### Refine

#### Year of publication

#### Language

- English (15) (remove)

#### Keywords

- Abfrageverarbeitung (2)
- Algorithmus (2)
- OBDD (2)
- OBDDs (2)
- n.a. (2)
- (general) boustrophedon (returning) finite automata (1)
- (general) jumping finite automata (1)
- (regular : regular) array grammars (1)
- (regulär: regulär) Array-Grammati (1)
- Algorithmische Lerntheorie (1)
- Amortisierte Laufzeitanalyse (1)
- Amortized run time analysis (1)
- Automata Theory (1)
- Automatentheorie (1)
- BMAP (1)
- Client-server-Konzept (1)
- Cluster (1)
- Datenstruktur (1)
- Directed Graphs (1)
- Disambiguierung von Personennamen (1)
- Distributed Systems (1)
- Dokumentverarbeitung (1)
- Elektronische Bibliothek (1)
- Erweiterung (1)
- Eulerian trails (1)
- Exact Algorithms (1)
- Exakte Algorithmen (1)
- Exponental time algorithms (1)
- Exponentialzeit Algorithmen (1)
- Fallbasiertes Schließen (1)
- Formal Verification (1)
- Formal languages (1)
- Gerichteter Graph (1)
- Graph Minors (1)
- Graph Rewriting (1)
- Graph Visualization (1)
- Graphen mit Eulerschen Pfaden (1)
- Graphvisualisierung (1)
- Hyperlink-Proposals (1)
- Information Visualization (1)
- Informationsvisualisierung (1)
- Integrated Circuits (1)
- Internetdienst (1)
- Kom (1)
- Kombinatorische Optimierung (1)
- Komplexe Netzwerke (1)
- Komplexe Systeme (1)
- Komplexität (1)
- Logischer Entwurf (1)
- Markov Jump Process (1)
- Markov-Prozess (1)
- Mathematische Lerntheorie (1)
- Measure & Conquer (1)
- Metadaten (1)
- Middleware (1)
- Minor <Graphentheorie> (1)
- Mobile Networks (1)
- Mobile Telekommunikation (1)
- Modellierung (1)
- NP-hartes Problem (1)
- Netzwerk (1)
- Nichtlineare Dynamik (1)
- Näherungsverfahren (1)
- Operations Research (1)
- Ordered Binary Decision Diagrams (1)
- Parameterisierte Algorithmen (1)
- Parameterized Algorithms (1)
- Parametrisierte Approximation (1)
- Peer-to-Peer-Netz (1)
- Periodic Queues (1)
- Personenname (1)
- Queues (1)
- Reduktionssystem (1)
- Regular Expressions (1)
- Regulärer Ausdruck (1)
- Request-Prediction (1)
- Robustheit (1)
- Selbstorganisation (1)
- Software Visualization (1)
- Softwarevisualisierung (1)
- Standard ML (1)
- Statistical Mechanics of complex networks (1)
- Statistische Mechanik komplexer Netze (1)
- Synchronisierung (1)
- Syntaktische Analyse (1)
- Telekommunikationsnetz (1)
- Theoretische Informatik (1)
- Transitionssystem (1)
- Verifikation (1)
- Verteiltes System (1)
- Visualisierung (1)
- Visualization (1)
- Warteschlangentheorie (1)
- Web-Applications (1)
- XML (1)
- XOR Parity (1)
- Zufallsgraph (1)
- clustering (1)
- complex networks (1)
- complex systems (1)
- complexity (1)
- controlled queueing system (1)
- digital library (1)
- endliche Boustrophedon-Automaten (1)
- formal verification (1)
- grammatical inference (1)
- historical metadata (1)
- jumping endliche Automaten (1)
- mobile Telekommunikation (1)
- numerical analysis (1)
- optimal control (1)
- parameterised approximation (1)
- partitioning (1)
- person name disambiguation (1)
- reordering (1)
- threshold (1)
- zurückkehrende(RFA) (1)

#### Institute

- Informatik (15) (remove)

Today, usage of complex circuit designs in computers, in multimedia applications and communication devices is widespread and still increasing. At the same time, due to Moore's Law we do not expect to see an end in the growth of the complexity of digital circuits. The decreasing ability of common validation techniques -- like simulation -- to assure correctness of a circuit design enlarges the need for formal verification techniques. Formal verification delivers a mathematical proof that a given implementation of a design fulfills its specification. One of the basic and during the last years widely used data structure in formal verification are the so called Ordered Binary Decision Diagrams (OBDDs) introduced by R. Bryant in 1986. The topic of this thesis is integration of structural high-level information in the OBDD-based formal verification of sequential systems. This work consist of three major parts, covering different layers of formal verification applications: At the application layer, an assertion checking methodology, integrated in the verification flow of the high-level design and verification tool Protocol Compiler is presented. At the algorithmic layer, new approaches for partitioning of transition relations of complex finite state machines, that significantly improve the performance of OBDD-based sequential verification are introduced. Finally, at the data structure level, dynamic variable reordering techniques that drastically reduce the time required for reordering without a trade-off in OBDD-size are described. Overall, this work demonstrates how a tighter integration of applications by using structural information can significantly improve the efficiency of formal verification applications in an industrial setting.

We are living in a connected world, surrounded by interwoven technical systems. Since they pervade more and more aspects of our everyday lives, a thorough understanding of the structure and dynamics of these systems is becoming increasingly important. However - rather than being blueprinted and constructed at the drawing board - many technical infrastructures like for example the Internet's global router network, the World Wide Web, large scale Peer-to-Peer systems or the power grid - evolve in a distributed fashion, beyond the control of a central instance and influenced by various surrounding conditions and interdependencies. Hence, due to this increase in complexity, making statements about the structure and behavior of tomorrow's networked systems is becoming increasingly complicated. A number of failures has shown that complex structures can emerge unintentionally that resemble those which can be observed in biological, physical and social systems. In this dissertation, we investigate how such complex phenomena can be controlled and actively used. For this, we review methodologies stemming from the field of random and complex networks, which are being used for the study of natural, social and technical systems, thus delivering insights into their structure and dynamics. A particularly interesting finding is the fact that the efficiency, dependability and adaptivity of natural systems can be related to rather simple local interactions between a large number of elements. We review a number of interesting findings about the formation of complex structures and collective dynamics and investigate how these are applicable in the design and operation of large scale networked computing systems. A particular focus of this dissertation are applications of principles and methods stemming from the study of complex networks in distributed computing systems that are based on overlay networks. Here we argue how the fact that the (virtual) connectivity in such systems is alterable and widely independent from physical limitations facilitates a design that is based on analogies between complex network structures and phenomena studied in statistical physics. Based on results about the properties of scale-free networks, we present a simple membership protocol by which scale-free overlay networks with adjustable degree distribution exponent can be created in a distributed fashion. With this protocol we further exemplify how phase transition phenomena - as occurring frequently in the domain of statistical physics - can actively be used to quickly adapt macroscopic statistical network parameters which are known to massively influence the stability and performance of networked systems. In the case considered in this dissertation, the adaptation of the degree distribution exponent of a random, scale-free overlay allows - within critical regions - a change of relevant structural and dynamical properties. As such, the proposed scheme allows to make sound statements about the relation between the local behavior of individual nodes and large scale properties of the resulting complex network structures. For systems in which the degree distribution exponent cannot easily be derived for example from local protocol parameters, we further present a distributed, probabilistic mechanism which can be used to monitor a network's degree distribution exponent and thus to reason about important structural qualities. Finally, the dissertation shifts its focus towards the study of complex, non-linear dynamics in networked systems. We consider a message-based protocol which - based on the Kuramoto model for coupled oscillators - achieves a stable, global synchronization of periodic heartbeat events. The protocol's performance and stability is evaluated in different network topologies. We further argue that - based on existing findings about the interrelation between spectral network properties and the dynamics of coupled oscillators - the proposed protocol allows to monitor structural properties of networked computing systems. An important aspect of this dissertation is its interdisciplinary approach towards a sensible and constructive handling of complex structures and collective dynamics in networked systems. The associated investigation of distributed systems from the perspective of non-linear dynamics and statistical physics highlights interesting parallels both to biological and physical systems. This foreshadows systems whose structures and dynamics can be analyzed and understood in the conceptual frameworks of statistical physics and complex systems.

Hardware bugs can be extremely expensive, financially. Because microprocessors and integrated circuits have become omnipresent in our daily live and also because of their continously growing complexity, research is driven towards methods and tools that are supposed to provide higher reliability of hardware designs and their implementations. Over the last decade Ordered Binary Decision Diagrams (OBDDs) have been well proven to serve as a data structure for the representation of combinatorial or sequential circuits. Their conciseness and their efficient algorithmic properties are responsible for their huge success in formal verification. But, due to Shannon's counting argument, OBDDs can not always guarantee the concise representation of a given design. In this thesis, Parity Ordered Binary Decision Diagrams are presented, which are a true extension of OBDDs. In addition to the regular branching nodes of an OBDD, functional nodes representing a parity operation are integrated into the data structure, thus resulting in Parity-OBDDs. Parity-OBDDs are more powerful than OBDDs are, but, they are no longer a canonical representation. Besides theoretical aspects of Parity-OBDDs, algorithms for their efficient manipulation are the main focus of this thesis. Furthermore, an analysis on the factors that influence the Parity-OBDD representation size gives way for the development of heuristic algorithms for their minimization. The results of these analyses as well as the efficiency of the data structure are also supported by experiments. Finally, the algorithmic concept of Parity-OBDDs is extended to Mod-p-Decision Diagrams (Mod-p-DDs) for the representation of functions that are defined over an arbitrary finite domain.

Mobile computing poses different requirements on middleware than more traditional desktop systems interconnected by fixed networks. Not only the characteristics of mobile network technologies as for example lower bandwidth and unreliability demand for customized support. Moreover, the devices employed in mobile settings usually are less powerful than their desktop counterparts. Slow processors, a fairly limited amount of memory, and smaller displays are typical properties of mobile equipment, again requiring special treatment. Furthermore, user mobility results in additional requirements on appropriate middleware support. As opposed to the quite static environments dominating the world of desktop computing, dynamic aspects gain more importance. Suitable strategies and techniques for exploring the environment e.g. in order to discover services available locally are only one example. Managing resources in a fault-tolerant manner, reducing the impact ill-behaved clients have on system stability define yet another exemplary prerequisite. Most state of the art middleware has been designed for use in the realm of static, resource rich environments and hence is not immediately applicable in mobile settings as set forth above. The work described throughout this thesis aims at investigating the suitability of different middleware technologies with regard to application design, development, and deployment in the context of mobile networks. Mostly based upon prototypes, shortcomings of those technologies are identified and possible solutions are proposed and evaluated where appropriate. Besides tailoring middleware to specific communication and device characteristics, the cellular structure of current mobile networks may and shall be exploited in favor of more scalable and robust systems. Hence, an additional topic considered within this thesis is to point out and investigate suitable approaches permitting to benefit from such cellular infrastructures. In particular, a system architecture for the development of applications in the context of mobile networks will be proposed. An evaluation of this architecture employing mobile agents as flexible, network-side representatives for mobile terminals is performed, again based upon a prototype application. In summary, this thesis aims at providing several complementary approaches regarding middleware support tailored for mobile, cellular networks, a field considered to be of rising importance in a world where mobile communication and particularly data services emerge rapidly, augmenting the globally interconnecting, wired Internet.

Digital libraries have become a central aspect of our live. They provide us with an immediate access to an amount of data which has been unthinkable in the past. Support of computers and the ability to aggregate data from different libraries enables small projects to maintain large digital collections on various topics. A central aspect of digital libraries is the metadata -- the information that describes the objects in the collection. Metadata are digital and can be processed and studied automatically. In recent years, several studies considered different aspects of metadata. Many studies focus on finding defects in the data. Specifically, locating errors related to the handling of personal names has drawn attention. In most cases the studies concentrate on the most recent metadata of a collection. For example, they look for errors in the collection at day X. This is a reasonable approach for many applications. However, to answer questions such as when the errors were added to the collection we need to consider the history of the metadata itself. In this work, we study how the history of metadata can be used to improve the understanding of a digital library. To this goal, we consider how digital libraries handle and store their metadata. Based in this information we develop a taxonomy to describe available historical data which means data on how the metadata records changed over time. We develop a system that identifies changes to metadata over time and groups them in semantically related blocks. We found that historical meta data is often unavailable. However, we were able to apply our system on a set of large real-world collections. A central part of this work is the identification and analysis of changes to metadata which corrected a defect in the collection. These corrections are the accumulated effort to ensure data quality of a digital library. In this work, we present a system that automatically extracts corrections of defects from the set of all modifications. We present test collections containing more than 100,000 test cases which we created by extracting defects and their corrections from DBLP. This collections can be used to evaluate automatic approaches for error detection. Furthermore, we use these collections to study properties of defects. We will concentrate on defects related to the person name problem. We show that many defects occur in situations where very little context information is available. This has major implications for automatic defect detection. We also show that properties of defects depend on the digital library in which they occur. We also discuss briefly how corrected defects can be used to detect hidden or future defects. Besides the study of defects, we show that historical metadata can be used to study the development of a digital library over time. In this work, we present different studies as example how historical metadata can be used. At first we describe the development of the DBLP collection over a period of 15 years. Specifically, we study how the coverage of different computer science sub fields changed over time. We show that DBLP evolved from a specialized project to a collection that encompasses most parts of computer science. In another study we analyze the impact of user emails to defect corrections in DBLP. We show that these emails trigger a significant amount of error corrections. Based on these data we can draw conclusions on why users report a defective entry in DBLP.

Automata theory is the study of abstract machines. It is a theory in theoretical computer science and discrete mathematics (a subject of study in mathematics and computer science). The word automata (the plural of automaton) comes from a Greek word which means "self-acting". Automata theory is closely related to formal language theory [99, 101]. The theory of formal languages constitutes the backbone of the field of science now generally known as theoretical computer science. This thesis aims to introduce a few types of automata and studies then class of languages recognized by them. Chapter 1 is the road map with introduction and preliminaries. In Chapter 2 we consider few formal languages associated to graphs that has Eulerian trails. We place few languages in the Chomsky hierarchy that has some other properties together with the Eulerian property. In Chapter 3 we consider jumping finite automata, i. e., finite automata in which input head after reading and consuming a symbol, can jump to an arbitrary position of the remaining input. We characterize the class of languages described by jumping finite automata in terms of special shuffle expressions and survey other equivalent notions from the existing literature. We could also characterize some super classes of this language class. In Chapter 4 we introduce boustrophedon finite automata, i. e., finite automata working on rectangular shaped arrays (i. e., pictures) in a boustrophedon mode and we also introduce returning finite automata that reads the input, line after line, does not alters the direction like boustrophedon finite automata i. e., reads always from left to right, line after line. We provide close relationships with the well-established class of regular matrix (array) languages. We sketch possible applications to character recognition and kolam patterns. Chapter 5 deals with general boustrophedon finite automata, general returning finite automata that read with different scanning strategies. We show that all 32 different variants only describe two different classes of array languages. We also introduce Mealy machines working on pictures and show how these can be used in a modular design of picture processing devices. In Chapter 6 we compare three different types of regular grammars of array languages introduced in the literature, regular matrix grammars, (regular : regular) array grammars, isometric regular array grammars, and variants thereof, focusing on hierarchical questions. We also refine the presentation of (regular : regular) array grammars in order to clarify the interrelations. In Chapter 7 we provide further directions of research with respect to the study that we have done in each of the chapters.

XML (Extensible Markup Language) ist ein sequentielles Format zur Speicherung und Übermittlung strukturierter Daten. Obwohl es ursprünglich für die Dokumentenverarbeitung entwickelt wurde, findet XML heute Verwendung in nahezu allen Bereichen der Datenverarbeitung, insbesondere aber im Internet. Jede XML-Dokumentenverarbeitungs-Software basiert auf einem XML-Parser. Der Parser liest ein Dokument in XML-Syntax ein und stellt es als Dokumentbaum der eigentlichen Anwendung zur Verfügung. Dokumentenverarbeitung ist dann im wesentlichen die Manipulation von Bäumen. Moderne funktionale Programmiersprachen wie SML und Haskell unterstützen Bäume als Basis-Datentypen und sind daher besonders gut für die Implementierung von Dokumentenverarbeitungs-Systemen geeignet. Um so erstaunlicher ist es, dass dieser Bereich zum größten Teil von Java-Software dominiert wird. Dies ist nicht zuletzt darauf zurückzuführen, dass noch keine vollständige Implementierung der XML-Syntax als Parser in einer funktionalen Programmiersprache vorliegt. Eine der wichtigsten Aufgaben in der Dokumentenverarbeitung ist Querying, d.h. die Lokalisierung von Teildokumenten, die eine angegebene Strukturbedingung erfüllen und in einem bestimmten Kontext stehen. Die baumartige Auffassung von Dokumenten in XML erlaubt die Realisierung des Querying mithilfe von Techniken aus der Theorie der Baumsprachen und Baumautomaten. Allerdings müssen diese Techniken an die speziellen Anforderungen von XML angepasst werden. Eine dieser Anforderungen ist, dass auch extrem große Dokumente verarbeitet werden müssen. Deshalb sollte der Querying-Algorithmus in einem einzigen Durchlauf durch das Dokument ausführbar sein, ohne den Dokumentbaum explizit im Speicher aufbauen zu müssen. Diese Arbeit besteht aus zwei Teilen. Der erste Teil beschreibt den XML- Parser fxp, der vollständig in SML programmiert wurde. Insbesondere werden die Erfahrungen mit SML diskutiert, die während der Implementierung von fxp gewonnen wurden. Es folgt eine Analyse des Laufzeit-Verhaltens von fxp und ein Vergleich mit anderen XML-Parsern, die in imperativen oder objekt- orientierten Programmiersprachen entwickelt wurden. Im zweiten Teil beschreiben wir einen Algorithmus zum Querying von XML- Dokumenten, der auf der Theorie der Waldautomaten fundiert ist. Er findet alle Treffer einer Anfrage in höchstens zwei Durchläufen durch das Dokument. Für eine wichtige Teilklasse von Anfragen kann das Querying sogar in einem einzelnen Durchlauf realisiert werden. Außerdem wird die Implementierung des Algorithmus in SML mit Hilfe von fxp dargestellt.

This thesis centers on formal tree languages and on their learnability by algorithmic methods in abstractions of several learning settings. After a general introduction, we present a survey of relevant definitions for the formal tree concept as well as special cases (strings) and refinements (multi-dimensional trees) thereof. In Chapter 3 we discuss the theoretical foundations of algorithmic learning in a specific type of setting of particular interest in the area of Grammatical Inference where the task consists in deriving a correct formal description for an unknown target language from various information sources (queries and/or finite samples) in a polynomial number of steps. We develop a parameterized meta-algorithm that incorporates several prominent learning algorithms from the literature in order to highlight the basic routines which regardless of the nature of the information sources have to be run through by all those algorithms alike. In this framework, the intended target descriptions are deterministic finite-state tree automata. We discuss the limited transferability of this approach to another class of descriptions, residual finite-state tree automata, for which we propose several learning algorithms as well. The learnable class by these techniques corresponds to the class of regular tree languages. In Chapter 4we outline a recent range of attempts in Grammatical Inference to extend the learnable language classes beyond regularity and even beyond context-freeness by techniques based on syntactic observations which can be subsumed under the term 'distributional learning', and we describe learning algorithms in several settings for the tree case taking this approach. We conclude with some general reflections on the notion of learning from structural information.

Due to the breath-taking growth of the World Wide Web (WWW), the need for fast and efficient web applications becomes more and more urgent. In this doctoral thesis, the emphasis will be on two concrete tasks for improving Internet applications. On the one hand, a major problem of many of today's Internet applications may be described as the performance of the Client/Server-communication: servers often take a long time to respond to a client's request. There are several strategies to overcome this problem of high user-perceived latencies; one of them is to predict future user-requests. This way, time-consuming calculations on the server's side can be performed even before the corresponding request is being made. Furthermore, in certain situations, also the pre-fetching or the pre-sending of data might be appropriate. Those ideas will be discussed in detail in the second part of this work. On the other hand, a focus will be placed on the problem of proposing hyperlinks to improve the quality of rapid written texts, at first glance, an entirely different problem to predicting client requests. Ultra-modern online authoring systems that provide possibilities to check link-consistencies and administrate link management should also propose links in order to improve the usefulness of the produced HTML-documents. In the third part of this elaboration, we will describe a possibility to build a hyperlink-proposal module based on statistical information retrieval from hypertexts. These two problem categories do not seem to have much in common. It is one aim of this work to show that there are certain, similar solution strategies to look after both problems. A closer comparison and an abstraction of both methodologies will lead to interesting synergetic effects. For example, advanced strategies to foresee future user-requests by modeling time and document aging can be used to improve the quality of hyperlink-proposals too.

This work is concerned with two kinds of objects: regular expressions and finite automata. These formalisms describe regular languages, i.e., sets of strings that share a comparatively simple structure. Such languages--- and, in turn, expressions and automata --- are used in the description of textual patterns, workflow and dependence modeling, or formal verification. Testing words for membership in any given such language can be implemented using a fixed --- i.e., finite --- amount of memory, which is conveyed by the phrasing finite''automaton. In this aspect they differ from more general classes, which require potentially unbound memory, but have the potential to model less regular, i.e., more involved, objects. Other than expressions and automata, there are several further formalisms to describe regular languages. These formalisms are all equivalent and conversions among them are well-known.However, expressions and automata are arguably the notions which are used most frequently: regular expressions come natural to humans in order to express patterns, while finite automata translate immediately to efficient data structures. This raises the interest in methods to translate among the two notions efficiently. In particular,the direction from expressions to automata, or from human input to machine representation, is of great practical relevance. Probably the most frequent application that involves regular expressions and finite automata is pattern matching in static text and streaming data. Common tools to locate instances of a pattern in a text are the grep application or its (many) derivatives, as well as awk, sed and lex. Notice that these programs accept slightly more general patterns, namely ''POSIX expressions''. Concerning streaming data, regular expressions are nowadays used to specify filter rules in routing hardware.These applications have in common that an input pattern is specified in form a regular expression while the execution applies a regular automaton. As it turns out, the effort that is necessary to describe a regular language, i.e., the size of the descriptor,varies with the chosen representation. For example, in the case of regular expressions and finite automata, it is rather easy to see that any regular expression can be converted to a finite automaton whose size is linear in that of the expression. For the converse direction, however, it is known that there are regular languages for which the size of the smallest describing expression is exponential in the size of the smallest describing automaton.This brings us to the subject at the core of the present work: we investigate conversions between expressions and automata and take a closer look at the properties that exert an influence on the relative sizes of these objects.We refer to the aspects involved with these consideration under the titular term of Relative Descriptional Complexity.