Refine
Year of publication
Document Type
- Article (187) (remove)
Keywords
- Film (13)
- Geschichte (11)
- Satellitenfernerkundung (8)
- Deutschland (7)
- Fernerkundung (7)
- Germany (7)
- Modellierung (7)
- Reise (7)
- Filmgeschichte (6)
- Fotografie (6)
Institute
- Universitätsbibliothek (47)
- Geographie und Geowissenschaften (45)
- Medienwissenschaft (35)
- Psychologie (24)
- Fachbereich 6 (9)
- Geschichte, mittlere und neuere (5)
- Fachbereich 1 (4)
- Wirtschaftswissenschaften (3)
- Fachbereich 2 (2)
- Fachbereich 4 (2)
- Informatik (2)
- Anglistik (1)
- Mathematik (1)
- Pflegewissenschaft (1)
- Pädagogik (1)
- Soziologie (1)
- Theologische Fakultät (1)
The forward testing effect is an indirect benefit of retrieval practice. It refers to the finding that retrieval practice of previously studied information enhances learning and retention of subsequently studied other information in episodic memory tasks. Here, two experiments were conducted that investigated whether retrieval practice influences participants’ performance in other tasks, i.e., arithmetic tasks. Participants studied three lists of words in anticipation of a final recall test. In the testing condition, participants were immediately tested on lists 1 and 2 after study of each list, whereas in the restudy condition, they restudied lists 1 and 2 after initial study. Before and after study of list 3, participants did an arithmetic task. Finally, participants were tested on list 3, list 2, and list 1. Different arithmetic tasks were used in the two experiments. Participants did a modular arithmetic task in Experiment 1a and a single-digit multiplication task in Experiment 1b. The results of both experiments showed a forward testing effect with interim testing of lists 1 and 2 enhancing list 3 recall in the list 3 recall test, but no effects of recall testing of lists 1 and 2 for participants’ performance in the arithmetic tasks. The findings are discussed with respect to cognitive load theory and current theories of the forward testing effect.
Advances in eye tracking technology have enabled the development of interactive experimental setups to study social attention. Since these setups differ substantially from the eye tracker manufacturer’s test conditions, validation is essential with regard to the quality of gaze data and other factors potentially threatening the validity of this signal. In this study, we evaluated the impact of accuracy and areas of interest (AOIs) size on the classification of simulated gaze (fixation) data. We defined AOIs of different sizes using the Limited-Radius Voronoi-Tessellation (LRVT) method, and simulated gaze data for facial target points with varying accuracy. As hypothesized, we found that accuracy and AOI size had strong effects on gaze classification. In addition, these effects were not independent and differed in falsely classified gaze inside AOIs (Type I errors; false alarms) and falsely classified gaze outside the predefined AOIs (Type II errors; misses). Our results indicate that smaller AOIs generally minimize false classifications as long as accuracy is good enough. For studies with lower accuracy, Type II errors can still be compensated to some extent by using larger AOIs, but at the cost of more probable Type I errors. Proper estimation of accuracy is therefore essential for making informed decisions regarding the size of AOIs in eye tracking research.
The temporal stability of psychological test scores is one prerequisite for their practical usability. This is especially true for intelligence test scores. In educational contexts, high stakes decisions with long-term consequences, such as placement in special education programs, are often based on intelligence test results. There are four different types of temporal stability: mean-level change, individual-level change, differential continuity, and ipsative continuity. We present statistical methods for investigating each type of stability. Where necessary, the methods were adapted for the specific challenges posed by intelligence research (e.g., controlling for general intelligence in lower order test scores). We provide step-by-step guidance for the application of the statistical methods and apply them to a real data set of 114 gifted students tested twice with a test-retest interval of 6 months.
• Four different types of stability need to be investigated for a full picture of temporal stability in psychological research
• Selection and adaption of the methods for the use in intelligence research
• Complete protocol of the implementation
We examined the long-term relationship of psychosocial risk and health behaviors on clinical events in patients awaiting heart transplantation (HTx). Psychosocial characteristics (e.g., depression), health behaviors (e.g., dietary habits, smoking), medical factors (e.g., creatinine), and demographics (e.g., age, sex) were collected at the time of listing in 318 patients (82% male, mean age = 53 years) enrolled in the Waiting for a New Heart Study. Clinical events were death/delisting due to deterioration, high-urgency status transplantation (HU-HTx), elective transplantation, and delisting due to clinical improvement. Within 7 years of follow-up, 92 patients died or were delisted due to deterioration, 121 received HU-HTx, 43 received elective transplantation, and 39 were delisted due to improvement. Adjusting for demographic and medical characteristics, the results indicated that frequent consumption of healthy foods (i.e., foods high in unsaturated fats) and being physically active increased the likelihood of delisting due improvement, while smoking and depressive symptoms were related to death/delisting due to clinical deterioration while awaiting HTx. In conclusion, psychosocial and behavioral characteristics are clearly associated with clinical outcomes in this population. Interventions that target psychosocial risk, smoking, dietary habits, and physical activity may be beneficial for patients with advanced heart failure waiting for a cardiac transplant.
The Belt and Road Initiative (BRI) has had a significant impact on China in political, economic, and cultural terms. This study focuses on the cultural domain, especially on scholarship students from the countries that signed bilateral cooperation agreements with China under the BRI. Using an integrated approach combining the difference-in-differences method and the gravity model, we explore the correlation between the BRI and the increasing number of international scholarship students funded by the Chinese government, as well as the determinants of students' decision to study in China. The panel data from 2010 to 2018 show that the launch of BRI has had a positive impact on the number of scholarship students from BRI countries. The number of scholarship recipients from non-BRI countries also increased, but at a much slower rate than those from BRI countries. The sole exception is the United States, which has trended downward for both state-funded and self-funded students.
The outbreak of the COVID-19 pandemic has also led to many conspiracy theories. While the origin of the pandemic in China led some, including former US president Donald Trump, to dub the pathogen “Chinese virus” and to support anti-Chinese conspiracy narratives, it caused Chinese state officials to openly support anti-US conspiracy theories about the “true” origin of the virus. In this article, we study whether nationalism, or more precisely uncritical patriotism, is related to belief in conspiracy theories among normal people. We hypothesize based on group identity theory and motivated reasoning that for the particular case of conspiracy theories related to the origin of COVID-19, such a relation should be stronger for Chinese than for Germans. To test this hypothesis, we use survey data from Germany and China, including data from the Chinese community in Germany. We also look at relations to other factors, in particular media consumption and xenophobia.
Despite significant advances in terms of the adoption of formal Intellectual Property Rights (IPR) protection, enforcement of and compliance with IPR regulations remains a contested issue in one of the world's major contemporary economies—China. The present review seeks to offer insights into possible reasons for this discrepancy as well as possible paths of future development by reviewing prior literature on IPR in China. Specifically, it focuses on the public's perspective, which is a crucial determinant of the effectiveness of any IPR regime. It uncovers possible differences with public perspectives in other countries and points to mechanisms (e.g., political, economic, cultural, and institutional) that may foster transitions over time in both formal IPR regulation and in the public perception of and compliance with IPR in China. On this basis, the review advances suggestions for future research in order to improve scholars' understanding of the public's perspective of IPR in China, its antecedents and implications.
Similarity-based retrieval of semantic graphs is a core task of Process-Oriented Case-Based Reasoning (POCBR) with applications in real-world scenarios, e.g., in smart manufacturing. The involved similarity computation is usually complex and time-consuming, as it requires some kind of inexact graph matching. To tackle these problems, we present an approach to modeling similarity measures based on embedding semantic graphs via Graph Neural Networks (GNNs). Therefore, we first examine how arbitrary semantic graphs, including node and edge types and their knowledge-rich semantic annotations, can be encoded in a numeric format that is usable by GNNs. Given this, the architecture of two generic graph embedding models from the literature is adapted to enable their usage as a similarity measure for similarity-based retrieval. Thereby, one of the two models is more optimized towards fast similarity prediction, while the other model is optimized towards knowledge-intensive, more expressive predictions. The evaluation examines the quality and performance of these models in preselecting retrieval candidates and in approximating the ground-truth similarities of a graph-matching-based similarity measure for two semantic graph domains. The results show the great potential of the approach for use in a retrieval scenario, either as a preselection model or as an approximation of a graph similarity measure.
A model-based temperature adjustment scheme for wintertime sea-ice production retrievals from MODIS
(2022)
Knowledge of the wintertime sea-ice production in Arctic polynyas is an important requirement for estimations of the dense water formation, which drives vertical mixing in the upper ocean. Satellite-based techniques incorporating relatively high resolution thermal-infrared data from MODIS in combination with atmospheric reanalysis data have proven to be a strong tool to monitor large and regularly forming polynyas and to resolve narrow thin-ice areas (i.e., leads) along the shelf-breaks and across the entire Arctic Ocean. However, the selection of the atmospheric data sets has a large influence on derived polynya characteristics due to their impact on the calculation of the heat loss to the atmosphere, which is determined by the local thin-ice thickness. In order to overcome this methodical ambiguity, we present a MODIS-assisted temperature adjustment (MATA) algorithm that yields corrections of the 2 m air temperature and hence decreases differences between the atmospheric input data sets. The adjustment algorithm is based on atmospheric model simulations. We focus on the Laptev Sea region for detailed case studies on the developed algorithm and present time series of polynya characteristics in the winter season 2019/2020. It shows that the application of the empirically derived correction decreases the difference between different utilized atmospheric products significantly from 49% to 23%. Additional filter strategies are applied that aim at increasing the capability to include leads in the quasi-daily and persistence-filtered thin-ice thickness composites. More generally, the winter of 2019/2020 features high polynya activity in the eastern Arctic and less activity in the Canadian Arctic Archipelago, presumably as a result of the particularly strong polar vortex in early 2020.
Extension of an Open GEOBIA Framework for Spatially Explicit Forest Stratification with Sentinel-2
(2022)
Spatially explicit information about forest cover is fundamental for operational forest management and forest monitoring. Although open-satellite-based earth observation data in a spatially high resolution (i.e., Sentinel-2, ≤10 m) can cover some information needs, spatially very high-resolution imagery (i.e., aerial imagery, ≤2 m) is needed to generate maps at a scale suitable for regional and local applications. In this study, we present the development, implementation, and evaluation of a Geographic Object-Based Image Analysis (GEOBIA) framework to stratify forests (needleleaved, broadleaved, non-forest) in Luxembourg. The framework is exclusively based on open data and free and open-source geospatial software. Although aerial imagery is used to derive image objects with a 0.05 ha minimum size, Sentinel-2 scenes of 2020 are the basis for random forest classifications in different single-date and multi-temporal feature setups. These setups are compared with each other and used to evaluate the framework against classifications based on features derived from aerial imagery. The highest overall accuracies (89.3%) have been achieved with classification on a Sentinel-2-based vegetation index time series (n = 8). Similar accuracies have been achieved with classification based on two (88.9%) or three (89.1%) Sentinel-2 scenes in the greening phase of broadleaved forests. A classification based on color infrared aerial imagery and derived texture measures only achieved an accuracy of 74.5%. The integration of the texture measures into the Sentinel-2-based classification did not improve its accuracy. Our results indicate that high resolution image objects can successfully be stratified based on lower spatial resolution Sentinel-2 single-date and multi-temporal features, and that those setups outperform classifications based on aerial imagery only. The conceptual framework of spatially high-resolution image objects enriched with features from lower resolution imagery facilitates the delivery of frequent and reliable updates due to higher spectral and temporal resolution. The framework additionally holds the potential to derive additional information layers (i.e., forest disturbance) as derivatives of the features attached to the image objects, thus providing up-to-date information on the state of observed forests.