### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (61)
- Habilitation (2)

#### Keywords

- Optimierung (7)
- Approximationstheorie (6)
- Funktionentheorie (6)
- Partielle Differentialgleichung (6)
- Universalität (6)
- Approximation (5)
- Funktionalanalysis (5)
- universal functions (5)
- Numerische Strömungssimulation (4)
- Optimale Kontrolle (4)

#### Institute

- Mathematik (63) (remove)

The subject of this thesis is a homological approach to the splitting theory of PLS-spaces, i.e. to the question for which topologically exact short sequences 0->X->Y->Z->0 of PLS-spaces X,Y,Z the right-hand map admits a right inverse. We show that the category (PLS) of PLS-spaces and continuous linear maps is an additive category in which every morphism admits a kernel and a cokernel, i.e. it is pre-abelian. However, we also show that it is neither quasi-abelian nor semi-abelian. As a foundation for our homological constructions we show the more general result that every pre-abelian category admits a largest exact structure in the sense of Quillen. In the pre-abelian category (PLS) this exact structure consists precisely of the topologically exact short sequences of PLS-spaces. Using a construction of Ext-functors due to Yoneda, we show that one can define for each PLS-space A and every natural number k the k-th abelian-group valued covariant and contravariant Ext-functors acting on the category (PLS) of PLS-spaces, which induce for every topologically exact short sequence of PLS-spaces a long exact sequence of abelian groups and group morphisms. These functors are studied in detail and we establish a connection between the Ext-functors of PLS-spaces and the Ext-functors for LS-spaces. Through this connection we arrive at an analogue of a result for Fréchet spaces which connects the first derived functor of the projective limit with the first Ext-functor and also gives sufficient conditions for the vanishing of the higher Ext-functors. Finally, we show that Ext^k(E,F) = 0 for a k greater or equal than 1, whenever E is a closed subspace and F is a Hausdorff-quotient of the space of distributions, which generalizes a result of Wengenroth that is itself a generalization of results due to Domanski and Vogt.

The goal of this thesis is to transfer the logarithmic barrier approach, which led to very efficient interior-point methods for convex optimization problems in recent years, to convex semi-infinite programming problems. Based on a reformulation of the constraints into a nondifferentiable form this can be directly done for convex semi- infinite programming problems with nonempty compact sets of optimal solutions. But, by means of an involved max-term this reformulation leads to nondifferentiable barrier problems which can be solved with an extension of a bundle method of Kiwiel. This extension allows to deal with inexact objective values and subgradient information which occur due to the inexact evaluation of the maxima. Nevertheless we are able to prove similar convergence results as for the logarithmic barrier approach in the finite optimization. In the further course of the thesis the logarithmic barrier approach is coupled with the proximal point regularization technique in order to solve ill-posed convex semi-infinite programming problems too. Moreover this coupled algorithm generates sequences converging to an optimal solution of the given semi-infinite problem whereas the pure logarithmic barrier only produces sequences whose accumulation points are such optimal solutions. If there are certain additional conditions fulfilled we are further able to prove convergence rate results up to linear convergence of the iterates. Finally, besides hints for the implementation of the methods we present numerous numerical results for model examples as well as applications in finance and digital filter design.

A matrix A is called completely positive if there exists an entrywise nonnegative matrix B such that A = BB^T. These matrices can be used to obtain convex reformulations of for example nonconvex quadratic or combinatorial problems. One of the main problems with completely positive matrices is checking whether a given matrix is completely positive. This is known to be NP-hard in general. rnrnFor a given matrix completely positive matrix A, it is nontrivial to find a cp-factorization A=BB^T with nonnegative B since this factorization would provide a certificate for the matrix to be completely positive. But this factorization is not only important for the membership to the completely positive cone, it can also be used to recover the solution of the underlying quadratic or combinatorial problem.rnrnIn addition, it is not a priori known how many columns are necessary to generate a cp-factorization for the given matrix. The minimal possible number of columns is called the cp-rank of A and so far it is still an open question how to derive the cp-rank for a given matrix. Some facts on completely positive matrices and the cp-rank will be given in Chapter 2.rnrnMoreover, in Chapter 6, we will see a factorization algorithm, which, for a given completely positive matrix A and a suitable starting point, computes the nonnegative factorization A=BB^T. The algorithm therefore returns a certificate for the matrix to be completely positive. As introduced in Chapter 3, the fundamental idea of the factorization algorithm is to start from an initial square factorization which is not necessarily entrywise nonnegative, and extend this factorization to a matrix for which the number of columns is greater than or equal to the cp-rank of A. Then it is the goal to transform this generated factorization into a cp-factorization.rnrnThis problem can be formulated as a nonconvex feasibility problem, as shown in Section 4.1, and solved by a method which is based on alternating projections, as proven in Chapter 6.rnrnOn the topic of alternating projections, a survey will be given in Chapter 5. Here we will see how to apply this technique to several types of sets like subspaces, convex sets, manifolds and semialgebraic sets. Furthermore, we will see some known facts on the convergence rate for alternating projections between these types of sets. Considering more than two sets yields the so called cyclic projections approach. Here some known facts for subspaces and convex sets will be shown. Moreover, we will see a new convergence result on cyclic projections among a sequence of manifolds in Section 5.4.rnrnIn the context of cp-factorizations, a local convergence result for the introduced algorithm will be given. This result is based on the known convergence for alternating projections between semialgebraic sets.rnrnTo obtain cp-facrorizations with this first method, it is necessary to solve a second order cone problem in every projection step, which is very costly. Therefore, in Section 6.2, we will see an additional heuristic extension, which improves the numerical performance of the algorithm. Extensive numerical tests in Chapter 7 will show that the factorization method is very fast in most instances. In addition, we will see how to derive a certificate for the matrix to be an element of the interior of the completely positive cone.rnrnAs a further application, this method can be extended to find a symmetric nonnegative matrix factorization, where we consider an additional low-rank constraint. Here again, the method to derive factorizations for completely positive matrices can be used, albeit with some further adjustments, introduced in Section 8.1. Moreover, we will see that even for the general case of deriving a nonnegative matrix factorization for a given rectangular matrix A, the key aspects of the completely positive factorization approach can be used. To this end, it becomes necessary to extend the idea of finding a completely positive factorization such that it can be used for rectangular matrices. This yields an applicable algorithm for nonnegative matrix factorization in Section 8.2.rnNumerical results for this approach will suggest that the presented algorithms and techniques to obtain completely positive matrix factorizations can be extended to general nonnegative factorization problems.

Bei der Preisberechnung von Finanzderivaten bieten sogenannte Jump-diffusion-Modelle mit lokaler Volatilität viele Vorteile. Aus mathematischer Sicht jedoch sind sie sehr aufwendig, da die zugehörigen Modellpreise mittels einer partiellen Integro-Differentialgleichung (PIDG) berechnet werden. Wir beschäftigen uns mit der Kalibrierung der Parameter eines solchen Modells. In einem kleinste-Quadrate-Ansatz werden hierzu Marktpreise von europäischen Standardoptionen mit den Modellpreisen verglichen, was zu einem Problem optimaler Steuerung führt. Ein wesentlicher Teil dieser Arbeit beschäftigt sich mit der Lösung der PIDG aus theoretischer und vor allem aus numerischer Sicht. Die durch ein implizites Zeitdiskretisierungsverfahren entstandenen, dicht besetzten Gleichungssysteme werden mit einem präkonditionierten GMRES-Verfahren gelöst, was zu beinahe linearem Aufwand bezüglich Orts- und Zeitdiskretisierung führt. Trotz dieser effizienten Lösungsmethode sind Funktionsauswertungen der kleinste-Quadrate-Zielfunktion immer noch teuer, so dass im Hauptteil der Arbeit Modelle reduzierter Ordnung basierend auf Proper Orthogonal Decomposition Anwendung finden. Lokale a priori Fehlerabschätzungen für die reduzierte Differentialgleichung sowie für die reduzierte Zielfunktion, kombiniert mit einem Trust-Region-Ansatz zur Globalisierung liefern einen effizienten Algorithmus, der die Rechenzeit deutlich verkürzt. Das Hauptresultat der Arbeit ist ein Konvergenzbeweis für diesen Algorithmus für eine weite Klasse von Optimierungsproblemen, in die auch das betrachtete Kalibrierungsproblem fällt.

Zu den klassischen Verteilungen der mathematischen Statistik zählen die zentralen F- und t-Verteilungen. Die vorliegende Arbeit untersucht Verallgemeinerungen dieser Verteilungen, die sogenannten doppelt nichtzentralen F- und t-Verteilungen, welche in der statistischen Testtheorie von Bedeutung sind. Die Tatsache, dass die zugehörigen Wahrscheinlichkeitsdichten nur in Form von Parameterintegral- bzw. Doppelreihendarstellungen gegeben sind, stellt eine große Herausforderung bei der Untersuchung analytischer Eigenschaften dar. Unter Verwendung von Techniken aus der Theorie der vorzeichenregulären Funktionen gelingt es, die bisher vermutete, jedoch lediglich aus Approximationen abgeleitete, strikt unimodale Gestalt der Dichtefunktion für eine große Klasse doppelt nichtzentraler Verteilungen zu zeigen. Dieses Resultat gestattet die Untersuchung des eindeutig bestimmten Modus als Funktion gewisser Nichtzentralitätsparameter. Hier erweist sich die Theorie der vorzeichenregulären Funktionen als wichtiges Hilfsmittel, um monotone Abhängigkeiten nachzuweisen.

This thesis is divided into three main parts: The description of the calibration problem, the numerical solution of this problem and the connection to optimal stochastic control problems. Fitting model prices to given market prices leads to an abstract least squares formulation as calibration problem. The corresponding option price can be computed by solving a stochastic differential equation via the Monte-Carlo method which seems to be preferred by most practitioners. Due to the fact that the Monte-Carlo method is expensive in terms of computational effort and requires memory, more sophisticated stochastic predictor-corrector schemes are established in this thesis. The numerical advantage of these predictor-corrector schemes ispresented and discussed. The adjoint method is applied to the calibration. The theoretical advantage of the adjoint method is discussed in detail. It is shown that the computational effort of gradient calculation via the adjoint method is independent of the number of calibration parameters. Numerical results confirm the theoretical results and summarize the computational advantage of the adjoint method. Furthermore, provides the connection to optimal stochastic control problems is proven in this thesis.rn

Die Ménage-Polynome (engl.: ménage hit polynomials) ergeben sich in natürlicher Weise aus den in der Kombinatorik auftretenden Ménage-Zahlen. Eine Verbindung zu einer gewissen Klasse hypergeometrischer Polynome führt auf die Untersuchung spezieller Folgen von Polynomen vom Typ 3-F-1. Unter Verwendung einer Modifikation der komplexen Laplace-Methode zur gleichmäßigen asymptotischen Auswertung von Parameterintegralen sowie einiger Hilfsmittel aus der Potentialtheorie der komplexen Ebene werden starke und schwache Asymptotiken für die in Rede stehenden Polynomfolgen hergeleitet.

In the first part of this work we generalize a method of building optimal confidence bounds provided in Buehler (1957) by specializing an exhaustive class of confidence regions inspired by Sterne (1954). The resulting confidence regions, also called Buehlerizations, are valid in general models and depend on a designated statistic'' that can be chosen according to some desired monotonicity behaviour of the confidence region. For a fixed designated statistic, the thus obtained family of confidence regions indexed by their confidence level is nested. Buehlerizations have furthermore the optimality property of being the smallest (w.r.t. set inclusion) confidence regions that are increasing in their designated statistic. The theory is eventually applied to normal, binomial, and exponential samples. The second part deals with the statistical comparison of pairs of diagnostic tests and establishes relations 1. between the sets of lower confidence bounds, 2. between the sets of pairs of comparable lower confidence bounds, and 3. between the sets of admissible lower confidence bounds in various models for diverse parameters of interest.

One of the main tasks in mathematics is to answer the question whether an equation possesses a solution or not. In the 1940- Thom and Glaeser studied a new type of equations that are given by the composition of functions. They raised the following question: For which functions Î¨ does the equation F(Î¨)=f always have a solution. Of course this question only makes sense if the right hand side f satisfies some a priori conditions like being contained in the closure of the space of all compositions with Î¨ and is easy to answer if F and f are continuous functions. Considering further restrictions to these functions, especially to F, extremely complicates the search for an adequate solution. For smooth functions one can already find deep results by Bierstone and Milman which answer the question in the case of a real-analytic function Î¨. This work contains further results for a different class of functions, namely those Î¨ that are smooth and injective. In the case of a function Î¨ of a single real variable, the question can be fully answered and we give three conditions that are both sufficient and necessary in order for the composition equation to always have a solution. Furthermore one can unify these three conditions to show that they are equivalent to the fact that Î¨ has a locally Hölder-continuous inverse. For injective functions Î¨ of several real variables we give necessary conditions for the composition equation to be solvable. For instance Î¨ should satisfy some form of local distance estimate for the partial derivatives. Under the additional assumption of the Whitney-regularity of the image of Î¨, we can give sufficient conditions for flat functions f on the critical set of Î¨ to possess a solution F(Î¨)=f.

In this thesis we focus on the development and investigation of methods for the computation of confluent hypergeometric functions. We point out the relations between these functions and parabolic boundary value problems and demonstrate applications to models of heat transfer and fluid dynamics. For the computation of confluent hypergeometric functions on compact (real or complex) intervals we consider a series expansion based on the Hadamard product of power series. It turnes out that the partial sums of this expansion are easily computable and provide a better rate of convergence in comparison to the partial sums of the Taylor series. Regarding the computational accuracy the problem of cancellation errors is reduced considerably. Another important tool for the computation of confluent hypergeometric functions are recurrence formulae. Although easy to implement, such recurrence relations are numerically unstable e.g. due to rounding errors. In order to circumvent these problems a method for computing recurrence relations in backward direction is applied. Furthermore, asymptotic expansions for large arguments in modulus are considered. From the numerical point of view the determination of the number of terms used for the approximation is a crucial point. As an application we consider initial-boundary value problems with partial differential equations of parabolic type, where we use the method of eigenfunction expansion in order to determine an explicit form of the solution. In this case the arising eigenfunctions depend directly on the geometry of the considered domain. For certain domains with some special geometry the eigenfunctions are of confluent hypergeometric type. Both a conductive heat transfer model and an application in fluid dynamics is considered. Finally, the application of several heat transfer models to certain sterilization processes in food industry is discussed.

In this thesis, we investigate the quantization problem of Gaussian measures on Banach spaces by means of constructive methods. That is, for a random variable X and a natural number N, we are searching for those N elements in the underlying Banach space which give the best approximation to X in the average sense. We particularly focus on centered Gaussians on the space of continuous functions on [0,1] equipped with the supremum-norm, since in that case all known methods failed to achieve the optimal quantization rate for important Gauss-processes. In fact, by means of Spline-approximations and a scheme based on the Best-Approximations in the sense of the Kolmogorov n-width we were able to attain the optimal rate of convergence to zero for these quantization problems. Moreover, we established a new upper bound for the quantization error, which is based on a very simple criterion, the modulus of smoothness of the covariance function. Finally, we explicitly constructed those quantizers numerically.

Die Dissertation mit dem Thema "Cross-Border-Leasing als Instrument der Kommunalfinanzierung " Eine finanzwirtschaftliche Analyse unter besonderer Berücksichtigung der Risiken " befasst sich am Beispiel des primär steuerinduzierten, grenzüberschreitenden Cross-Border-Leasings (CBL) mit einem innovativen, strukturierten Finanzierungsinstrument, das sich im Spannungsfeld von Rechtsstaatlichkeit und privatwirtschaftlichem Management öffentlicher Akteure befindet. Dazu werden bereits finanzierte und sich im Betrieb befindliche Assets in Variationen von langfristigen Leasingverträge eingebracht. Durch die geschickte Ausnutzung steuerlicher Zurechnungskriterien werden unter Einbindung mehrerer Jurisdiktionen Gewinnverschiebungsmöglichkeiten und Steueroptimierungspotenziale geschaffen, wobei die generierten Zusatzerträge unter den Akteuren aufgeteilt werden. Die Untersuchung orientiert sich an einem umfassenden forschungsleitenden Fragenkatalog, der sehr vielschichtig und zudem interdisziplinär die komplexen Aspekte des CBLs theoretisch sowie praktisch an einem Fallbeispiel untersucht. Zunächst erfolgt die Einbettung des CBLs in den kommunalen Hintergrund. Daran schliesst sich eine Darstellung des Untersuchungsgegenstands im Hinblick auf seine elementare Grundstruktur, Zahlungsströme, Vertragsparteien und deren bilateralen Verpflechtungen an. Daneben erfolgt eine Analyse der öffentlich-rechtlichen Implikationen des CBLs sowie der regulatorischen kommunalaufsichtsrechtlichen Anforderungen. Im zentralen empirischen Teil der Dissertation wird eine idealtypische CBL-Transaktion einer bundesdeutschen Metropole als Fallstudie analysiert: im Rahmen einer erstmaligen wissenschaftlichen Analyse einer Orginaldokumentation werden zunächst die strukturellen Rahmenparameter untersucht, um dann den Finanzierungsvorteil der Transaktion zu ermitteln. Eine Klassifikation erfolgt dabei in diejenigen Risken, die sich unmittelbar im Einflussbereich der Kommune befinden und somit direkt, d.h. durch aktives eigenes Handeln, minimiert oder vermieden werden können und in solche, die aus ihrer Sicht extern sind. Abgerundet wird die Risikoanalyse durch eine Abschätzung der maximalen Risikoposition in Form der Schadensersatzzahlungen, die die Kommune in vertraglich vereinbarten Fällen leisten muss. Dabei ermittelt die Verfasserin den Break-Even der Transaktion und setzt Szenarien sowie mathematische Modelle ein, um die inhärenten Risiken aufgrund ihrer Kostenfolgen sorgfältig gegenüber dem vereinnahmten kurzfristigen Vorteil abzuwägen. Die Untersuchung bedient sich dem anerkannten mathematisch-statistischen Value-at-Risk-Verfahren (VaR), das unter Verwendung von Ansätzen der Wahrscheinlichkeitsverteilung das Marktpreisrisiko zu quantifizieren vermag. Um zu validen Ergebnissen zu gelangen, werden zur Ermittlung des VaRs die beiden bekanntesten (nicht-parametrischen) Tools des VaR-Ansatzes angewendet, um die potenziellen Performanceschwankungen des Depotwertes unter Zugrundelegung bestimmter Wahrscheinlichkeiten abschätzen zu können. Dies ist das Verfahren der Historischen Simulation sowie die als mathematisch sehr anspruchsvoll eingestufte Monte-Carlo-Simulation. Als Weiterentwicklung des VaR-Modells wird zudem der Conditional VaR berechnet, der Aussagen über das Ausmaß der erwarteten Verluste zulässt. Anhand dieser Ergebnisse wird die maximale finanzielle Risikoposition der Kommune, bezogen auf das Kapitaldepot, abgeleitet. Darüber hinaus wird das CBL im Rahmen eines mathematischen Modells insgesamt beurteilt, indem eine Gegenüberstellung von vereinnahmtem Finanzierungsvorteil und den mit Eintrittswahrscheinlichkeiten gewichteten Ausfallrisiken, unter Berücksichtigung des jeweiligen Eintrittszeitpunktes, durchgeführt wird. Diese Vorgehensweise führt zu einer Symbiose aus Finanzierungsvorteil und den Risikomaßzahlen VaR, Expected Shortfall und Expected Loss. Die ermittelten finanzwirtschaftlichen Risikomaßzahlen führen zu überraschenden Ergebnissen, die die propagierte Risikolosigkeit und das vermeintlich attraktive Renditepotenzial derartiger Transaktionen eindeutig verneinen. Aus den gewonnenen Erkenntnissen leitet die Verfasserin praktische Handlungsempfehlungen und Absicherungsmöglichkeiten für kommunale Entscheidungsträger ab. Die sich aufgrund der US-Steuerrechtsänderung vom Februar 2005 ergebenden Auswirkungen auf bestehende Transaktionen wie auch auf Neugeschäfte werden im Ausblick dargelegt.

This work investigates the industrial applicability of graphics and stream processors in the field of fluid simulations. For this purpose, an explicit Runge-Kutta discontinuous Galerkin method in arbitrarily high order is implemented completely for the hardware architecture of GPUs. The same functionality is simultaneously realized for CPUs and compared to GPUs. Explicit time steppings as well as established implicit methods are under consideration for the CPU. This work aims at the simulation of inviscid, transsonic flows over the ONERA M6 wing. The discontinuities which typically arise in hyperbolic equations are treated with an artificial viscosity approach. It is further investigated how this approach fits into the explicit time stepping and works together with the special architecture of the GPU. Since the treatment of artificial viscosity is close to the simulation of the Navier-Stokes equations, it is reviewed how GPU-accelerated methods could be applied for computing viscous flows. This work is based on a nodal discontinuous Galerkin approach for linear hyperbolic problems. Here, it is extended to non-linear problems, which makes the application of numerical quadrature obligatory. Moreover, the representation of complex geometries is realized using isoparametric mappings. Higher order methods are typically very sensitive with respect to boundaries which are not properly resolved. For this purpose, an approach is presented which fits straight-sided DG meshes to curved geometries which are described by NURBS surfaces. The mesh is modeled as an elastic body and deformed according to the solution of closest point problems in order to minimize the gap to the original spline surface. The sensitivity with respect to geometry representations is reviewed in the end of this work in the context of shape optimization. Here, the aerodynamic drag of the ONERA M6 wing is minimized according to the shape gradient which is implicitly smoothed within the mesh deformation approach. In this context a comparison to the classical Laplace-Beltrami operator is made in a Stokes flow situation.

We will consider discrete dynamical systems (X,T) which consist of a state space X and a linear operator T acting on X. Given a state x in X at time zero, its state at time n is determined by the n-th iteration T^n(x). We are interested in the long-term behaviour of this system, that means we want to know how the sequence (T^n (x))_(n in N) behaves for increasing n and x in X. In the first chapter, we will sum up the relevant definitions and results of linear dynamics. In particular, in topological dynamics the notions of hypercyclic, frequently hypercyclic and mixing operators will be presented. In the setting of measurable dynamics, the most important definitions will be those of weakly and strongly mixing operators. If U is an open set in the (extended) complex plane containing 0, we can define the Taylor shift operator on the space H(U) of functions f holomorphic in U as Tf(z) = (f(z)- f(0))/z if z is not equal to 0 and otherwise Tf(0) = f'(0). In the second chapter, we will start examining the Taylor shift on H(U) endowed with the topology of locally uniform convergence. Depending on the choice of U, we will study whether or not the Taylor shift is weakly or strongly mixing in the Gaussian sense. Next, we will consider Banach spaces of functions holomorphic on the unit disc D. The first section of this chapter will sum up the basic properties of Bergman and Hardy spaces in order to analyse the dynamical behaviour of the Taylor shift on these Banach spaces in the next part. In the third section, we study the space of Cauchy transforms of complex Borel measures on the unit circle first endowed with the quotient norm of the total variation and then with a weak-* topology. While the Taylor shift is not even hypercyclic in the first case, we show that it is mixing for the latter case. In Chapter 4, we will first introduce Bergman spaces A^p(U) for general open sets and provide approximation results which will be needed in the next chapter where we examine the Taylor shift on these spaces on its dynamical properties. In particular, for 1<=p<2 we will find sufficient conditions for the Taylor shift to be weakly mixing or strongly mixing in the Gaussian sense. For p>=2, we consider specific Cauchy transforms in order to determine open sets U such that the Taylor shift is mixing on A^p(U). In both sections, we will illustrate the results with appropriate examples. Finally, we apply our results to universal Taylor series. The results of Chapter 5 about the Taylor shift allow us to consider the behaviour of the partial sums of the Taylor expansion of functions in general Bergman spaces outside its disc of convergence.

In this thesis, global surrogate models for responses of expensive simulations are investigated. Computational fluid dynamics (CFD) have become an indispensable tool in the aircraft industry. But simulations of realistic aircraft configurations remain challenging and computationally expensive despite the sustained advances in computing power. With the demand for numerous simulations to describe the behavior of an output quantity over a design space, the need for surrogate models arises. They are easy to evaluate and approximate quantities of interest of a computer code. Only a few number of evaluations of the simulation are stored for determining the behavior of the response over a whole range of the input parameter domain. The Kriging method is capable of interpolating highly nonlinear, deterministic functions based on scattered datasets. Using correlation functions, distinct sensitivities of the response with respect to the input parameters can be considered automatically. Kriging can be extended to incorporate not only evaluations of the simulation, but also gradient information, which is called gradient-enhanced Kriging. Adaptive sampling strategies can generate more efficient surrogate models. Contrary to traditional one-stage approaches, the surrogate model is built step-by-step. In every stage of an adaptive process, the current surrogate is assessed in order to determine new sample locations, where the response is evaluated and the new samples are added to the existing set of samples. In this way, the sampling strategy learns about the behavior of the response and a problem-specific design is generated. Critical regions of the input parameter space are identified automatically and sampled more densely for reproducing the response's behavior correctly. The number of required expensive simulations is decreased considerably. All these approaches treat the response itself more or less as an unknown output of a black-box. A new approach is motivated by the assumption that for a predefined problem class, the behavior of the response is not arbitrary, but rather related to other instances of the mutual problem class. In CFD, for example, responses of aerodynamic coefficients share structural similarities for different airfoil geometries. The goal is to identify the similarities in a database of responses via principal component analysis and to use them for a generic surrogate model. Characteristic structures of the problem class can be used for increasing the approximation quality in new test cases. Traditional approaches still require a large number of response evaluations, in order to achieve a globally high approximation quality. Validating the generic surrogate model for industrial relevant test cases shows that they generate efficient surrogates, which are more accurate than common interpolations. Thus practical, i.e. affordable surrogates are possible already for moderate sample sizes. So far, interpolation problems were regarded as separate problems. The new approach uses the structural similarities of a mutual problem class innovatively for surrogate modeling. Concepts from response surface methods, variable-fidelity modeling, design of experiments, image registration and statistical shape analysis are connected in an interdisciplinary way. Generic surrogate modeling is not restricted to aerodynamic simulation. It can be applied, whenever expensive simulations can be assigned to a larger problem class, in which structural similarities are expected.

Large scale non-parametric applied shape optimization for computational fluid dynamics is considered. Treating a shape optimization problem as a standard optimal control problem by means of a parameterization, the Lagrangian usually requires knowledge of the partial derivative of the shape parameterization and deformation chain with respect to input parameters. For a variety of reasons,rnthis mesh sensitivity Jacobian is usually quite problematic. For a sufficiently smooth boundary, the Hadamard theorem provides a gradient expression that exists on the surface alone, completely bypassing the mesh sensitivity Jacobian. Building upon this, the gradient computation becomes independent of the number of design parameters and all surface mesh nodes are used as designrnunknowns in this work, effectively allowing a free morphing of shapes during optimization. Contrary to a parameterized shape optimization problem, where a smooth surface is usually created independently of the input parameters by construction, regularity is not preserved automatically in the non-parametric case. As part of this work, the shape Hessian is used in an approximative Newton method, also known as Sobolev method or gradient smoothing, to ensure a certain regularity of the updates, and thus a smooth shape is preserved while at the same time the one-shot optimization method is also accelerated considerably. For PDE constrained shape optimization, the Hessian usually is a pseudo-differential operator. Fourier analysis is used to identify the operatorrnsymbol both analytically and discretely. Preconditioning the one-shot optimization by an appropriate Hessian symbol is shown to greatly accelerate the optimization. As the correct discretization of the Hadamard form usually requires evaluating certain surface quantities such as tangential divergence and curvature, special attention is also given to discrete differential geometry on triangulated surfaces for evaluating shape gradients and Hessians.rnThe Hadamard formula and Hessian approximations are applied to a variety of flow situations. In addition to shape optimization of internal and external flows, major focus lies on aerodynamic design such as optimizing two dimensional airfoils and three dimensional wings. Shock waves form whenrnthe local speed of sound is reached, and the gradient must be evaluated correctly at discontinuous states. To ensure proper shock resolution, an adaptive multi-level optimization of the Onera M6 wing is conducted using more than 36, 000 shape unknowns on a standard office workstation, demonstrating the applicability of the shape-one-shot method to industry size problems.

Shape optimization is of interest in many fields of application. In particular, shape optimization problems arise frequently in technological processes which are modelled by partial differential equations (PDEs). In a lot of practical circumstances, the shape under investigation is parametrized by a finite number of parameters, which, on the one hand, allows the application of standard optimization approaches, but, on the other hand, unnecessarily limits the space of reachable shapes. Shape calculus presents a way to circumvent this dilemma. However, so far shape optimization based on shape calculus is mainly performed using gradient descent methods. One reason for this is the lack of symmetry of second order shape derivatives or shape Hessians. A major difference between shape optimization and the standard PDE constrained optimization framework is the lack of a linear space structure on shape spaces. If one cannot use a linear space structure, then the next best structure is a Riemannian manifold structure, in which one works with Riemannian shape Hessians. They possess the often sought property of symmetry, characterize well-posedness of optimization problems and define sufficient optimality conditions. In general, shape Hessians are used to accelerate gradient-based shape optimization methods. This thesis deals with shape optimization problems constrained by PDEs and embeds these problems in the framework of optimization on Riemannian manifolds to provide efficient techniques for PDE constrained shape optimization problems on shape spaces. A Lagrange-Newton and a quasi-Newton technique in shape spaces for PDE constrained shape optimization problems are formulated. These techniques are based on the Hadamard-form of shape derivatives, i.e., on the form of integrals over the surface of the shape under investigation. It is often a very tedious, not to say painful, process to derive such surface expressions. Along the way, volume formulations in the form of integrals over the entire domain appear as an intermediate step. This thesis couples volume integral formulations of shape derivatives with optimization strategies on shape spaces in order to establish efficient shape algorithms reducing analytical effort and programming work. In this context, a novel shape space is proposed.

Extension of inexact Kleinman-Newton methods to a general monotonicity preserving convergence theory
(2011)

The thesis at hand considers inexact Newton methods in combination with algebraic Riccati equation. A monotone convergence behaviour is proven, which enables a non-local convergence. Above relation is transferred to a general convergence theory for inexact Newton methods securing the monotonicity of the iterates for convex or concave mappings. Several application prove the pratical benefits of the new developed theory.

Variational inequality problems constitute a common basis to investigate the theory and algorithms for many problems in mathematical physics, in economy as well as in natural and technical sciences. They appear in a variety of mathematical applications like convex programming, game theory and economic equilibrium problems, but also in fluid mechanics, physics of solid bodies and others. Many variational inequalities arising from applications are ill-posed. This means, for example, that the solution is not unique, or that small deviations in the data can cause large deviations in the solution. In such a situation, standard solution methods converge very slowly or even fail. In this case, so-called regularization methods are the methods of choice. They have the advantage that an ill-posed original problem is replaced by a sequence of well-posed auxiliary problems, which have better properties (like, e.g., a unique solution and a better conditionality). Moreover, a suitable choice of the regularization term can lead to unconstrained auxiliary problems that are even equivalent to optimization problems. The development and improvement of such methods are a focus of current research, in which we take part with this thesis. We suggest and investigate a logarithmic-quadratic proximal auxiliary problem (LQPAP) method that combines the advantages of the well-known proximal-point algorithm and the so-called auxiliary problem principle. Its exploration and convergence analysis is one of the main results in this work. The LQPAP method continues the recent developments of regularization methods. It includes different techniques presented in literature to improve the numerical stability: The logarithmic-quadratic distance function constitutes an interior point effect which allows to treat the auxiliary problems as unconstrained ones. Furthermore, outer operator approximations are considered. This simplifies the numerical solution of variational inequalities with multi-valued operators since, for example, bundle-techniques can be applied. With respect to the numerical practicability, inexact solutions of the auxiliary problems are allowed using a summable-error criterion that is easy to implement. As a further advantage of the logarithmic-quadratic distance we verify that it is self-concordant (in the sense of Nesterov/Nemirovskii). This motivates to apply the Newton method for the solution of the auxiliary problems. In the numerical part of the thesis the LQPAP method is applied to linearly constrained, differentiable and nondifferentiable convex optimization problems, as well as to nonsymmetric variational inequalities with co-coercive operators. It can often be observed that the sequence of iterates reaches the boundary of the feasible set before being close to an optimal solution. Against this background, we present the strategy of under-relaxation, which robustifies the LQPAP method. Furthermore, we compare the results with an appropriate method based on Bregman distances (BrPAP method). For differentiable, convex optimization problems we describe the implementation of the Newton method to solve the auxiliary problems and carry out different numerical experiments. For example, an adaptive choice of the initial regularization parameter and a combination of an Armijo and a self-concordance step size are evaluated. Test examples for nonsymmetric variational inequalities are hardly available in literature. Therefore, we present a geometric and an analytic approach to generate test examples with known solution(s). To solve the auxiliary problems in the case of nondifferentiable, convex optimization problems we apply the well-known bundle technique. The implementation is described in detail and the involved functions and sequences of parameters are discussed. As far as possible, our analysis is substantiated by new theoretical results. Furthermore, it is explained in detail how the bundle auxiliary problems are solved with a primal-dual interior point method. Such investigations have by now only been published for Bregman distances. The LQPAP bundle method is again applied to several test examples from literature. Thus, this thesis builds a bridge between theoretical and numerical investigations of solution methods for variational inequalities.