### Refine

#### Year of publication

- 2015 (14) (remove)

#### Document Type

- Doctoral Thesis (14) (remove)

#### Language

- English (14) (remove)

#### Keywords

- Genetik (2)
- ANS (1)
- Acetylcholin (1)
- Adjoint Method (1)
- Adjungierte Differentialgleichung (1)
- Affect (1)
- Affekt (1)
- Anlageverhalten (1)
- Approximationstheorie (1)
- Aufmerksamkeit (1)

#### Institute

This thesis is divided into three main parts: The description of the calibration problem, the numerical solution of this problem and the connection to optimal stochastic control problems. Fitting model prices to given market prices leads to an abstract least squares formulation as calibration problem. The corresponding option price can be computed by solving a stochastic differential equation via the Monte-Carlo method which seems to be preferred by most practitioners. Due to the fact that the Monte-Carlo method is expensive in terms of computational effort and requires memory, more sophisticated stochastic predictor-corrector schemes are established in this thesis. The numerical advantage of these predictor-corrector schemes ispresented and discussed. The adjoint method is applied to the calibration. The theoretical advantage of the adjoint method is discussed in detail. It is shown that the computational effort of gradient calculation via the adjoint method is independent of the number of calibration parameters. Numerical results confirm the theoretical results and summarize the computational advantage of the adjoint method. Furthermore, provides the connection to optimal stochastic control problems is proven in this thesis.rn

Floods are hydrological extremes that have enormous environmental, social and economic consequences.The objective of this thesis was a contribution to the implementation of a processing chain that integrates remote sensing information into hydraulic models. Specifically, the aim was to improve water elevation and discharge simulations by assimilating microwave remote sensing-derived flood information into hydraulic models. The first component of the proposed processing chain is represented by a fully automated flood mapping algorithm that enables the automated, objective, and reliable flood extent extraction from Synthetic Aperture Radar images, providing accurate results in both rural and urban regions. The method operates with minimum data requirements and is efficient in terms of computational time. The map obtained with the developed algorithm is still subject to uncertainties, both introduced by the flood mapping algorithm and inherent in the image itself. In this work, particular attention was given to image uncertainty deriving from speckle. By bootstrapping the original satellite image pixels, several synthetic images were generated and provided as input to the developed flood mapping algorithm. From the analysis performed on the mapping products, speckle uncertainty can be considered as a negligible component of the total uncertainty. In the final step of the proposed processing chain real event water elevations, obtained from satellite observations, were assimilated in a hydraulic model with an adapted version of the Particle Filter, modified to work with non-Gaussian distribution of observations. To deal with model structure error and possibly biased observations, a global and a local weight variant of the Particle Filter were tested. The variant to be preferred depends on the level of confidence that is attributed to the observations or to the model. This study also highlighted the complementarity of remote sensing derived and in-situ data sets. An accurate binary flood map represents an invaluable product for different end users. However, deriving from this binary map additional hydraulic information, such as water elevations, is a way of enhancing the value of the product itself. The derived data can be assimilated into hydraulic models that will fill the gaps where, for technical reasons, Earth Observation data cannot provide information, also enabling a more accurate and reliable prediction of flooded areas.

In the first part of this work we generalize a method of building optimal confidence bounds provided in Buehler (1957) by specializing an exhaustive class of confidence regions inspired by Sterne (1954). The resulting confidence regions, also called Buehlerizations, are valid in general models and depend on a designated statistic'' that can be chosen according to some desired monotonicity behaviour of the confidence region. For a fixed designated statistic, the thus obtained family of confidence regions indexed by their confidence level is nested. Buehlerizations have furthermore the optimality property of being the smallest (w.r.t. set inclusion) confidence regions that are increasing in their designated statistic. The theory is eventually applied to normal, binomial, and exponential samples. The second part deals with the statistical comparison of pairs of diagnostic tests and establishes relations 1. between the sets of lower confidence bounds, 2. between the sets of pairs of comparable lower confidence bounds, and 3. between the sets of admissible lower confidence bounds in various models for diverse parameters of interest.

Evapotranspiration (ET) is one of the most important variables in hydrological studies. In the ET process, energy exchange and water transfer are involved. ET consists of transpiration and evaporation. The amount of plants transpiration dominates in ET. Especially in the forest regions, the ratio of transpiration to ET is in general 80-90 %. Meteorological variables, vegetation properties, precipitation and soil moisture are critical influence factors for ET generation. The study area is located in the forest area of Nahe catchment (Rhineland-Palatinate, Germany). The Nahe catchment is highly wooded. About 54.6 % of this area is covered by forest, with deciduous forest and coniferous forest are two primary types. A hydrological model, WaSiM-ETH, was employed for a long-term simulation from 1971-2003 in the Nahe catchment. In WaSiM-ETH, the potential evapotranspiration (ETP) was firstly calculated by the Penman-Monteith equation, and subsequently reduced according to the soil water content to obtain the actual evapotranspiration (ETA). The Penman-Monteith equation has been widely used and recommended for ETP estimation. The difficulties in applying this equation are the high demand of ground-measured meteorological data and the determination of surface resistance. A method combined remote sensing images with ground-measured meteorological data was also used to retrieve the ETA. This method is based on the surface properties such as surface albedo, fractional vegetation cover (FVC) and land surface temperature (LST) to obtain the latent heat flux (LE, corresponding to ETA) through the surface energy balance equation. LST is a critical variable for surface energy components estimation. It was retrieved from the TM/ETM+ thermal infrared (TIR) band. Due to the high-quality and cloudy-free requirements for TM/ETM+ data selection as well as the overlapping cycle of TM/ETM+ sensor is 16 days, images on only five dates are available during 1971-2003 (model ran) " May 15, 2000, July 05, 2001, July 19, August 04 and September 21 in 2003. It is found that the climate conditions of 2000, 2001 and 2003 are wet, medium wet and dry, respectively. Therefore, the remote sensing-retrieved observations are noncontinuous in a limited number over time but contain multiple climate conditions. Aerodynamic resistance and surface resistance are two most important parameters in the Penman-Monteith equation. However, for forest area, the aerodynamic resistance is calculated by a function of wind speed in the model. Since transpiration and evaporation are separately calculated by the Penman-Monteith equation in the model, the surface resistance was divided into canopy surface resistance rsc and soil surface resistance rse. rsc is related to the plants transpiration and rse is related to the bare soil evaporation. The interception evaporation was not taken into account due to its negligible contribution to ET rate under a dry-canopy (no rainfall) condition. Based on the remote sensing-retrieved observations, rsc and rse were calibrated in the WaSiM-ETH model for both forest types: for deciduous forest, rsc = 150 smâˆ’1, rse = 250 smâˆ’1; for coniferous forest, rsc = 300 smâˆ’1, rse = 650 smâˆ’1. We also carried out sensitivity analysis on rsc and rse. The appropriate value ranges of rsc and rse were determined as (annual maximum): for deciduous forest, [100,225] smâˆ’1 for rsc and [50,450] smâˆ’1 for rse; for coniferous forest, [225,375] smâˆ’1 for rsc and [350,1200] smâˆ’1 for rse. Due to the features of the observations that are in a limited number but contain multiple climate conditions, the statistical indices for model performance evaluation are required to be sensitive to extreme values. In this study, boxplots were found to well exhibit the model performance at both spatial and temporal scale. Nush-Sutcliffe efficiency (NSE), RMSE-observations standard deviation ratio (RSR), percent bias (PBIAS), mean bias error (MBE), mean variance of error distribution (S2d), index of agreement (d), root mean square error (RMSE) were found as appropriate statistical indices to provide additional evaluation information to the boxplots. The model performance can be judged as satisfactory if NSE > 0.5, RSR â‰¤ 0.7, PBIAS < -±12, MBE < -±0.45, S2d < 1.11, d > 0.79, RMSE < 0.97. rsc played a more important role than rse in ETP and ETA estimation by the Penman-Monteith equation, which is attributed to the fact that transpiration dominates in ET. The ETP estimation was found the most correlated to the relative humidity (RH), followed by air temperature (T), relative sunshine duration (SSD) and wind speed (WS). Under wet or medium wet climate conditions, ETA estimation was found the most correlated to T, followed by RH, SSD and WS. Under a water-stress condition, there were very small correlations between ETA and each meteorological variable.