Refine
Year of publication
- 2023 (64) (remove)
Document Type
- Doctoral Thesis (38)
- Article (13)
- Contribution to a Periodical (6)
- Working Paper (4)
- Part of Periodical (3)
Keywords
- Deutschland (5)
- Optimierung (4)
- Klima (3)
- Konflikt (3)
- Schule (3)
- Schüler (3)
- Weinbau (3)
- survey statistics (3)
- Analysis (2)
- Anpassung (2)
Institute
- Fachbereich 4 (11)
- Politikwissenschaft (7)
- Raum- und Umweltwissenschaften (6)
- Fachbereich 1 (5)
- Fachbereich 6 (5)
- Fachbereich 2 (4)
- Psychologie (4)
- Fachbereich 3 (3)
- Universitätsbibliothek (2)
- Wirtschaftswissenschaften (2)
- Medienwissenschaft (1)
- Phonetik (1)
- Soziologie (1)
Die chinesische und westliche Forschung, die sich mit der Beziehung zwischen chinesischer Kultur und katholischer Kirche befasst, konzentriert sich in der Regel auf die katholische Kirche in China vor dem Verbot des Christentums. Die einzigartige Perspektive dieser Arbeit besteht darin, die Veränderungen in der Beziehung zwischen den beiden vom Ende der Ming-Dynastie bis zur ersten Hälfte des 20. Jahrhunderts zu untersuchen. Vor dem Verbot nährten die katholischen Missionare den konfuzianischen Gelehrten und verbanden die katholische Lehre mit dem Konfuzianismus, um ihren Einfluss in der Oberschicht der chinesischen Gesellschaft auszuüben. Nach dem Verbot achteten die katholischen Missionare nicht so sehr auf ihre Beziehung zur chinesischen Kultur wie ihre Vorgänger im 17. und 18. Jahrhundert. Einige Missionare sowie chinesische Katholiken wollten die Situation ändern und förderten gemeinsam die Gründung der Fu-Jen-Universität, die großen Wert auf die chinesische Kultur legte und die Beziehung zwischen der Katholischen Kirche und der chinesischen Kultur Anfang des 20. Jahrhunderts widerspiegeln konnte. Die Professoren der Abteilung Chinesisch und Geschichte leisteten den größten Beitrag zur Forschung der chinesischen Kultur an der Universität. Im Vergleich zu anderen wichtigen Universitäten in Peking, wo die chinesische Literatur im Fachbereich Chinesisch eine zentrale Stellung einnahm, legte die Fu-Jen-Universität mehr Wert auf die chinesische Sprache und Schriftzeichen. Anfang des 20. Jahrhunderts erlangten Frauen unter dem Einfluss der globalen feministischen Bewegung das Recht auf Hochschulbildung. Bis 1920 waren jedoch die katholischen Universitäten in Bezug auf die Hochschulbildung von Frauen Jahrzehnte hinter den protestantischen und nichtkirchlichen Universitäten zurückgefallen. Die Fu-Jen-Universität verbesserte diese Situation, indem sie nicht nur eine große Anzahl von Studentinnen annahm, sondern ihnen eine Vielzahl von Fächern einschließlich Chinesisch und Geschichte anbot. Im Allgemeinen konnte die Universität als Verbindung zwischen dem Katholizismus und der chinesischen Kultur in der ersten Hälfte des 20. Jahrhunderts angesehen werden. Sie spielte eine wichtige Rolle nicht nur bei der Erforschung und Verbreitung der chinesischen Kultur, sondern auch bei der Ausweitung des Einflusses der katholischen Kirche zu dieser Zeit.
There is no longer any doubt about the general effectiveness of psychotherapy. However, up to 40% of patients do not respond to treatment. Despite efforts to develop new treatments, overall effectiveness has not improved. Consequently, practice-oriented research has emerged to make research results more relevant to practitioners. Within this context, patient-focused research (PFR) focuses on the question of whether a particular treatment works for a specific patient. Finally, PFR gave rise to the precision mental health research movement that is trying to tailor treatments to individual patients by making data-driven and algorithm-based predictions. These predictions are intended to support therapists in their clinical decisions, such as the selection of treatment strategies and adaptation of treatment. The present work summarizes three studies that aim to generate different prediction models for treatment personalization that can be applied to practice. The goal of Study I was to develop a model for dropout prediction using data assessed prior to the first session (N = 2543). The usefulness of various machine learning (ML) algorithms and ensembles was assessed. The best model was an ensemble utilizing random forest and nearest neighbor modeling. It significantly outperformed generalized linear modeling, correctly identifying 63.4% of all cases and uncovering seven key predictors. The findings illustrated the potential of ML to enhance dropout predictions, but also highlighted that not all ML algorithms are equally suitable for this purpose. Study II utilized Study I’s findings to enhance the prediction of dropout rates. Data from the initial two sessions and observer ratings of therapist interventions and skills were employed to develop a model using an elastic net (EN) algorithm. The findings demonstrated that the model was significantly more effective at predicting dropout when using observer ratings with a Cohen’s d of up to .65 and more effective than the model in Study I, despite the smaller sample (N = 259). These results indicated that generating models could be improved by employing various data sources, which provide better foundations for model development. Finally, Study III generated a model to predict therapy outcome after a sudden gain (SG) in order to identify crucial predictors of the upward spiral. EN was used to generate the model using data from 794 cases that experienced a SG. A control group of the same size was also used to quantify and relativize the identified predictors by their general influence on therapy outcomes. The results indicated that there are seven key predictors that have varying effect sizes on therapy outcome, with Cohen's d ranging from 1.08 to 12.48. The findings suggested that a directive approach is more likely to lead to better outcomes after an SG, and that alliance ruptures can be effectively compensated for. However, these effects
were reversed in the control group. The results of the three studies are discussed regarding their usefulness to support clinical decision-making and their implications for the implementation of precision mental health.
The publication of statistical databases is subject to legal regulations, e.g. national statistical offices are only allowed to publish data if the data cannot be attributed to individuals. Achieving this privacy standard requires anonymizing the data prior to publication. However, data anonymization inevitably leads to a loss of information, which should be kept minimal. In this thesis, we analyze the anonymization method SAFE used in the German census in 2011 and we propose a novel integer programming-based anonymization method for nominal data.
In the first part of this thesis, we prove that a fundamental variant of the underlying SAFE optimization problem is NP-hard. This justifies the use of heuristic approaches for large data sets. In the second part, we propose a new anonymization method belonging to microaggregation methods, specifically designed for nominal data. This microaggregation method replaces rows in a microdata set with representative values to achieve k-anonymity, ensuring each data row is identical to at least k − 1 other rows. In addition to the overall dissimilarities of the data rows, the method accounts for errors in resulting frequency tables, which are of high interest for nominal data in practice. The method employs a typical two-step structure: initially partitioning the data set into clusters and subsequently replacing all cluster elements with representative values to achieve k-anonymity. For the partitioning step, we propose a column generation scheme followed by a heuristic to obtain an integer solution, which is based on the dual information. For the aggregation step, we present a mixed-integer problem formulation to find cluster representatives. To this end, we take errors in a subset of frequency tables into account. Furthermore, we show a reformulation of the problem to a minimum edge-weighted maximal clique problem in a multipartite graph, which allows for a different perspective on the problem. Moreover, we formulate a mixed-integer program, which combines the partitioning and the aggregation step and aims to minimize the sum of chi-squared errors in frequency tables.
Finally, an experimental study comparing the methods covered or developed in this work shows particularly strong results for the proposed method with respect to relative criteria, while SAFE shows its strength with respect to the maximum absolute error in frequency tables. We conclude that the inclusion of integer programming in the context of data anonymization is a promising direction to reduce the inevitable information loss inherent in anonymization, particularly for nominal data.
Building Fortress Europe Economic realism, China, and Europe’s investment screening mechanisms
(2023)
This thesis deals with the construction of investment screening mechanisms across the major economic powers in Europe and at the supranational level during the post-2015 period. The core puzzle at the heart of this research is how, in a traditional bastion of economic liberalism such as Europe, could a protectionist tool such as investment screening be erected in such a rapid manner. Within a few years, Europe went from a position of being highly welcoming towards foreign investment to increasingly implementing controls on it, with the focus on China. How are we to understand this shift in Europe? I posit that Europe’s increasingly protectionist shift on inward investment can be fruitfully understood using an economic realist approach, where the introduction of investment screening can be seen as part of a process of ‘balancing’ China’s economic rise and reasserting European competitiveness. China has moved from being the ‘workshop of the world’ to becoming an innovation-driven economy at the global technological frontier. As China has become more competitive, Europe, still a global economic leader, broadly situated at the technological frontier, has begun to sense a threat to its position, especially in the context of the fourth industrial revolution. A ‘balancing’ process has been set in motion, in which Europe seeks to halt and even reverse the narrowing competitiveness gap between it and China. The introduction of investment screening measures is part of this process.
In Luxemburg helfen externe Schulmediator*innen bei schulischen Konflikten. Die Anlaufstelle unterstützt bei drohenden Schulabbrüchen und Konflikten, die bei der Inklusion und Integration von Schüler*innen mit besonderem Förderbedarf oder mit Migrationshintergrund entstehen. Michèle Schilt sprach mit der Leiterin der Servicestelle, Lis De Pina, über die Arbeit der Schulmediation.
Emotionen gelten als Spiegelbild unserer persönlichen Bedürfnislage. Insbesondere in Konflikt- oder Mediationsgesprächen ist es demnach wichtig, nicht nur über den Moment zu sprechen, an dem ein Streit entstanden ist, sondern auch Bedürfnisse und Gefühle aufzudecken, die unser Handeln, Denken und Fühlen beeinflusst haben. Die folgenden Materialien zeigen, wie man als Lehrkraft Emotionen und Streit mit Grundschulkindern behandeln kann.
Sie haben eine spannende politische Diskussion in der Klasse. Das Gros Ihrer Schüler*innen ist wach, interessiert und engagiert. Alles läuft prima. Doch dann passiert's: Einer oder eine von ihnen stellt – absichtlich oder unreflektiert – eine extremistische oder verschwörungstheoretische Aussage in den Raum. Und nun?
Die Praxishefte Demokratische Schulkultur erscheinen halbjährlich und bieten Schulleitungen und Schulpersonal theoretische Grundlagen und praxisorientierte Anleitungen zur demokratiepädagogischen Schulentwicklung. Jedes Themenheft ist jeweils einer demokratiepädagogischen Bauform oder strategischen Frage der Schulentwicklung gewidmet. Die Praxishefte werden allen Luxemburger Schulen als Printausgabe zur Verfügung gestellt und online mit zusätzlichen Materialien und in französischer Fassung vorgehalten.
While humans find it easy to process visual information from the real world, machines struggle with this task due to the unstructured and complex nature of the information. Computer vision (CV) is the approach of artificial intelligence that attempts to automatically analyze, interpret, and extract such information. Recent CV approaches mainly use deep learning (DL) due to its very high accuracy. DL extracts useful features from unstructured images in a training dataset to use them for specific real-world tasks. However, DL requires a large number of parameters, computational power, and meaningful training data, which can be noisy, sparse, and incomplete for specific domains. Furthermore, DL tends to learn correlations from the training data that do not occur in reality, making DNNs poorly generalizable and error-prone.
Therefore, the field of visual transfer learning is seeking methods that are less dependent on training data and are thus more applicable in the constantly changing world. One idea is to enrich DL with prior knowledge. Knowledge graphs (KG) serve as a powerful tool for this purpose because they can formalize and organize prior knowledge based on an underlying ontological schema. They contain symbolic operations such as logic, rules, and reasoning, and can be created, adapted, and interpreted by domain experts. Due to the abstraction potential of symbols, KGs provide good prerequisites for generalizing their knowledge. To take advantage of the generalization properties of KG and the ability of DL to learn from large-scale unstructured data, attempts have long been made to combine explicit graph and implicit vector representations. However, with the recent development of knowledge graph embedding methods, where a graph is transferred into a vector space, new perspectives for a combination in vector space are opening up.
In this work, we attempt to combine prior knowledge from a KG with DL to improve visual transfer learning using the following steps: First, we explore the potential benefits of using prior knowledge encoded in a KG for DL-based visual transfer learning. Second, we investigate approaches that already combine KG and DL and create a categorization based on their general idea of knowledge integration. Third, we propose a novel method for the specific category of using the knowledge graph as a trainer, where a DNN is trained to adapt to a representation given by prior knowledge of a KG. Fourth, we extend the proposed method by extracting relevant context in the form of a subgraph of the KG to investigate the relationship between prior knowledge and performance on a specific CV task. In summary, this work provides deep insights into the combination of KG and DL, with the goal of making DL approaches more generalizable, more efficient, and more interpretable through prior knowledge.
Repeatedly encountering a stimulus biases the observer’s affective response and evaluation of the stimuli. Here we provide evidence for a causal link between mere exposure to fictitious news reports and subsequent voting behavior. In four pre-registered online experiments, participants browsed through newspaper webpages and were tacitly exposed to names of fictitious politicians. Exposure predicted voting behavior in a subsequent mock election, with a consistent preference for frequent over infrequent names, except when news items were decidedly negative. Follow-up analyses indicated that mere media presence fuels implicit personality theories regarding a candidate’s vigor in political contexts. News outlets should therefore be mindful to cover political candidates as evenly as possible.
The benefits of prosocial power motivation in leadership: Action orientation fosters a win-win
(2023)
Power motivation is considered a key component of successful leadership. Based on its dualistic nature, the need for power (nPower) can be expressed in a dominant or a prosocial manner. Whereas dominant motivation is associated with antisocial behaviors, prosocial motivation is characterized by more benevolent actions (e.g., helping, guiding). Prosocial enactment of the power motive has been linked to a wide range of beneficial outcomes, yet less has been investigated what determines a prosocial enactment of the power motive. According to Personality Systems Interactions (PSI) theory, action orientation (i.e., the ability to self-regulate affect) promotes prosocial enactment of the implicit power motive and initial findings within student samples verify this assumption. In the present study, we verified the role of action orientation as an antecedent for prosocial power enactment in a leadership sample (N = 383). Additionally, we found that leaders personally benefited from a prosocial enactment strategy. Results show that action orientation through prosocial power motivation leads to reduced power-related anxiety and, in turn, to greater leader well-being. The integration of motivation and self-regulation research reveals why leaders enact their power motive in a certain way and helps to understand how to establish a win-win situation for both followers and leaders.
We use a novel sea-ice lead climatology for the winters of 2002/03 to 2020/21 based on satellite observations with 1 km2 spatial resolution to identify predominant patterns in Arctic wintertime sea-ice leads. The causes for the observed spatial and temporal variabilities are investigated using ocean surface current velocities and eddy kinetic energies from an ocean model (Finite Element Sea Ice–Ice-Shelf–Ocean Model, FESOM) and winds from a regional climate model (CCLM) and ERA5 reanalysis, respectively. The presented investigation provides evidence for an influence of ocean bathymetry and associated currents on the mechanic weakening of sea ice and the accompanying occurrence of sea-ice leads with their characteristic spatial patterns. While the driving mechanisms for this observation are not yet understood in detail, the presented results can contribute to opening new hypotheses on ocean–sea-ice interactions. The individual contribution of ocean and atmosphere to regional lead dynamics is complex, and a deeper insight requires detailed mechanistic investigations in combination with considerations of coastal geometries. While the ocean influence on lead dynamics seems to act on a rather long-term scale (seasonal to interannual), the influence of wind appears to trigger sea-ice lead dynamics on shorter timescales of weeks to months and is largely controlled by individual events causing increased divergence. No significant pan-Arctic trends in wintertime leads can be observed.
The microbial enzyme alkaline phosphatase contributes to the removal of organic phosphorus compounds from wastewaters. To cope with regulatory threshold values for permitted maximum phosphor concentrations in treated wastewaters, a high activity of this enzyme in the biological treatment stage, e.g., the activated sludge process, is required. To investigate the reaction dynamics of this enzyme, to analyze substrate selectivities, and to identify potential inhibitors, the determination of enzyme kinetics is necessary. A method based on the application of the synthetic fluorogenic substrate 4-methylumbelliferyl phosphate is proven for soils, but not for activated sludges. Here, we adapt this procedure to the latter. The adapted method offers the additional benefit to determine inhibition kinetics. In contrast to conventional photometric assays, no particle removal, e.g., of sludge pellets, is required enabling the analysis of the whole sludge suspension as well as of specific sludge fractions. The high sensitivity of fluorescence detection allows the selection of a wide substrate concentration range for sound modeling of kinetic functions.
- Fluorescence array technique for fast and sensitive analysis of high sample numbers
- No need for particle separation – analysis of the whole (diluted) sludge suspension
- Simultaneous determination of standard and inhibition kinetics
The forensic application of phonetics relies on individuality in speech. In the forensic domain, individual patterns of verbal and paraverbal behavior are of interest which are readily available, measurable, consistent, and robust to disguise and to telephone transmission. This contribution is written from the perspective of the forensic phonetic practitioner and seeks to establish a more comprehensive concept of disfluency than previous studies have. A taxonomy of possible variables forming part of what can be termed disfluency behavior is outlined. It includes the “classical” fillers, but extends well beyond these, covering, among others, additional types of fillers as well as prolongations, but also the way in which fillers are combined with pauses. In the empirical section, the materials collected for an earlier study are re-examined and subjected to two different statistical procedures in an attempt to approach the issue of individuality. Recordings consist of several minutes of spontaneous speech by eight speakers on three different occasions. Beyond the established set of hesitation markers, additional aspects of disfluency behavior which fulfill the criteria outlined above are included in the analysis. The proportion of various types of disfluency markers is determined. Both statistical approaches suggest that these speakers can be distinguished at a level far above chance using the disfluency data. At the same time, the results show that it is difficult to pin down a single measure which characterizes the disfluency behavior of an individual speaker. The forensic implications of these findings are discussed.
Redox-driven biogeochemical cycling of iron plays an integral role in the complex process network of ecosystems, such as carbon cycling, the fate of nutrients and greenhouse gas emissions. We investigate Fe-(hydr)oxide (trans)formation pathways from rhyolitic tephra in acidic topsoils of South Patagonian Andosols to evaluate the ecological relevance of terrestrial iron cycling for this sensitive fjord ecosystem. Using bulk geochemical analyses combined with micrometer-scale-measurements on individual soil aggregates and tephra pumice, we document biotic and abiotic pathways of Fe released from the glassy tephra matrix and titanomagnetite phenocrysts. During successive redox cycles that are controlled by frequent hydrological perturbations under hyper-humid climate, (trans)formations of ferrihydrite-organic matter coprecipitates, maghemite and hematite are closely linked to tephra weathering and organic matter turnover. These Fe-(hydr)oxides nucleate after glass dissolution and complexation with organic ligands, through maghemitization or dissolution-(re)crystallization processes from metastable precursors. Ultimately, hematite represents the most thermodynamically stable Fe-(hydr)oxide formed under these conditions and physically accumulates at redox interfaces, whereas the ferrihydrite coprecipitates represent a so far underappreciated terrestrial source of bio-available iron for fjord bioproductivity. The insights into Fe-(hydr)oxide (trans)formation in Andosols have implications for a better understanding of biogeochemical cycling of iron in this unique Patagonian fjord ecosystem.