Refine
Year of publication
Document Type
- Doctoral Thesis (19)
- Article (8)
- Conference Proceedings (1)
- Master's Thesis (1)
Language
- English (20)
- German (8)
- Multiple languages (1)
Keywords
- Modellierung (29) (remove)
Institute
- Raum- und Umweltwissenschaften (23)
- Fachbereich 6 (3)
- Fachbereich 4 (1)
- Informatik (1)
Physically-based distributed rainfall-runoff models as the standard analysis tools for hydro-logical processes have been used to simulate the water system in detail, which includes spa-tial patterns and temporal dynamics of hydrological variables and processes (Davison et al., 2015; Ek and Holtslag, 2004). In general, catchment models are parameterized with spatial information on soil, vegetation and topography. However, traditional approaches for eval-uation of the hydrological model performance are usually motivated with respect to dis-charge data alone. This may thus cloud model realism and hamper understanding of the catchment behavior. It is necessary to evaluate the model performance with respect to in-ternal hydrological processes within the catchment area as well as other components of wa-ter balance rather than runoff discharge at the catchment outlet only. In particular, a consid-erable amount of dynamics in a catchment occurs in the processes related to interactions of the water, soil and vegetation. Evapotranspiration process, for instance, is one of those key interactive elements, and the parameterization of soil and vegetation in water balance mod-eling strongly influences the simulation of evapotranspiration. Specifically, to parameterize the water flow in unsaturated soil zone, the functional relationships that describe the soil water retention and hydraulic conductivity characteristics are important. To define these functional relationships, Pedo-Transfer Functions (PTFs) are common to use in hydrologi-cal modeling. Opting the appropriate PTFs for the region under investigation is a crucial task in estimating the soil hydraulic parameters, but this choice in a hydrological model is often made arbitrary and without evaluating the spatial and temporal patterns of evapotran-spiration, soil moisture, and distribution and intensity of runoff processes. This may ulti-mately lead to implausible modeling results and possibly to incorrect decisions in regional water management. Therefore, the use of reliable evaluation approaches is continually re-quired to analyze the dynamics of the current interactive hydrological processes and predict the future changes in the water cycle, which eventually contributes to sustainable environ-mental planning and decisions in water management.
Remarkable endeavors have been made in development of modelling tools that provide insights into the current and future of hydrological patterns in different scales and their im-pacts on the water resources and climate changes (Doell et al., 2014; Wood et al., 2011). Although, there is a need to consider a proper balance between parameter identifiability and the model's ability to realistically represent the response of the natural system. Neverthe-less, tackling this issue entails investigation of additional information, which usually has to be elaborately assembled, for instance, by mapping the dominant runoff generation pro-cesses in the intended area, or retrieving the spatial patterns of soil moisture and evapotran-spiration by using remote sensing methods, and evaluation at a scale commensurate with hydrological model (Koch et al., 2022; Zink et al., 2018). The present work therefore aims to give insights into the modeling approaches to simulate water balance and to improve the soil and vegetation parameterization scheme in the hydrological model subject to producing more reliable spatial and temporal patterns of evapotranspiration and runoff processes in the catchment.
An important contribution to the overall body of work is a book chapter included among publications. The book chapter provides a comprehensive overview of the topic and valua-ble insights into the understanding the water balance and its estimation methods.
Moreover, the first paper aimed to evaluate the hydrological model behavior with re-spect to contribution of various sources of information. To do so, a multi-criteria evaluation metric including soft and hard data was used to define constraints on outputs of the 1-D hydrological model WaSiM-ETH. Applying this evaluation metric, we could identify the optimal soil and vegetation parameter sets that resulted in a “behavioral” forest stand water balance model. It was found out that even if simulations of transpiration and soil water con-tent are consistent with measured data, but still the dominant runoff generation processes or total water balance might be wrongly calculated. Therefore, only using an evaluation scheme which looks over different sources of data and embraces an understanding of the local controls of water loss through soil and plant, allowed us to exclude the unrealistic modeling outputs. The results suggested that we may need to question the generally accept-ed soil parameterization procedures that apply default parameter sets.
The second paper attempts to tackle the pointed model evaluation hindrance by getting down to the small-scale catchment (in Bavaria). Here, a methodology was introduced to analyze the sensitivity of the catchment water balance model to the choice of the Pedo-Transfer Functions (PTF). By varying the underlying PTFs in a calibrated and validated model, we could determine the resulting effects on the spatial distribution of soil hydraulic properties, total water balance in catchment outlet, and the spatial and temporal variation of the runoff components. Results revealed that the water distribution in the hydrologic system significantly differs amongst various PTFs. Moreover, the simulations of water balance components showed high sensitivity to the spatial distribution of soil hydraulic properties. Therefore, it was suggested that opting the PTFs in hydrological modeling should be care-fully tested by looking over the spatio-temporal distribution of simulated evapotranspira-tion and runoff generation processes, whether they are reasonably represented.
To fulfill the previous studies’ suggestions, the third paper then aims to focus on evalu-ating the hydrological model through improving the spatial representation of dominant run-off processes. It was implemented in a mesoscale catchment in southwestern Germany us-ing the hydrological model WaSiM-ETH. Dealing with the issues of inadequate spatial ob-servations for rigorous spatial model evaluation, we made use of a reference soil hydrologic map available for the study area to discern the expected dominant runoff processes across a wide range of hydrological conditions. The model was parameterized by applying 11 PTFs and run by multiple synthetic rainfall events. To compare the simulated spatial patterns to the patterns derived by digital soil map, a multiple-component spatial performance metric (SPAEF) was applied. The simulated DRPs showed a large variability with regard to land use, topography, applied rainfall rates, and the different PTFs, which highly influence the rapid runoff generation under wet conditions.
The three published manuscripts proceeded towards the model evaluation viewpoints that ultimately attain the behavioral model outputs. It was performed through obtaining information about internal hydrological processes that lead to certain model behaviors, and also about the function and sensitivity of some of the soil and vegetation parameters that may primarily influence those internal processes in a catchment. Accordingly, using this understanding on model reactions, and by setting multiple evaluation criteria, it was possi-ble to identify which parameterization could lead to behavioral model realization. This work, in fact, will contribute to solving some of the issues (e.g., spatial variability and modeling methods) identified as the 23 unsolved problems in hydrology in the 21st century (Blöschl et al., 2019). The results obtained in the present work encourage the further inves-tigations toward a comprehensive model calibration procedure considering multiple data sources simultaneously. This will enable developing the new perspectives to the current parameter estimation methods, which in essence, focus on reproducing the plausible dy-namics (spatio-temporal) of the other hydrological processes within the watershed.
This cumulative thesis encompass three studies focusing on the Weddell Sea region in the Antarctic. The first study produces and evaluates a high quality data set of wind measurements for this region. The second study produces and evaluates a 15 year regional climate simulation for the Weddell Sea region. And the third study produces and evaluates a climatology of low level jets (LLJs) from the simulation data set. The evaluations were done in the attached three publications and the produced data sets are published online.
In 2015/2016, the RV Polarstern undertook an Antarctic expedition in the Weddell Sea. We operated a Doppler wind lidar on board during that time running different scan patterns. The resulting data was evaluated, corrected, processed and we derived horizontal wind speed and directions for vertical profiles with up to 2 km height. The measurements cover 38 days with a temporal resolution of 10-15 minutes. A comparisons with other radio sounding data showed only minor differences.
The resulting data set was used alongside other measurements to evaluate temperature and wind of simulation data. The simulation data was produced with the regional climate model CCLM for the period of 2002 to 2016 for the Weddell Sea region. Only smaller biases were found except for a strong warm bias during winter near the surface of the Antarctic Plateau. Thus we adapted the model setup and were able to remove the bias in a second simulation.
This new simulation data was then used to derive a climatology of low level jets (LLJs). Statistics of occurrence frequency, height and wind speed of LLJs for the Weddell Sea region are presented along other parameters. Another evaluation with measurements was also performed in the last study.
Measurements of the atmospheric boundary layer (ABL) structure were performed for three years (October 2017–August 2020) at the Russian observatory “Ice Base Cape Baranova” (79.280° N, 101.620° E) using SODAR (Sound Detection And Ranging). These measurements were part of the YOPP (Year of Polar Prediction) project “Boundary layer measurements in the high Arctic” (CATS_BL) within the scope of a joint German–Russian project. In addition to SODAR-derived vertical profiles of wind speed and direction, a suite of complementary measurements at the observatory was available. ABL measurements were used for verification of the regional climate model COSMO-CLM (CCLM) with a 5 km resolution for 2017–2020. The CCLM was run with nesting in ERA5 data in a forecast mode for the measurement period. SODAR measurements were mostly limited to wind speeds <12 m/s since the signal was often lost for higher winds. The SODAR data showed a topographical channeling effect for the wind field in the lowest 100 m and some low-level jets (LLJs). The verification of the CCLM with near-surface data of the observatory showed good agreement for the wind and a negative bias for the 2 m temperature. The comparison with SODAR data showed a positive bias for the wind speed of about 1 m/s below 100 m, which increased to 1.5 m/s for higher levels. In contrast to the SODAR data, the CCLM data showed the frequent presence of LLJs associated with the topographic channeling in Shokalsky Strait. Although SODAR wind profiles are limited in range and have a lot of gaps, they represent a valuable data set for model verification. However, a full picture of the ABL structure and the climatology of channeling events could be obtained only with the model data. The climatological evaluation showed that the wind field at Cape Baranova was not only influenced by direct topographic channeling under conditions of southerly winds through the Shokalsky Strait but also by channeling through a mountain gap for westerly winds. LLJs were detected in 37% of all profiles and most LLJs were associated with channeling, particularly LLJs with a jet speed ≥ 15 m/s (which were 29% of all LLJs). The analysis of the simulated 10 m wind field showed that the 99%-tile of the wind speed reached 18 m/s and clearly showed a dipole structure of channeled wind at both exits of Shokalsky Strait. The climatology of channeling events showed that this dipole structure was caused by the frequent occurrence of channeling at both exits. Channeling events lasting at least 12 h occurred on about 62 days per year at both exits of Shokalsky Strait.
Wasserbezogene regulierende und versorgende Ökosystemdienstleistungen (ÖSDL) wurden im Hinblick auf das Abflussregime und die Grundwasserneubildung im Biosphärenreservat Pfälzerwald im Südwesten Deutschlands anhand hydrologischer Modellierung unter Verwendung des Soil and Water Assessment Tool (SWAT+) untersucht. Dabei wurde ein holistischer Ansatz verfolgt, wonach den ÖSDL Indikatoren für funktionale und strukturelle ökologische Prozesse zugeordnet werden. Potenzielle Risikofaktoren für die Verschlechterung von wasserbedingten ÖSDL des Waldes, wie Bodenverdichtung durch Befahren mit schweren Maschinen im Zuge von Holzerntearbeiten, Schadflächen mit Verjüngung, entweder durch waldbauliche Bewirtschaftungspraktiken oder durch Windwurf, Schädlinge und Kalamitäten im Zuge des Klimawandels, sowie der Kli-mawandel selbst als wesentlicher Stressor für Waldökosysteme wurden hinsichtlich ihrer Auswirkungen auf hydrologische Prozesse analysiert. Für jeden dieser Einflussfaktoren wurden separate SWAT+-Modellszenarien erstellt und mit dem kalibrierten Basismodell verglichen, das die aktuellen Wassereinzugsgebietsbedingungen basierend auf Felddaten repräsentierte. Die Simulationen bestätigten günstige Bedingungen für die Grundwasserneubildung im Pfälzerwald. Im Zusammenhang mit der hohen Versickerungskapazität der Bodensubstrate der Buntsandsteinverwitterung, sowie dem verzögernden und puffernden Einfluss der Baumkronen auf das Niederschlagswasser, wurde eine signifikante Minderungswirkung auf die Oberflächenabflussbildung und ein ausgeprägtes räumliches und zeitliches Rückhaltepotential im Einzugsgebiet simuliert. Dabei wurde festgestellt, dass erhöhte Niederschlagsmengen, die die Versickerungskapazität der sandigen Böden übersteigen, zu einer kurz geschlossenen Abflussreaktion mit ausgeprägten Oberflächenabflussspitzen führen. Die Simulationen zeigten Wechselwirkungen zwischen Wald und Wasserkreislauf sowie die hydrologische Wirksamkeit des Klimawandels, verschlechterter Bodenfunktionen und altersbezogener Bestandesstrukturen im Zusammenhang mit Unterschieden in der Baumkronenausprägung. Zukunfts-Klimaprojektionen, die mit BIAS-bereinigten REKLIES- und EURO-CORDEX-Regionalklimamodellen (RCM) simuliert wurden, prognostizierten einen höheren Verdunstungsbedarf und eine Verlängerung der Vegetationsperiode bei gleichzeitig häufiger auftretenden Dürreperioden innerhalb der Vegetationszeit, was eine Verkürzung der Periode für die Grundwasserneubildung induzierte, und folglich zu einem prognostizierten Rückgang der Grundwasserneubildungsrate bis zur Mitte des Jahrhunderts führte. Aufgrund der starken Korrelation mit Niederschlagsintensitäten und der Dauer von Niederschlagsereignissen, bei allen Unsicherheiten in ihrer Vorhersage, wurde für die Oberflächenabflussgenese eine Steigerung bis zum Ende des Jahrhunderts prognostiziert.
Für die Simulation der Bodenverdichtung wurden die Trockenrohdichte des Bodens und die SCS Curve Number in SWAT+ gemäß Daten aus Befahrungsversuchen im Gebiet angepasst. Die günstigen Infiltrationsbedingungen und die relativ geringe Anfälligkeit für Bodenverdichtung der grobkörnigen Buntsandsteinverwitterung dominierten die hydrologischen Auswirkungen auf Wassereinzugsgebietsebene, sodass lediglich moderate Verschlechterungen wasserbezogener ÖSDL angezeigt wurden. Die Simulationen zeigten weiterhin einen deutlichen Einfluss der Bodenart auf die hydrologische Reaktion nach Bodenverdichtung auf Rückegassen und stützen damit die Annahme, dass die Anfälligkeit von Böden gegenüber Verdichtung mit dem Anteil an Schluff- und Tonbodenpartikeln zunimmt. Eine erhöhte Oberflächenabflussgenese ergab sich durch das Wegenetz im Gesamtgebiet.
Schadflächen mit Bestandesverjüngung wurden anhand eines artifiziellen Modells innerhalb eines Teileinzugsgebiets unter der Annahme von 3-jährigen Baumsetzlingen in einem Entwicklungszeitraum von 10 Jahren simuliert und hinsichtlich spezifischer Was-serhaushaltskomponenten mit Altbeständen (30 bis 80 Jahre) verglichen. Die Simulation ließ darauf schließen, dass bei fehlender Kronenüberschirmung die hydrologisch verzögernde Wirkung der Bestände beeinträchtigt wird, was die Entstehung von Oberflächenabfluss begünstigt und eine quantitativ geringfügig höhere Tiefensickerung fördert. Hydrologische Unterschiede zwischen dem geschlossenem Kronendach der Altbestände und Jungbeständen mit annähernden Freilandniederschlagsbedingungen wurden durch die dominierenden Faktoren atmosphärischer Verdunstungsanstoß, Niederschlagsmengen und Kronenüberschirmungsgrad bestimmt. Je weniger entwickelt das Kronendach von verjüngten Waldbeständen im Vergleich zu Altbeständen, je höher der atmosphärische Verdunstungsanstoß und je geringer die eingetragenen Niederschlagsmengen, desto größer war der hydrologische Unterschied zwischen den Bestandestypen.
Verbesserungsmaßnahmen für den dezentralen Hochwasserschutz sollten folglich kritische Bereiche für die Abflussbildung im Wald (CSA) berücksichtigen. Die hohe Sensibilität und Anfälligkeit der Wälder gegenüber Verschlechterungen der Ökosystembedingungen legen nahe, dass die Erhaltung des komplexen Gefüges und von intakten Wechselbeziehungen, insbesondere unter der gegebenen Herausforderung des Klimawandels, sorgfältig angepasste Schutzmaßnahmen, Anstrengungen bei der Identifizierung von CSA sowie die Erhaltung und Wiederherstellung der hydrologischen Kontinuität in Waldbeständen erfordern.
A model-based temperature adjustment scheme for wintertime sea-ice production retrievals from MODIS
(2022)
Knowledge of the wintertime sea-ice production in Arctic polynyas is an important requirement for estimations of the dense water formation, which drives vertical mixing in the upper ocean. Satellite-based techniques incorporating relatively high resolution thermal-infrared data from MODIS in combination with atmospheric reanalysis data have proven to be a strong tool to monitor large and regularly forming polynyas and to resolve narrow thin-ice areas (i.e., leads) along the shelf-breaks and across the entire Arctic Ocean. However, the selection of the atmospheric data sets has a large influence on derived polynya characteristics due to their impact on the calculation of the heat loss to the atmosphere, which is determined by the local thin-ice thickness. In order to overcome this methodical ambiguity, we present a MODIS-assisted temperature adjustment (MATA) algorithm that yields corrections of the 2 m air temperature and hence decreases differences between the atmospheric input data sets. The adjustment algorithm is based on atmospheric model simulations. We focus on the Laptev Sea region for detailed case studies on the developed algorithm and present time series of polynya characteristics in the winter season 2019/2020. It shows that the application of the empirically derived correction decreases the difference between different utilized atmospheric products significantly from 49% to 23%. Additional filter strategies are applied that aim at increasing the capability to include leads in the quasi-daily and persistence-filtered thin-ice thickness composites. More generally, the winter of 2019/2020 features high polynya activity in the eastern Arctic and less activity in the Canadian Arctic Archipelago, presumably as a result of the particularly strong polar vortex in early 2020.
Low-level jets (LLJs) are climatological features in polar regions. It is well known that katabatic winds over the slopes of the Antarctic ice sheet are associated with strong LLJs. Barrier winds occurring, e.g., along the Antarctic Peninsula may also show LLJ structures. A few observational studies show that LLJs occur over sea ice regions. We present a model-based climatology of the wind field, of low-level inversions and of LLJs in the Weddell Sea region of the Antarctic for the period 2002–2016. The sensitivity of the LLJ detection on the selection of the wind speed maximum is investigated. The common criterion of an anomaly of at least 2 m/s is extended to a relative criterion of wind speed decrease above and below the LLJ. The frequencies of LLJs are sensitive to the choice of the relative criterion, i.e., if the value for the relative decrease exceeds 15%. The LLJs are evaluated with respect to the frequency distributions of height, speed, directional shear and stability for different regions. LLJs are most frequent in the katabatic wind regime over the ice sheet and in barrier wind regions. During winter, katabatic LLJs occur with frequencies of more than 70% in many areas. Katabatic LLJs show a narrow range of heights (mostly below 200 m) and speeds (typically 10–20 m/s), while LLJs over the sea ice cover a broad range of speeds and heights. LLJs are associated with surface inversions or low-level lifted inversions. LLJs in the katabatic wind and barrier wind regions can last several days during winter. The duration of LLJs is sensitive to the LLJ definition criteria. We propose to use only the absolute criterion for model studies.
The state-of-the-art finite element software Plaxis 3D was applied in a real-world study site of the Turaida castle mound to investigate the slope stability of the mound and understand the mechanisms triggering landslides there. During the simulation, the stability of the castle mound was analysed and the most landslide-susceptible zones of hillslopes were determined. The 3D finite-element stability analysis has significant advantages over conventional 2D limit-equilibrium methods where locations of 2D stability sections are arbitrarily selected. Two modelling scenarios of the slope stability were elaborated considering deep-seated slides in bedrock and shallow landslides in the colluvial material of slopes. The model shows that shallow slides in colluvium are more probable. In the finite-element model, slope failure occurs along the weakest zone in colluvium, similarly to the situation observed in previous landslides in the study site. The physical basis of the model allows results to be obtained very close to natural conditions and delivers valuable insight in triggering mechanisms of landslides.
Intense, southward low-level winds are common in Nares Strait, between Ellesmere Island and northern Greenland. The steep topography along Nares Strait leads to channelling effects, resulting in an along-strait flow. This research study presents a 30-year climatology of the flow regime from simulations of the COSMO-CLM climate model. The simulations are available for the winter periods (November–April) 1987/88 to 2016/17, and thus, cover a period long enough to give robust long-term characteristics of Nares Strait. The horizontal resolution of 15 km is high enough to represent the complex terrain and the meteorological conditions realistically. The 30-year climatology shows that LLJs associated with gap flows are a climatological feature of Nares Strait. The maximum of the mean 10-m wind speed is around 12 m s-1 and is located at the southern exit of Smith Sound. The wind speed is strongly related to the pressure gradient. Single events reach wind speeds of 40 m s-1 in the daily mean. The LLJs are associated with gap flows within the narrowest parts of the strait under stably stratified conditions, with the main LLJ occurring at 100–250 m height. With increasing mountain Froude number, the LLJ wind speed and height increase. The frequency of strong wind events (>20 m s-1 in the daily mean) for the 10 m wind shows a strong interannual variability with an average of 15 events per winter. Channelled winds have a strong impact on the formation of the North Water polynya.
The parameterization of ocean/sea-ice/atmosphere interaction processes is a challenge for regional climate models (RCMs) of the Arctic, particularly for wintertime conditions, when small fractions of thin ice or open water cause strong modifications of the boundary layer. Thus, the treatment of sea ice and sub-grid flux parameterizations in RCMs is of crucial importance. However, verification data sets over sea ice for wintertime conditions are rare. In the present paper, data of the ship-based experiment Transarktika 2019 during the end of the Arctic winter for thick one-year ice conditions are presented. The data are used for the verification of the regional climate model COSMO-CLM (CCLM). In addition, Moderate Resolution Imaging Spectroradiometer (MODIS) data are used for the comparison of ice surface temperature (IST) simulations of the CCLM sea ice model. CCLM is used in a forecast mode (nested in ERA5) for the Norwegian and Barents Seas with 5 km resolution and is run with different configurations of the sea ice model and sub-grid flux parameterizations. The use of a new set of parameterizations yields improved results for the comparisons with in-situ data. Comparisons with MODIS IST allow for a verification over large areas and show also a good performance of CCLM. The comparison with twice-daily radiosonde ascents during Transarktika 2019, hourly microwave water vapor measurements of first 5 km in the atmosphere and hourly temperature profiler data show a very good representation of the temperature, humidity and wind structure of the whole troposphere for CCLM.
Climate change is expected to cause mountain species to shift their ranges to higher elevations. Due to the decreasing amounts of habitats with increasing elevation, such shifts are likely to increase their extinction risk. Heterogeneous mountain topography, however, may reduce this risk by providing microclimatic conditions that can buffer macroclimatic warming or provide nearby refugia. As aspect strongly influences the local microclimate, we here assess whether shifts from warm south-exposed aspects to cool north-exposed aspects in response to climate change can compensate for an upward shift into cooler elevations.
Finding behavioral parameterization for a 1-D water balance model by multi-criteria evaluation
(2019)
Evapotranspiration is often estimated by numerical simulation. However, to produce accurate simulations, these models usually require on-site measurements for parameterization or calibration. We have to make sure that the model realistically reproduces both, the temporal patterns of soil moisture and evapotranspiration. In this study, we combine three sources of information: (i) measurements of sap velocities; (ii) soil moisture; and (iii) expert knowledge on local runoff generation and water balance to define constraints for a “behavioral” forest stand water balance model. Aiming for a behavioral model, we adjusted soil moisture at saturation, bulk resistance parameters and the parameters of the water retention curve (WRC). We found that the shape of the WRC influences substantially the behavior of the simulation model. Here, only one model realization could be referred to as “behavioral”. All other realizations failed for a least one of our evaluation criteria: Not only transpiration and soil moisture are simulated consistently with our observations, but also total water balance and runoff generation processes. The introduction of a multi-criteria evaluation scheme for the detection of unrealistic outputs made it possible to identify a well performing parameter set. Our findings indicate that measurement of different fluxes and state variables instead of just one and expert knowledge concerning runoff generation facilitate the parameterization of a hydrological model.
Nonlocal operators are used in a wide variety of models and applications due to many natural phenomena being driven by nonlocal dynamics. Nonlocal operators are integral operators allowing for interactions between two distinct points in space. The nonlocal models investigated in this thesis involve kernels that are assumed to have a finite range of nonlocal interactions. Kernels of this type are used in nonlocal elasticity and convection-diffusion models as well as finance and image analysis. Also within the mathematical theory they arouse great interest, as they are asymptotically related to fractional and classical differential equations.
The results in this thesis can be grouped according to the following three aspects: modeling and analysis, discretization and optimization.
Mathematical models demonstrate their true usefulness when put into numerical practice. For computational purposes, it is important that the support of the kernel is clearly determined. Therefore nonlocal interactions are typically assumed to occur within an Euclidean ball of finite radius. In this thesis we consider more general interaction sets including norm induced balls as special cases and extend established results about well-posedness and asymptotic limits.
The discretization of integral equations is a challenging endeavor. Especially kernels which are truncated by Euclidean balls require carefully designed quadrature rules for the implementation of efficient finite element codes. In this thesis we investigate the computational benefits of polyhedral interaction sets as well as geometrically approximated interaction sets. In addition to that we outline the computational advantages of sufficiently structured problem settings.
Shape optimization methods have been proven useful for identifying interfaces in models governed by partial differential equations. Here we consider a class of shape optimization problems constrained by nonlocal equations which involve interface-dependent kernels. We derive the shape derivative associated to the nonlocal system model and solve the problem by established numerical techniques.
This thesis considers the general task of computing a partition of a set of given objects such that each set of the partition has a cardinality of at least a fixed number k. Among such kinds of partitions, which we call k-clusters, the objective is to find the k-cluster which minimises a certain cost derived from a given pairwise difference between objects which end up the same set. As a first step, this thesis introduces a general problem, denoted by (||.||,f)-k-cluster, which models the task to find a k-cluster of minimum cost given by an objective function computed with respect to specific choices for the cost functions f and ||.||. In particular this thesis considers three different choices for f and also three different choices for ||.|| which results in a total of nine different variants of the general problem. Especially with the idea to use the concept of parameterised approximation, we first investigate the role of the lower bound on the cluster cardinalities and find that k is not a suitable parameter, due to remaining NP-hardness even for the restriction to the constant 3. The reductions presented to show this hardness yield the even stronger result which states that polynomial time approximations with some constant performance ratio for any of the nine variants of (||.||,f)-k-cluster require a restriction to instances for which the pairwise distance on the objects satisfies the triangle inequality. For this restriction to what we informally refer to as metric instances, constant-factor approximation algorithms for eight of the nine variants of (||.||,f)-k-cluster are presented. While two of these algorithms yield the provably best approximation ratio (assuming P!=NP), others can only guarantee a performance which depends on the lower bound k. With the positive effect of the triangle inequality and applications to facility location in mind, we discuss the further restriction to the setting where the given objects are points in the Euclidean metric space. Considering the effect of computational hardness caused by high dimensionality of the input for other related problems (curse of dimensionality) we check if this is also the source of intractability for (||.||,f)-k-cluster. Remaining NP-hardness for restriction to small constant dimensionality however disproves this theory. We then use parameterisation to develop approximation algorithms for (||.||,f)-k-cluster without restriction to metric instances. In particular, we discuss structural parameters which reflect how much the given input differs from a metric. This idea results in parameterised approximation algorithms with parameters such as the number of conflicts (our name for pairs of objects for which the triangle inequality is violated) or the number of conflict vertices (objects involved in a conflict). The performance ratios of these parameterised approximations are in most cases identical to those of the approximations for metric instances. This shows that for most variants of (||.||,f)-k-cluster efficient and reasonable solutions are also possible for non-metric instances.
This study aims to estimate the cotton yield at the field and regional level via the APSIM/OZCOT crop model, using an optimization-based recalibration approach based on the state variable of the cotton canopy - the leaf area index (LAI), derived from atmospherically corrected Landsat-8 OLI remote sensing images in 2014. First, a local sensitivity and global analysis approach was employed to test the sensitivity of cultivar, soil and agronomic parameters to the dynamics of the LAI. After sensitivity analyses, a series of sensitive parameters were obtained. Then, the APSIM/OZCOT crop model was calibrated by observations over a two-year span (2006-2007) at the Aksu station, combined with these sensitive cultivar parameters and the current understanding of cotton cultivar parameters. Third, the relationship between the observed in-situ LAI and synchronous perpendicular vegetation indices derived from six Landsat-8 OLI images covering the entire growth stage was modelled to generate LAI maps in time and space. Finally, the Particle Swarm Optimization (PSO) and general-purpose optimization approach (based on Nelder-Mead algorithm) were used to recalibrate four sensitive agronomic parameters (row spacing, sowing density per row, irrigation amount and total fertilization) according to the minimization of the root-mean-square deviation (RMSE) between the simulated LAI from the APSIM/OZCOT model and retrieved LAI from Landsat-8 OLI remote sensing images. After the recalibration, the best simulated results compared with observed cotton yield were obtained. The results showed that: (1) FRUDD, FLAI and DDISQ were the major cultivar parameters suitable for calibrating the cotton cultivar. (2) After the calibration, the simulated LAI performed well with an RMSE and mean absolute error (MAE) of 0.45 and 0.33, respectively, in 2006 and 0.46 and 0.41, respectively, in 2007. The coefficient of determination between the observed and simulated LAI was 0.83 and 0.97, respectively, in 2006 and 2007. The Pearson- correlation coefficient was 0.913 and 0.988 in 2006 and 2007, respectively, with a significant positive correlation between the simulated and observed LAI. The difference between the observed and simulated yield was 776.72 kg/ha and 259.98 kg/ha in 2006 and 2007, respectively. (3) Cotton cultivation in 2014 was obtained using three Landsat-8 OLI images - DOY136 (May), DOY 168 (June) and DOY 200 (July) - based on the phenological differences in cotton and other vegetation types. (4) The yield estimation after the assimilation closely approximated the field-observed values, and the coefficient of determination was as high as 0.82, after recalibration of the APSIM/OZCOT model for ten cotton fields. The difference between the observed and assimilated yields for the ten fields ranged from 18.2 to 939.7 kg/ha. The RMSE and MAE between the assimilated and observed yield was 417.5 and 303.1 kg/ha, respectively. These findings provide scientific evidence for the feasibility of coupled remote sensing and APSIM/OZCOT model at the field level. (5) Upscaling from field level to regional level, the assimilation algorithm and scheme are both especially important. Although the PSO method is very efficient, the computational efficiency is also the shortcoming of the assimilation strategy on a regional scale. Comparisons between the PSO and general-purpose optimization method (based on the Nelder-Mead algorithm) were implemented from the RSME, LAI curve and computational time. The general-purpose optimization method (based on the Nelder-Mead algorithm) was used for the regional assimilation between remote sensing and the APSIM/OZCOT model. Meanwhile, the basic unit for regional assimilation was also determined as cotton field rather than pixel. Moreover, the crop growth simulation was also divided into two phases (vegetative growth and reproductive growth) for regional assimilation. (6) The regional assimilation at the vegetative growth stage between the remote sensing derived and APSIM/OZCOT model-simulated LAI was implemented by adjusting two parameters: row spacing and sowing density per row. The results showed that the sowing density of cotton was higher in the southern part than in the northern part of the study area. The spatial pattern of cotton density was also consistent with the reclamation from 2001 to 2013. Cotton fields after early reclamation were mainly located in the southern part while the recent reclamation was located in the northern part. Poor soil quality, lack of irrigation facilities and woodland belts of cotton fields in the northern part caused the low density of cotton. Regarding the row spacing, the northern part was larger than the southern part due to the variation of two agronomic modes from military and private companies. (7) The irrigation and fertilization amount were both used as key parameters to be adjusted for regional assimilation during the reproductive growth period. The result showed that the irrigation per time ranged from 58.14 to 89.99 mm in the study area. The spatial distribution of the irrigation amount is higher in the northern part while lower in southern study area. The application of urea fertilization ranged from 500.35 to 1598.59 kg/ha in the study area. The spatial distribution of fertilization was lower in the northern part and higher in the southern part. More fertilization applied in the southern study area aims to increase the boll weight and number for pursuing higher yields of cotton. The frequency of the RSME during the second assimilation was mainly located in the range of 0.4-0.6 m2/m2. The estimated cotton yield ranged from 1489 to 8895 kg/ha. The spatial distribution of the estimated yield is also higher in the southern part than the northern study area.
High-resolution projections of the future climate are required to assess climate change realistically at a regional scale. This is in particular important for climate change impact studies since global projections are much too coarse to represent local conditions adequately. A major concern is thereby the change of extreme values in a warming climate due to their severe impact on the natural environment, socio-economical systems and the human health. Regional climate models (RCMs) are, however, able to reproduce much of those local features. Current horizontal resolutions are about 18-25km, which is still too coarse to directly resolve small-scale processes such as deep-convection. For this reason, projections of a possible future climate were simulated in this study with the regional climate model COSMO-CLM at horizontal resolutions of 4.5km and 1.3km for the region of Saarland-Lorraine-Luxemburg and Rhineland-Palatinate for the first time. At a horizontal scale of about 1km deep-convection is treated explicitly, which is expected to improve particularly the simulation of convective summer precipitation and a better resolved orography is expected to improve near surface fields such as 2m temperature. These simulations were performed as 10-year long time-slice experiments for the present climate (1991"2000), the near future (2041"2050) and the end of the century (2091"2100). The climate change signals of the annual and seasonal means and the change of extremes are analysed with respect to precipitation and 2m temperature and a possible added value due to the increased resolution is investigated. To assess changes in extremes, extreme indices have been applied and 10- and 20-year return levels were estimated by "peak-over-threshold" models. Since it is generally known that model output of RCMs should not directly be used for climate change impact studies, the precipitation and temperature fields were bias-corrected with several quantile-matching methods. Among them is a new developed parametric method which includes an extension for extreme values and is hence expected to improve the correction. In addition, the impact of the bias-correction on the climate change signals and on the extreme value statistics was investigated. The results reveal a significant warming of the annual mean by about +1.7 -°C until 2041"2050 and +3.7 -°C until 2091"2100, but considerably stronger signals of up to +5 -°C in summer in the Rhine Valley. Furthermore, the daily variability increases by about +0.8 -°C in summer but decreases by about -0.8 -°C in winter. Consequently, hot extremes increase moderately until the mid of the century but strongly thereafter, in particular in the Rhine Valley. Cold extremes warm continuously in the complete domain in the next 100 years but strongest in mountainous areas. The change signals with regard to annual precipitation are of the order -±10% but not significant. Significant, however, are a predicted increase of +32% of the seasonal precipitation in autumn until 2041"2050 and a decrease of -28% in summer until 2091-2100. No significant changes were found for days with intensities > 20 mm/day, but the results indicate that extremes with return periods ≤2 years increase as well as the frequency and duration of dry periods. The bias-corrections amplified positive signals but dampened negative signals and considerably reduced the power of detection. Moreover, absolute values and frequencies of extremes were altered by the correction but change signals remained approximately constant. The new method outperformed other parametric methods, in particular with regard to extreme value correction and related extreme indices and return levels. Although the bias correction removed systematic errors, it should be treated as an additional layer of uncertainty in climate change studies. Finally, the increased resolution of 1.3km improved predominantly the representation of temperature fields and extremes in terms of spatial heterogeneity. The benefits for summer precipitation were not as clear due to a severe dry-bias in summer, but it could be shown that in principle the onset and intensity of convection improves. This work demonstrates that climate change will have severe impacts in this investigation area and that in particular extremes may change considerably. An increased resolution provides thereby an added value to the results. These findings encourage further investigations, for other variables as for example near-surface wind, which will be more feasible with growing computing resources. These analyses should, however, be repeated with longer time series, different RCMs and anthropogenic scenarios to determine the robustness and uncertainty of these results more extensively.
Global change, i.e. climate and land use changes, severely impact natural ecosystems at different scales. Poikilothermic animals as butterflies, amphibians and reptiles have proven to be useful indicators for global change impacts as their phenology, spatial distribution, individual fitness and survival strongly depend on external environmental factors. In this aspect, phenological changes in terms of advanced flight or breeding periods, immigrations of foreign species, range shifts concomitant with temperature increases and even local population declines have been observed in both species groups. However, to date much attention has been paid to global change impacts on the species or population level and analyses concerning entire ecosystems are scarce. Applying a novel statistical modelling algorithm we assessed future changes in the extent and composition of terrestrial ecoregions as classified by the World Wide Fund for Nature (WWF). They are defined as coarse-scale conservation units containing exceptional assemblages of species and ecological dynamics. Our results demonstrate dramatic geographical changes in the extent and location of these ecoregions across all continents and even imply a repriorisation of conservation efforts to cope with future climate change impacts on biodiversity. On the local scale, climate change impacts become unequivocal. Comparing historical to contemporary butterfly assemblages on vineyard fallows of the Trier Region, a significant decline in butterfly richness, but also a severe depletion in trait diversity was observed. Comparisons of community temperature indices reveal a striking shift in community composition leading to a replacement of sedentary and monophagous habitat specialists by ubiquitous species. Similar changes have been observed in nature reserves in the Saar-Mosel-area. Monitoring data reveal strong losses of species diversity and remarkable shifts of community compositions at the expense of habitat specialists. Besides climatic variability, these findings are largely attributed to changes in habitat structures, mostly due to eutrophication and monotonisation. Management activities are unlikely to counterbalance these effects, thus severely questioning current conservation strategies. Most dramatic global change impacts are suspected on closely associated species and disruptions of biotic interactions are often hold responsible for species declines. A strong host-parasite association has developed in Myrmica ants and Maculinea butterflies, the later crucially depending on specific host ants for their larval survival. Applying environmental niche models we determined considerable niche dynamics in the observed parasite-host relation with a pronounced niche plasticity in the butterfly species adapting to previous evasive niche shifts in their host ants. Moreover, the new emergence of species continuously expanding their northernmost range borders concomitant with global warming like the Short-tailed blue (Cupido argiades) is attributed to climate change. However, species distribution models predict a severe habitat loss and shifts of potentially suitable habitats of this species towards north-eastern Europe and higher altitudes under several IPCC scenarios making the presence of this species in the Trier region a contemporary phenomenon. Species distribution models have emerged as powerful tools to predict species distributions over spatial and temporal scales. However, not only the presence of a species, but also its abundance have significant implications for species conservation. The ability to deduce spatial abundance patterns from environmental suitability might more efficiently guide field surveys or monitoring programs over large geographical areas saving time and money. Although the application of species distribution models to deduce vertebrate abundances is well recognized, our results indicate that this method is not an adequate approach to predict invertebrate abundances. Structural and ecological factors as well as climatic patterns acting at the microscale are key drivers of invertebrate occurrence and abundances limiting conclusions drawn from modeling approaches. Population declines should be interpreted with care as in butterflies and amphibians various reasons are debated. Both species groups are acknowledged to be highly susceptible to land use changes and variations in landscape structure. Moreover, climate and land use are not independently operating factors. The combined impact of both is demonstrated in our study linking climate-driven changes in amphibian phenologies to temporal advanced applications of pesticides and fertilizers. Both environmental factors already represent severe threats to amphibians when standing alone, but linking their combined impacts may result in an potentiated risk for amphibian populations. As all amphibians and numerous butterfly species are legally protected under the Federal Nature Conservation Act, intensifications of agricultural land use in large parts of Germany as well as new agrarian practices (including genetically manipulated plants accompanied by new herbicide technologies) might severely challenge regional conservation activities in the future.
Die in einem Einzugsgebiet herrschende räumliche Inhomogenität wird im Wasserhaushaltsmodell LARSIM (Large Area Runoff Simulation Modell) in den einzelnen Modellkomponenten unterschiedlich stark berücksichtigt. Insbesondere die räumliche Verteilung der Abflussprozesse wurde bisher nicht berücksichtigt, weil keine flächenhaft verfügbare Information über eben diese Verteilung vorlag. Für das Einzugsgebiet der Nahe liegt nun seit dem Jahr 2007 eine Bodenhydrologische Karte vor, die flächenhaft den bei ausreichenden Niederschlägen zu erwartenden Abflussprozess ausweist. In der vorliegenden Dissertation wird die Nutzung dieser Prozessinformation bei der Parametrisierung des Bodenmoduls von LARSIM beschrieben: Für drei Prozessgruppen " gesättigter Oberflächenabfluss, Abfluss im Boden, Tiefenversickerung " werden mittels zweier neuer Parameter P_Bilanz und P_Dämpfung inhomogene Parametersätze aus empirisch ermittelten Kennfeldern gewählt, um die Prozessinformation bei der Abflussbildung im Modell zu berücksichtigen. Für die Abbildung der Prozessintensitäten in den Gebietsspeichern werden zwei unterschiedliche Ansätze vorgestellt, die sich in ihrer Komplexität unterscheiden. In der ersten Variante werden fünf Oberflächenabflussspeicher für unterschiedlich schnell reagierende Prozessgruppen eingeführt, in der zweiten Variante wird der erste Ansatz mit dem ursprünglichen Schwellenwert zur Aufteilung in schnelle und langsame Oberflächenabflusskomponenten kombiniert. Es wird gezeigt, dass die Parametrisierung mit den beiden neuen Parametern P_Bilanz und P_Dämpfung einfacher, effektiver und effizienter ist, da beide Parameter minimale Interaktionen aufweisen und in ihrer Wirkungsweise leicht verständlich sind, was auf die ursprünglichen Bodenparameter nicht zutrifft. Es wird ein Arbeitsfluss vorgestellt, in dem die neuen Parameter in Kombination mit Signature Measures und unterschiedlichen Darstellungen der Abflussdauerlinie gemeinsam genutzt werden können, um in wenigen Arbeitsschritten eine Anpassung des Modells in neuen Einzugsgebieten vorzunehmen. Die Methode wurde durch Anwendung in drei Gebieten validiert. In den drei Gebieten konnte in wenigen Kalibrierungsschritten die Simulationsgüte der ursprünglichen Version erreicht und " je nach Zielsetzung " übertroffen werden. Hinsichtlich der Gütemaße zeigte sich bei der Variante, in der die Gebietsspeicher nicht modifiziert wurden, aber kein eindeutiges Bild, ob die ursprüngliche Parametrisierung oder die neue grundsätzlich überlegen ist. Neben der Auswertung der Validierungszeiträume wurden dabei auch die simulierten Ganglinien in geschachtelten Gebieten betrachtet. Die Version, in der die Gebietsspeicher modifiziert wurden, zeigt hingegen vor allem im Validierungszeitraum tendenziell bessere Simulationsergebnisse. Hinsichtlich der Abbildung der Abflussprozesse ist das neue Verfahren dem alten deutlich überlegen: Es resultiert in plausiblen Anteilen von Abflusskomponenten, deren Verteilung und Abhängigkeit von Speicherkapazitäten, Landnutzungen und Eingangsdaten systematisch ausgewertet wurden. Es zeigte sich, dass vor allem die Speicherkapazität des Bodens einen signifikanten Einfluss hat, der aber im hydrologischen Sinn richtig und hinsichtlich der Modellannahmen plausibel ist. Es wird deutlich gemacht, dass die Einschränkungen, die sich ergeben haben, aufgrund der Modellannahmen zustande kommen, und dass ohne die Änderung dieser Annahmen keine bessere Abbildung möglich ist. Für die Zukunft werden Möglichkeiten aufgezeigt, wie die Annahmen modifiziert werden können, um eine bessere Abbildung zu erzielen, indem der bereits bestehende Infiltrationsansatz in die Methode integriert wird.
Aus dem Wunsch, die zentralen Prozesse im System Boden"Pflanze"Atmosphäre einschließlich der Auswirkungen verschiedener Bewirtschaftungspraktiken zu verstehen und nachzubilden, resultiert die Entwicklung verschiedener Pflanzenwachstumsmodelle. Ziel der vorliegenden Untersuchung ist zum einen, die im Realsystem auftretenden räumlichen Ertragsmuster zu identifizieren und zu charakterisieren. Mithilfe der Semivariogramm-Analyse ist eine räumliche Autokorrelation der Ertragsdaten von maximal 48 Meter abzuleiten. Die räumliche Analyse (GIS) zeigt, dass die Sommergerste ein leicht abweichendes Verhalten im Vergleich zu den Winterkulturen (Winterweizen, Winterraps) aufweist. Schließlich werden mithilfe der selbstorganisierenden Merkmalskarten die primär und sekundär für das Ertragsverhalten verantwortlichen Ursachen identifiziert. Eine abschließende hierarchische Clusteranalyse gliedert die in die Untersuchung eingehenden Standorte in vier spezifische Cluster mit charakteristischen Eigenschaften. Ein zweites Ziel ist die Klärung der Frage, ob die Pflanzenwachstumsmodelle STICS und DAISY bei entsprechender Parametrisierung in der Lage sind, das für ein detektiertes Muster charakteristische Verhalten von Pflanzenwachstum und Ertrag realitätsnah abzubilden. Den Modellanwendungen gehen eine Sensitivitätsanalyse und verschiedene Parametrisierungsansätze zur Erfassung des jeweiligen Modellverhaltens voraus. In beiden Modellen übt der Bodenwasserhaushalt einen starken Einfluss auf die Ertragsbildung aus. Des weiteren kommt in beiden Modellen den Stressfaktoren eine zentrale Bedeutung zu. Die Parametrisierung der Modelle auf der Grundlage der im Feld erhobenen Daten führt bei beiden Modellen nicht zu einem dem Realsystem entsprechenden Bild. Eine über die Sensitivitätsanalyse hinausreichende, vertiefte Modellkenntnis ist erforderlich, um die in die Modelle eingehenden Parameter bzw. deren spezifischen Einfluss auf das Modellverhalten beurteilen und interpretieren zu können. Dies betrifft insbesondere die Modellgrößen der Bodenmodule. Dieser Aspekt erschwert eine einfache räumliche Übertragung der Modelle STICS und DAISY.
Tropospheric ozone (O3) is known to have various detrimental effects on plants, such as visible leaf injury, reduced growth and premature senescence. Flux models offer the determination of the harmful ozone dose entering the plant through the stomata. This dose can then be related to phytotoxic effects mentioned above to obtain dose-response relationships, which are a helpful tool for the formulation of abatement strategies of ozone precursors. rnOzone flux models are dependant on the correct estimation of stomatal conductance (gs). Based on measurements of gs, an ozone flux model for two white clover clones (Trifolium repens L. cv Regal; NC-S (ozone-sensitive) and NC-R (ozone-resistant)) differing in their sensitivity to ozone was developed with the help of artificial neural networks (ANNs). White clover is an important species of various European grassland communities. The clover plants were exposed to ambient air at three sites in the Trier region (West Germany) during five consecutive growing seasons (1997 to 2001). The response parameters visible leaf injury and biomass ratio of NC-S/NC-R clone were regularly assessed. gs-measurements of both clones functioned as output of the ANN-based gs model, while corresponding climate parameters (i.e. temperature, vapour pressure deficit (VPD) and photosynthetic active radiation (PAR)) and various ozone concentration indices were inputs. The development of the model was documented in detail and various model evaluation techniques (e.g. sensitivity analysis) were applied. The resulting gs model was used as a basis for ozone flux calculations, which were related to above mentioned response parameters. rnThe results showed that the ANNs were capable of revealing and learning the complex relationship between gs and key meteorological parameters and ozone concentration indices. The dose-response relationships between ozone fluxes and visible leaf injury were reasonably strong, while those between ozone fluxes and NC-S/NC-R biomass ratio were fairly weak. The results were discussed in detail with respect to the suitability of the chosen experimental methods and model type.
Auf der Grundlage von bodenphysikalischen Standortdaten wurden mit dem physikalisch basierten Modell CATFLOW Bodenwassergehalte und Abflussprozesse von verschiedenen Standorten im Mesozoikum der Trierer Bucht auf der Plotskale simuliert. Die Standorte unterscheiden sich durch das Ausgangssubstrat der Bodenbildung (lehmig-tonig, schluffig-sandig) und die Landnutzung (Acker, Grünland, Wald). Für die Modellvalidierung standen wöchentliche Bodenwassergehaltsmessungen, monatliche Sickerwassersummen aus Lysimetermessungen und Oberflächen- und Zwischenabflusskurven von Beregnungsversuchen zur Verfügung. Ziel der Arbeit ist es zu untersuchen, inwieweit Retentionseigenschaften, Abflussprozesse und Abflussmengen aus Standortdaten ohne eine weitere Kalibrierung des Modells abgeleitet werden können. Besonderer Wert wird dabei auf die Parametrisierung des Bodens gelegt. Das Modell simuliert den Wassertransport in der Bodenmatrix über die zweidimensionale Richardsgleichung und den schnellen Wassertransport in Makroporen über ein einfaches Bulk-Modell. Daneben werden Oberflächenrauhigkeit, Durchwurzelungstiefe und Vegetationsbedeckung im Jahresgang berücksichtigt. Um den Einfluss von unterschiedlichen Parametrisierungen des Bodens aufzuzeigen, werden verschiedene Parametrisierungsvarianten untersucht. Die van Genuchten/Mualem-Parameter, welche die Retentions- und Leitfähigkeitseigenschaften der einzelnen Bodenhorizonte beschreiben, wurden zum einen über die Bodenart und Trockenrohdichte bestimmt und zum anderen über die Anpassung von Retentionskurven an im Labor bestimmte Punkte der Wasserspannungskurve ermittelt. Die Ergebnisse der Simulationen für die Standorte mit Bodenfeuchtemessung zeigen, dass mit dem Modell der Jahresgang der Bodenfeuchte prinzipiell nachvollzogen werden kann. Jedoch führt keine der drei Parametrisierungsvarianten zu einer eindeutigen Überlegenheit bei der Simulationsgüte. Um neben den üblichen Gütemaßen ein weiteres Kriterium für den Erfolg oder Misserfolg einer Standortsimulation zu gewinnen, wurden die Simulationsergebnisse mit den Messwerten der anderen Standorte verglichen. An vier von zehn Standorten führt der Vergleich der Messwerte mit den Simulationen von anderen Standorten zu einer deutlich besseren Übereinstimmung als die Simulation für diesen Standort. Die Ergebnisse der Simulationen der Lysimeterstandorte zeigen, dass mit dem Makroporenansatz ein schneller Wasserfluss im Sommer nicht simuliert werden kann, da das "Anspringen" der Makroporen im Modellkonzept an den Bodenwassergehalt geknüpft ist. Auch hier wurden die Simulationsergebnisse mit den Messwerten der anderen Standorte verglichen. Für fünf von acht Standorten konnte mit den simulierten Sickerwassermengen von anderen Standorten eine bessere Übereinstimmung erzielt werden. Die Simulation der Sickerwassermenge aus Lysimetern scheint daher auf Grundlage der vorliegenden Datenbasis den jeweiligen Standort nicht in seiner Einzigartigkeit charakterisieren zu können. Die mit den Beregnungsversuchen bestimmten Abflussprozesse konnten für die Mehrheit der 18 Standorte mit dem Modell abgebildet werden. Der Oberflächenabfluss konnte für Standorte, die nicht zur Verschlämmung neigen, unter Berücksichtigung von Infiltrationsdaten sehr gut nachgezeichnet werden. Zwischenabfluss wird zwar simuliert, bleibt aber auf der Plotskale in Dynamik und Abflussmenge hinter dem Realsystem zurück. Mit der Untersuchung konnte gezeigt werden, dass sich sowohl die zeitliche Entwicklung des Bodenwassergehaltes, als auch die gemessenen Abflussprozesse allein über die Standortdaten, ohne eine weitere Kalibrierung des Modells, abbilden lassen. Die Trennschärfe der Modellierung ist bei Standorten mit relativ ähnlicher bodenphysikalischer Ausstattung begrenzt. Andererseits müssen aber auch Messungenauigkeiten, besonders bei der thermogravimetrischen Bestimmung des Bodenwassergehaltes, berücksichtigt werden. Eine standortbezogene Aussage über Retentions- und Abflussverhalten ist über eine Simulation möglich, jedoch bleibt die quantitative Aussagekraft begrenzt.