Refine
Year of publication
Document Type
- Doctoral Thesis (19)
- Article (8)
- Conference Proceedings (1)
- Master's Thesis (1)
Language
- English (20)
- German (8)
- Multiple languages (1)
Keywords
- Modellierung (29) (remove)
Institute
- Raum- und Umweltwissenschaften (23)
- Fachbereich 6 (3)
- Fachbereich 4 (1)
- Informatik (1)
Physically-based distributed rainfall-runoff models as the standard analysis tools for hydro-logical processes have been used to simulate the water system in detail, which includes spa-tial patterns and temporal dynamics of hydrological variables and processes (Davison et al., 2015; Ek and Holtslag, 2004). In general, catchment models are parameterized with spatial information on soil, vegetation and topography. However, traditional approaches for eval-uation of the hydrological model performance are usually motivated with respect to dis-charge data alone. This may thus cloud model realism and hamper understanding of the catchment behavior. It is necessary to evaluate the model performance with respect to in-ternal hydrological processes within the catchment area as well as other components of wa-ter balance rather than runoff discharge at the catchment outlet only. In particular, a consid-erable amount of dynamics in a catchment occurs in the processes related to interactions of the water, soil and vegetation. Evapotranspiration process, for instance, is one of those key interactive elements, and the parameterization of soil and vegetation in water balance mod-eling strongly influences the simulation of evapotranspiration. Specifically, to parameterize the water flow in unsaturated soil zone, the functional relationships that describe the soil water retention and hydraulic conductivity characteristics are important. To define these functional relationships, Pedo-Transfer Functions (PTFs) are common to use in hydrologi-cal modeling. Opting the appropriate PTFs for the region under investigation is a crucial task in estimating the soil hydraulic parameters, but this choice in a hydrological model is often made arbitrary and without evaluating the spatial and temporal patterns of evapotran-spiration, soil moisture, and distribution and intensity of runoff processes. This may ulti-mately lead to implausible modeling results and possibly to incorrect decisions in regional water management. Therefore, the use of reliable evaluation approaches is continually re-quired to analyze the dynamics of the current interactive hydrological processes and predict the future changes in the water cycle, which eventually contributes to sustainable environ-mental planning and decisions in water management.
Remarkable endeavors have been made in development of modelling tools that provide insights into the current and future of hydrological patterns in different scales and their im-pacts on the water resources and climate changes (Doell et al., 2014; Wood et al., 2011). Although, there is a need to consider a proper balance between parameter identifiability and the model's ability to realistically represent the response of the natural system. Neverthe-less, tackling this issue entails investigation of additional information, which usually has to be elaborately assembled, for instance, by mapping the dominant runoff generation pro-cesses in the intended area, or retrieving the spatial patterns of soil moisture and evapotran-spiration by using remote sensing methods, and evaluation at a scale commensurate with hydrological model (Koch et al., 2022; Zink et al., 2018). The present work therefore aims to give insights into the modeling approaches to simulate water balance and to improve the soil and vegetation parameterization scheme in the hydrological model subject to producing more reliable spatial and temporal patterns of evapotranspiration and runoff processes in the catchment.
An important contribution to the overall body of work is a book chapter included among publications. The book chapter provides a comprehensive overview of the topic and valua-ble insights into the understanding the water balance and its estimation methods.
Moreover, the first paper aimed to evaluate the hydrological model behavior with re-spect to contribution of various sources of information. To do so, a multi-criteria evaluation metric including soft and hard data was used to define constraints on outputs of the 1-D hydrological model WaSiM-ETH. Applying this evaluation metric, we could identify the optimal soil and vegetation parameter sets that resulted in a “behavioral” forest stand water balance model. It was found out that even if simulations of transpiration and soil water con-tent are consistent with measured data, but still the dominant runoff generation processes or total water balance might be wrongly calculated. Therefore, only using an evaluation scheme which looks over different sources of data and embraces an understanding of the local controls of water loss through soil and plant, allowed us to exclude the unrealistic modeling outputs. The results suggested that we may need to question the generally accept-ed soil parameterization procedures that apply default parameter sets.
The second paper attempts to tackle the pointed model evaluation hindrance by getting down to the small-scale catchment (in Bavaria). Here, a methodology was introduced to analyze the sensitivity of the catchment water balance model to the choice of the Pedo-Transfer Functions (PTF). By varying the underlying PTFs in a calibrated and validated model, we could determine the resulting effects on the spatial distribution of soil hydraulic properties, total water balance in catchment outlet, and the spatial and temporal variation of the runoff components. Results revealed that the water distribution in the hydrologic system significantly differs amongst various PTFs. Moreover, the simulations of water balance components showed high sensitivity to the spatial distribution of soil hydraulic properties. Therefore, it was suggested that opting the PTFs in hydrological modeling should be care-fully tested by looking over the spatio-temporal distribution of simulated evapotranspira-tion and runoff generation processes, whether they are reasonably represented.
To fulfill the previous studies’ suggestions, the third paper then aims to focus on evalu-ating the hydrological model through improving the spatial representation of dominant run-off processes. It was implemented in a mesoscale catchment in southwestern Germany us-ing the hydrological model WaSiM-ETH. Dealing with the issues of inadequate spatial ob-servations for rigorous spatial model evaluation, we made use of a reference soil hydrologic map available for the study area to discern the expected dominant runoff processes across a wide range of hydrological conditions. The model was parameterized by applying 11 PTFs and run by multiple synthetic rainfall events. To compare the simulated spatial patterns to the patterns derived by digital soil map, a multiple-component spatial performance metric (SPAEF) was applied. The simulated DRPs showed a large variability with regard to land use, topography, applied rainfall rates, and the different PTFs, which highly influence the rapid runoff generation under wet conditions.
The three published manuscripts proceeded towards the model evaluation viewpoints that ultimately attain the behavioral model outputs. It was performed through obtaining information about internal hydrological processes that lead to certain model behaviors, and also about the function and sensitivity of some of the soil and vegetation parameters that may primarily influence those internal processes in a catchment. Accordingly, using this understanding on model reactions, and by setting multiple evaluation criteria, it was possi-ble to identify which parameterization could lead to behavioral model realization. This work, in fact, will contribute to solving some of the issues (e.g., spatial variability and modeling methods) identified as the 23 unsolved problems in hydrology in the 21st century (Blöschl et al., 2019). The results obtained in the present work encourage the further inves-tigations toward a comprehensive model calibration procedure considering multiple data sources simultaneously. This will enable developing the new perspectives to the current parameter estimation methods, which in essence, focus on reproducing the plausible dy-namics (spatio-temporal) of the other hydrological processes within the watershed.
This cumulative thesis encompass three studies focusing on the Weddell Sea region in the Antarctic. The first study produces and evaluates a high quality data set of wind measurements for this region. The second study produces and evaluates a 15 year regional climate simulation for the Weddell Sea region. And the third study produces and evaluates a climatology of low level jets (LLJs) from the simulation data set. The evaluations were done in the attached three publications and the produced data sets are published online.
In 2015/2016, the RV Polarstern undertook an Antarctic expedition in the Weddell Sea. We operated a Doppler wind lidar on board during that time running different scan patterns. The resulting data was evaluated, corrected, processed and we derived horizontal wind speed and directions for vertical profiles with up to 2 km height. The measurements cover 38 days with a temporal resolution of 10-15 minutes. A comparisons with other radio sounding data showed only minor differences.
The resulting data set was used alongside other measurements to evaluate temperature and wind of simulation data. The simulation data was produced with the regional climate model CCLM for the period of 2002 to 2016 for the Weddell Sea region. Only smaller biases were found except for a strong warm bias during winter near the surface of the Antarctic Plateau. Thus we adapted the model setup and were able to remove the bias in a second simulation.
This new simulation data was then used to derive a climatology of low level jets (LLJs). Statistics of occurrence frequency, height and wind speed of LLJs for the Weddell Sea region are presented along other parameters. Another evaluation with measurements was also performed in the last study.
Measurements of the atmospheric boundary layer (ABL) structure were performed for three years (October 2017–August 2020) at the Russian observatory “Ice Base Cape Baranova” (79.280° N, 101.620° E) using SODAR (Sound Detection And Ranging). These measurements were part of the YOPP (Year of Polar Prediction) project “Boundary layer measurements in the high Arctic” (CATS_BL) within the scope of a joint German–Russian project. In addition to SODAR-derived vertical profiles of wind speed and direction, a suite of complementary measurements at the observatory was available. ABL measurements were used for verification of the regional climate model COSMO-CLM (CCLM) with a 5 km resolution for 2017–2020. The CCLM was run with nesting in ERA5 data in a forecast mode for the measurement period. SODAR measurements were mostly limited to wind speeds <12 m/s since the signal was often lost for higher winds. The SODAR data showed a topographical channeling effect for the wind field in the lowest 100 m and some low-level jets (LLJs). The verification of the CCLM with near-surface data of the observatory showed good agreement for the wind and a negative bias for the 2 m temperature. The comparison with SODAR data showed a positive bias for the wind speed of about 1 m/s below 100 m, which increased to 1.5 m/s for higher levels. In contrast to the SODAR data, the CCLM data showed the frequent presence of LLJs associated with the topographic channeling in Shokalsky Strait. Although SODAR wind profiles are limited in range and have a lot of gaps, they represent a valuable data set for model verification. However, a full picture of the ABL structure and the climatology of channeling events could be obtained only with the model data. The climatological evaluation showed that the wind field at Cape Baranova was not only influenced by direct topographic channeling under conditions of southerly winds through the Shokalsky Strait but also by channeling through a mountain gap for westerly winds. LLJs were detected in 37% of all profiles and most LLJs were associated with channeling, particularly LLJs with a jet speed ≥ 15 m/s (which were 29% of all LLJs). The analysis of the simulated 10 m wind field showed that the 99%-tile of the wind speed reached 18 m/s and clearly showed a dipole structure of channeled wind at both exits of Shokalsky Strait. The climatology of channeling events showed that this dipole structure was caused by the frequent occurrence of channeling at both exits. Channeling events lasting at least 12 h occurred on about 62 days per year at both exits of Shokalsky Strait.
Wasserbezogene regulierende und versorgende Ökosystemdienstleistungen (ÖSDL) wurden im Hinblick auf das Abflussregime und die Grundwasserneubildung im Biosphärenreservat Pfälzerwald im Südwesten Deutschlands anhand hydrologischer Modellierung unter Verwendung des Soil and Water Assessment Tool (SWAT+) untersucht. Dabei wurde ein holistischer Ansatz verfolgt, wonach den ÖSDL Indikatoren für funktionale und strukturelle ökologische Prozesse zugeordnet werden. Potenzielle Risikofaktoren für die Verschlechterung von wasserbedingten ÖSDL des Waldes, wie Bodenverdichtung durch Befahren mit schweren Maschinen im Zuge von Holzerntearbeiten, Schadflächen mit Verjüngung, entweder durch waldbauliche Bewirtschaftungspraktiken oder durch Windwurf, Schädlinge und Kalamitäten im Zuge des Klimawandels, sowie der Kli-mawandel selbst als wesentlicher Stressor für Waldökosysteme wurden hinsichtlich ihrer Auswirkungen auf hydrologische Prozesse analysiert. Für jeden dieser Einflussfaktoren wurden separate SWAT+-Modellszenarien erstellt und mit dem kalibrierten Basismodell verglichen, das die aktuellen Wassereinzugsgebietsbedingungen basierend auf Felddaten repräsentierte. Die Simulationen bestätigten günstige Bedingungen für die Grundwasserneubildung im Pfälzerwald. Im Zusammenhang mit der hohen Versickerungskapazität der Bodensubstrate der Buntsandsteinverwitterung, sowie dem verzögernden und puffernden Einfluss der Baumkronen auf das Niederschlagswasser, wurde eine signifikante Minderungswirkung auf die Oberflächenabflussbildung und ein ausgeprägtes räumliches und zeitliches Rückhaltepotential im Einzugsgebiet simuliert. Dabei wurde festgestellt, dass erhöhte Niederschlagsmengen, die die Versickerungskapazität der sandigen Böden übersteigen, zu einer kurz geschlossenen Abflussreaktion mit ausgeprägten Oberflächenabflussspitzen führen. Die Simulationen zeigten Wechselwirkungen zwischen Wald und Wasserkreislauf sowie die hydrologische Wirksamkeit des Klimawandels, verschlechterter Bodenfunktionen und altersbezogener Bestandesstrukturen im Zusammenhang mit Unterschieden in der Baumkronenausprägung. Zukunfts-Klimaprojektionen, die mit BIAS-bereinigten REKLIES- und EURO-CORDEX-Regionalklimamodellen (RCM) simuliert wurden, prognostizierten einen höheren Verdunstungsbedarf und eine Verlängerung der Vegetationsperiode bei gleichzeitig häufiger auftretenden Dürreperioden innerhalb der Vegetationszeit, was eine Verkürzung der Periode für die Grundwasserneubildung induzierte, und folglich zu einem prognostizierten Rückgang der Grundwasserneubildungsrate bis zur Mitte des Jahrhunderts führte. Aufgrund der starken Korrelation mit Niederschlagsintensitäten und der Dauer von Niederschlagsereignissen, bei allen Unsicherheiten in ihrer Vorhersage, wurde für die Oberflächenabflussgenese eine Steigerung bis zum Ende des Jahrhunderts prognostiziert.
Für die Simulation der Bodenverdichtung wurden die Trockenrohdichte des Bodens und die SCS Curve Number in SWAT+ gemäß Daten aus Befahrungsversuchen im Gebiet angepasst. Die günstigen Infiltrationsbedingungen und die relativ geringe Anfälligkeit für Bodenverdichtung der grobkörnigen Buntsandsteinverwitterung dominierten die hydrologischen Auswirkungen auf Wassereinzugsgebietsebene, sodass lediglich moderate Verschlechterungen wasserbezogener ÖSDL angezeigt wurden. Die Simulationen zeigten weiterhin einen deutlichen Einfluss der Bodenart auf die hydrologische Reaktion nach Bodenverdichtung auf Rückegassen und stützen damit die Annahme, dass die Anfälligkeit von Böden gegenüber Verdichtung mit dem Anteil an Schluff- und Tonbodenpartikeln zunimmt. Eine erhöhte Oberflächenabflussgenese ergab sich durch das Wegenetz im Gesamtgebiet.
Schadflächen mit Bestandesverjüngung wurden anhand eines artifiziellen Modells innerhalb eines Teileinzugsgebiets unter der Annahme von 3-jährigen Baumsetzlingen in einem Entwicklungszeitraum von 10 Jahren simuliert und hinsichtlich spezifischer Was-serhaushaltskomponenten mit Altbeständen (30 bis 80 Jahre) verglichen. Die Simulation ließ darauf schließen, dass bei fehlender Kronenüberschirmung die hydrologisch verzögernde Wirkung der Bestände beeinträchtigt wird, was die Entstehung von Oberflächenabfluss begünstigt und eine quantitativ geringfügig höhere Tiefensickerung fördert. Hydrologische Unterschiede zwischen dem geschlossenem Kronendach der Altbestände und Jungbeständen mit annähernden Freilandniederschlagsbedingungen wurden durch die dominierenden Faktoren atmosphärischer Verdunstungsanstoß, Niederschlagsmengen und Kronenüberschirmungsgrad bestimmt. Je weniger entwickelt das Kronendach von verjüngten Waldbeständen im Vergleich zu Altbeständen, je höher der atmosphärische Verdunstungsanstoß und je geringer die eingetragenen Niederschlagsmengen, desto größer war der hydrologische Unterschied zwischen den Bestandestypen.
Verbesserungsmaßnahmen für den dezentralen Hochwasserschutz sollten folglich kritische Bereiche für die Abflussbildung im Wald (CSA) berücksichtigen. Die hohe Sensibilität und Anfälligkeit der Wälder gegenüber Verschlechterungen der Ökosystembedingungen legen nahe, dass die Erhaltung des komplexen Gefüges und von intakten Wechselbeziehungen, insbesondere unter der gegebenen Herausforderung des Klimawandels, sorgfältig angepasste Schutzmaßnahmen, Anstrengungen bei der Identifizierung von CSA sowie die Erhaltung und Wiederherstellung der hydrologischen Kontinuität in Waldbeständen erfordern.
A model-based temperature adjustment scheme for wintertime sea-ice production retrievals from MODIS
(2022)
Knowledge of the wintertime sea-ice production in Arctic polynyas is an important requirement for estimations of the dense water formation, which drives vertical mixing in the upper ocean. Satellite-based techniques incorporating relatively high resolution thermal-infrared data from MODIS in combination with atmospheric reanalysis data have proven to be a strong tool to monitor large and regularly forming polynyas and to resolve narrow thin-ice areas (i.e., leads) along the shelf-breaks and across the entire Arctic Ocean. However, the selection of the atmospheric data sets has a large influence on derived polynya characteristics due to their impact on the calculation of the heat loss to the atmosphere, which is determined by the local thin-ice thickness. In order to overcome this methodical ambiguity, we present a MODIS-assisted temperature adjustment (MATA) algorithm that yields corrections of the 2 m air temperature and hence decreases differences between the atmospheric input data sets. The adjustment algorithm is based on atmospheric model simulations. We focus on the Laptev Sea region for detailed case studies on the developed algorithm and present time series of polynya characteristics in the winter season 2019/2020. It shows that the application of the empirically derived correction decreases the difference between different utilized atmospheric products significantly from 49% to 23%. Additional filter strategies are applied that aim at increasing the capability to include leads in the quasi-daily and persistence-filtered thin-ice thickness composites. More generally, the winter of 2019/2020 features high polynya activity in the eastern Arctic and less activity in the Canadian Arctic Archipelago, presumably as a result of the particularly strong polar vortex in early 2020.
Low-level jets (LLJs) are climatological features in polar regions. It is well known that katabatic winds over the slopes of the Antarctic ice sheet are associated with strong LLJs. Barrier winds occurring, e.g., along the Antarctic Peninsula may also show LLJ structures. A few observational studies show that LLJs occur over sea ice regions. We present a model-based climatology of the wind field, of low-level inversions and of LLJs in the Weddell Sea region of the Antarctic for the period 2002–2016. The sensitivity of the LLJ detection on the selection of the wind speed maximum is investigated. The common criterion of an anomaly of at least 2 m/s is extended to a relative criterion of wind speed decrease above and below the LLJ. The frequencies of LLJs are sensitive to the choice of the relative criterion, i.e., if the value for the relative decrease exceeds 15%. The LLJs are evaluated with respect to the frequency distributions of height, speed, directional shear and stability for different regions. LLJs are most frequent in the katabatic wind regime over the ice sheet and in barrier wind regions. During winter, katabatic LLJs occur with frequencies of more than 70% in many areas. Katabatic LLJs show a narrow range of heights (mostly below 200 m) and speeds (typically 10–20 m/s), while LLJs over the sea ice cover a broad range of speeds and heights. LLJs are associated with surface inversions or low-level lifted inversions. LLJs in the katabatic wind and barrier wind regions can last several days during winter. The duration of LLJs is sensitive to the LLJ definition criteria. We propose to use only the absolute criterion for model studies.
The state-of-the-art finite element software Plaxis 3D was applied in a real-world study site of the Turaida castle mound to investigate the slope stability of the mound and understand the mechanisms triggering landslides there. During the simulation, the stability of the castle mound was analysed and the most landslide-susceptible zones of hillslopes were determined. The 3D finite-element stability analysis has significant advantages over conventional 2D limit-equilibrium methods where locations of 2D stability sections are arbitrarily selected. Two modelling scenarios of the slope stability were elaborated considering deep-seated slides in bedrock and shallow landslides in the colluvial material of slopes. The model shows that shallow slides in colluvium are more probable. In the finite-element model, slope failure occurs along the weakest zone in colluvium, similarly to the situation observed in previous landslides in the study site. The physical basis of the model allows results to be obtained very close to natural conditions and delivers valuable insight in triggering mechanisms of landslides.
Intense, southward low-level winds are common in Nares Strait, between Ellesmere Island and northern Greenland. The steep topography along Nares Strait leads to channelling effects, resulting in an along-strait flow. This research study presents a 30-year climatology of the flow regime from simulations of the COSMO-CLM climate model. The simulations are available for the winter periods (November–April) 1987/88 to 2016/17, and thus, cover a period long enough to give robust long-term characteristics of Nares Strait. The horizontal resolution of 15 km is high enough to represent the complex terrain and the meteorological conditions realistically. The 30-year climatology shows that LLJs associated with gap flows are a climatological feature of Nares Strait. The maximum of the mean 10-m wind speed is around 12 m s-1 and is located at the southern exit of Smith Sound. The wind speed is strongly related to the pressure gradient. Single events reach wind speeds of 40 m s-1 in the daily mean. The LLJs are associated with gap flows within the narrowest parts of the strait under stably stratified conditions, with the main LLJ occurring at 100–250 m height. With increasing mountain Froude number, the LLJ wind speed and height increase. The frequency of strong wind events (>20 m s-1 in the daily mean) for the 10 m wind shows a strong interannual variability with an average of 15 events per winter. Channelled winds have a strong impact on the formation of the North Water polynya.
The parameterization of ocean/sea-ice/atmosphere interaction processes is a challenge for regional climate models (RCMs) of the Arctic, particularly for wintertime conditions, when small fractions of thin ice or open water cause strong modifications of the boundary layer. Thus, the treatment of sea ice and sub-grid flux parameterizations in RCMs is of crucial importance. However, verification data sets over sea ice for wintertime conditions are rare. In the present paper, data of the ship-based experiment Transarktika 2019 during the end of the Arctic winter for thick one-year ice conditions are presented. The data are used for the verification of the regional climate model COSMO-CLM (CCLM). In addition, Moderate Resolution Imaging Spectroradiometer (MODIS) data are used for the comparison of ice surface temperature (IST) simulations of the CCLM sea ice model. CCLM is used in a forecast mode (nested in ERA5) for the Norwegian and Barents Seas with 5 km resolution and is run with different configurations of the sea ice model and sub-grid flux parameterizations. The use of a new set of parameterizations yields improved results for the comparisons with in-situ data. Comparisons with MODIS IST allow for a verification over large areas and show also a good performance of CCLM. The comparison with twice-daily radiosonde ascents during Transarktika 2019, hourly microwave water vapor measurements of first 5 km in the atmosphere and hourly temperature profiler data show a very good representation of the temperature, humidity and wind structure of the whole troposphere for CCLM.
Climate change is expected to cause mountain species to shift their ranges to higher elevations. Due to the decreasing amounts of habitats with increasing elevation, such shifts are likely to increase their extinction risk. Heterogeneous mountain topography, however, may reduce this risk by providing microclimatic conditions that can buffer macroclimatic warming or provide nearby refugia. As aspect strongly influences the local microclimate, we here assess whether shifts from warm south-exposed aspects to cool north-exposed aspects in response to climate change can compensate for an upward shift into cooler elevations.