### Refine

#### Has Fulltext

- yes (3) (remove)

#### Keywords

- Mathematik (3) (remove)

#### Institute

- Mathematik (2)
- Fachbereich 4 (1)

The Harmonic Faber Operator
(2018)

P. K. Suetin points out in the beginning of his monograph "Faber
Polynomials and Faber Series" that Faber polynomials play an important
role in modern approximation theory of a complex variable as they
are used in representing analytic functions in simply connected domains,
and many theorems on approximation of analytic functions are proved
with their help [50].
In 1903, the Faber polynomials were firstly discovered by G. Faber. It was Faber's aim to find a generalisation of Taylor
series of holomorphic functions in the open unit disc D
in the following way. As any holomorphic function in D
has a Taylor series representation
f(z)=\sum_{\nu=0}^{\infty}a_{\nu}z^{\nu} (z\in\D)
converging locally uniformly inside D, for a simply connected
domain G, Faber wanted to determine a system of polynomials (Q_n)
such that each function f being holomorphic in G can be expanded
into a series
f=\sum_{\nu=0}^{\infty}b_{\nu}Q_{\nu}
converging locally uniformly inside G. Having this goal in mind,
Faber considered simply connected domains bounded by an analytic Jordan
curve. He constructed a system of polynomials (F_n)
with this property. These polynomials F_n were named after him
as Faber polynomials. In the preface of [50],
a detailed summary of results concerning Faber polynomials and results
obtained by the aid of them is given.
An important application of Faber polynomials is e.g. the transfer
of known assertions concerning polynomial approximation of functions
belonging to the disc algebra to results of the approximation of functions
being continuous on a compact continuum K which contains at least
two points and has a connected complement and being holomorphic in
the interior of K. In this field, the Faber operator
denoted by T turns out to be a powerful tool (for
an introduction, see e.g. D. Gaier's monograph). It
assigns a polynomial of degree at most n given in the monomial
basis \sum_{\nu=0}^{n}a_{\nu}z^{\nu} with a polynomial of degree
at most n given in the basis of Faber polynomials \sum_{\nu=0}^{n}a_{\nu}F_{\nu}.
If the Faber operator is continuous with respect to the uniform norms,
it has a unique continuous extension to an operator mapping the disc
algebra onto the space of functions being continuous on the whole
compact continuum and holomorphic in its interior. For all f being
element of the disc algebra and all polynomials P, via the obvious
estimate for the uniform norms
||T(f)-T(P)||<= ||T|| ||f-P||,
it can be seen that the original task of approximating F=T(f)
by polynomials is reduced to the polynomial approximation of the function
f. Therefore, the question arises under which conditions the Faber
operator is continuous and surjective. A fundamental result in this
regard was established by J. M. Anderson and J. Clunie who showed
that if the compact continuum is bounded by a rectifiable Jordan curve
with bounded boundary rotation and free from cusps, then the Faber
operator with respect to the uniform norms is a topological isomorphism.
Now, let f be a harmonic function in D.
Similar as above, we find that f has a uniquely determined representation
f=\sum_{\nu=-\infty}^{\infty}a_{\nu}p_{\nu}
converging locally uniformly inside D where p_{n}(z)=z^{n}
for n\in\N_{0} and p_{-n}(z)=\overline{z}^{n}
for n\in\N}. One may ask whether there is an analogue for
harmonic functions on simply connected domains G. Indeed, for a
domain G bounded by an analytic Jordan curve, the conjecture that
each function f being harmonic in G has a uniquely determined
representation
f=\sum_{\nu=-\infty}^{\infty}b_{\nu}F_{\nu}
where F_{-n}(z)=\overline{F_{n}(z\)} for n\inN,
converging locally uniformly inside G, holds true.
Let now K be a compact continuum containing at least two points
and having a connected complement. A main component of this thesis
will be the examination of the harmonic Faber operator mapping a harmonic
polynomial given in the basis of the harmonic monomials \sum_{\nu=-n}^{n}a_{\nu}p_{\nu}
to a harmonic polynomial given as \sum_{\nu=-n}^{n}a_{\nu}F_{\nu}.
If this operator, which is based on an idea of J. Müller,
is continuous with respect to the uniform norms, it has a unique continuous
extension to an operator mapping the functions being continuous on
\partial\D onto the continuous functions on K being
harmonic in the interior of K. Harmonic Faber polynomials and the
harmonic Faber operator will be the objects accompanying us throughout
our whole discussion.
After having given an overview about notations and certain tools we
will use in our consideration in the first chapter, we begin our studies
with an introduction to the Faber operator and the harmonic Faber
operator. We start modestly and consider domains bounded by an analytic
Jordan curve. In Section 2, as a first
result, we will show that, for such a domain G, the harmonic Faber
operator has a unique continuous extension to an operator mapping
the space of the harmonic functions in D onto the space
of the harmonic functions in G, and moreover, the harmonic Faber
operator is an isomorphism with respect to the topologies of locally
uniform convergence. In the further sections of this chapter, we illumine
the behaviour of the (harmonic) Faber operator on certain function
spaces.
In the third chapter, we leave the situation of compact continua bounded
by an analytic Jordan curve. Instead we consider closures of domains
bounded by Jordan curves having a Dini continuous curvature. With
the aid of the concept of compact operators and the Fredholm alternative,
we are able to show that the harmonic Faber operator is a topological
isomorphism.
Since, in particular, the main result of the third chapter holds true
for closures K of domains bounded by analytic Jordan curves, we
can make use of it to obtain new results concerning the approximation
of functions being continuous on K and harmonic in the interior
of K by harmonic polynomials. To do so, we develop techniques applied
by L. Frerick and J. Müller in [11] and adjust them to
our setting. So, we can transfer results about the classic Faber operator
to the harmonic Faber operator.
In the last chapter, we will use the theory of harmonic Faber polynomials
to solve certain Dirichlet problems in the complex plane. We pursue
two different approaches: First, with a similar philosophy as in [50],
we develop a procedure to compute the coefficients of a series \sum_{\nu=-\infty}^{\infty}c_{\nu}F_{\nu}
converging uniformly to the solution of a given Dirichlet problem.
Later, we will point out how semi-infinite programming with harmonic
Faber polynomials as ansatz functions can be used to get an approximate
solution of a given Dirichlet problem. We cover both approaches first
from a theoretical point of view before we have a focus on the numerical
implementation of concrete examples. As application of the numerical
computations, we considerably obtain visualisations of the concerned
Dirichlet problems rounding out our discussion about the harmonic
Faber polynomials and the harmonic Faber operator.

Optimal Control of Partial Integro-Differential Equations and Analysis of the Gaussian Kernel
(2018)

An important field of applied mathematics is the simulation of complex financial, mechanical, chemical, physical or medical processes with mathematical models. In addition to the pure modeling of the processes, the simultaneous optimization of an objective function by changing the model parameters is often the actual goal. Models in fields such as finance, biology or medicine benefit from this optimization step.
While many processes can be modeled using an ordinary differential equation (ODE), partial differential equations (PDEs) are needed to optimize heat conduction and flow characteristics, spreading of tumor cells in tissue as well as option prices. A partial integro-differential equation (PIDE) is a parital differential equation involving an integral operator, e.g., the convolution of the unknown function with a given kernel function. PIDEs occur for example in models that simulate adhesive forces between cells or option prices with jumps.
In each of the two parts of this thesis, a certain PIDE is the main object of interest. In the first part, we study a semilinear PIDE-constrained optimal control problem with the aim to derive necessary optimality conditions. In the second, we analyze a linear PIDE that includes the convolution of the unknown function with the Gaussian kernel.

Given a compact set K in R^d, the theory of extension operators examines the question, under which conditions on K, the linear and continuous restriction operators r_n:E^n(R^d)→E^n(K),f↦(∂^α f|_K)_{|α|≤n}, n in N_0 and r:E(R^d)→E(K),f↦(∂^α f|_K)_{α in N_0^d}, have a linear and continuous right inverse. This inverse is called extension operator and this problem is known as Whitney's extension problem, named after Hassler Whitney. In this context, E^n(K) respectively E(K) denote spaces of Whitney jets of order n respectively of infinite order. With E^n(R^d) and E(R^d), we denote the spaces of n-times respectively infinitely often continuously partially differentiable functions on R^d. Whitney already solved the question for finite order completely. He showed that it is always possible to construct a linear and continuous right inverse E_n for r_n. This work is concerned with the question of how the existence of a linear and continuous right inverse of r, fulfilling certain continuity estimates, can be characterized by properties of K. On E(K), we introduce a full real scale of generalized Whitney seminorms (|·|_{s,K})_{s≥0}, where |·|_{s,K} coincides with the classical Whitney seminorms for s in N_0. We equip also E(R^d) with a family (|·|_{s,L})_{s≥0} of those seminorms, where L shall be a a compact set with K in L-°. This family of seminorms on E(R^d) suffices to characterize the continuity properties of an extension operator E, since we can without loss of generality assume that E(E(K)) in D^s(L).
In Chapter 2, we introduce basic concepts and summarize the classical results of Whitney and Stein.
In Chapter 3, we modify the classical construction of Whitney's operators E_n and show that |E_n(·)|_{s,L}≤C|·|_{s,K} for s in[n,n+1).
In Chapter 4, we generalize a result of Frerick, Jordá and Wengenroth and show that LMI(1) for K implies the existence of an extension operator E without loss of derivatives, i.e. we have it fulfils |E(·)|_{s,L}≤C|·|_{s,K} for all s≥0. We show that a large class of self similar sets, which includes the Cantor set and the Sierpinski triangle, admits an extensions operator without loss of derivatives.
In Chapter 5 we generalize a result of Frerick, Jordá and Wengenroth and show that WLMI(r) for r≥1 implies the existence of a tame linear extension operator E having a homogeneous loss of derivatives, such that |E(·)|_{s,L}≤C|·|_{(r+ε)s,K} for all s≥0 and all ε>0.
In the last chapter we characterize the existence of an extension operator having an arbitrary loss of derivatives by the existence of measures on K.