Refine
Year of publication
Document Type
- Doctoral Thesis (16)
- Article (2)
- Conference Proceedings (1)
Has Fulltext
- yes (19) (remove)
Keywords
- Fernerkundung (19) (remove)
Arctic and Antarctic polynya systems are of high research interest since extensive new ice formation takes place in these regions. The monitoring of polynyas and the ice production is crucial with respect to the changing sea-ice regime. The thin-ice thickness (TIT) distribution within polynyas controls the amount of heat that is released to the atmosphere and has therefore an impact on the ice-production rates. This thesis presents an improved method to retrieve thermal-infrared thin-ice thickness distributions within polynyas. TIT with a spatial resolution of 1 km × 1 km is calculated using the MODIS ice-surface temperature and atmospheric model variables within the Laptev Sea polynya for the winter periods 2007/08 and 2008/09. The improvement of the algorithm is focused on the surface-energy flux parameterizations. Furthermore, a thorough sensitivity analysis is applied to quantify the uncertainty in the thin-ice thickness results. An absolute mean uncertainty of -±4.7 cm for ice below 20 cm of thickness is calculated. Furthermore, advantages and drawbacks using different atmospheric data sets are investigated. Daily MODIS TIT composites are computed to fill the data gaps arising from clouds and shortwave radiation. The resulting maps cover on average 70 % of the Laptev Sea polynya. An intercomparison of MODIS and AMSR-E polynya data indicates that the spatial resolution issue is essential for accurately deriving polynya characteristics. Monthly fast-ice masks are generated using the daily TIT composites. These fast-ice masks are implemented into the coupled sea-ice/ocean model FESOM. An evaluation of FESOM sea-ice concentrations is performed with the result that a prescribed high-resolution fast-ice mask is necessary regarding the accurate polynya location. However, for a more realistic simulation of other small-scale sea-ice features further model improvements are required. The retrieval of daily high-resolution MODIS TIT composites is an important step towards a more precise monitoring of thin sea ice and sea-ice production. Future work will address a combined remote sensing " model assimilation method to simulate fully-covered thin-ice thickness maps that enable the retrieval of accurate ice production values.
Die Beobachtung und Bewertung von Wäldern ist eins der zentralen Themen der Fernerkundung. Wälder sind auf der Erde die größten Speicher von Biomasse und damit, neben den Ozeanen, die größte Senke für Kohlendioxid. Eine genaue Kenntnis über Zusammensetzung, Zustand und Entwicklung der Wälder ist wegen ihrer vielfältigen Funktionen und ihres großen Anteils an der Landesfläche von großem wissenschaftlichem und gesellschaftlichem Wert. Eine flächen-deckende detaillierte Beobachtung ist nur mit fernerkundlichen Mitteln möglich. Eine vielversprechende moderne Technik für hochauflösende Waldfernerkundung ist luftgestütztes Laser-¬scanning. Für die Arbeit stand ein Laserscanner-Datensatz aus dem Idarwald bei Morbach in Einzelpunkten und als Wellenformdatensatz zur Verfügung, der zur Ableitung von strukturellen Waldparametern genutzt wurde. Als wichtigster Bestandsstrukturparameter wurde die Baumhöhe sowohl aus Einzelpunktdaten als auch aus gerasterten Bilddaten flächendeckend mit hoher Genauigkeit abgeleitet. Die Kronenuntergrenzen konnten anhand der Wellenformdaten identifiziert werden und stimmten ebenfalls in hoher Genauigkeit mit Geländemessungen überein. Aus Baumhöhen und Höhe der Kronenuntergrenzen konnte die jeweilige Kronenlänge bestimmt werden. Eine größere Herausforderung ist die Bestimmung der Anzahl der Bäume pro Hektar. Während die einzelnen Kronen älterer Nadelbäume gut erkennbar sind, lassen sich Laubbäume und jüngere Nadelbäume nur schwer identifizieren. Trotzdem konnte mit Hilfe eines adaptiven Moving-Window-Ansatzes eine hohe Übereinstimmung mit im Gelände bestimmten Stammzahlen erzielt werden. Aus dem Anteil der Laserstrahlen, die im Bestand den Boden erreichen, können der Kronenschlussgrad und der Blattflächenindex bestimmt werden. Beide Größen sind für den Strahlungstransfer im Bestand und für ökologische Fragestellungen von Bedeutung und konnten ebenfalls flächendeckend und mit hoher Genauigkeit gemessen werden. Eng verknüpft mit dem Blattflächenindex sind die Biomasse und der Holzvorrat. Der Holzvorrat kann zwar nicht direkt aus den Laser-¬scannerdaten abgeleitet werden, da aber enge Beziehungen zu Baumhöhe und Stammzahl bestehen, kann er aus diesen statistisch abgeleitet werden. Auch die Biomasse wurde indirekt bestimmt: aus den Baumhöhen und dem Bedeckungsgrad. Die detaillierteste Charakterisierung von Waldbeständen kann durch Kombination unterschiedlicher Datensätze erreicht werden. Neben dem Laserscanningdatensatz stand auch ein hyperspektrales Bild des Untersuchungsgebiets zur Verfügung. Um diese zu kombinieren, wurde aus den Wellenformen die jeweils über der Fläche eines Hyperspektralpixels zurückgestreute Laserenergie in Höhenschritten von 0.5 m berechnet. Diese Höhenprofile zeigen die Position und Dichte der Baumkronen. Der kombinierte Datensatz wurde für eine Klassifikation zwischen Fichten und Douglasien in jeweils mehreren Altersstufen verwendet und konnte gegenüber dem Hyperspektralbild alleine eine deutliche Verbesserung der Klassifikationsgenauigkeit erzielen. Als weitere Methode, die Vorteile von hyperspektraler Fernerkundung mit denen von Laser-scanning zu verbinden, wurden Methoden zur Verwendung von Laserscanning für die Invertierung von zwei Reflexionsmodellen entwickelt und getestet. Da mit Laserscanning Größen bestimmt werden können, die aus einem Reflexionsspektrum nicht eindeutig ableitbar sind, können die Daten verwendet werden, um den Parameterraum bei der Invertierung zu verkleinern und damit die Invertierung zuverlässiger zu machen.
Earth observation (EO) is a prerequisite for sustainable land use management, and the open-data Landsat mission is at the forefront of this development. However, increasing data volumes have led to a "digital-divide", and consequently, it is key to develop methods that account for the most data-intensive processing steps, then used for the generation and provision of analysis-ready, standardized, higher-level (Level 2 and Level 3) baseline products for enhanced uptake in environmental monitoring systems. Accordingly, the overarching research task of this dissertation was to develop such a framework with a special emphasis on the yet under-researched drylands of Southern Africa. A fully automatic and memory-resident radiometric preprocessing streamline (Level 2) was implemented. The method was applied to the complete Angolan, Zambian, Zimbabwean, Botswanan, and Namibian Landsat record, amounting 58,731 images with a total data volume of nearly 15 TB. Cloud/shadow detection capabilities were improved for drylands. An integrated correction of atmospheric, topographic and bidirectional effects was implemented, based on radiative theory with corrections for multiple scatterings, and adjacency effects, as well as including a multilayered toolset for estimating aerosol optical depth over persistent dark targets or by falling back on a spatio-temporal climatology. Topographic and bidirectional effects were reduced with a semi-empirical C-correction and a global set of correction parameters, respectively. Gridding and reprojection were already included to facilitate easy and efficient further processing. The selection of phenologically similar observations is a key monitoring requirement for multi-temporal analyses, and hence, the generation of Level 3 products that realize phenological normalization on the pixel-level was pursued. As a prerequisite, coarse resolution Land Surface Phenology (LSP) was derived in a first step, then spatially refined by fusing it with a small number of Level 2 images. For this purpose, a novel data fusion technique was developed, wherein a focal filter based approach employs multi-scale and source prediction proxies. Phenologically normalized composites (Level 3) were generated by coupling the target day (i.e. the main compositing criterion) to the input LSP. The approach was demonstrated by generating peak, end and minimum of season composites, and by comparing these with static composites (fixed target day). It was shown that the phenological normalization accounts for terrain- and land cover class-induced LSP differences, and the use of Level 2 inputs enables a wide range of monitoring options, among them the detection of within state processes like forest degradation. In summary, the developed preprocessing framework is capable of generating several analysis-ready baseline EO satellite products. These datasets can be used for regional case studies, but may also be directly integrated into more operational monitoring systems " e.g. in support of the Reducing Emissions from Deforestation and Forest Degradation (REDD) incentive. In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Trier University's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.
Water-deficit stress, usually shortened to water- or drought stress, is one of the most critical abiotic stressors limiting plant growth, crop yield and quality concerning food production. Today, agriculture consumes about 80 " 90 % of the global freshwater used by humans and about two thirds are used for crop irrigation. An increasing world population and a predicted rise of 1.0 " 2.5-°C in the annual mean global temperature as a result of climate change will further increase the demand of water in agriculture. Therefore, one of the most challenging tasks of our generation is to reduce the amount water used per unit yield to satisfy the second UN Sustainable Development Goal and to ensure global food security. Precision agriculture offers new farming methods with the goal to improve the efficiency of crop production by a sustainable use of resources. Plant responses to water stress are complex and co-occur with other environmental stresses under natural conditions. In general, water stress causes plant physiological and biochemical changes that depend on the severity and the duration of the actual plant water deficit. Stomatal closure is one of the first responses to plant water stress causing a decrease in plant transpiration and thus an increase in plant temperature. Prolonged or severe water stress leads to irreversible damage to the photosynthetic machinery and is associated with decreasing chlorophyll content and leaf structural changes (e.g., leaf rolling). Since a crop can already be irreversibly damaged by only mild water deficit, a pre-visual detection of water stress symptoms is essential to avoid yield loss. Remote sensing offers a non-destructive and spatio-temporal method for measuring numerous physiological, biochemical and structural crop characteristics at different scales and thus is one of the key technologies used in precision agriculture. With respect to the detection of plant responses to water stress, the current state-of-the-art hyperspectral remote sensing imaging techniques are based on measurements of thermal infrared emission (TIR; 8 " 14 -µm), visible, near- and shortwave infrared reflectance (VNIR/SWIR; 0.4 " 2.5 -µm), and sun-induced fluorescence (SIF; 0.69 and 0.76 -µm). It is, however, still unclear how sensitive these techniques are with respect to water stress detection. Therefore, the overall aim of this dissertation was to provide a comparative assessment of remotely sensed measures from the TIR, SIF, and VNIR/SWIR domains for their ability to detect plant responses to water stress at ground- and airborne level. The main findings of this thesis are: (i) temperature-based indices (e.g., CWSI) were most sensitive for the detection of plant water stress in comparison to reflectance-based VNIR/SWIR indices (e.g., PRI) and SIF at both, ground- and airborne level, (ii) for the first time, spectral emissivity as measured by the new hyperspectral TIR instrument could be used to detect plant water stress at ground level. Based on these findings it can be stated that hyperspectral TIR remote sensing offers great potential for the detection of plant responses to water stress at ground- and airborne level based on both TIR key variables, surface temperature and spectral emissivity. However, the large-scale application of water stress detection based on hyperspectral TIR measures in precision agriculture will be challenged by several problems: (i) missing thresholds of temperature-based indices (e.g., CWSI) for the application in irrigation scheduling, (ii) lack of current TIR satellite missions with suitable spectral and spatial resolution, (iii) lack of appropriate data processing schemes (including atmosphere correction and temperature emissivity separation) for hyperspectral TIR remote sensing at airborne- and satellite level.
Abstract: Thermal infrared (TIR) multi-/hyperspectral and sun-induced fluorescence (SIF) approaches together with classic solar-reflective (visible, near-, and shortwave infrared reflectance (VNIR)/SWIR) hyperspectral remote sensing form the latest state-of-the-art techniques for the detection of crop water stress. Each of these three domains requires dedicated sensor technology currently in place for ground and airborne applications and either have satellite concepts under development (e.g., HySPIRI/SBG (Surface Biology and Geology), Sentinel-8, HiTeSEM in the TIR) or are subject to satellite missions recently launched or scheduled within the next years (i.e., EnMAP and PRISMA (PRecursore IperSpettrale della Missione Applicativa, launched on March 2019) in the VNIR/SWIR, Fluorescence Explorer (FLEX) in the SIF). Identification of plant water stress or drought is of utmost importance to guarantee global water and food supply. Therefore, knowledge of crop water status over large farmland areas bears large potential for optimizing agricultural water use. As plant responses to water stress are numerous and complex, their physiological consequences affect the electromagnetic signal in different spectral domains. This review paper summarizes the importance of water stress-related applications and the plant responses to water stress, followed by a concise review of water-stress detection through remote sensing, focusing on TIR without neglecting the comparison to other spectral domains (i.e., VNIR/SWIR and SIF) and multi-sensor approaches. Current and planned sensors at ground, airborne, and satellite level for the TIR as well as a selection of commonly used indices and approaches for water-stress detection using the main multi-/hyperspectral remote sensing imaging techniques are reviewed. Several important challenges are discussed that occur when using spectral emissivity, temperature-based indices, and physically-based approaches for water-stress detection in the TIR spectral domain. Furthermore, challenges with data processing and the perspectives for future satellite missions in the TIR are critically examined. In conclusion, information from multi-/hyperspectral TIR together with those from VNIR/SWIR and SIF sensors within a multi-sensor approach can provide profound insights to actual plant (water) status and the rationale of physiological and biochemical changes. Synergistic sensor use will open new avenues for scientists to study plant functioning and the response to environmental stress in a wide range of ecosystems.
Determining the exact position of a forest inventory plot—and hence the position of the sampled trees—is often hampered by a poor Global Navigation Satellite System (GNSS) signal quality beneath the forest canopy. Inaccurate geo-references hamper the performance of models that aim to retrieve useful information from spatially high remote sensing data (e.g., species classification or timber volume estimation). This restriction is even more severe on the level of individual trees. The objective of this study was to develop a post-processing strategy to improve the positional accuracy of GNSS-measured sample-plot centers and to develop a method to automatically match trees within a terrestrial sample plot to aerial detected trees. We propose a new method which uses a random forest classifier to estimate the matching probability of each terrestrial-reference and aerial detected tree pair, which gives the opportunity to assess the reliability of the results. We investigated 133 sample plots of the Third German National Forest Inventory (BWI, 2011"2012) within the German federal state of Rhineland-Palatinate. For training and objective validation, synthetic forest stands have been modeled using the Waldplaner 2.0 software. Our method has achieved an overall accuracy of 82.7% for co-registration and 89.1% for tree matching. With our method, 60% of the investigated plots could be successfully relocated. The probabilities provided by the algorithm are an objective indicator of the reliability of a specific result which could be incorporated into quantitative models to increase the performance of forest attribute estimations.
Die organische Bodensubstanz (OBS) ist eine fundamentale Steuergröße aller biogeochemischen Prozesse und steht in engem Zusammenhang zu Kohlenstoffkreisläufen und globalem Klima. Die derzeitige Herausforderung der Ökosystemforschung ist die Identifizierung der für die Bodenqualität relevanten Bioindikatoren und deren Erfassung mit Methoden, die eine nachhaltige Nutzung der OBS in großem Maßstab überwachen und damit zu globalen Erderkundungsprogrammen beitragen können. Die fernerkundliche Technik der Vis-NIR Spektroskopie ist eine bewährte Methode für die Beurteilung und das Monitoring von Böden, wobei ihr Potential bezüglich der Erfassung biologischer und mikrobieller Bodenparameter bisher umstritten ist. Das Ziel der vorgestellten Arbeit war die quantitative und qualitative Untersuchung der OBS von Ackeroberböden mit unterschiedlichen Methoden und variierender raumzeitlicher Auflösung sowie die anschließende Bewertung des Potentials non-invasiver, spektroskopischer Methoden zur Erfassung ausgewählter Parameter dieser OBS. Dafür wurde zunächst eine umfassende lokale Datenbank aus chemischen, physikalischen und biologischen Bodenparametern und dazugehörigen Bodenspektren einer sehr heterogenen geologischen Region mit gemäßigten Klima im Südwesten Deutschlands erstellt. Auf dieser Grundlage wurde dann das Potential der Bodenspektroskopie zur Erfassung und Schätzung von Feld- und Geländedaten ausgewählter OBS Parameter untersucht. Zusätzlich wurde das Optimierungspotential der Vorhersagemodelle durch statistische Vorverarbeitung der spektralen Daten getestet. Die Güte der Vorhersagewahrscheinlichkeit gebräuchlicher fernerkundlicher Bodenparameter (OC, N) konnte für im Labor erhobene Hyperspektralmessungen durch statistische Optimierungstechniken wie Variablenselektion und Wavelet-Transformation verbessert werden. Ein zusätzliches Datenset mit mikrobiellen/labilen OBS Parametern und Felddaten wurde untersucht um zu beurteilen, ob Bodenspektren zur Vorhersage genutzt werden können. Hierzu wurden mikrobieller Kohlenstoff (MBC), gelöster organischer Kohlenstoff (DOC), heißwasserlöslicher Kohlenstoff (HWEC), Chlorophyll α (Chl α) und Phospholipid-Fettsäuren (PLFAs) herangezogen. Für MBC und DOC konnte abhängig von Tiefe und Jahreszeit eine mittlere Güte der Vorhersagewahrscheinlichkeit erreicht werden, wobei zwischen hohen und niedrigen Konzentration unterschieden werden konnte. Vorhersagen für OC und PLFAs (Gesamt-PLFA-Gehalt sowie die mikrobiellen Gruppen der Bakterien, Pilze und Algen) waren nicht möglich. Die beste Prognosewahrscheinlichkeit konnte für das Chlorophyll der Grünalgen an der Bodenoberfläche (0-1cm Bodentiefe) erzielt werden, welches durch Korrelation mit MBC vermutlich auch für dessen gute Vorhersagewahrscheinlichkeit verantwortlich war. Schätzungen des Gesamtgehaltes der OBS, abgeleitet durch OC, waren hingegen nicht möglich, was der hohen Dynamik der mikrobiellen OBS Parameter an der Bodenoberfläche zuzuschreiben ist. Das schränkt die Repräsentativität der spektralen Messung der Bodenoberfläche zeitlich ein. Die statistische Optimierungstechnik der Variablenselektion konnte für die Felddaten nur zu einer geringen Verbesserung der Vorhersagemodelle führen. Die Untersuchung zur Herkunft der organischen Bestandteile und ihrer Auswirkungen auf die Quantität und Qualität der OBS konnte die mikrobielle Nekromasse und die Gruppe der Bodenalgen als zwei mögliche weitere signifikante Quellen für die Entstehung und Beständigkeit der OBS identifizieren. Insgesamt wird der mikrobielle Beitrag zur OBS höher als gemeinhin angenommen eingestuft. Der Einfluss mikrobieller Bestandteile konnte für die OBS Menge, speziell in der mineralassoziierten Fraktion der OBS in Ackeroberböden, sowie für die OBS Qualität hinsichtlich der Korrelation von mikrobiellen Kohlenhydraten und OBS Stabilität gezeigt werden. Die genaue Quantifizierung dieser OBS Parameter und ihre Bedeutung für die OBS Dynamik sowie ihre Prognostizierbarkeit mittels spektroskopischer Methoden ist noch nicht vollständig geklärt. Für eine abschließende Beurteilung sind deshalb weitere Studien notwendig.
Time series archives of remotely sensed data offer many possibilities to observe and analyse dynamic environmental processes at the Earth- surface. Based on these hypertemporal archives, which offer continuous observations of vegetation indices, typically at repetition rates from one to two weeks, sets of phenological parameters or metrics can be derived. Examples of such parameters are the beginning and end of the annual growing period, as well as its length. Even though these parameters do not correspond exactly to conventional observations of phenological events, they nevertheless provide indications of the dynamic processes occurring in the biosphere. The development of robust algorithms for the derivation of phenological metrics can be challenging. Currently, such algorithms are most commonly based on digital filters or the Fourier analysis of time series. Polynomial spline models offer a useful alternative to existing methods. The possibilities of using spline models in the analytical description of time series are numerous, and their specific mathematical properties may help to avoid known problems occurring with the more common methods for deriving phenological metrics. Based on a selection of different polynomial spline models suitable for the analysis of remotely sensed time series of vegetation indices, a method to derive various phenological parameters from such time series was developed and implemented in this work. Using an example data set from an intensively used agricultural area showing highly dynamic variations in vegetation phenology, the newly developed method was verified by a comparison of the results of the spline based approach to the results of two alternative, well established methods.
A sustainable development of forests and their ecosystem services requires the monitoring of the forests" state and changes as well as the prediction of their future development. To achieve the latter, eco-physiological forest growth models are usually applied. These models require calibration and validation with forestry reference data. This data includes forest structural parameters such as tree height or stem diameter which are easy to measure and can be used to estimate the core model parameters, i.e. the tree- biomass pools. The methods traditionally applied to derive the structural parameters are mainly manual and time-consuming. Hence, the in situ data acquisition is inefficient and limited in its ability to capture the vertical and horizontal variability in stand structure. Ground-based remote sensing bears the potential to overcome the limitations of the traditional methods. As they can be automated, ground-based remote sensing methods allow a much more efficient data acquisition and a larger spatial coverage. They are also able to capture forest structure in its three dimensions. Nevertheless, at present further research is required, in particular with respect to the practical integration of ground-based remote sensing data into forest growth models as well as regarding factors influencing the structural parameter retrieval from this data. Therefore, the goal of this PhD thesis was to investigate the influencing factors of two ground-based remote sensing methods (terrestrial laser scanning and hemispherical photography), which have not or only scarcely been studied to date. In addition, the use of forest structural parameters derived from these methods for the calibration of a forest growth model was assessed. Both goals were achieved. The results of this thesis could contribute significantly to a comprehensive assessment of ground-based remote sensing and its potential to derive the forest structural parameters. However, the use of these methods to calibrate forest growth models proved to be limited. An optimized data sampling design is expected to eliminate the major limitations, though. Furthermore, the combination of ground-based, airborne, and satellite remote sensing sensors was suggested to provide an optimized framework for the general integration of remotely sensed data into forest growth models. This combination of remote sensing observations at different scales will contribute greatly to a modern forest management with the purpose of warranting a sustainable forest development even under growing economic and ecological pressures.