Refine
Document Type
- Article (4) (remove)
Has Fulltext
- yes (4) (remove)
Keywords
- Fernerkundung (2)
- Baum (1)
- Bodengefüge (1)
- Bodengüte (1)
- Bodennutzung (1)
- Energiepflanzenbau (1)
- Ernährungssicherung (1)
- Feldfrucht (1)
- GPS (1)
- Hyperspektraler Sensor (1)
Institute
- Geographie und Geowissenschaften (4) (remove)
Abstract: Thermal infrared (TIR) multi-/hyperspectral and sun-induced fluorescence (SIF) approaches together with classic solar-reflective (visible, near-, and shortwave infrared reflectance (VNIR)/SWIR) hyperspectral remote sensing form the latest state-of-the-art techniques for the detection of crop water stress. Each of these three domains requires dedicated sensor technology currently in place for ground and airborne applications and either have satellite concepts under development (e.g., HySPIRI/SBG (Surface Biology and Geology), Sentinel-8, HiTeSEM in the TIR) or are subject to satellite missions recently launched or scheduled within the next years (i.e., EnMAP and PRISMA (PRecursore IperSpettrale della Missione Applicativa, launched on March 2019) in the VNIR/SWIR, Fluorescence Explorer (FLEX) in the SIF). Identification of plant water stress or drought is of utmost importance to guarantee global water and food supply. Therefore, knowledge of crop water status over large farmland areas bears large potential for optimizing agricultural water use. As plant responses to water stress are numerous and complex, their physiological consequences affect the electromagnetic signal in different spectral domains. This review paper summarizes the importance of water stress-related applications and the plant responses to water stress, followed by a concise review of water-stress detection through remote sensing, focusing on TIR without neglecting the comparison to other spectral domains (i.e., VNIR/SWIR and SIF) and multi-sensor approaches. Current and planned sensors at ground, airborne, and satellite level for the TIR as well as a selection of commonly used indices and approaches for water-stress detection using the main multi-/hyperspectral remote sensing imaging techniques are reviewed. Several important challenges are discussed that occur when using spectral emissivity, temperature-based indices, and physically-based approaches for water-stress detection in the TIR spectral domain. Furthermore, challenges with data processing and the perspectives for future satellite missions in the TIR are critically examined. In conclusion, information from multi-/hyperspectral TIR together with those from VNIR/SWIR and SIF sensors within a multi-sensor approach can provide profound insights to actual plant (water) status and the rationale of physiological and biochemical changes. Synergistic sensor use will open new avenues for scientists to study plant functioning and the response to environmental stress in a wide range of ecosystems.
Production of biomass feedstock for methanation in Europe has focused on silages of maize and cereals. As ecological awareness has increased in the last several years, more attention is being focused on perennial energy crops (PECs). Studies of specific PECs have shown that their cultivation may enhance agrobiodiversity and increase soil organic carbon stocks while simultaneously providing valuable feedstock for methanation. This study was designed to compare soil quality indicators under annual energy crops (AECs), PECs and permanent grassland (PGL) on the landscape level in south-western Germany. At a total 25 study sites, covering a wide range of parent materials, the cropping systems were found adjacent to each other. Stands were commercially managed, and PECs included different species such as the Cup Plant, Tall Wheatgrass, Giant Knotweed, Miscanthus, Virginia Mallow and Reed Canary Grass. Soil sampling was carried out for the upper 20 cm of soil. Several soil quality indicators, including soil organic carbon (Corg), soil microbial biomass (Cmic), and aggregate stability, showed that PECs were intermediate between AEC and PGL systems. At landscape level, mean Corg content for (on average) 6.1-year-old stands of PEC was 22.37 (±7.53) g kg1, compared to 19.23 (±8.08) and 32.08 (±10.11) for AEC and PGL. Cmic contents were higher in PECs (356 ± 241 lgCg1) compared to AECs (291 ± 145) but significantly lower than under PGL (753 ± 417). The aggregate stability increased by almost 65% in PECs compared to AEC but was still 57% lower than in PGL. Indicator differences among cropping systems were more pronounced when inherent differences in the parent material were accounted for in the comparisons. Overall, these results suggest that the cultivation of PECs has positive effects on soil quality indicators. Thus, PECs may offer potential to make the production of biomass feedstock more sustainable.
Determining the exact position of a forest inventory plot—and hence the position of the sampled trees—is often hampered by a poor Global Navigation Satellite System (GNSS) signal quality beneath the forest canopy. Inaccurate geo-references hamper the performance of models that aim to retrieve useful information from spatially high remote sensing data (e.g., species classification or timber volume estimation). This restriction is even more severe on the level of individual trees. The objective of this study was to develop a post-processing strategy to improve the positional accuracy of GNSS-measured sample-plot centers and to develop a method to automatically match trees within a terrestrial sample plot to aerial detected trees. We propose a new method which uses a random forest classifier to estimate the matching probability of each terrestrial-reference and aerial detected tree pair, which gives the opportunity to assess the reliability of the results. We investigated 133 sample plots of the Third German National Forest Inventory (BWI, 2011"2012) within the German federal state of Rhineland-Palatinate. For training and objective validation, synthetic forest stands have been modeled using the Waldplaner 2.0 software. Our method has achieved an overall accuracy of 82.7% for co-registration and 89.1% for tree matching. With our method, 60% of the investigated plots could be successfully relocated. The probabilities provided by the algorithm are an objective indicator of the reliability of a specific result which could be incorporated into quantitative models to increase the performance of forest attribute estimations.
This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1"5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2"12.5 -µm (instrument NEDT 0.05 K"0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0"10.25 -µm and 10.25"12.5 -µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1"3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.