Refine
Year of publication
- 2019 (84) (remove)
Document Type
- Contribution to a Periodical (28)
- Doctoral Thesis (25)
- Article (11)
- Working Paper (7)
- Part of Periodical (5)
- Book (4)
- Part of a Book (1)
- Conference Proceedings (1)
- Course Material (1)
- Habilitation (1)
Keywords
- Schüler (25)
- Deutschland (19)
- Luxemburg (19)
- Leistungsbewertung (17)
- Rückmeldung (17)
- Unterricht (17)
- Mitbestimmung (16)
- Schülerpartizipation (16)
- Unterrichtsgestaltung (16)
- Schule (10)
Institute
- Politikwissenschaft (27)
- Fachbereich 4 (13)
- Fachbereich 3 (9)
- Fachbereich 1 (7)
- Raum- und Umweltwissenschaften (6)
- Fachbereich 6 (4)
- Fachbereich 2 (2)
- Fachbereich 5 (1)
- Mathematik (1)
- Servicezentrum eSciences (1)
This thesis sheds light on the heterogeneous hedging behavior of airlines. The focus lies on financial hedging, operational hedging and selective hedging. The unbalanced panel data set includes 74 airlines from 39 countries. The period of analysis is 2005 until 2014, resulting in 621 firm years. The random effects probit and fixed effects OLS models provide strong evidence of a convex relation between derivative usage and a firm’s leverage, opposing the existing financial distress theory. Airlines with lower leverage had higher hedge ratios. In addition, the results show that airlines with interest rate and currency derivatives were more likely to engage in fuel price hedging. Moreover, the study results support the argument that operational hedging is a complement to financial hedging. Airlines with more heterogeneous fleet structures exhibited higher hedge ratios.
Also, airlines which were members of a strategic alliance were more likely to be hedging airlines. As alliance airlines are rather financially sound airlines, the positive relation between alliance membership and hedging reflects the negative results on the leverage
ratio. Lastly, the study presents determinants of an airlines’ selective hedging behavior. Airlines with prior-period derivative losses, recognized in income, changed their hedge portfolios more frequently. Moreover, the sample airlines acted in accordance with herd behavior theory. Changes in the regional hedge portfolios influenced the hedge portfolio of the individual airline in the same direction.
The World's second oldest system of judicial review of national legislation emerged through court practice from the very first years after the adoption of the Constitution of Norway in 1814. The review is exercised by the ordinary courts at all levels with the single Supreme Court as the last instance. No specialized constitutional court has been established. The independence of the judiciary is generally recognized as high. But what degree of legitimacy should judges appointed in order to ensure ordinary judicial business enjoy when exercising a basically political function like reviewing and possibly setting aside acts of Parliament?
Systemische Resilienz
(2019)
Entrepreneurial ventures are associated with economic growth, job creation, and innovation. Most entrepreneurial ventures need external funding to succeed. However, they often find it difficult to access traditional forms of financing, such as bank loans. To overcome this hurdle and to provide entrepreneurial ventures with badly-needed external capital, many types of entrepreneurial finance have emerged over the past decades and continue to emerge today. Inspired by these dynamics, this postdoctoral thesis contains five empirical studies that address novel questions regarding established (e.g., venture capital, business angels) and new types of entrepreneurial finance (i.e., initial coin offerings).
With two-thirds to three-quarters of all companies, family firms are the most common firm type worldwide and employ around 60 percent of all employees, making them of considerable importance for almost all economies. Despite this high practical relevance, academic research took notice of family firms as intriguing research subjects comparatively late. However, the field of family business research has grown eminently over the past two decades and has established itself as a mature research field with a broad thematic scope. In addition to questions relating to corporate governance, family firm succession and the consideration of entrepreneurial families themselves, researchers mainly focused on the impact of family involvement in firms on their financial performance and firm strategy. This dissertation examines the financial performance and capital structure of family firms in various meta-analytical studies. Meta-analysis is a suitable method for summarizing existing empirical findings of a research field as well as identifying relevant moderators of a relationship of interest.
First, the dissertation examines the question whether family firms show better financial performance than non-family firms. A replication and extension of the study by O’Boyle et al. (2012) based on 1,095 primary studies reveals a slightly better performance of family firms compared to non-family firms. Investigating the moderating impact of methodological choices in primary studies, the results show that outperformance holds mainly for large and publicly listed firms and with regard to accounting-based performance measures. Concerning country culture, family firms show better performance in individualistic countries and countries with a low power distance.
Furthermore, this dissertation investigates the sensitivity of family firm performance with regard to business cycle fluctuations. Family firms show a pro-cyclical performance pattern, i.e. their relative financial performance compared to non-family firms is better in economically good times. This effect is particularly pronounced in Anglo-American countries and emerging markets.
In the next step, a meta-analytic structural equation model (MASEM) is used to examine the market valuation of public family firms. In this model, profitability and firm strategic choices are used as mediators. On the one hand, family firm status itself does not have an impact on firms‘ market value. On the other hand, this study finds a positive indirect effect via higher profitability levels and a negative indirect effect via lower R&D intensity. A split consideration of family ownership and management shows that these two effects are mainly driven by family ownership, while family management results in less diversification and internationalization.
Finally, the dissertation examines the capital structure of public family firms. Univariate meta-analyses indicate on average lower leverage ratios in family firms compared to non-family firms. However, there is significant heterogeneity in mean effect sizes across the 45 countries included in the study. The results of a meta-regression reveal that family firms use leverage strategically to secure their controlling position in the firm. While strong creditor protection leads to lower leverage ratios in family firms, strong shareholder protection has the opposite effect.
Die vorgelegte Dissertation trägt den Titel Regularization Methods for Statistical Modelling in Small Area Estimation. In ihr wird die Verwendung regularisierter Regressionstechniken zur geographisch oder kontextuell hochauflösenden Schätzung aggregatspezifischer Kennzahlen auf Basis kleiner Stichproben studiert. Letzteres wird in der Fachliteratur häufig unter dem Begriff Small Area Estimation betrachtet. Der Kern der Arbeit besteht darin die Effekte von regularisierter Parameterschätzung in Regressionsmodellen, welche gängiger Weise für Small Area Estimation verwendet werden, zu analysieren. Dabei erfolgt die Analyse primär auf theoretischer Ebene, indem die statistischen Eigenschaften dieser Schätzverfahren mathematisch charakterisiert und bewiesen werden. Darüber hinaus werden die Ergebnisse durch numerische Simulationen veranschaulicht, und vor dem Hintergrund empirischer Anwendungen kritisch verortet. Die Dissertation ist in drei Bereiche gegliedert. Jeder Bereich behandelt ein individuelles methodisches Problem im Kontext von Small Area Estimation, welches durch die Verwendung regularisierter Schätzverfahren gelöst werden kann. Im Folgenden wird jedes Problem kurz vorgestellt und im Zuge dessen der Nutzen von Regularisierung erläutert.
Das erste Problem ist Small Area Estimation in der Gegenwart unbeobachteter Messfehler. In Regressionsmodellen werden typischerweise endogene Variablen auf Basis statistisch verwandter exogener Variablen beschrieben. Für eine solche Beschreibung wird ein funktionaler Zusammenhang zwischen den Variablen postuliert, welcher durch ein Set von Modellparametern charakterisiert ist. Dieses Set muss auf Basis von beobachteten Realisationen der jeweiligen Variablen geschätzt werden. Sind die Beobachtungen jedoch durch Messfehler verfälscht, dann liefert der Schätzprozess verzerrte Ergebnisse. Wird anschließend Small Area Estimation betrieben, so sind die geschätzten Kennzahlen nicht verlässlich. In der Fachliteratur existieren hierfür methodische Anpassungen, welche in der Regel aber restriktive Annahmen hinsichtlich der Messfehlerverteilung benötigen. Im Rahmen der Dissertation wird bewiesen, dass Regularisierung in diesem Kontext einer gegen Messfehler robusten Schätzung entspricht - und zwar ungeachtet der Messfehlerverteilung. Diese Äquivalenz wird anschließend verwendet, um robuste Varianten bekannter Small Area Modelle herzuleiten. Für jedes Modell wird ein Algorithmus zur robusten Parameterschätzung konstruiert. Darüber hinaus wird ein neuer Ansatz entwickelt, welcher die Unsicherheit von Small Area Schätzwerten in der Gegenwart unbeobachteter Messfehler quantifiziert. Es wird zusätzlich gezeigt, dass diese Form der robusten Schätzung die wünschenswerte Eigenschaft der statistischen Konsistenz aufweist.
Das zweite Problem ist Small Area Estimation anhand von Datensätzen, welche Hilfsvariablen mit unterschiedlicher Auflösung enthalten. Regressionsmodelle für Small Area Estimation werden normalerweise entweder für personenbezogene Beobachtungen (Unit-Level), oder für aggregatsbezogene Beobachtungen (Area-Level) spezifiziert. Doch vor dem Hintergrund der stetig wachsenden Datenverfügbarkeit gibt es immer häufiger Situationen, in welchen Daten auf beiden Ebenen vorliegen. Dies beinhaltet ein großes Potenzial für Small Area Estimation, da somit neue Multi-Level Modelle mit großem Erklärungsgehalt konstruiert werden können. Allerdings ist die Verbindung der Ebenen aus methodischer Sicht kompliziert. Zentrale Schritte des Inferenzschlusses, wie etwa Variablenselektion und Parameterschätzung, müssen auf beiden Levels gleichzeitig durchgeführt werden. Hierfür existieren in der Fachliteratur kaum allgemein anwendbare Methoden. In der Dissertation wird gezeigt, dass die Verwendung ebenenspezifischer Regularisierungsterme in der Modellierung diese Probleme löst. Es wird ein neuer Algorithmus für stochastischen Gradientenabstieg zur Parameterschätzung entwickelt, welcher die Informationen von allen Ebenen effizient unter adaptiver Regularisierung nutzt. Darüber hinaus werden parametrische Verfahren zur Abschätzung der Unsicherheit für Schätzwerte vorgestellt, welche durch dieses Verfahren erzeugt wurden. Daran anknüpfend wird bewiesen, dass der entwickelte Ansatz bei adäquatem Regularisierungsterm sowohl in der Schätzung als auch in der Variablenselektion konsistent ist.
Das dritte Problem ist Small Area Estimation von Anteilswerten unter starken verteilungsbezogenen Abhängigkeiten innerhalb der Kovariaten. Solche Abhängigkeiten liegen vor, wenn eine exogene Variable durch eine lineare Transformation einer anderen exogenen Variablen darstellbar ist (Multikollinearität). In der Fachliteratur werden hierunter aber auch Situationen verstanden, in welchen mehrere Kovariate stark korreliert sind (Quasi-Multikollinearität). Wird auf einer solchen Datenbasis ein Regressionsmodell spezifiziert, dann können die individuellen Beiträge der exogenen Variablen zur funktionalen Beschreibung der endogenen Variablen nicht identifiziert werden. Die Parameterschätzung ist demnach mit großer Unsicherheit verbunden und resultierende Small Area Schätzwerte sind ungenau. Der Effekt ist besonders stark, wenn die zu modellierende Größe nicht-linear ist, wie etwa ein Anteilswert. Dies rührt daher, dass die zugrundeliegende Likelihood-Funktion nicht mehr geschlossen darstellbar ist und approximiert werden muss. Im Rahmen der Dissertation wird gezeigt, dass die Verwendung einer L2-Regularisierung den Schätzprozess in diesem Kontext signifikant stabilisiert. Am Beispiel von zwei nicht-linearen Small Area Modellen wird ein neuer Algorithmus entwickelt, welche den bereits bekannten Quasi-Likelihood Ansatz (basierend auf der Laplace-Approximation) durch Regularisierung erweitert und verbessert. Zusätzlich werden parametrische Verfahren zur Unsicherheitsmessung für auf diese Weise erhaltene Schätzwerte beschrieben.
Vor dem Hintergrund der theoretischen und numerischen Ergebnisse wird in der Dissertation demonstriert, dass Regularisierungsmethoden eine wertvolle Ergänzung der Fachliteratur für Small Area Estimation darstellen. Die hier entwickelten Verfahren sind robust und vielseitig einsetzbar, was sie zu hilfreichen Werkzeugen der empirischen Datenanalyse macht.
Hypothalamic-pituitary-adrenal (HPA) axis-related genetic variants influence the stress response
(2019)
The physiological stress system includes the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic-adrenal-medullary system (SAM). Parameters representing these systems such as cortisol, blood pressure or heart rate define the physiological reaction in response to a stressor. The main objective of the studies described in this thesis was to understand the role of the HPA-related genetic factors in these two systems. Genetic factors represent one of the components causing individual variations in physiological stress parameters. Five genes involved in the functioning of the HPA axis regarding stress responses are examined in this thesis. They are: corticotropin-releasing hormone (CRH), the glucocorticoid receptor (GR), the mineralocorticoid receptor (MR), the 5-hydroxytryptamine-transporter-linked polymorphic region (5-HTTLPR) in the serotonin transporter (5-HTT) and the brain-derived neurotrophic factor (BDNF) gene. Two hundred thirty-two healthy participants were genotyped. The influence of genetic factors on physiological parameters, such as post-awakening cortisol and blood pressure was assessed, as well as the influence of genetic factors on stress reactivity in response to a socially evaluated cold pressor test (SeCPT). Three studies tested the HPA-related genes each on three different levels. The first study examined the influences of genotypes and haplotypes of these five genes on physiological as well as psychological stress indicators (Chapter 2). The second study examined the effects of GR variants (genotypes and haplotypes) and promoter methylation level on both the SAM system and the HPA axis stress reactivity (Chapter 3). The third study comprised the characterization of CRH promoter haplotypes in an in-vitro study and the association of the CRH promoter with stress indicators in vivo (Chapter 4).
In order to investigate the psychobiological consequences of acute stress under laboratory conditions, a wide range of methods for socially evaluative stress induction have been developed. The present dissertation is concerned with evaluating a virtual reality (VR)-based adaptation of one of the most widely used of those methods, the Trier Social Stress Test (TSST). In the three empirical studies collected in this dissertation, we aimed to examine the efficacy and possible areas of application of the adaptation of this well-established psychosocial stressor in a virtual environment. We found that the TSST-VR reliably incites the activation of the major stress effector systems in the human body, albeit in a slightly less pronounced way than the original paradigm. Moreover, the experience of presence is discussed as one potential factor of influence in the origin of the psychophysiological stress response. Lastly, we present a use scenario for the TSST-VR in which we employed the method to investigate the effects of acute stress on emotion recognition performance. We conclude that, due to its advantages concerning versatility, standardization and economic administration, the paradigm harbors enormous potential not only for psychobiological research, but other applications such as clinical practice as well. Future studies should further explore the underlying effect mechanisms of stress in the virtual realm and the implementation of VR-based paradigms in different fields of application.
Entrepreneurship has become an essential phenomenon all over the world because it is a major driving force behind the economic growth and development of a country. It is widely accepted that entrepreneurship development in a country creates new jobs, pro-motes healthy competition through innovation, and benefits the social well being of individuals and societies. The policymakers in both developed and developing countries focus on entrepreneurship because it helps to alleviate impediments to economic development and social welfare. Therefore, policymakers and academic researchers consider the promotion of entrepreneurship as essential for the economy and research-based support is needed for further development of entrepreneurship activities.
The impact of entrepreneurial activities on economic and social development also varies from country to country. The effect of entrepreneurial activities on economic and social development also varies from country to country because the level of entrepreneur-ship activities also varies from one region to another or one country to another. To under-stand these variations, policymakers have investigated the determinants of entrepreneur-ship at different levels, such as the individual, industry, and country levels. Moreover, entrepreneurship behavior is influenced by various personal and environmental level factors. However, these personal-level factors cannot be separated from the surrounding environment.
The link between religion and entrepreneurship is well established and can be traced back to Weber (1930). Researchers have analyzed the relationship between religion and entrepreneurship from various perspectives, and the research related to religion and entrepreneurship is diversified and scattered across disciplines. This dissertation tries to explain the link between religion and entrepreneurship, specifically Islamic religion and entrepreneurship. Technically this dissertation comprises three parts. The first part of this dissertation consists of two chapters that discuss the definition and theories of entrepreneurship (Chapter 2) and the theoretical relationship between religion and entrepreneur-ship (Chapter 3).
The second part of this dissertation (Chapter 4) provides an overview of the field with a purpose to gain a better understanding of the field’s current state of knowledge to bridge the different views and perspectives. In order to provide an overview of the field, a systematic literature search leading to a descriptive overview of the field based on 270 articles published in 163 journals Subsequently, bibliometric methods are used to identify thematic clusters, the most influential authors and articles, and how they are connected.
The third part of this dissertation (Chapter 5) empirically evaluates the influence of Islamic values and Islamic religious practices on entrepreneurship intentions within the Islamic community. Using the theory of planned behavior as a theoretical lens, we also take into account that the relationship between religion and entrepreneurial intentions can be mediated by individual’s attitude towards entrepreneurship. A self-administrative questionnaire was used to collect the responses from a sample of 1895 Pakistani university students. A structured equation modeling was adopted to perform a nuanced assessment of the relationship between Islamic values and practices and entrepreneurship intentions and to account for mediating effect of attitude towards entrepreneurship.
The research on religion and entrepreneurship has increased sharply during the last years and is scattered across various academic disciplines and fields. The analysis identifies and characterize the most important publications, journals, and authors in the area and map the analyzed religions and regions. The comprehensive overview of previous studies allows us to identify research gaps and derive avenues for future research in a substantiated way. Moreover, this dissertation helps the research scholars to understand the field in its entirety, identify relevant articles, and to uncover parallels and differences across religions and regions. Besides, the study reveals a lack of empirical research related to specific religions and specific regions. Therefore, scholars can take these regions and religions into consideration when conducting empirical research.
Furthermore, the empirical analysis about the influence of Islamic religious values and Islamic religious practices show that Islamic values served as a guiding principle in shaping people’s attitudes towards entrepreneurship in an Islamic community; they had an indirect influence on entrepreneurship intention through attitude. Similarly, the relationship between Islamic religious practices and the entrepreneurship intentions of students was fully mediated by the attitude towards entrepreneurship. Furthermore, this dissertation contributes to prior research on entrepreneurship in Islamic communities by applying a more fine-grained approach to capture the link between religion and entrepreneurship. Moreover, it contributes to the literature on entrepreneurship intentions by showing that the influence of religion on entrepreneurship intentions is mainly due to religious values and practices, which shape the attitude towards entrepreneurship and thereby influence entrepreneurship intentions in religious communities. The entrepreneur-ship research has put a higher emphasis on assessing the influence of a diverse set of con-textual factors. This dissertation introduces Islamic values and Islamic religious practices as critical contextual factors that shape entrepreneurship in countries that are characterized by the Islamic religion.
This dissertation investigates corporate acquisition decisions that represent important corporate development activities for family and non-family firms. The main research objective of this dissertation is to generate insights into the subjective decision-making behavior of corporate decision-makers from family and non-family firms and their weighting of M&A decision-criteria during the early pre-acquisition target screening and selection process. The main methodology chosen for the investigation of M&A decision-making preferences and the weighting of M&A decision criteria is a choice-based conjoint analysis. The overall sample of this dissertation consists of 304 decision-makers from 264 private and public family and non-family firms from mainly Germany and the DACH-region. In the first empirical part of the dissertation, the relative importance of strategic, organizational and financial M&A decision-criteria for corporate acquirers in acquisition target screening is investigated. In addition, the author uses a cluster analysis to explore whether distinct decision-making patterns exist in acquisition target screening. In the second empirical part, the dissertation explores whether there are differences in investment preferences in acquisition target screening between family and non-family firms and within the group of family firms. With regards to the heterogeneity of family firms, the dissertation generated insights into how family-firm specific characteristics like family management, the generational stage of the firm and non-economic goals such as transgenerational control intention influences the weighting of different M&A decision criteria in acquisition target screening. The dissertation contributes to strategic management research, in specific to M&A literature, and to family business research. The results of this dissertation generate insights into the weighting of M&A decision-making criteria and facilitate a better understanding of corporate M&A decisions in family and non-family firms. The findings show that decision-making preferences (hence the weighting of M&A decision criteria) are influenced by characteristics of the individual decision-maker, the firm and the environment in which the firm operates.