lack of empirical research on the emergence and mental representation of constructions in second language (L2) acquisition. One crucial question that arises, for instance, is whether L2 learners’ knowledge of a construction corresponds to a native-like mapping of form and meaning and, if so, to what extent this representation is shaped by usage. For instance, it is unclear how learners ‘build’ constructional knowledge, i.e. which pieces of frequency-, form- and meaning-related information become relevant for the entrenchment and schematisation of a L2 construction.
To address these issues, the English catenative verb construction was used as a testbed phenomenon. This idiosyncratic complex construction is comprised of a catenative verb and a non-finite complement clause (see Huddleston & Pullum 2002), which is prototypically a gerund-participial (henceforth referred to as ‘target-ing’ construction) or a to-infinitival complement (‘target-to’ construction):
(1) She refused to do her homework.
(2) Laura kept reading love stories.
(3) *He avoids to listen to loud music.
This construction is particularly interesting because learners often show choices of a complement type different from those of native speakers (e.g. Gries & Wulff 2009; Martinez‐Garcia & Wulff 2012) as illustrated in (3) and is commonly claimed to be difficult to be taught by explicit rules (see e.g. Petrovitz 2001).
By triangulating different types of usage data (corpus and elicited production data) and analysing these by multivariate statistical tests, the effects of different usage-related factors (e.g. frequency, proficiency level of the learner, semantic class of verb, etc.) on the representation and development of the catenative verb construction and its subschemas (i.e. target-to and target-ing construction) were examined. In particular, it was assessed whether they can predict a native-like form-meaning pairing of a catenative verb and non-finite complement.
First, all studies were able to show a robust effect of frequency on the complement choice. Frequency does not only lead to the entrenchment of high-frequency exemplars of the construction but is also found to motivate a taxonomic generalisation across related exemplars and the representation of a more abstract schema. Second, the results indicate that the target-to construction, due to its higher type and token frequency, has a high degree of schematicity and productivity than the target-ing construction for the learners, which allows for analogical comparisons and pattern extension with less entrenched exemplars. This schema is likely to be overgeneralised to (less frequent) target-ing verbs because the learners perceive formal and semantic compatibility between the unknown/infrequent verb and this pattern.
Furthermore, the findings present evidence that less advanced learners (A2-B2) make more coarse-grained generalisations, which are centred around high-frequency and prototypical exemplars/low-scope patterns. In the case of high-proficiency learners (C1-C2), not only does the number of native-like complement choices increase but relational information, such as the semantic subclasses of the verb, form-function contingency and other factors, becomes also relevant for a target-like choice. Thus, the results suggests that with increasing usage experience learners gradually develop a more fine-grained, interconnected representation of the catenative verb construction, which gains more resemblance to the form-meaning mappings of native speakers.
Taken together, these insights highlight the importance for language learning and teaching environments to acknowledge that L2 knowledge is represented in the form of highly interconnected form-meaning pairings, i.e. constructions, that can be found on different levels of abstraction and complexity.
Due to the transition towards climate neutrality, energy markets are rapidly evolving. New technologies are developed that allow electricity from renewable energy sources to be stored or to be converted into other energy commodities. As a consequence, new players enter the markets and existing players gain more importance. Market equilibrium problems are capable of capturing these changes and therefore enable us to answer contemporary research questions with regard to energy market design and climate policy.
This cumulative dissertation is devoted to the study of different market equilibrium problems that address such emerging aspects in liberalized energy markets. In the first part, we review a well-studied competitive equilibrium model for energy commodity markets and extend this model by sector coupling, by temporal coupling, and by a more detailed representation of physical laws and technical requirements. Moreover, we summarize our main contributions of the last years with respect to analyzing the market equilibria of the resulting equilibrium problems.
For the extension regarding sector coupling, we derive sufficient conditions for ensuring uniqueness of the short-run equilibrium a priori and for verifying uniqueness of the long-run equilibrium a posteriori. Furthermore, we present illustrative examples that each of the derived conditions is indeed necessary to guarantee uniqueness in general.
For the extension regarding temporal coupling, we provide sufficient conditions for ensuring uniqueness of demand and production a priori. These conditions also imply uniqueness of the short-run equilibrium in case of a single storage operator. However, in case of multiple storage operators, examples illustrate that charging and discharging decisions are not unique in general. We conclude the equilibrium analysis with an a posteriori criterion for verifying uniqueness of a given short-run equilibrium. Since the computation of equilibria is much more challenging due to the temporal coupling, we shortly review why a tailored parallel and distributed alternating direction method of multipliers enables to efficiently compute market equilibria.
For the extension regarding physical laws and technical requirements, we show that, in nonconvex settings, existence of an equilibrium is not guaranteed and that the fundamental welfare theorems therefore fail to hold. In addition, we argue that the welfare theorems can be re-established in a market design in which the system operator is committed to a welfare objective. For the case of a profit-maximizing system operator, we propose an algorithm that indicates existence of an equilibrium and that computes an equilibrium in the case of existence. Based on well-known instances from the literature on the gas and electricity sector, we demonstrate the broad applicability of our algorithm. Our computational results suggest that an equilibrium often exists for an application involving nonconvex but continuous stationary gas physics. In turn, integralities introduced due to the switchability of DC lines in DC electricity networks lead to many instances without an equilibrium. Finally, we state sufficient conditions under which the gas application has a unique equilibrium and the line switching application has finitely many.
In the second part, all preprints belonging to this cumulative dissertation are provided. These preprints, as well as two journal articles to which the author of this thesis contributed, are referenced within the extended summary in the first part and contain more details.
Algorithmen als Richter
(2022)
Die menschliche Entscheidungsgewalt wird durch algorithmische
Entscheidungssysteme herausgefordert. Verfassungsrechtlich besonders
problematisch ist dies in Bereichen, die das staatliche Handeln betreffen.
Eine herausgehobene Stellung nimmt durch den besonderen Schutz der
Art. 92 ff. GG die rechtsprechende Gewalt ein. Lydia Wolff fragt daher danach, welche Antworten das Grundgesetz auf digitale Veränderungen in diesem Bereich bereithält und wie sich ein Eigenwert menschlicher Entscheidungen in der Rechtsprechung angesichts technischen Wandels darstellen lässt.
Das Werk erörtert hierzu einen Beitrag zum verfassungsrechtlichen
Richterbegriff und stellt diesen etablierten Begriff in einen Kontext neuer digitaler Herausforderungen durch algorithmische Konkurrenz.
This socio-pragmatic study investigates organisational conflict talk between superiors and subordinates in three medical dramas from China, Germany and the United States. It explores what types of sociolinguistic realities the medical dramas construct by ascribing linguistic behaviour to different status groups. The study adopts an enhanced analytical framework based on John Gumperz’ discourse strategies and Spencer-Oatey’s rapport management theory. This framework detaches directness from politeness, defines directness based on preference and polarity and explains the use of direct and indirect opposition strategies in context.
The findings reveal that the three hospital series draw on 21 opposition strategies which can be categorised into mitigating, intermediate and intensifying strategies. While the status identity of superiors is commonly characterised by a higher frequency of direct strategies than that of subordinates, both status groups manage conflict in a primarily direct manner across all three hospital shows. The high percentage of direct conflict management is related to the medical context, which is characterised by a focus on transactional goals, complex role obligations and potentially severe consequences of medical mistakes and delays. While the results reveal unexpected similarities between the three series with regard to the linguistic directness level, cross-cultural differences between the Chinese and the two Western series are obvious from particular sociopragmatic conventions. These conventions particularly include the use of humour, imperatives, vulgar language and incorporated verbal and para-verbal/multimodal opposition. Noteworthy differences also appear in the underlying patterns of strategy use. They show that the Chinese series promotes a greater tolerance of hierarchical structures and a partially closer social distance in asymmetrical professional relationships. These disparities are related to different perceptions of power distance, role relationships, face and harmony.
The findings challenge existing stereotypes of Chinese, US American and German conflict management styles and emphasise the context-specific nature of verbal conflict management in every culture. Although cinematic aspects affect the conflict management in the fictional data, the results largely comply with recent research on conflict talk in real-life workplaces. As such, the study contributes to intercultural trainings in medical contexts and provides an enhanced analytical framework for further cross-cultural studies on linguistic strategies.
Modellbildung und Umsetzung von Methoden zur energieeffizienten Nutzung von Containertechnologien
(2021)
Die Nutzung von Cloud-Software und skalierten Web-Apps sowie Web-Services hat in den letzten Jahren extrem zugenommen, was zu einem Anstieg der Hochleistungs-Cloud-Rechenzentren führt. Neben der Verbesserung der Dienste spiegelt sich dies auch im weltweiten Stromverbrauch von Rechenzentren wider, der derzeit etwas mehr als 1% (entspricht etwa 200 TWh) beträgt. Prognosen sagen für die kommenden Jahre einen massiven Anstieg des Stromverbrauchs von Cloud-Rechenzentren voraus. Grundlage dieser Bewegung ist die Beschleunigung von Administration und Entwicklung, die unter anderem durch den Einsatz von Containern entsteht. Als Basis für Millionen von Web-Apps und -Services beschleunigen sie die Skalierung, Bereitstellung und Aktualisierung von Cloud-Diensten.
In dieser Arbeit wird aufgezeigt, dass Container zusätzlich zu ihren vielen technischen Vorteilen Möglichkeiten zur Reduzierung des Energieverbrauchs von Cloud-Rechenzentren bieten, die aus
einer ineffizienten Konfiguration von Containern sowie Container-Laufzeitumgebungen resultieren. Basierend auf einer Umfrage und einer Auswertung geeigneter Literatur werden in einem ersten Schritt wahrscheinliche Probleme beim Einsatz von Containern aufgedeckt. Weiterhin wird die Sensibilität von Administratoren und Entwicklern bezüglich des Energieverbrauchs von Container-Software ermittelt. Aufbauend auf den Ergebnissen der Umfrage und der Auswertung werden anhand von Standardszenarien im Containerumfeld die Komponenten des de facto Standards Docker untersucht. Anschließend wird ein Modell, bestehend aus Messmethodik, Empfehlungen für eine effiziente
Konfiguration von Containern und Tools, beschrieben. Die Messmethodik sollte einfach anwendbar sein und gängige Technologien in Rechenzentren unterstützen. Darüber hinaus geben die Handlungsempfehlungen sowohl Entwicklern als auch Administratoren die Möglichkeit zu entscheiden, welche Komponenten von Docker im Sinne eines energieeffizienten Einsatzes und in Abhängigkeit vom Einsatzszenario der Container genutzt werden sollten und welche weggelassen werden könnten. Die resultierenden Container können im Sinne der Energieeffizienz auf Servern und gleichermaßen auf PCs und Embedded Systems (als Teil von IoT und Edge Cloud) eingesetzt werden und somit nicht nur dem zuvor beschriebenen Problem in der Cloud entgegenwirken.
Die Arbeit beschäftigt sich zudem mit dem Verhalten von skalierten Webanwendungen. Gängige Orchestrierungswerkzeuge definieren statische Skalierungspunkte für Anwendungen, die in den meisten Fällen auf der CPU-Auslastung basieren. Es wird dargestellt, dass dabei weder die tatsächliche Erreichbarkeit noch der Stromverbrauch der Anwendungen berücksichtigt werden. Es wird der Autoscaler des Open-Source-Container-Orchestrierungswerkzeugs Kubernetes betrachtet, der um ein neu entwickeltes Werkzeug erweitert wird. Es wird deutlich, dass eine dynamische Anpassung der Skalierungspunkte durch eine Vorabauswertung gängiger Nutzungsszenarien sowie Informationen über deren Stromverbrauch und die Erreichbarkeit bei steigender Last erreicht werden kann.
Schließlich folgt eine empirische Untersuchung des generierten Modells in Form von drei Simulationen, die die Auswirkungen auf den Energieverbrauch von Cloud-Rechenzentren darlegen sollen.
Die Dissertation weist nach, dass der Gerichtshof der Europäischen Union (im Folgenden: EuGH) das mitgliedstaatliche Ausgestaltungsermessen bei der Umsetzung von Richtlinien i. S. d. Art. 288 Abs. 3 AEUV, die weitreichendste Form richtlinieninhaltlich vorgesehener Umsetzungsspielräume der Mitgliedstaaten, in unterschiedlicher Art und Weise beschränkt und dabei teilweise gegen Vorgaben des primären Unionsrechts verstößt. Soweit Rechtsverstöße festgestellt werden, macht die Dissertation weiterführend Vorschläge für eine Korrektur der betroffenen unionsgerichtlichen Begrenzungsansätze im Hinblick auf das mitgliedstaatliche Ausgestaltungsermessen bei der Richtlinienumsetzung. Hierzu geht die Dissertation wie folgt vor: Ausgehend von vier in der Einleitung (Kapitel 1) aufgeworfenen Forschungsleitfragen stellt die Dissertation in Kapitel 2 die untersuchungsrelevanten unionsrechtlichen Grundlagen der Rechtsaktsform der Richtlinie dar. Dabei wird insbesondere auf die unionsvertragliche Verteilung der Kompetenzen zwischen der EU und ihren Mitgliedstaaten bei der kooperativ-zweistufigen Richtlinienrechtsetzung eingegangen und eine restriktive Auslegung des Terminus‘ „Ziel“ i. S. d. Art. 288 Abs. 3 AEUV entwickelt (sog. kompetenzinhaltsbestimmender modifiziert-enger Zielbegriff). In Kapitel 3 arbeitet die Dissertation die in der Richtlinienpraxis vorkommenden Grundformen richtlinieninhaltlich vorgesehener mitgliedstaatlicher Entscheidungsbefugnisse bei der Richtlinienumsetzung heraus und bestimmt das Ausgestaltungsermessen begrifflich als die weitreichendste Form mitgliedstaatlicher Umsetzungsspielräume. Kapitel 4 widmet sich zunächst der Ermittlung der Ansätze des EuGH zur Begrenzung des mitgliedstaatlichen Ausgestaltungsermessens. Dabei wird deutlich, dass das Unionsgericht durch seine Rechtsprechung nicht nur die Entstehung mitgliedstaatlichen Ausgestaltungsermessens begrenzt. Eine exemplarische Analyse der EuGH-Rechtsprechung zu Art. 4 Abs. 2 UAbs. 1 S. 1 und S. 2 lit. b der UVP-Richtlinie 2011/92/EU und seiner Vorgängernormen zeigt vielmehr, dass und wie der EuGH auch den Umfang des nach dem auslegungserheblichen Wortlaut einer Richtlinie bestehenden mitgliedstaatlichen Ausgestaltungsermessens begrenzt. Die hiernach ermittelten Begrenzungsansätze werden sodann einer rechtlichen Bewertung im Hinblick auf die Vorgaben des primären Unionsrechts einschließlich des in Kapitel 2 entwickelten restriktiven Zielbegriffs i. S. d. Art. 288 Abs. 3 AEUV unterzogen. Da einzelne Begrenzungsansätze des EuGH sich mit dem primären Unionsrecht als nicht vereinbar erweisen, werden insoweit schließlich Vorschläge für eine unionsrechtskonforme Korrektur dieser Rechtsprechung gemacht. Die Zusammenfassung der Forschungsergebnisse in Form einer thesenartigen Beantwortung der in der Einleitung aufgeworfenen vier Forschungsleitfragen findet sich in Kapitel 5.