Refine
Year of publication
- 2019 (84) (remove)
Document Type
- Contribution to a Periodical (28)
- Doctoral Thesis (25)
- Article (11)
- Working Paper (7)
- Part of Periodical (5)
- Book (4)
- Part of a Book (1)
- Conference Proceedings (1)
- Course Material (1)
- Habilitation (1)
Keywords
- Schüler (25)
- Deutschland (19)
- Luxemburg (19)
- Leistungsbewertung (17)
- Rückmeldung (17)
- Unterricht (17)
- Mitbestimmung (16)
- Schülerpartizipation (16)
- Unterrichtsgestaltung (16)
- Schule (10)
Institute
- Politikwissenschaft (27)
- Fachbereich 4 (13)
- Fachbereich 3 (9)
- Fachbereich 1 (7)
- Raum- und Umweltwissenschaften (6)
- Fachbereich 6 (4)
- Fachbereich 2 (2)
- Fachbereich 5 (1)
- Mathematik (1)
- Servicezentrum eSciences (1)
Participer à l’enseignement dès le plus jeune âge – est-ce possible ? Les discussions et les processus de négociation et de décision ne nécessitent-ils pas une certaine maturité dont les enfants de trois ans ne disposent pas encore ? L’équipe mateneen s’est fait une idée du travail avec des enfants préscolaires et a constaté : que c’était tout à fait possible !
Auch in Sekundarschulen bietet der Klassenrat den Schüler*innen Raum, um ihre Anliegen zu artikulieren und in einem demokratischen Prozess Verbesserungspotenziale für die Klasse und Schule auszuloten. Die vorliegenden Materialien helfen dabei, die Sitzungen eigenverantwortlich vorzubereiten und durchzuführen.
An Grundschulen bietet der Klassenrat eine Möglichkeit für Schüler*innen, erste Schritte demokratischen Umgangs zu erlernen oder auch zu vertiefen. Hier lernen sie in einem geschützten Raum sich zu verschiedensten Themen zu äußern, Konflikte lösungsorientiert zu verarbeiten und Verantwortung zu übernehmen. Die hier vorgestellten Materialien sollen bei der Einführung und Durchführung des Klassenrats helfen.
Die Partizipationskompetenz von Schülerinnen und Schülern sollte nicht nur durch eine Beteiligung an der formalen Gestaltung und Bewertung des Unterrichts gefördert werden. Vielmehr bietet eine entsprechende Aufgabenkultur vielfältige Möglichkeiten, demokratische Partizipation durch simulatives oder reales Handeln im fachlichen Lernen zu üben und zu reflektieren.
L’enseignement participatif, qui ne se résume pas à une participation vécue ponctuellement, comme l’écrit Charlotte Keuler dans l’article principal de ce carnet, est devenu indispensable à plusieurs égards en raison des défis auxquels nous confronte notre monde globalisé. La capacité à communiquer, les compétences interculturelles, la gestion des connaissances et d’autres « soft skills » sont les compétences clés du 21e siècle.
The World's second oldest system of judicial review of national legislation emerged through court practice from the very first years after the adoption of the Constitution of Norway in 1814. The review is exercised by the ordinary courts at all levels with the single Supreme Court as the last instance. No specialized constitutional court has been established. The independence of the judiciary is generally recognized as high. But what degree of legitimacy should judges appointed in order to ensure ordinary judicial business enjoy when exercising a basically political function like reviewing and possibly setting aside acts of Parliament?
In this thesis, we consider the solution of high-dimensional optimization problems with an underlying low-rank tensor structure. Due to the exponentially increasing computational complexity in the number of dimensions—the so-called curse of dimensionality—they present a considerable computational challenge and become infeasible even for moderate problem sizes.
Multilinear algebra and tensor numerical methods have a wide range of applications in the fields of data science and scientific computing. Due to the typically large problem sizes in practical settings, efficient methods, which exploit low-rank structures, are essential. In this thesis, we consider an application each in both of these fields.
Tensor completion, or imputation of unknown values in partially known multiway data is an important problem, which appears in statistics, mathematical imaging science and data science. Under the assumption of redundancy in the underlying data, this is a well-defined problem and methods of mathematical optimization can be applied to it.
Due to the fact that tensors of fixed rank form a Riemannian submanifold of the ambient high-dimensional tensor space, Riemannian optimization is a natural framework for these problems, which is both mathematically rigorous and computationally efficient.
We present a novel Riemannian trust-region scheme, which compares favourably with the state of the art on selected application cases and outperforms known methods on some test problems.
Optimization problems governed by partial differential equations form an area of scientific computing which has applications in a variety of areas, ranging from physics to financial mathematics. Due to the inherent high dimensionality of optimization problems arising from discretized differential equations, these problems present computational challenges, especially in the case of three or more dimensions. An even more challenging class of optimization problems has operators of integral instead of differential type in the constraint. These operators are nonlocal, and therefore lead to large, dense discrete systems of equations. We present a novel solution method, based on separation of spatial dimensions and provably low-rank approximation of the nonlocal operator. Our approach allows the solution of multidimensional problems with a complexity which is only slightly larger than linear in the univariate grid size; this improves the state of the art for a particular test problem problem by at least two orders of magnitude.
Nonlocal operators are used in a wide variety of models and applications due to many natural phenomena being driven by nonlocal dynamics. Nonlocal operators are integral operators allowing for interactions between two distinct points in space. The nonlocal models investigated in this thesis involve kernels that are assumed to have a finite range of nonlocal interactions. Kernels of this type are used in nonlocal elasticity and convection-diffusion models as well as finance and image analysis. Also within the mathematical theory they arouse great interest, as they are asymptotically related to fractional and classical differential equations.
The results in this thesis can be grouped according to the following three aspects: modeling and analysis, discretization and optimization.
Mathematical models demonstrate their true usefulness when put into numerical practice. For computational purposes, it is important that the support of the kernel is clearly determined. Therefore nonlocal interactions are typically assumed to occur within an Euclidean ball of finite radius. In this thesis we consider more general interaction sets including norm induced balls as special cases and extend established results about well-posedness and asymptotic limits.
The discretization of integral equations is a challenging endeavor. Especially kernels which are truncated by Euclidean balls require carefully designed quadrature rules for the implementation of efficient finite element codes. In this thesis we investigate the computational benefits of polyhedral interaction sets as well as geometrically approximated interaction sets. In addition to that we outline the computational advantages of sufficiently structured problem settings.
Shape optimization methods have been proven useful for identifying interfaces in models governed by partial differential equations. Here we consider a class of shape optimization problems constrained by nonlocal equations which involve interface-dependent kernels. We derive the shape derivative associated to the nonlocal system model and solve the problem by established numerical techniques.