Refine
Document Type
- Article (11)
- Doctoral Thesis (1)
Keywords
- Fernerkundung (7)
- Satellitenfernerkundung (3)
- Lidar (2)
- machine-learning (2)
- stem detection (2)
- tree inclination (2)
- ALS (1)
- Ausgangsgestein (1)
- Autokorrelation (1)
- BRDF (1)
Institute
This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1"5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2"12.5 -µm (instrument NEDT 0.05 K"0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0"10.25 -µm and 10.25"12.5 -µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1"3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.
Production of biomass feedstock for methanation in Europe has focused on silages of maize and cereals. As ecological awareness has increased in the last several years, more attention is being focused on perennial energy crops (PECs). Studies of specific PECs have shown that their cultivation may enhance agrobiodiversity and increase soil organic carbon stocks while simultaneously providing valuable feedstock for methanation. This study was designed to compare soil quality indicators under annual energy crops (AECs), PECs and permanent grassland (PGL) on the landscape level in south-western Germany. At a total 25 study sites, covering a wide range of parent materials, the cropping systems were found adjacent to each other. Stands were commercially managed, and PECs included different species such as the Cup Plant, Tall Wheatgrass, Giant Knotweed, Miscanthus, Virginia Mallow and Reed Canary Grass. Soil sampling was carried out for the upper 20 cm of soil. Several soil quality indicators, including soil organic carbon (Corg), soil microbial biomass (Cmic), and aggregate stability, showed that PECs were intermediate between AEC and PGL systems. At landscape level, mean Corg content for (on average) 6.1-year-old stands of PEC was 22.37 (±7.53) g kg1, compared to 19.23 (±8.08) and 32.08 (±10.11) for AEC and PGL. Cmic contents were higher in PECs (356 ± 241 lgCg1) compared to AECs (291 ± 145) but significantly lower than under PGL (753 ± 417). The aggregate stability increased by almost 65% in PECs compared to AEC but was still 57% lower than in PGL. Indicator differences among cropping systems were more pronounced when inherent differences in the parent material were accounted for in the comparisons. Overall, these results suggest that the cultivation of PECs has positive effects on soil quality indicators. Thus, PECs may offer potential to make the production of biomass feedstock more sustainable.
Energy transition strategies in Germany have led to an expansion of energy crop cultivation in landscape, with silage maize as most valuable feedstock. The changes in the traditional cropping systems, with increasing shares of maize, raised concerns about the sustainability of agricultural feedstock production regarding threats to soil health. However, spatially explicit data about silage maize cultivation are missing; thus, implications for soil cannot be estimated in a precise way. With this study, we firstly aimed to track the fields cultivated with maize based on remote sensing data. Secondly, available soil data were target-specifically processed to determine the site-specific vulnerability of the soils for erosion and compaction. The generated, spatially-explicit data served as basis for a differentiated analysis of the development of the agricultural biogas sector, associated maize cultivation and its implications for soil health. In the study area, located in a low mountain range region in Western Germany, the number and capacity of biogas producing units increased by 25 installations and 10,163 kW from 2009 to 2016. The remote sensing-based classification approach showed that the maize cultivation area was expanded by 16% from 7305 to 8447 hectares. Thus, maize cultivation accounted for about 20% of the arable land use; however, with distinct local differences. Significant shares of about 30% of the maize cultivation was done on fields that show at least high potentials for soil erosion exceeding 25 t soil ha−1 a−1. Furthermore, about 10% of the maize cultivation was done on fields that pedogenetically show an elevated risk for soil compaction. In order to reach more sustainable cultivation systems of feedstock for anaerobic digestion, changes in cultivated crops and management strategies are urgently required, particularly against first signs of climate change. The presented approach can regionally be modified in order to develop site-adapted, sustainable bioenergy cropping systems.
Soil organic matter (SOM) is an indispensable component of terrestrial ecosystems. Soil organic carbon (SOC) dynamics are influenced by a number of well-known abiotic factors such as clay content, soil pH, or pedogenic oxides. These parameters interact with each other and vary in their influence on SOC depending on local conditions. To investigate the latter, the dependence of SOC accumulation on parameters and parameter combinations was statistically assessed that vary on a local scale depending on parent material, soil texture class, and land use. To this end, topsoils were sampled from arable and grassland sites in south-western Germany in four regions with different soil parent material. Principal component analysis (PCA) revealed a distinct clustering of data according to parent material and soil texture that varied largely between the local sampling regions, while land use explained PCA results only to a small extent. The PCA clusters were differentiated into total clusters that contain the entire dataset or major proportions of it and local clusters representing only a smaller part of the dataset. All clusters were analysed for the relationships between SOC concentrations (SOC %) and mineral-phase parameters in order to assess specific parameter combinations explaining SOC and its labile fractions hot water-extractable C (HWEC) and microbial biomass C (MBC). Analyses were focused on soil parameters that are known as possible predictors for the occurrence and stabilization of SOC (e.g. fine silt plus clay and pedogenic oxides). Regarding the total clusters, we found significant relationships, by bivariate models, between SOC, its labile fractions HWEC and MBC, and the applied predictors. However, partly low explained variances indicated the limited suitability of bivariate models. Hence, mixed-effect models were used to identify specific parameter combinations that significantly explain SOC and its labile fractions of the different clusters. Comparing measured and mixed-effect-model-predicted SOC values revealed acceptable to very good regression coefficients (R2=0.41–0.91) and low to acceptable root mean square error (RMSE = 0.20 %–0.42 %). Thereby, the predictors and predictor combinations clearly differed between models obtained for the whole dataset and the different cluster groups. At a local scale, site-specific combinations of parameters explained the variability of organic carbon notably better, while the application of total models to local clusters resulted in less explained variance and a higher RMSE. Independently of that, the explained variance by marginal fixed effects decreased in the order SOC > HWEC > MBC, showing that labile fractions depend less on soil properties but presumably more on processes such as organic carbon input and turnover in soil.
The process of land degradation needs to be understood at various spatial and temporal scales in order to protect ecosystem services and communities directly dependent on it. This is especially true for regions in sub-Saharan Africa, where socio economic and political factors exacerbate ecological degradation. This study identifies spatially explicit land change dynamics in the Copperbelt province of Zambia in a local context using satellite vegetation index time series derived from the MODIS sensor. Three sets of parameters, namely, monthly series, annual peaking magnitude, and annual mean growing season were developed for the period 2000 to 2019. Trend was estimated by applying harmonic regression on monthly series and linear least square regression on annually aggregated series. Estimated spatial trends were further used as a basis to map endemic land change processes. Our observations were as follows: (a) 15% of the study area dominant in the east showed positive trends, (b) 3% of the study area dominant in the west showed negative trends, (c) natural regeneration in mosaic landscapes (post shifting cultivation) and land management in forest reserves were chiefly responsible for positive trends, and (d) degradation over intact miombo woodland and cultivation areas contributed to negative trends. Additionally, lower productivity over areas with semi-permanent agriculture and shift of new encroachment into woodlands from east to west of Copperbelt was observed. Pivot agriculture was not a main driver in land change. Although overall greening trends prevailed across the study site, the risk of intact woodlands being exposed to various disturbances remains high. The outcome of this study can provide insights about natural and assisted landscape restoration specifically addressing the miombo ecoregion.
Although gravitropism forces trees to grow vertically, stems have shown to prefer specific orientations. Apart from wind deforming the tree shape, lateral light can result in prevailing inclination directions. In recent years a species dependent interaction between gravitropism and phototropism, resulting in trunks leaning down-slope, has been confirmed, but a terrestrial investigation of such factors is limited to small scale surveys. ALS offers the opportunity to investigate trees remotely. This study shall clarify whether ALS detected tree trunks can be used to identify prevailing trunk inclinations. In particular, the effect of topography, wind, soil properties and scan direction are investigated empirically using linear regression models. 299.000 significantly inclined stems were investigated. Species-specific prevailing trunk orientations could be observed. About 58% of the inclination and 19% of the orientation could be explained by the linear models, while the tree species, tree height, aspect and slope could be identified as significant factors. The models indicate that deciduous trees tend to lean down-slope, while conifers tend to lean leeward. This study has shown that ALS is suitable to investigate the trunk orientation on larger scales. It provides empirical evidence for the effect of phototropism and wind on the trunk orientation.
Determining the exact position of a forest inventory plot—and hence the position of the sampled trees—is often hampered by a poor Global Navigation Satellite System (GNSS) signal quality beneath the forest canopy. Inaccurate geo-references hamper the performance of models that aim to retrieve useful information from spatially high remote sensing data (e.g., species classification or timber volume estimation). This restriction is even more severe on the level of individual trees. The objective of this study was to develop a post-processing strategy to improve the positional accuracy of GNSS-measured sample-plot centers and to develop a method to automatically match trees within a terrestrial sample plot to aerial detected trees. We propose a new method which uses a random forest classifier to estimate the matching probability of each terrestrial-reference and aerial detected tree pair, which gives the opportunity to assess the reliability of the results. We investigated 133 sample plots of the Third German National Forest Inventory (BWI, 2011"2012) within the German federal state of Rhineland-Palatinate. For training and objective validation, synthetic forest stands have been modeled using the Waldplaner 2.0 software. Our method has achieved an overall accuracy of 82.7% for co-registration and 89.1% for tree matching. With our method, 60% of the investigated plots could be successfully relocated. The probabilities provided by the algorithm are an objective indicator of the reliability of a specific result which could be incorporated into quantitative models to increase the performance of forest attribute estimations.
Forest inventories provide significant monitoring information on forest health, biodiversity,
resilience against disturbance, as well as its biomass and timber harvesting potential. For this
purpose, modern inventories increasingly exploit the advantages of airborne laser scanning (ALS)
and terrestrial laser scanning (TLS).
Although tree crown detection and delineation using ALS can be seen as a mature discipline, the
identification of individual stems is a rarely addressed task. In particular, the informative value of
the stem attributes—especially the inclination characteristics—is hardly known. In addition, a lack
of tools for the processing and fusion of forest-related data sources can be identified. The given
thesis addresses these research gaps in four peer-reviewed papers, while a focus is set on the
suitability of ALS data for the detection and analysis of tree stems.
In addition to providing a novel post-processing strategy for geo-referencing forest inventory plots,
the thesis could show that ALS-based stem detections are very reliable and their positions are
accurate. In particular, the stems have shown to be suited to study prevailing trunk inclination
angles and orientations, while a species-specific down-slope inclination of the tree stems and a
leeward orientation of conifers could be observed.
For grape canopy pixels captured by an unmanned aerial vehicle (UAV) tilt-mounted RedEdge-M multispectral sensor in a sloped vineyard, an in situ Walthall model can be established with purely image-based methods. This was derived from RedEdge-M directional reflectance and a vineyard 3D surface model generated from the same imagery. The model was used to correct the angular effects in the reflectance images to form normalized difference vegetation index (NDVI)orthomosaics of different view angles. The results showed that the effect could be corrected to a certain scope, but not completely. There are three drawbacks that might restrict a successful angular model construction and correction: (1) the observable micro shadow variation on the canopy enabled by the high resolution; (2) the complexity of vine canopies that causes an inconsistency between reflectance and canopy geometry, including effects such as micro shadows and near-infrared (NIR) additive effects; and (3) the resolution limit of a 3D model to represent the accurate real-world optical geometry. The conclusion is that grape canopies might be too inhomogeneous for the tested method to perform the angular correction in high quality.
With the ongoing trend towards deep learning in the remote sensing community, classical pixel based algorithms are often outperformed by convolution based image segmentation algorithms. This performance was mostly validated spatially, by splitting training and validation pixels for a given year. Though generalizing models temporally is potentially more difficult, it has been a recent trend to transfer models from one year to another, and therefore to validate temporally. The study argues that it is always important to check both, in order to generate models that are useful beyond the scope of the training data. It shows that convolutional neural networks have potential to generalize better than pixel based models, since they do not rely on phenological development alone, but can also consider object geometry and texture. The UNET classifier was able to achieve the highest F1 scores, averaging 0.61 in temporal validation samples, and 0.77 in spatial validation samples. The theoretical potential for overfitting geometry and just memorizing the shape of fields that are maize has been shown to be insignificant in practical applications. In conclusion, kernel based convolutions can offer a large contribution in making agricultural classification models more transferable, both to other regions and to other years.