### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (244)
- Article (37)
- Working Paper (16)
- Book (14)
- Conference Proceedings (9)
- Other (3)
- Habilitation (2)
- Part of Periodical (2)
- Part of a Book (1)
- Master's Thesis (1)

#### Language

- English (330) (remove)

#### Keywords

- Stress (24)
- Fernerkundung (15)
- Hydrocortison (13)
- Optimierung (11)
- Modellierung (10)
- Cortisol (9)
- cortisol (9)
- stress (9)
- Deutschland (6)
- Physiologische Psychologie (6)

#### Institute

- Psychologie (74)
- Geographie und Geowissenschaften (66)
- Mathematik (45)
- Wirtschaftswissenschaften (24)
- Fachbereich 6 (22)
- Fachbereich 4 (18)
- Anglistik (15)
- Informatik (15)
- Rechtswissenschaft (14)
- Fachbereich 1 (9)
- Medienwissenschaft (3)
- Politikwissenschaft (3)
- Universitätsbibliothek (3)
- Fachbereich 2 (2)
- Computerlinguistik und Digital Humanities (1)
- Geschichte, mittlere und neuere (1)
- Japanologie (1)

In his article, the author asks how legitimacy of law and the concept of rules of law can be described taking into account the interaction between aspects of philosophy and sociology as well as the will of the state in states' constitutions. As the rule of law, versus other kinds of rules in our society, should be regarded as a rule of &amp;quot;three-dimensionality&amp;quot; " an interaction between the will of the state, the social, historical, and economic factors, and the idea or concept of justice ", the author focuses his interest on the examination of these three factors always taking into account that law is the will of the state, but that not every decision of the state can be considered as law.

Surveys are commonly tailored to produce estimates of aggregate statistics with a desired level of precision. This may lead to very small sample sizes for subpopulations of interest, defined geographically or by content, which are not incorporated into the survey design. We refer to subpopulations where the sample size is too small to provide direct estimates with adequate precision as small areas or small domains. Despite the small sample sizes, reliable small area estimates are needed for economic and political decision making. Hence, model-based estimation techniques are used which increase the effective sample size by borrowing strength from other areas to provide accurate information for small areas. The paragraph above introduced small area estimation as a field of survey statistics where two conflicting philosophies of statistical inference meet: the design-based and the model-based approach. While the first approach is well suited for the precise estimation of aggregate statistics, the latter approach furnishes reliable small area estimates. In most applications, estimates for both large and small domains based on the same sample are needed. This poses a challenge to the survey planner, as the sampling design has to reflect different and potentially conflicting requirements simultaneously. In order to enable efficient design-based estimates for large domains, the sampling design should incorporate information related to the variables of interest. This may be achieved using stratification or sampling with unequal probabilities. Many model-based small area techniques require an ignorable sampling design such that after conditioning on the covariates the variable of interest does not contain further information about the sample membership. If this condition is not fulfilled, biased model-based estimates may result, as the model which holds for the sample is different from the one valid for the population. Hence, an optimisation of the sampling design without investigating the implications for model-based approaches will not be sufficient. Analogously, disregarding the design altogether and focussing only on the model is prone to failure as well. Instead, a profound knowledge of the interplay between the sample design and statistical modelling is a prerequisite for implementing an effective small area estimation strategy. In this work, we concentrate on two approaches to address this conflict. Our first approach takes the sampling design as given and can be used after the sample has been collected. It amounts to incorporate the survey design into the small area model to avoid biases stemming from informative sampling. Thus, once a model is validated for the sample, we know that it holds for the population as well. We derive such a procedure under a lognormal mixed model, which is a popular choice when the support of the dependent variable is limited to positive values. Besides, we propose a three pillar strategy to select the additional variable accounting for the design, based on a graphical examination of the relationship, a comparison of the predictive accuracy of the choices and a check regarding the normality assumptions.rnrnOur second approach to deal with the conflict is based on the notion that the design should allow applying a wide variety of analyses using the sample data. Thus, if the use of model-based estimation strategies can be anticipated before the sample is drawn, this should be reflected in the design. The same applies for the estimation of national statistics using design-based approaches. Therefore, we propose to construct the design such that the sampling mechanism is non-informative but allows for precise design-based estimates at an aggregate level.

A huge number of clinical studies and meta-analyses have shown that psychotherapy is effective on average. However, not every patient profits from psychotherapy and some patients even deteriorate in treatment. Due to this result and the restricted generalization of clinical studies to clinical practice, a more patient-focused research strategy has emerged. The question whether a particular treatment works for an individual case is the focus of this paradigm. The use of repeated assessments and the feedback of this information to therapists is a major ingredient of patient-focused research. Improving patient outcomes and reducing dropout rates by the use of psychometric feedback seems to be a promising path. Therapists seem to differ in the degree to which they make use of and profit from such feedback systems. This dissertation aims to better understand therapist differences in the context of patient-focused research and the impact of therapists on psychotherapy. Three different studies are included, which focus on different aspects within the field:
Study I (Chapter 5) investigated how therapists use psychometric feedback in their work with patients and how much therapists differ in their usage. Data from 72 therapists treating 648 patients were analyzed. It could be shown that therapists used the psychometric feedback for most of their patients. Substantial variance in the use of feedback (between 27% and 52%) was attributable to therapists. Therapists were more likely to use feedback when they reported being satisfied with the graphical information they received. The results therefore indicated that not only patient characteristics or treatment progress affected the use of feedback.
Study II (Chapter 6) picked up on the idea of analyzing systematic differences in therapists and applied it to the criterion of premature treatment termination (dropout). To answer the question whether therapist effects occur in terms of patients’ dropout rates, data from 707 patients treated by 66 therapists were investigated. It was shown that approximately six percent of variance in dropout rates could be attributed to therapists, even when initial impairment was controlled for. Other predictors of dropout were initial impairment, sex, education, personality styles, and treatment expectations.
Study III (Chapter 7) extends the dissertation by investigating the impact of a transfer from one therapist to another within ongoing treatments. Data from 124 patients who agreed to and experienced a transfer during their treatment were analyzed. A significant drop in patient-rated as well as therapist-rated alliance levels could be observed after a transfer. On average, there seemed to be no difficulties establishing a good therapeutic alliance with the new therapist, although differences between patients were observed. There was no increase in symptom severity due to therapy transfer. Various predictors of alliance and symptom development after transfer were investigated. Impacts on clinical practice were discussed.
Results of the three studies are discussed and general conclusions are drawn. Implications for future research as well as their utility for clinical practice and decision-making are presented.

In order to investigate the psychobiological consequences of acute stress under laboratory conditions, a wide range of methods for socially evaluative stress induction have been developed. The present dissertation is concerned with evaluating a virtual reality (VR)-based adaptation of one of the most widely used of those methods, the Trier Social Stress Test (TSST). In the three empirical studies collected in this dissertation, we aimed to examine the efficacy and possible areas of application of the adaptation of this well-established psychosocial stressor in a virtual environment. We found that the TSST-VR reliably incites the activation of the major stress effector systems in the human body, albeit in a slightly less pronounced way than the original paradigm. Moreover, the experience of presence is discussed as one potential factor of influence in the origin of the psychophysiological stress response. Lastly, we present a use scenario for the TSST-VR in which we employed the method to investigate the effects of acute stress on emotion recognition performance. We conclude that, due to its advantages concerning versatility, standardization and economic administration, the paradigm harbors enormous potential not only for psychobiological research, but other applications such as clinical practice as well. Future studies should further explore the underlying effect mechanisms of stress in the virtual realm and the implementation of VR-based paradigms in different fields of application.

Optimal Control of Partial Integro-Differential Equations and Analysis of the Gaussian Kernel
(2018)

An important field of applied mathematics is the simulation of complex financial, mechanical, chemical, physical or medical processes with mathematical models. In addition to the pure modeling of the processes, the simultaneous optimization of an objective function by changing the model parameters is often the actual goal. Models in fields such as finance, biology or medicine benefit from this optimization step.
While many processes can be modeled using an ordinary differential equation (ODE), partial differential equations (PDEs) are needed to optimize heat conduction and flow characteristics, spreading of tumor cells in tissue as well as option prices. A partial integro-differential equation (PIDE) is a parital differential equation involving an integral operator, e.g., the convolution of the unknown function with a given kernel function. PIDEs occur for example in models that simulate adhesive forces between cells or option prices with jumps.
In each of the two parts of this thesis, a certain PIDE is the main object of interest. In the first part, we study a semilinear PIDE-constrained optimal control problem with the aim to derive necessary optimality conditions. In the second, we analyze a linear PIDE that includes the convolution of the unknown function with the Gaussian kernel.

Competitive analysis is a well known method for analyzing online algorithms.
Two online optimization problems, the scheduling problems and the list accessing problems, are considered in the thesis of Yida Zhu in the respect of this method.
For both problems, several existing online and offline algorithms are studied. Their performances are compared with the performances of corresponding offline optimal algorithms.
In particular, the list accessing algorithm BIT is carefully reviewed.
The classical proof of its worst case performance get simplified by adapting the knowledge about the optimal offline algorithm.
With regard to average case analysis, a new closed formula is developed to determine the performance of BIT on specific class of instances.
All algorithm considered in this thesis are also implemented in Julia.
Their empirical performances are studied and compared with each other directly.

In the present study a non-motion-stabilized scanning Doppler lidar was operated on board of RV Polarstern in the Arctic (June 2014) and Antarctic (December 2015– January 2016). This is the first time that such a system measured on an icebreaker in the Antarctic. A method for a motion correction of the data in the post-processing is presented.
The wind calculation is based on vertical azimuth display (VAD) scans with eight directions that pass a quality control. Additionally a method for an empirical signal-tonoise ratio (SNR) threshold is presented, which can be calculated for individual measurement set-ups. Lidar wind profiles are compared to total of about 120 radiosonde profiles and also to wind measurements of the ship.
The performance of the lidar measurements in comparison with radio soundings generally shows small root mean square deviation (bias) for wind speed of around 1ms-1(0.1ms-1) and for wind direction of around 10 (1). The post-processing of the non-motion-stabilized data shows comparably high quality to studies with motion-stabilized systems.
Two case studies show that a flexible change in SNR threshold can be beneficial for special situations. Further the studies reveal that short-lived low-level jets in the atmospheric boundary layer can be captured by lidar measurements with a high temporal resolution in contrast to routine radio soundings. The present study shows that a non-motionstabilized Doppler lidar can be operated successfully on an
icebreaker. It presents a processing chain including quality control tests and error quantification, which is useful for further measurement campaigns.

Interaction between the Hypothalamic-Pituitary-Adrenal Axis and the Circadian Clock System in Humans
(2017)

Rotation of the Earth creates day and night cycles of 24 h. The endogenous circadian clocks sense these light/dark rhythms and the master pacemaker situated in the suprachiasmatic nucleus of the hypothalamus entrains the physical activities according to this information. The circadian machinery is built from the transcriptional/translational feedback loops generating the oscillations in all nucleated cells of the body. In addition, unexpected environmental changes, called stressors, also challenge living systems. A response to these stimuli is provided immediately via the autonomic-nervous system and slowly via the hypothalamus"pituitary"adrenal (HPA) axis. When the HPA axis is activated, circulating glucocorticoids are elevated and regulate organ activities in order to maintain survival of the organism. Both the clock and the stress systems are essential for continuity and interact with each other to keep internal homeostasis. The physiological interactions between the HPA axis and the circadian clock system are mainly addressed in animal studies, which focus on the effects of stress and circadian disturbances on cardiovascular, psychiatric and metabolic disorders. Although these studies give opportunity to test in whole body, apply unwelcome techniques, control and manipulate the parameters at the high level, generalization of the results to humans is still a debate. On the other hand, studies established with cell lines cannot really reflect the conditions occurring in a living organism. Thus, human studies are absolutely necessary to investigate mechanisms involved in stress and circadian responses. The studies presented in this thesis were intended to determine the effects of cortisol as an end-product of the HPA axis on PERIOD (PER1, PER2 and PER3) transcripts as circadian clock genes in healthy humans. The expression levels of PERIOD genes were measured under baseline conditions and after stress in whole blood. The results demonstrated here have given better understanding of transcriptional programming regulated by pulsatile cortisol at standard conditions and short-term effects of cortisol increase on circadian clocks after acute stress. These findings also draw attention to inter-individual variations in stress response as well as non-circadian functions of PERIOD genes in the periphery, which need to be examined in details in the future.

The classic Capital Asset Pricing Model and the portfolio theory suggest that investors hold the market portfolio to diversify idiosyncratic risks. The theory predicts that expected return of assets is positive and that reacts linearly on the overall market. However, in reality, we observe that investors often do not have perfectly diversified portfolios. Empirical studies find that new factors influence the deviation from the theoretical optimal investment. In the first part of this work (Chapter 2) we study such an example, namely the influence of maximum daily returns on subsequent returns. Here we follow ideas of Bali et al. (2011). The goal is to find cross-sectional relations between extremely positive returns and expected average returns. We take account a larger number of markets worldwide. Bali et al. (2011) report with respect to the U.S. market a robust negative relation between MAX (the maximum daily return) and the expected return in the subsequent time. We extent substantially their database to a number of other countries, and also take more recent data into account (until end of 2009). From that we conclude that the relation between MAX and expected returns is not consistent in all countries. Moreover, we test the robustness of the results of Bali et al. (2011) in two time-periods using the same data from CRSP. The results show that the effect of extremely positive returns is not stable over time. Indeed we find a negative cross-sectional relation between the extremely positive returns and the average returns for the first half of the time series, however, we do not find significant effects for the second half. The main results of this chapter serve as a basis for an unpublished working paper Yuan and Rieger (2014b). While in Chapter 2 we have studied factors that prevent optimal diversification, we consider in Chapter 3 and 4 situations where the optimal structure of diversification was previously unknown, namely diversification of options (or structured financial products). Financial derivatives are important additional investment form with respect to diversification. Not only common call and put options, but also structured products enable investors to pursue a multitude of investment strategies to improve the risk-return profile. Since derivatives become more and more important, diversification of portfolios with dimension of derivatives is of particularly practical relevance. We investigate the optimal diversification strategies in connection with underlying stocks for classical rational investors with constant relative risk aversion (CRRA). In particular, we apply Monte Carlo method based on the Black-Scholes model and the Heston model for stochastic volatility to model the stock market processes and the pricing of the derivatives. Afterwards, we compare the benchmark portfolio which consists of derivatives on single assets with derivatives on the index of these assets. First we compute the utility improvement of an investment in the risk-free assets and plain-vanilla options for CRRA investors in various scenarios. Furthermore, we extend our analysis to several kinds of structured products, in particular capital protected notes (CPNs), discount certificates (DCs) and bonus certificates (BCs). We find that the decision of an investor between these two diversification strategies leads to remarkable differences. The difference in the utility improvement is influenced by risk-preferences of investors, stock prices and the properties of the derivatives in the portfolio. The results will be presented in Chapter 3 and are the basis for a yet unpublished working paper Yuan and Rieger (2014a). To check furthermore whether underlyings of structured products influence decisions of investors, we discuss explicitly the utility gain of a stock-based product and an index-based product for an investor whose preferences are described by cumulative prospect theory (CPT) (Chapter 4, compare to Yuan (2014)). The goal is that to investigate the dependence of structured products on their underlying where we put emphasis on the difference between index-products and single-stock-products, in particular with respect to loss-aversion and mental accounting. We consider capital protected notes and discount certificates as examples, and model the stock prices and the index of these stocks via Monte Carlo simulations in the Black-Scholes framework. The results point out that market conditions, particularly the expected returns and volatility of the stocks play a crucial role in determining the preferences of investors for stock-based CPNs and index-based CPNs. A median CPT investor prefers the index-based CPNs if the expected return is higher and the volatility is lower, while he prefers the stock-based CPNs in the other situation. We also show that index-based DCs are robustly more attractive as compared to stock-based DCs for CPT investors.

Krylov subspace methods are often used to solve large-scale linear equations arising from optimization problems involving partial differential equations (PDEs). Appropriate preconditioning is vital for designing efficient iterative solvers of this type. This research consists of two parts. In the first part, we compare two different kinds of preconditioners for a conjugate gradient (CG) solver attacking one partial integro-differential equation (PIDE) in finance, both theoretically and numerically. An analysis on mesh independence and rate of convergence of the CG solver is included. The knowledge of preconditioning the PIDE is applied to a relevant optimization problem. The second part aims at developing a new preconditioning technique by embedding reduced order models of nonlinear PDEs, which are generated by proper orthogonal decomposition (POD), into deflated Krylov subspace algorithms in solving corresponding optimization problems. Numerical results are reported for a series of test problems.