This thesis is focused on improving the knowledge on a group of threatened species, the European cave salamanders (genus Hydromantes). There are three main sections gathering studies dealing with different topics: Ecology (first part), Life traits (second part) and Monitoring methodologies (third part). First part starts with the study of the response of Hydromantes to the variation of climatic conditions, analysing 15 different localities throughout a full year (CHAPTER I; published in PEERJ in August 2015). After that, the focus moves on identify which is the operative temperature that these salamander experience, including how their body respond to variation of environmental temperature. This study was conducted using one of the most advanced tool, an infrared thermocamera, which gave the opportunity to perform detailed observation on salamanders body (CHAPTER II; published in JOURNAL OF THERMAL BIOLOGY in June 2016). In the next chapter we use the previous results to analyse the ecological niche of all eight Hydromantes species. The study mostly underlines the mismatch between macro- and microscale analysis of ecological niche, showing a weak conservatism of ecological niches within the evolution of species (CHAPTER III; unpublished manuscript). We then focus only on hybrids, which occur within the natural distribution of mainland species. Here, we analyse if the ecological niche of hybrids shows divergences from those of parental species, thus evaluating the power of hybrids adaptation (CHAPTER IV; unpublished manuscript). Considering that hybrids may represent a potential threat for parental species (in terms of genetic erosion and competition), we produced the first ecological study on an allochthonous mixed population of Hydromantes, analysing population structure, ecological requirements and diet. The interest on this particular population mostly comes by the fact that its members are coming from all three mainland Hydromantes species, and thus it may represent a potential source of new hybrids (CHAPTER V; accepted in AMPHIBIA-REPTILIA in October 2017). The focus than moves on how bioclimatic parameters affect species within their distributional range. Using as model species the microendemic H. flavus, we analyse the relationship between environmental suitability and local abundance of the species, also focusing on all intermediate dynamics which provide useful information on spatial variation of individual fitness (CHAPTER VI; submitted to SCIENTIFIC REPORTS in November 2017). The first part ends with an analysis of the interaction between Hydromantes and Batracobdella algira leeches, the only known ectoparasite for European cave salamanders. Considering that the effect of leeches on their hosts is potentially detrimental, we investigated if these ectoparasites may represent a further threat for Hydromantes (CHAPTER VII; submitted to INTERNATIONAL JOURNAL FOR PARASITOLOGY: PARASITES AND WILDLIFE in November 2017). The second part is related to the reproduction of Hydromantes. In the first study we perform analyses on the breeding behaviour of several females belonging to a single population, identifying differences and similarities occurring in cohorting females (CHAPTER VIII; published in NORTH-WESTERN JOURNAL OF ZOOLOGY in December 2015). In the second study we gather information from all Hydromantes species, analysing size and development of breeding females, and identifying a relationship between breeding time and climatic conditions (CHAPTER IX; submitted to SALAMANDRA in June 2017). In the last part of this thesis, we analyse two potential methods for monitoring Hydromantes populations. In the first study we evaluate the efficiency of the marking method involving Alpha tags (CHAPTER X; published in SALAMANDRA in October 2017). In the second study we focus on evaluating N-mixtures models as a methodology for estimating abundance in wild populations (CHAPTER XI; submitted to BIODIVERSITY & CONSERVATION in October 2017).
Geographic ranges of species and their determinants are of great interest in the field of biogeography and are often studied in terms of the species" ecological niches. In this context, the range of a species is defined by the accessibility of an area, abiotic factors and biotic interactions, which affect a species" distributions with different intensities across spatial scales. Parapatry describes a distributional pattern in which the ranges of two species meet along sharp range limits with narrow contact zones. Such parapatric range limits are determined by changing abiotic conditions along sharp environmental gradients or can result from interspecific resource competition. However, it has been shown that often the interplay of abiotic conditions and species interactions determine parapatry. The geographic ranges of the land salamanders, Salamandra salamandra and S. atra, narrowly overlap in the European Alps with only few syntopic localities and to date, the cause of parapatry is unknown. The goal of this thesis was thus to identify the importance of abiotic and biotic factors for their parapatric range limits at different spatial scales. On a broad spatial scale, the role of climate for the parapatric range limits of the species was investigated within three contact zones in Switzerland. Climatic conditions at species" records were analysed and species distribution modelling techniques were used to explore the species" climatic niches and to quantify the interspecific niche overlap. Furthermore, it was tested whether the parapatric range limit coincides with a strong climatic gradient. The results revealed distinct niches for the species as well as the presence of strong climatic gradients which could explain the parapatric range limits of the species. Yet, there was a moderate interspecific niche overlap in all contact zones indicating that the species may co-occur and interact with each other in areas where they both find adequate conditions. Comparison among contact zones revealed geographic variation in the species" niches as well as in the climatic conditions at their records suggesting that the species can occur in a much wider range of conditions than they actually do. These findings imply that climate represents a main factor for the species" parapatric range limits. Yet, interspecific niche overlap and the geographic variation provide indirect evidence that interspecific interaction may also affect their spatial distribution. To test whether competition restricts the species" ranges on the habitat scale and to understand local syntopic co-occurrence of the salamanders within their contact zones, site-occupancy modelling was used. This approach allowed to find the habitat predictors that best explain the species" local distribution. While the slope of the site positively affected the occupancy probability of S. salamandra, no tested predictor explained that of S. atra. Also, there was no effect of the occurrence of one species on the occupancy probability of the other providing no evidence for competition. Should competition occur, it does not lead to spatial segregation of the species on this scale. Because biotic interactions most significantly affect the ranges of species on small spatial scales, the microhabitat conditions at locations of the species within syntopic contact zones were compared and a null model analysis was applied to determine their niche overlap. Resource selection probability function models were used to assess those attributes that affect the species" habitat selections. The results revealed species-specific microhabitat preferences related to leaf litter cover, tree number and that the species were active at different temperatures as well as times of the day. The high degree of diurnal activity of S. atra may be due to its preference of forest floor microhabitats that long remain suitable during daytime. Besides, there was a great niche overlap for shelters indicating that the species may compete for this resource. Differential habitat selection and the use of the available shelters at different times of the day may minimize species interactions and allow their local co-occurrence within contact zones. To identify whether the potential infection with the pathogenic chytrid fungus could serve as an alternative biotic explanation for the range margins of S. atra, several populations throughout its range were screened for infection. Since the occurrence of this pathogen was detected mostly at lower altitudes of the Alps, it may confine the range of S. atra to higher elevations. Because chytrid was not detected in any of the samples, the pathogen unlikely plays a role in determining its range limits. Overall, these findings underline the complexity of mechanisms that determine the range margins of parapatric species and provide an important basis for subsequent studies regarding the determinants of the parapatric distribution of the two salamander species.