In order to discuss potential sustainability issues of expanding silage maize cultivation in Rhineland-Palatinate, spatially explicit monitoring is necessary. Publicly available statistical records are often not a sufficient basis for extensive research, especially on soil health, where risk factors like erosion and compaction depend on variables that are specific to every site, and hard to generalize for larger administrative aggregates. The focus of this study is to apply established classification algorithms to estimate maize abundance for each independent pixel, while at the same time accounting for their spatial relationship. Therefore, two ways to incorporate spatial autocorrelation of neighboring pixels are combined with three different classification models. The performance of each of these modeling approaches is analyzed and discussed. Finally, one prediction approach is applied to the imagery, and the overall predicted acreage is compared to publicly available data. We were able to show that Support Vector Machine (SVM) classification and Random Forests (RF) were able to distinguish maize pixels reliably, with kappa values well above 0.9 in most cases. The Generalized Linear Model (GLM) performed substantially worse. Furthermore, Regression Kriging (RK) as an approach to integrate spatial autocorrelation into the prediction model is not suitable in use cases with millions of sparsely clustered training pixels. Gaussian Blur is able to improve predictions slightly in these cases, but it is possible that this is only because it smoothes out impurities of the reference data. The overall prediction with RF classification combined with Gaussian Blur performed well, with out of bag error rates of 0.5% in 2009 and 1.3% in 2016. Despite the low error rates, there is a discrepancy between the predicted acreage and the official records, which is 20% in 2009 and 27% in 2016.
It is generally assumed that the temperature increase associated with global climate change will lead to increased thunderstorm intensity and associated heavy precipitation events. In the present study it is investigated whether the frequency of thunderstorm occurrences will in- or decrease and how the spatial distribution will change for the A1B scenario. The region of interest is Central Europe with a special focus on the Saar-Lor-Lux region (Saarland, Lorraine, Luxembourg) and Rhineland-Palatinate.Daily model data of the COSMO-CLM with a horizontal resolution of 4.5 km is used. The simulations were carried out for two different time slices: 1971"2000 (C20), and 2071"2100 (A1B). Thunderstorm indices are applied to detect thunderstorm-prone conditions and differences in their frequency of occurrence in the two thirty years timespans. The indices used are CAPE (Convective Available Potential Energy), SLI (Surface Lifted Index), and TSP (Thunderstorm Severity Potential).The investigation of the present and future thunderstorm conducive conditions show a significant increase of non-thunderstorm conditions. The regional averaged thunderstorm frequencies will decrease in general, but only in the Alps a potential increase in thunderstorm occurrences and intensity is found. The comparison between time slices of 10 and 30 years length show that the number of gridpoints with significant signals increases only slightly. In order to get a robust signal for severe thunderstorm, an extension to more than 75 years would be necessary.