Refine
Keywords
- Approximationstheorie (1)
- Funktionentheorie (1)
- Hyperzyklizität (1)
- Kompositionsoperator (1)
- Operatortheorie (1)
- Universalität (1)
- complex dynamics (1)
- composition operator (1)
- hypercyclicity (1)
- komplexe Dynamik (1)
- universality (1)
In recent years, the study of dynamical systems has developed into a central research area in mathematics. Actually, in combination with keywords such as "chaos" or "butterfly effect", parts of this theory have been incorporated in other scientific fields, e.g. in physics, biology, meteorology and economics. In general, a discrete dynamical system is given by a set X and a self-map f of X. The set X can be interpreted as the state space of the system and the function f describes the temporal development of the system. If the system is in state x ∈ X at time zero, its state at time n ∈ N is denoted by f^n(x), where f^n stands for the n-th iterate of the map f. Typically, one is interested in the long-time behaviour of the dynamical system, i.e. in the behaviour of the sequence (f^n(x)) for an arbitrary initial state x ∈ X as the time n increases. On the one hand, it is possible that there exist certain states x ∈ X such that the system behaves stably, which means that f^n(x) approaches a state of equilibrium for n→∞. On the other hand, it might be the case that the system runs unstably for some initial states x ∈ X so that the sequence (f^n(x)) somehow shows chaotic behaviour. In case of a non-linear entire function f, the complex plane always decomposes into two disjoint parts, the Fatou set F_f of f and the Julia set J_f of f. These two sets are defined in such a way that the sequence of iterates (f^n) behaves quite "wildly" or "chaotically" on J_f whereas, on the other hand, the behaviour of (f^n) on F_f is rather "nice" and well-understood. However, this nice behaviour of the iterates on the Fatou set can "change dramatically" if we compose the iterates from the left with just one other suitable holomorphic function, i.e. if we consider sequences of the form (g∘f^n) on D, where D is an open subset of F_f with f(D)⊂ D and g is holomorphic on D. The general aim of this work is to study the long-time behaviour of such modified sequences. In particular, we will prove the existence of holomorphic functions g on D having the property that the behaviour of the sequence of compositions (g∘f^n) on the set D becomes quite similarly chaotic as the behaviour of the sequence (f^n) on the Julia set of f. With this approach, we immerse ourselves into the theory of universal families and hypercyclic operators, which itself has developed into an own branch of research. In general, for topological spaces X, Y and a family {T_i: i ∈ I} of continuous functions T_i:X→Y, an element x ∈ X is called universal for the family {T_i: i ∈ I} if the set {T_i(x): i ∈ I} is dense in Y. In case that X is a topological vector space and T is a continuous linear operator on X, a vector x ∈ X is called hypercyclic for T if it is universal for the family {T^n: n ∈ N}. Thus, roughly speaking, universality and hypercyclicity can be described via the following two aspects: There exists a single object which allows us, via simple analytical operations, to approximate every element of a whole class of objects. In the above situation, i.e. for a non-linear entire function f and an open subset D of F_f with f(D)⊂ D, we endow the space H(D) of holomorphic functions on D with the topology of locally uniform convergence and we consider the map C_f:H(D)→H(D), C_f(g):=g∘f|_D, which is called the composition operator with symbol f. The transform C_f is a continuous linear operator on the Fréchet space H(D). In order to show that the above-mentioned "nice" behaviour of the sequence of iterates (f^n) on the set D ⊂ F_f can "change dramatically" if we compose the iterates from the left with another suitable holomorphic function, our aim consists in finding functions g ∈ H(D) which are hypercyclic for C_f. Indeed, for each hypercyclic function g for C_f, the set of compositions {g∘f^n|_D: n ∈ N} is dense in H(D) so that the sequence of compositions (g∘f^n|_D) is kind of "maximally divergent" " meaning that each function in H(D) can be approximated locally uniformly on D via subsequences of (g∘f^n|_D). This kind of behaviour stands in sharp contrast to the fact that the sequence of iterates (f^n) itself converges, behaves like a rotation or shows some "wandering behaviour" on each component of F_f. To put it in a nutshell, this work combines the theory of non-linear complex dynamics in the complex plane with the theory of dynamics of continuous linear operators on spaces of holomorphic functions. As far as the author knows, this approach has not been investigated before.