### Refine

#### Language

- English (2) (remove)

#### Has Fulltext

- yes (2) (remove)

#### Keywords

- Gestaltoptimierung (2) (remove)

Large scale non-parametric applied shape optimization for computational fluid dynamics is considered. Treating a shape optimization problem as a standard optimal control problem by means of a parameterization, the Lagrangian usually requires knowledge of the partial derivative of the shape parameterization and deformation chain with respect to input parameters. For a variety of reasons,rnthis mesh sensitivity Jacobian is usually quite problematic. For a sufficiently smooth boundary, the Hadamard theorem provides a gradient expression that exists on the surface alone, completely bypassing the mesh sensitivity Jacobian. Building upon this, the gradient computation becomes independent of the number of design parameters and all surface mesh nodes are used as designrnunknowns in this work, effectively allowing a free morphing of shapes during optimization. Contrary to a parameterized shape optimization problem, where a smooth surface is usually created independently of the input parameters by construction, regularity is not preserved automatically in the non-parametric case. As part of this work, the shape Hessian is used in an approximative Newton method, also known as Sobolev method or gradient smoothing, to ensure a certain regularity of the updates, and thus a smooth shape is preserved while at the same time the one-shot optimization method is also accelerated considerably. For PDE constrained shape optimization, the Hessian usually is a pseudo-differential operator. Fourier analysis is used to identify the operatorrnsymbol both analytically and discretely. Preconditioning the one-shot optimization by an appropriate Hessian symbol is shown to greatly accelerate the optimization. As the correct discretization of the Hadamard form usually requires evaluating certain surface quantities such as tangential divergence and curvature, special attention is also given to discrete differential geometry on triangulated surfaces for evaluating shape gradients and Hessians.rnThe Hadamard formula and Hessian approximations are applied to a variety of flow situations. In addition to shape optimization of internal and external flows, major focus lies on aerodynamic design such as optimizing two dimensional airfoils and three dimensional wings. Shock waves form whenrnthe local speed of sound is reached, and the gradient must be evaluated correctly at discontinuous states. To ensure proper shock resolution, an adaptive multi-level optimization of the Onera M6 wing is conducted using more than 36, 000 shape unknowns on a standard office workstation, demonstrating the applicability of the shape-one-shot method to industry size problems.

Design and structural optimization has become a very important field in industrial applications over the last years. Due to economical and ecological reasons, the efficient use of material is of highly industrial interest. Therefore, computational tools based on optimization theory have been developed and studied in the last decades. In this work, different structural optimization methods are considered. Special attention lies on the applicability to three-dimensional, large-scale, multiphysic problems, which arise from different areas of the industry. Based on the theory of PDE-constraint optimization, descent methods in structural optimization require knowledge of the (partial) derivatives with respect to shape or topology variations. Therefore, shape and topology sensitivity analysis is introduced and the connection between both sensitivities is given by the Topological-Shape Sensitivity Method. This method leads to a systematic procedure to compute the topological derivative by terms of the shape sensitivity. Due to the framework of moving boundaries in structural optimization, different interface tracking techniques are presented. If the topology of the domain is preserved during the optimization process, explicit interface tracking techniques, combined with mesh-deformation, are used to capture the interface. This techniques fit very well the requirements in classical shape optimization. Otherwise, an implicit representation of the interface is of advantage if the optimal topology is unknown. In this case, the level set method is combined with the concept of the topological derivative to deal with topological perturbation. The resulting methods are applied to different industrial problems. On the one hand, interface shape optimization for solid bodies subject to a transient heat-up phase governed by both linear elasticity and thermal stresses is considered. Therefore, the shape calculus is applied to coupled heat and elasticity problems and a generalized compliance objective function is studied. The resulting thermo-elastic shape optimization scheme is used for compliance reduction of realistic hotplates. On the other hand, structural optimization based on the topological derivative for three-dimensional elasticity problems is observed. In order to comply typical volume constraints, a one-shot augmented Lagrangian method is proposed. Additionally, a multiphase optimization approach based on mesh-refinement is used to reduce the computational costs and the method is illustrated by classical minimum compliance problems. Finally, the topology optimization algorithm is applied to aero-elastic problems and numerical results are presented.