Refine
Year of publication
Document Type
- Doctoral Thesis (799) (remove)
Language
- German (480)
- English (308)
- Multiple languages (7)
- French (4)
Keywords
- Stress (37)
- Deutschland (29)
- Fernerkundung (17)
- Modellierung (17)
- Hydrocortison (16)
- Optimierung (16)
- stress (15)
- Stressreaktion (12)
- cortisol (12)
- Motivation (11)
Institute
- Psychologie (181)
- Geographie und Geowissenschaften (148)
- Mathematik (62)
- Wirtschaftswissenschaften (60)
- Fachbereich 4 (47)
- Geschichte, mittlere und neuere (28)
- Germanistik (26)
- Informatik (26)
- Fachbereich 1 (23)
- Kunstgeschichte (22)
- Politikwissenschaft (18)
- Anglistik (17)
- Soziologie (15)
- Fachbereich 6 (13)
- Fachbereich 2 (11)
- Philosophie (9)
- Romanistik (9)
- Computerlinguistik und Digital Humanities (7)
- Medienwissenschaft (6)
- Geschichte, alte (5)
- Allgemeine Sprach- und Literaturwissenschaft (4)
- Fachbereich 3 (4)
- Klassische Philologie (4)
- Pädagogik (4)
- Ethnologie (3)
- Fachbereich 5 (3)
- Japanologie (3)
- Sinologie (3)
- Archäologie (2)
- Rechtswissenschaft (2)
- Phonetik (1)
- Slavistik (1)
- Universitätsbibliothek (1)
Die Dissertation beschäftigt sich mit einer neuartigen Art von Branch-and-Bound Algorithmen, deren Unterschied zu klassischen Branch-and-Bound Algorithmen darin besteht, dass
das Branching durch die Addition von nicht-negativen Straftermen zur Zielfunktion erfolgt
anstatt durch das Hinzufügen weiterer Nebenbedingungen. Die Arbeit zeigt die theoretische Korrektheit des Algorithmusprinzips für verschiedene allgemeine Klassen von Problemen und evaluiert die Methode für verschiedene konkrete Problemklassen. Für diese Problemklassen, genauer Monotone und Nicht-Monotone Gemischtganzzahlige Lineare Komplementaritätsprobleme und Gemischtganzzahlige Lineare Probleme, präsentiert die Arbeit
verschiedene problemspezifische Verbesserungsmöglichkeiten und evaluiert diese numerisch.
Weiterhin vergleicht die Arbeit die neue Methode mit verschiedenen Benchmark-Methoden
mit größtenteils guten Ergebnissen und gibt einen Ausblick auf weitere Anwendungsgebiete
und zu beantwortende Forschungsfragen.
Allocating scarce resources efficiently is a major task in mechanism design. One of the most fundamental problems in mechanism design theory is the problem of selling a single indivisible item to bidders with private valuations for the item. In this setting, the classic Vickrey auction of~\citet{vickrey1961} describes a simple mechanism to implement a social welfare maximizing allocation.
The Vickrey auction for a single item asks every buyer to report its valuation and allocates the item to the highest bidder for a price of the second highest bid. This auction features some desirable properties, e.g., buyers cannot benefit from misreporting their true value for the item (incentive compatibility) and the auction can be executed in polynomial time.
However, when there is more than one item for sale and buyers' valuations for sets of items are not additive or the set of feasible allocations is constrained, then constructing mechanisms that implement efficient allocations and have polynomial runtime might be very challenging. Consider a single seller selling $n\in \N$ heterogeneous indivisible items to several bidders. The Vickrey-Clarke-Groves auction generalizes the idea of the Vickrey auction to this multi-item setting. Naturally, every bidder has an intrinsic value for every subset of items. As in in the Vickrey auction, bidders report their valuations (Now, for every subset of items!). Then, the auctioneer computes a social welfare maximizing allocation according to the submitted bids and charges buyers the social cost of their winning that is incurred by the rest of the buyers. (This is the analogue to charging the second highest bid to the winning bidder in the single item Vickrey auction.) It turns out that the Vickrey-Clarke-Groves auction is also incentive compatible but it poses some problems: In fact, say for $n=40$, bidders would have to submit $2^{40}-1$ values (one value for each nonempty subset of the ground set) in total. Thus, asking every bidder for its valuation might be impossible due to time complexity issues. Therefore, even though the Vickrey-Clarke-Groves auction implements a social welfare maximizing allocation in this multi-item setting it might be impractical and there is need for alternative approaches to implement social welfare maximizing allocations.
This dissertation represents the results of three independent research papers all of them tackling the problem of implementing efficient allocations in different combinatorial settings.
Energy transport networks are one of the most important infrastructures for the planned energy transition. They form the interface between energy producers and consumers and their features make them good candidates for the tools that mathematical optimization can offer. Nevertheless, the operation of energy networks comes with two major challenges. First, the nonconvexity of the equations that model the physics in the network render the resulting problems extremely hard to solve for large-scale networks. Second, the uncertainty associated to the behavior of the different agents involved, the production of energy, and the consumption of energy make the resulting problems hard to solve if a representative description of uncertainty is to be considered.
In this cumulative dissertation we study adaptive refinement algorithms designed to cope with the nonconvexity and stochasticity of equations arising in energy networks. Adaptive refinement algorithms approximate the original problem by sequentially refining the model of a simpler optimization problem. More specifically, in this thesis, the focus of the adaptive algorithm is on adapting the discretization and description of a set of constraints.
In the first part of this thesis, we propose a generalization of the different adaptive refinement ideas that we study. We sequentially describe model catalogs, error measures, marking strategies, and switching strategies that are used to set up the adaptive refinement algorithm. Afterward, the effect of the adaptive refinement algorithm on two energy network applications is studied. The first application treats the stationary operation of district heating networks. Here, the strength of adaptive refinement algorithms for approximating the ordinary differential equation that describes the transport of energy is highlighted. We introduce the resulting nonlinear problem, consider network expansion, and obtain realistic controls by applying the adaptive refinement algorithm. The second application concerns quantile-constrained optimization problems and highlights the ability of the adaptive refinement algorithm to cope with large scenario sets via clustering. We introduce the resulting mixed-integer linear problem, discuss generic solution techniques, make the link with the generalized framework, and measure the impact of the proposed solution techniques.
The second part of this thesis assembles the papers that inspired the contents of the first part of this thesis. Hence, they describe in detail the topics that are covered and will be referenced throughout the first part.
THE NONLOCAL NEUMANN PROBLEM
(2023)
Instead of presuming only local interaction, we assume nonlocal interactions. By doing so, mass
at a point in space does not only interact with an arbitrarily small neighborhood surrounding it,
but it can also interact with mass somewhere far, far away. Thus, mass jumping from one point to
another is also a possibility we can consider in our models. So, if we consider a region in space, this
region interacts in a local model at most with its closure. While in a nonlocal model this region may
interact with the whole space. Therefore, in the formulation of nonlocal boundary value problems
the enforcement of boundary conditions on the topological boundary may not suffice. Furthermore,
choosing the complement as nonlocal boundary may work for Dirichlet boundary conditions, but
in the case of Neumann boundary conditions this may lead to an overfitted model.
In this thesis, we introduce a nonlocal boundary and study the well-posedness of a nonlocal Neu-
mann problem. We present sufficient assumptions which guarantee the existence of a weak solution.
As in a local model our weak formulation is derived from an integration by parts formula. However,
we also study a different weak formulation where the nonlocal boundary conditions are incorporated
into the nonlocal diffusion-convection operator.
After studying the well-posedness of our nonlocal Neumann problem, we consider some applications
of this problem. For example, we take a look at a system of coupled Neumann problems and analyze
the difference between a local coupled Neumann problems and a nonlocal one. Furthermore, we let
our Neumann problem be the state equation of an optimal control problem which we then study. We
also add a time component to our Neumann problem and analyze this nonlocal parabolic evolution
equation.
As mentioned before, in a local model mass at a point in space only interacts with an arbitrarily
small neighborhood surrounding it. We analyze what happens if we consider a family of nonlocal
models where the interaction shrinks so that, in limit, mass at a point in space only interacts with
an arbitrarily small neighborhood surrounding it.
Traditional workflow management systems support process participants in fulfilling business tasks through guidance along a predefined workflow model.
Flexibility has gained a lot of attention in recent decades through a shift from mass production to customization. Various approaches to workflow flexibility exist that either require extensive knowledge acquisition and modelling effort or an active intervention during execution and re-modelling of deviating behaviour. The pursuit of flexibility by deviation is to compensate both of these disadvantages through allowing alternative unforeseen execution paths at run time without demanding the process participant to adapt the workflow model. However, the implementation of this approach has been little researched so far.
This work proposes a novel approach to flexibility by deviation. The approach aims at supporting process participants during the execution of a workflow through suggesting work items based on predefined strategies or experiential knowledge even in case of deviations. The developed concepts combine two renowned methods from the field of artificial intelligence - constraint satisfaction problem solving with process-oriented case-based reasoning. This mainly consists of a constraint-based workflow engine in combination with a case-based deviation management. The declarative representation of workflows through constraints allows for implicit flexibility and a simple possibility to restore consistency in case of deviations. Furthermore, the combined model, integrating procedural with declarative structures through a transformation function, increases the capabilities for flexibility. For an adequate handling of deviations the methodology of case-based reasoning fits perfectly, through its approach that similar problems have similar solutions. Thus, previous made experiences are transferred to currently regarded problems, under the assumption that a similar deviation has been handled successfully in the past.
Necessary foundations from the field of workflow management with a focus on flexibility are presented first.
As formal foundation, a constraint-based workflow model was developed that allows for a declarative specification of foremost sequential dependencies of tasks. Procedural and declarative models can be combined in the approach, as a transformation function was specified that converts procedural workflow models to declarative constraints.
One main component of the approach is the constraint-based workflow engine that utilizes this declarative model as input for a constraint solving algorithm. This algorithm computes the worklist, which is proposed to the process participant during workflow execution. With predefined deviation handling strategies that determine how the constraint model is modified in order to restore consistency, the support is continuous even in case of deviations.
The second major component of the proposed approach constitutes the case-based deviation management, which aims at improving the support of process participants on the basis of experiential knowledge. For the retrieve phase, a sophisticated similarity measure was developed that integrates specific characteristics of deviating workflows and combines several sequence similarity measures. Two alternative methods for the reuse phase were developed, a null adaptation and a generative adaptation. The null adaptation simply proposes tasks from the most similar workflow as work items, whereas the generative adaptation modifies the constraint-based workflow model based on the most similar workflow in order to re-enable the constraint-based workflow engine to suggest work items.
The experimental evaluation of the approach consisted of a simulation of several types of process participants in the exemplary domain of deficiency management in construction. The results showed high utility values and a promising potential for an investigation of the transfer on other domains and the applicability in practice, which is part of future work.
Concluding, the contributions are summarized and research perspectives are pointed out.
Official business surveys form the basis for national and regional business statistics and are thus of great importance for analysing the state and performance of the economy. However, both the heterogeneity of business data and their high dynamics pose a particular challenge to the feasibility of sampling and the quality of the resulting estimates. A widely used sampling frame for creating the design of an official business survey is an extract from an official business register. However, if this frame does not accurately represent the target population, frame errors arise. Amplified by the heterogeneity and dynamics of business populations, these errors can significantly affect the estimation quality and lead to inefficiencies and biases. This dissertation therefore deals with design-based methods for optimising business surveys with respect to different types of frame errors.
First, methods for adjusting the sampling design of business surveys are addressed. These approaches integrate auxiliary information about the expected structures of frame errors into the sampling design. The aim is to increase the number of sampled businesses that are subject to frame errors. The element-specific frame error probability is estimated based on auxiliary information about frame errors observed in previous samples. The approaches discussed consider different types of frame errors and can be incorporated into predefined designs with fixed strata.
As the second main pillar of this work, methods for adjusting weights to correct for frame errors during estimation are developed and investigated. As a result of frame errors, the assumptions under which the original design weights were determined based on the sampling design no longer hold. The developed methods correct the design weights taking into account the errors identified for sampled elements. Case-number-based reweighting approaches, on the one hand, attempt to reconstruct the unknown size of the individual strata in the target population. In the context of weight smoothing methods, on the other hand, design weights are modelled and smoothed as a function of target or auxiliary variables. This serves to avoid inefficiencies in the estimation due to highly scattering weights or weak correlations between weights and target variables. In addition, possibilities of correcting frame errors by calibration weighting are elaborated. Especially when the sampling frame shows over- and/or undercoverage, the inclusion of external auxiliary information can provide a significant improvement of the estimation quality. For those methods whose quality cannot be measured using standard procedures, a procedure for estimating the variance based on a rescaling bootstrap is proposed. This enables an assessment of the estimation quality when using the methods in practice.
In the context of two extensive simulation studies, the methods presented in this dissertation are evaluated and compared with each other. First, in the environment of an experimental simulation, it is assessed which approaches are particularly suitable with regard to different data situations. In a second simulation study, which is based on the structural survey in the services sector, the applicability of the methods in practice is evaluated under realistic conditions.
Wasserbezogene regulierende und versorgende Ökosystemdienstleistungen (ÖSDL) wurden im Hinblick auf das Abflussregime und die Grundwasserneubildung im Biosphärenreservat Pfälzerwald im Südwesten Deutschlands anhand hydrologischer Modellierung unter Verwendung des Soil and Water Assessment Tool (SWAT+) untersucht. Dabei wurde ein holistischer Ansatz verfolgt, wonach den ÖSDL Indikatoren für funktionale und strukturelle ökologische Prozesse zugeordnet werden. Potenzielle Risikofaktoren für die Verschlechterung von wasserbedingten ÖSDL des Waldes, wie Bodenverdichtung durch Befahren mit schweren Maschinen im Zuge von Holzerntearbeiten, Schadflächen mit Verjüngung, entweder durch waldbauliche Bewirtschaftungspraktiken oder durch Windwurf, Schädlinge und Kalamitäten im Zuge des Klimawandels, sowie der Kli-mawandel selbst als wesentlicher Stressor für Waldökosysteme wurden hinsichtlich ihrer Auswirkungen auf hydrologische Prozesse analysiert. Für jeden dieser Einflussfaktoren wurden separate SWAT+-Modellszenarien erstellt und mit dem kalibrierten Basismodell verglichen, das die aktuellen Wassereinzugsgebietsbedingungen basierend auf Felddaten repräsentierte. Die Simulationen bestätigten günstige Bedingungen für die Grundwasserneubildung im Pfälzerwald. Im Zusammenhang mit der hohen Versickerungskapazität der Bodensubstrate der Buntsandsteinverwitterung, sowie dem verzögernden und puffernden Einfluss der Baumkronen auf das Niederschlagswasser, wurde eine signifikante Minderungswirkung auf die Oberflächenabflussbildung und ein ausgeprägtes räumliches und zeitliches Rückhaltepotential im Einzugsgebiet simuliert. Dabei wurde festgestellt, dass erhöhte Niederschlagsmengen, die die Versickerungskapazität der sandigen Böden übersteigen, zu einer kurz geschlossenen Abflussreaktion mit ausgeprägten Oberflächenabflussspitzen führen. Die Simulationen zeigten Wechselwirkungen zwischen Wald und Wasserkreislauf sowie die hydrologische Wirksamkeit des Klimawandels, verschlechterter Bodenfunktionen und altersbezogener Bestandesstrukturen im Zusammenhang mit Unterschieden in der Baumkronenausprägung. Zukunfts-Klimaprojektionen, die mit BIAS-bereinigten REKLIES- und EURO-CORDEX-Regionalklimamodellen (RCM) simuliert wurden, prognostizierten einen höheren Verdunstungsbedarf und eine Verlängerung der Vegetationsperiode bei gleichzeitig häufiger auftretenden Dürreperioden innerhalb der Vegetationszeit, was eine Verkürzung der Periode für die Grundwasserneubildung induzierte, und folglich zu einem prognostizierten Rückgang der Grundwasserneubildungsrate bis zur Mitte des Jahrhunderts führte. Aufgrund der starken Korrelation mit Niederschlagsintensitäten und der Dauer von Niederschlagsereignissen, bei allen Unsicherheiten in ihrer Vorhersage, wurde für die Oberflächenabflussgenese eine Steigerung bis zum Ende des Jahrhunderts prognostiziert.
Für die Simulation der Bodenverdichtung wurden die Trockenrohdichte des Bodens und die SCS Curve Number in SWAT+ gemäß Daten aus Befahrungsversuchen im Gebiet angepasst. Die günstigen Infiltrationsbedingungen und die relativ geringe Anfälligkeit für Bodenverdichtung der grobkörnigen Buntsandsteinverwitterung dominierten die hydrologischen Auswirkungen auf Wassereinzugsgebietsebene, sodass lediglich moderate Verschlechterungen wasserbezogener ÖSDL angezeigt wurden. Die Simulationen zeigten weiterhin einen deutlichen Einfluss der Bodenart auf die hydrologische Reaktion nach Bodenverdichtung auf Rückegassen und stützen damit die Annahme, dass die Anfälligkeit von Böden gegenüber Verdichtung mit dem Anteil an Schluff- und Tonbodenpartikeln zunimmt. Eine erhöhte Oberflächenabflussgenese ergab sich durch das Wegenetz im Gesamtgebiet.
Schadflächen mit Bestandesverjüngung wurden anhand eines artifiziellen Modells innerhalb eines Teileinzugsgebiets unter der Annahme von 3-jährigen Baumsetzlingen in einem Entwicklungszeitraum von 10 Jahren simuliert und hinsichtlich spezifischer Was-serhaushaltskomponenten mit Altbeständen (30 bis 80 Jahre) verglichen. Die Simulation ließ darauf schließen, dass bei fehlender Kronenüberschirmung die hydrologisch verzögernde Wirkung der Bestände beeinträchtigt wird, was die Entstehung von Oberflächenabfluss begünstigt und eine quantitativ geringfügig höhere Tiefensickerung fördert. Hydrologische Unterschiede zwischen dem geschlossenem Kronendach der Altbestände und Jungbeständen mit annähernden Freilandniederschlagsbedingungen wurden durch die dominierenden Faktoren atmosphärischer Verdunstungsanstoß, Niederschlagsmengen und Kronenüberschirmungsgrad bestimmt. Je weniger entwickelt das Kronendach von verjüngten Waldbeständen im Vergleich zu Altbeständen, je höher der atmosphärische Verdunstungsanstoß und je geringer die eingetragenen Niederschlagsmengen, desto größer war der hydrologische Unterschied zwischen den Bestandestypen.
Verbesserungsmaßnahmen für den dezentralen Hochwasserschutz sollten folglich kritische Bereiche für die Abflussbildung im Wald (CSA) berücksichtigen. Die hohe Sensibilität und Anfälligkeit der Wälder gegenüber Verschlechterungen der Ökosystembedingungen legen nahe, dass die Erhaltung des komplexen Gefüges und von intakten Wechselbeziehungen, insbesondere unter der gegebenen Herausforderung des Klimawandels, sorgfältig angepasste Schutzmaßnahmen, Anstrengungen bei der Identifizierung von CSA sowie die Erhaltung und Wiederherstellung der hydrologischen Kontinuität in Waldbeständen erfordern.
No Longer Printing the Legend: The Aporia of Heteronormativity in the American Western (1903-1969)
(2023)
This study critically investigates the U.S.-American Western and its construction of sexuality and gender, revealing that the heteronormative matrix that is upheld and defended in the genre is consistently preceded by the exploration of alternative sexualities and ways to think gender beyond the binary. The endeavor to naturalize heterosexuality seems to be baked in the formula of the U.S.-Western. However, as I show in this study, this endeavor relies on an aporia, because the U.S.-Western can only ever attempt to naturalize gender by constructing it first, hence inevitably and simultaneously construct evidence that supports the opposite: the unnaturalness and contingency of gender and sexuality.
My study relies on the works of Raewyn Connell, Pierre Bourdieu, and Judith Butler, and amalgamates in its methodology established approaches from film and literary studies (i.e., close readings) with a Foucaultian understanding of discourse and discourse analysis, which allows me to relate individual texts to cultural, socio-political and economical contexts that invariably informed the production and reception of any filmic text. In an analysis of 14 U.S.-Westerns (excluding three excursions) that appeared between 1903 and 1969 I give ample and minute narrative and film-aesthetical evidence to reveal the complex and contradictory construction of gender and sexuality in the U.S.-Western, aiming to reveal both the normative power of those categories and its structural instability and inconsistency.
This study proofs that the Western up until 1969 did not find a stable pattern to represent the gender binary. The U.S.-Western is not necessarily always looking to confirm or stabilize governing constructs of (gendered) power. However, it without fail explores and negotiates its legitimacy. Heterosexuality and male hegemony are never natural, self-evident, incontestable, or preordained. Quite conversely: the U.S.-Western repeatedly – and in a surprisingly diverse and versatile way – reveals the illogical constructedness of the heteronormative matrix.
My study therefore offers a fresh perspective on the genre and shows that the critical exploration and negotiation of the legitimacy of heteronormativity as a way to organize society is constitutive for the U.S.-Western. It is the inquiry – not necessarily the affirmation – of the legitimacy of this model that gives the U.S.-Western its ideological currency and significance as an artifact of U.S.-American popular culture.
Non-probability sampling is a topic of growing relevance, especially due to its occurrence in the context of new emerging data sources like web surveys and Big Data.
This thesis addresses statistical challenges arising from non-probability samples, where unknown or uncontrolled sampling mechanisms raise concerns in terms of data quality and representativity.
Various methods to quantify and reduce the potential selectivity and biases of non-probability samples in estimation and inference are discussed. The thesis introduces new forms of prediction and weighting methods, namely
a) semi-parametric artificial neural networks (ANNs) that integrate B-spline layers with optimal knot positioning in the general structure and fitting procedure of artificial neural networks, and
b) calibrated semi-parametric ANNs that determine weights for non-probability samples by integrating an ANN as response model with calibration constraints for totals, covariances and correlations.
Custom-made computational implementations are developed for fitting (calibrated) semi-parametric ANNs by means of stochastic gradient descent, BFGS and sequential quadratic programming algorithms.
The performance of all the discussed methods is evaluated and compared for a bandwidth of non-probability sampling scenarios in a Monte Carlo simulation study as well as an application to a real non-probability sample, the WageIndicator web survey.
Potentials and limitations of the different methods for dealing with the challenges of non-probability sampling under various circumstances are highlighted. It is shown that the best strategy for using non-probability samples heavily depends on the particular selection mechanism, research interest and available auxiliary information.
Nevertheless, the findings show that existing as well as newly proposed methods can be used to ease or even fully counterbalance the issues of non-probability samples and highlight the conditions under which this is possible.
Modern decision making in the digital age is highly driven by the massive amount of
data collected from different technologies and thus affects both individuals as well as
economic businesses. The benefit of using these data and turning them into knowledge
requires appropriate statistical models that describe the underlying observations well.
Imposing a certain parametric statistical model goes along with the need of finding
optimal parameters such that the model describes the data best. This often results in
challenging mathematical optimization problems with respect to the model’s parameters
which potentially involve covariance matrices. Positive definiteness of covariance matrices
is required for many advanced statistical models and these constraints must be imposed
for standard Euclidean nonlinear optimization methods which often results in a high
computational effort. As Riemannian optimization techniques proved efficient to handle
difficult matrix-valued geometric constraints, we consider optimization over the manifold
of positive definite matrices to estimate parameters of statistical models. The statistical
models treated in this thesis assume that the underlying data sets used for parameter
fitting have a clustering structure which results in complex optimization problems. This
motivates to use the intrinsic geometric structure of the parameter space. In this thesis,
we analyze the appropriateness of Riemannian optimization over the manifold of positive
definite matrices on two advanced statistical models. We establish important problem-
specific Riemannian characteristics of the two problems and demonstrate the importance
of exploiting the Riemannian geometry of covariance matrices based on numerical studies.
Survey data can be viewed as incomplete or partially missing from a variety of perspectives and there are different ways of dealing with this kind of data in the prediction and the estimation of economic quantities. In this thesis, we present two selected research contexts in which the prediction or estimation of economic quantities is examined under incomplete survey data.
These contexts are first the investigation of composite estimators in the German Microcensus (Chapters 3 and 4) and second extensions of multivariate Fay-Herriot (MFH) models (Chapters 5 and 6), which are applied to small area problems.
Composite estimators are estimation methods that take into account the sample overlap in rotating panel surveys such as the German Microcensus in order to stabilise the estimation of the statistics of interest (e.g. employment statistics). Due to the partial sample overlaps, information from previous samples is only available for some of the respondents, so the data are partially missing.
MFH models are model-based estimation methods that work with aggregated survey data in order to obtain more precise estimation results for small area problems compared to classical estimation methods. In these models, several variables of interest are modelled simultaneously. The survey estimates of these variables, which are used as input in the MFH models, are often partially missing. If the domains of interest are not explicitly accounted for in a sampling design, the sizes of the samples allocated to them can, by chance, be small. As a result, it can happen that either no estimates can be calculated at all or that the estimated values are not published by statistical offices because their variances are too large.
Coastal erosion describes the displacement of land caused by destructive sea waves,
currents or tides. Due to the global climate change and associated phenomena such as
melting polar ice caps and changing current patterns of the oceans, which result in rising
sea levels or increased current velocities, the need for countermeasures is continuously
increasing. Today, major efforts have been made to mitigate these effects using groins,
breakwaters and various other structures.
This thesis will find a novel approach to address this problem by applying shape optimization
on the obstacles. Due to this reason, results of this thesis always contain the
following three distinct aspects:
The selected wave propagation model, i.e. the modeling of wave propagation towards
the coastline, using various wave formulations, ranging from steady to unsteady descriptions,
described from the Lagrangian or Eulerian viewpoint with all its specialties. More
precisely, in the Eulerian setting is first a steady Helmholtz equation in the form of a
scattering problem investigated and followed subsequently by shallow water equations,
in classical form, equipped with porosity, sediment portability and further subtleties.
Secondly, in a Lagrangian framework the Lagrangian shallow water equations form the
center of interest.
The chosen discretization, i.e. dependent on the nature and peculiarity of the constraining
partial differential equation, we choose between finite elements in conjunction
with a continuous Galerkin and discontinuous Galerkin method for investigations in the
Eulerian description. In addition, the Lagrangian viewpoint offers itself for mesh-free,
particle-based discretizations, where smoothed particle hydrodynamics are used.
The method for shape optimization w.r.t. the obstacle’s shape over an appropriate
cost function, constrained by the solution of the selected wave-propagation model. In
this sense, we rely on a differentiate-then-discretize approach for free-form shape optimization
in the Eulerian set-up, and reverse the order in Lagrangian computations.
Behavioural traces from interactions with digital technologies are diverse and abundant. Yet, their capacity for theory-driven research is still to be constituted. In the present cumulative dissertation project, I deliberate the caveats and potentials of digital behavioural trace data in behavioural and social science research. One use case is online radicalisation research. The three studies included, set out to discern the state-of-the-art of methods and constructs employed in radicalization research, at the intersection of traditional methods and digital behavioural trace data. Firstly, I display, based on a systematic literature review of empirical work, the prevalence of digital behavioural trace data across different research strands and discern determinants and outcomes of radicalisation constructs. Secondly, I extract, based on this literature review, hypotheses and constructs and integrate them to a framework from network theory. This graph of hypotheses, in turn, makes the relative importance of theoretical considerations explicit. One implication of visualising the assumptions in the field is to systematise bottlenecks for the analysis of digital behavioural trace data and to provide the grounds for the genesis of new hypotheses. Thirdly, I provide a proof-of-concept for incorporating a theoretical framework from conspiracy theory research (as a specific form of radicalisation) and digital behavioural traces. I argue for marrying theoretical assumptions derived from temporal signals of posting behaviour and semantic meaning from textual content that rests on a framework from evolutionary psychology. In the light of these findings, I conclude by discussing important potential biases at different stages in the research cycle and practical implications.
Issues in Price Measurement
(2022)
This thesis focuses on the issues in price measurement and consists of three chapters. Due to outdated weighting information, a Laspeyres-based consumer price index (CPI) is prone to accumulating upward bias. Therefore, chapter 1 introduces and examines simple and transparent revision approaches that retrospectively address the source of the bias. They provide a consistent long-run time series of the CPI and require no additional information. Furthermore, a coherent decomposition of the bias into the contributions of individual product groups is developed. In a case study, the approaches are applied to a Laspeyres-based CPI. The empirical results confirm the theoretical predictions. The proposed revision approaches are adoptable not only to most national CPIs but also to other price-level measures such as the producer price index or the import and export price indices.
Chapter 2 is dedicated to the measurement of import and export price indices. Such indices are complicated by the impact of exchange rates. These indices are usually also compiled by some Laspeyres type index. Therefore, substitution bias is an issue. The terms of trade (ratio of export and import price index) are therefore also likely to be distorted. The underlying substitution bias accumulates over time. The present article applies a simple and transparent retroactive correction approach that addresses the source of the substitution bias and produces meaningful long-run time series of import and export price levels and, therefore, of the terms of trade. Furthermore, an empirical case study is conducted that demonstrates the efficacy and versatility of the correction approach.
Chapter 3 leaves the field of index revision and studies another issue in price measurement, namely, the economic evaluation of digital products in monetary terms that have zero market prices. This chapter explores different methods of economic valuation and pricing of free digital products and proposes an alternative way to calculate the economic value and a shadow price of free digital products: the Usage Cost Model (UCM). The goal of the chapter is, first of all, to formulate a theoretical framework and incorporate an alternative measure of the value of free digital products. However, an empirical application is also made to show the work of the theoretical model. Some conclusions on applicability are drawn at the end of the chapter.
Broadcast media such as television have spread rapidly worldwide in the last century. They provide viewers with access to new information and also represent a source of entertainment that unconsciously exposes them to different social norms and moral values. Although the potential impact of exposure to television content have been studied intensively in economic research in recent years, studies examining the long-term causal effects of media exposure are still rare. Therefore, Chapters 2 to 4 of this thesis contribute to the better understanding of long-term effects of television exposure.
Chapter 2 empirically investigates whether access to reliable environmental information through television can influence individuals' environmental awareness and pro-environmental behavior. Analyzing exogenous variation in Western television reception in the German Democratic Republic shows that access to objective reporting on environmental pollution can enhance concerns regarding pollution and affect the likelihood of being active in environmental interest groups.
Chapter 3 utilizes the same natural experiment and explores the relationship between exposure to foreign mass media content and xenophobia. In contrast to the state television broadcaster in the German Democratic Republic, West German television regularly confronted its viewers with foreign (non-German) broadcasts. By applying multiple measures for xenophobic attitudes, our findings indicate a persistent mitigating impact of foreign media content on xenophobia.
Chapter 4 deals with another unique feature of West German television. In contrast to East German media, Western television programs regularly exposed their audience to unmarried and childless characters. The results suggest that exposure to different gender stereotypes contained in television programs can affect marriage, divorce, and birth rates. However, our findings indicate that mainly women were affected by the exposure to unmarried and childless characters.
Chapter 5 examines the influence of social media marketing on crowd participation in equity crowdfunding. By analyzing 26,883 investment decisions on three German equity crowdfunding platforms, our results show that startups can influence the success of their equity crowdfunding campaign through social media posts on Facebook and Twitter.
In Chapter 6, we incorporate the concept of habit formation into the theoretical literature on trade unions and contribute to a better understanding of how internal habit preferences influence trade union behavior. The results reveal that such internal reference points lead trade unions to raise wages over time, which in turn reduces employment. Conducting a numerical example illustrates that the wage effects and the decline in employment can be substantial.
Stress gilt als zentrales Gesundheitsrisiko des 21. Jahrhunderts und wird in der Forschung als multidimensionales Konstrukt auf psychologischer und biologischer Ebene untersucht. Wäh-rend die subjektive Wahrnehmung von Stress nicht mit der biologischen Stressreaktivität zu-sammenhängen muss, ist der negative Einfluss stressassoziierter biologischer Prozesse auf Wohlbefinden und Gesundheit gut belegt. Bereits im Grundschulalter zeigen Kinder eine mit Erwachsenen vergleichbare Stressbelastung und gesundheitliche Folgen, Bewältigungsstrategien sind in diesem Alter allerdings noch nicht vollständig entwickelt. Präventionsprogramme im Grundschulalter sollen Kinder in ihren sich entwickelnden Stressbewältigungsfähigkeiten fördern, wobei sowohl emotionsfokussierte und problemorientierte Ansätze als auch soziale Unterstützung wichtige Faktoren darstellen könnten.
Das einleitende Literatur-Review evaluiert bisherige Stresspräventionsstudien und verdeutlicht, dass zwar die Wirksamkeit und Anwendbarkeit von mehrfaktoriellen Stresspräventionsprogrammen im Rahmen psychometrischer Erhebungen gezeigt werden konnten, biologische Prozesse in der Forschung bisher allerdings nicht erhoben und außer Acht gelassen wurden.
Die empirische Untersuchung in Studie 1 zeigt, dass eine multidimensionale psychobiologische Betrachtungsweise sinnvoll ist, indem sowohl die Psychometrie, als auch psychobiologische Prozesse der Stressreaktion miteinbezogen und die Auswirkungen von Stressprävention auf den verschiedenen Ebenen untersucht wurden. Zwei Kurzinterventionen wurden dazu miteinander verglichen und ihre Wirkung auf psychophysiologischen Ebenen (z.B. Kortisol, α-Amylase und Herzrate) in einem Prä-Post Design geprüft. Eine statistisch signifikante Abnahme psychophysiologischer Stressreaktivität, sowie stressassoziierter psychologischer Symptome verdeutlichte die multidimensionale Wirksamkeit von Stressmanagementtrainings.
Studie 2 wurde im Rahmen der Covid-19-Pandemie entworfen. Die in Studie 1 trainierten Kinder wurden mittels Online-Fragebogenerhebung mit einer Kontrollgruppe hinsichtlich ihrer Stressbelastung verglichen. Die Ergebnisse zeigten eine geringere Belastung und vermehrte günstige Bewältigungsstrategien trainierter Kinder im Vergleich zur Kontrollgruppe.
Diese Ergebnisse heben die Relevanz einer multidimensionalen Betrachtung kindlichen Stresses hervor. Es wurde gezeigt, dass Stresspräventionsprogramme auf den unterschiedlichen Ebenen der Stressreaktion wirken und sogar in gesamtgesellschaftlichen Krisensituationen stresspro-tektiv wirken können. Zukünftige Studien sollten Stresspräventionen im Grundschulalter psychophysiologisch evaluieren und deren Wirkung in Längsschnittstudien beurteilen, um das Verständnis der zugrundeliegenden Mechanismen zu verbessern.
Die endemischen Arganbestände in Südmarokko sind die Quelle des wertvollen Arganöls, sind aber durch bspw. Überweidung oder illegale Feuerholzgewinnung stark übernutzt. Aufforstungsmaßnahmen sind vorhanden, sind aber aufgrund von zu kurz angelegten Bewässerungs- und Schutzverträgen häufig nicht erfolgreich. Das Aufkommen von Neuwuchs ist durch das beinahe restlose Sammeln von Kernen kaum möglich, durch Fällen oder Absterben von Bäumen verringert sich die kronenüberdeckte Fläche und unbedeckte Flächen zwischen den Bäumen nehmen zu.
Die Entwicklung der Arganbestände wurde über den Zeitraum von 1972 und 2018 mit historischen und aktuellen Satellitenbildern untersucht, ein Großteil der Bäume hat sich in dieser Zeit kaum verändert. Zustandsaufnahmen von 2018 zeigten, dass viele dieser Bäume durch Überweidung und Abholzung nur als Sträucher wachsen und so in degradiertem Zustand stabil sind.
Trotz der Degradierung einiger Bäume zeigt sich, dass der Boden unter den Bäumen die höchsten Gehalte an organischer Bodensubstanz und Nährstoffen auf den Flächen aufweist, zwischen zwei Bäumen sind die Gehalte am niedrigsten. Der Einfluss des Baumes auf den Boden geht über die Krone hinaus in Richtung Norden durch Beschattung in der Mittagssonne, Osten durch Windverwehung von Streu und Bodenpartikeln und hangabwärts durch Verspülung von Material.
Über experimentelle Methoden unter und zwischen den Arganbäumen wurden Erkenntnisse zur Bodenerosion gewonnen. Die hydraulische Leitfähigkeit unter Bäumen ist um den Faktor 1,2-1,5 höher als zwischen den Bäumen, Oberflächenabflüsse und Bodenabträge sind unter den Bäumen etwas niedriger, bei degradierten Bäumen ähnlich den Bereichen zwischen den Bäumen. Die unterschiedlichen Flächenbeschaffenheiten wurden mit einem Windkanal untersucht und zeigten, dass gerade frisch gepflügte Flächen hohe Windemissionen verursachen, während Flächen mit hoher Steinbedeckung kaum von Winderosion betroffen sind.
Die Oberflächenabflüsse von den unterschiedlichen Flächentypen werden in die Vorfluter abgeleitet. Die Sedimentdynamik in diesen Wadis wird hauptsächlich von Niederschlag zwischen den Messungen, Einzugsgebiet und Wadilänge und kaum von den verschiedenen Landnutzungen beeinflusst.
Das Landschaftssystem Argan konnte über diesen Multi-Methodenansatz auf verschiedenen Ebenen analysiert werden.
Climate fluctuations and the pyroclastic depositions from volcanic activity both influence ecosystem functioning and biogeochemical cycling in terrestrial and marine environments globally. These controlling factors are crucial for the evolution and fate of the pristine but fragile fjord ecosystem in the Magellanic moorlands (~53°S) of southernmost Patagonia, which is considered a critical hotspot for organic carbon burial and marine bioproductivity. At this active continental margin in the core zone of the southern westerly wind belt (SWW), frequent Plinian eruptions and the extremely variable, hyper-humid climate should have efficiently shaped ecosystem functioning and land-to-fjord mass transfer throughout the Late Holocene. However, a better understanding of the complex process network defining the biogeochemical cycling at this land-to-fjord continuum principally requires a detailed knowledge of substrate weathering and pedogenesis in the context of the extreme climate. Yet, research on soils, the ubiquitous presence of tephra and the associated chemical weathering, secondary mineral (trans)formation and organic matter (OM) turnover processes is rare in this remote region. This complicates an accurate reconstruction of the ecosystem´s potentially sensitive response to past environmental impacts, including the dynamics of Late Holocene land-to-fjord fluxes as a function of volcanic activity and strong hydroclimate variability.
Against this background, this PhD thesis aims to disentangle the controlling factors that modulate the terrigenous element mobilization and export mechanisms in the hyper-humid Patagonian Andes and assesses their significance for fjord primary productivity over the past 4.5 kyrs BP. For the first time, distinct biogeochemical characteristics of the regional weathering system serve as major criterion in paleoenvironmental reconstruction in the area. This approach includes broad-scale mineralogical and geochemical analyses of basement lithologies, four soil profiles, volcanic ash deposits, the non-karst stalagmite MA1 and two lacustrine sediment cores. In order to pay special attention to the possibly important temporal variations of pedosphere-atmosphere interaction and ecological consequences initiated by volcanic eruptions, the novel data were evaluated together with previously published reconstructions of paleoclimate and paleoenvironmental conditions.
The devastative high-tephra loading of a single eruption from Mt. Burney volcano (MB2 at 4.216 kyrs BP) sustainably transformed this vulnerable fjord ecosystem, while acidic peaty Andosols developed from ~2.5 kyrs BP onwards after the recovery from millennium-scale acidification. The special setting is dominated by most variable redox-pH conditions, profound volcanic ash weathering and intense OM turnover processes, which are closely linked and ultimately regulated by SWW-induced water-level fluctuations. Constant nutrient supply though sea spray deposition represents a further important control on peat accumulation and OM turnover dynamics. These extreme environmental conditions constrain the biogeochemical framework for an extended land-to-fjord export of leachates comprising various organic and inorganic colloids (i.e., Al-humus complexes and Fe-(hydr)oxides). Such tephra- and/or Andosol-sourced flux contains high proportions of terrigenous organic carbon (OCterr) and mobilized essential (micro)nutrients, e.g., bio-available Fe, that are beneficial for fjord bioproductivity. It can be assumed that this supply of bio-available Fe produced by specific Fe-(hydr)oxide (trans)formation processes from tephra components may outlast more than 6 kyrs and surpasses the contribution from basement rock weathering and glacial meltwaters. However, the land-to-fjord exports of OCterr and bio-available Fe occur mostly asynchronous and are determined by the frequency and duration of redox cycles in soils or are initiated by SWW-induced extreme weather events.
The verification of (crypto)tephra layers embedded stalagmite MA1 enabled the accurate dating of three smaller Late Holocene eruptions from Mt. Burney (MB3 at 2.291 kyrs BP and MB4 at 0.853 kyrs BP) and Aguilera (A1 at 2.978 kyrs BP) volcanoes. Irrespective of the improvement of the regional tephrochronology, the obtained precise 230Th/U-ages allowed constraints on the ecological consequences caused by these Plinian eruptions. The deposition of these thin tephra layers should have entailed a very beneficial short-term stimulation of fjord bioproductivity with bio-available Fe and other (micro)nutrients, which affected the entire area between 52°S and 53°S 30´, respectively. For such beneficial effects, the thickness of tephra deposited to this highly vulnerable peatland ecosystem should be below a threshold of 1 cm.
The Late Holocene element mobilization and land-to-fjord transport was mainly controlled by (i) volcanic activity and tephra thickness, (ii) SWW-induced and southern hemispheric climate variability and (iii) the current state of the ecosystem. The influence of cascading climate and environmental impacts on OCterr and Fe-(hydr)oxide fluxes to can be categorized by four individual, in part overlapping scenarios. These different scenarios take into account the previously specified fundamental biogeochemical mechanisms and define frequently recurring patterns of ecosystem feedbacks governing the land-to-fjord mass transfer in the hyper-humid Patagonian Andes on the centennial-scale. This PhD thesis provides first evidence for a primarily tephra-sourced, continuous and long-lasting (micro)nutrient fertilization for phytoplankton growth in South Patagonian fjords, which is ultimately modulated by variations in SWW-intensity. It highlights the climate sensitivity of such critical land-to-fjord element transport and particularly emphasizes the important but so far underappreciated significance of volcanic ash inputs for biogeochemical cycles at active continental margins.
Let K be a compact subset of the complex plane. Then the family of polynomials P is dense in A(K), the space of all continuous functions on K that are holomorphic on the interior of K, endowed with the uniform norm, if and only if the complement of K is connected. This is the statement of Mergelyan's celebrated theorem.
There are, however, situations where not all polynomials are required to approximate every f ϵ A(K) but where there are strict subspaces of P that are still dense in A(K). If, for example, K is a singleton, then the subspace of all constant polynomials is dense in A(K). On the other hand, if 0 is an interior point of K, then no strict subspace of P can be dense in A(K).
In between these extreme cases, the situation is much more complicated. It turns out that it is mostly determined by the geometry of K and its location in the complex plane which subspaces of P are dense in A(K). In Chapter 1, we give an overview of the known results.
Our first main theorem, which we will give in Chapter 3, deals with the case where the origin is not an interior point of K. We will show that if K is a compact set with connected complement and if 0 is not an interior point of K, then any subspace Q ⊂ P which contains the constant functions and all but finitely many monomials is dense in A(K).
There is a close connection between lacunary approximation and the theory of universality. At the end of Chapter 3, we will illustrate this connection by applying the above result to prove the existence of certain universal power series. To be specific, if K is a compact set with connected complement, if 0 is a boundary point of K and if A_0(K) denotes the subspace of A(K) of those functions that satisfy f(0) = 0, then there exists an A_0(K)-universal formal power series s, where A_0(K)-universal means that the family of partial sums of s forms a dense subset of A_0(K).
In addition, we will show that no formal power series is simultaneously universal for all such K.
The condition on the subspace Q in the main result of Chapter 3 is quite restrictive, but this should not be too surprising: The result applies to the largest possible class of compact sets.
In Chapter 4, we impose a further restriction on the compact sets under consideration, and this will allow us to weaken the condition on the subspace Q. The result that we are going to give is similar to one of those presented in the first chapter, namely the one due to Anderson. In his article “Müntz-Szasz type approximation and the angular growth of lacunary integral functions”, he gives a criterion for a subspace Q of P to be dense in A(K) where K is entirely contained in some closed sector with vertex at the origin.
We will consider compact sets with connected complement that are -- with the possible exception of the origin -- entirely contained in some open sector with vertex at the origin. What we are going to show is that if K\{0} is contained in an open sector of opening angle 2α and if Λ is some subset of the nonnegative integers, then the span of {z → z^λ : λ ϵ Λ} is dense in A(K) whenever 0 ϵ Λ and some Müntz-type condition is satisfied.
Conversely, we will show that if a similar condition is not satisfied, then we can always find a compact set K with connected complement such that K\{0} is contained in some open sector of opening angle 2α and such that the span of {z → z^λ : λ ϵ Λ} fails to be dense in A(K).
The present dissertation was developed to emphasize the importance of self-regulatory abilities and to derive novel opportunities to empower self-regulation. From the perspective of PSI (Personality Systems Interactions) theory (Kuhl, 2001), interindividual differences in self-regulation (action vs. state orientation) and their underlying mechanisms are examined in detail. Based on these insights, target-oriented interventions are derived, developed, and scientifically evaluated. The present work comprises a total of four studies which, on the one hand, highlight the advantages of a good self-regulation (e.g., enacting difficult intentions under demands; relation with prosocial power motive enactment and well-being). On the other hand, mental contrasting (Oettingen et al., 2001), an established self-regulation method, is examined from a PSI perspective and evaluated as a method to support individuals that struggle with self-regulatory deficits. Further, derived from PSI theory`s assumptions, I developed and evaluated a novel method (affective shifting) that aims to support individuals in overcoming self-regulatory deficits. Thereby affective shifting supports the decisive changes in positive affect for successful intention enactment (Baumann & Scheffer, 2010). The results of the present dissertation show that self-regulated changes between high and low positive affect are crucial for efficient intention enactment and that methods such as mental contrasting and affective shifting can empower self-regulation to support individuals to successfully close the gap between intention and action.
Statistical matching offers a way to broaden the scope of analysis without increasing respondent burden and costs. These would result from conducting a new survey or adding variables to an existing one. Statistical matching aims at combining two datasets A and B referring to the same target population in order to analyse variables, say Y and Z, together, that initially were not jointly observed. The matching is performed based on matching variables X that correspond to common variables present in both datasets A and B. Furthermore, Y is only observed in B and Z is only observed in A. To overcome the fact that no joint information on X, Y and Z is available, statistical matching procedures have to rely on suitable assumptions. Therefore, to yield a theoretical foundation for statistical matching, most procedures rely on the conditional independence assumption (CIA), i.e. given X, Y is independent of Z.
The goal of this thesis is to encompass both the statistical matching process and the analysis of the matched dataset. More specifically, the aim is to estimate a linear regression model for Z given Y and possibly other covariates in data A. Since the validity of the assumptions underlying the matching process determine the validity of the obtained matched file, the accuracy of statistical inference is determined by the suitability of the assumptions. By putting the focus on these assumptions, this work proposes a systematic categorisation of approaches to statistical matching by relying on graphical representations in form of directed acyclic graphs. These graphs are particularly useful in representing dependencies and independencies which are at the heart of the statistical matching problem. The proposed categorisation distinguishes between (a) joint modelling of the matching and the analysis (integrated approach), and (b) matching subsequently followed by statistical analysis of the matched dataset (classical approach). Whereas the classical approach relies on the CIA, implementations of the integrated approach are only valid if they converge, i.e. if the specified models are identifiable and, in the case of MCMC implementations, if the algorithm converges to a proper distribution.
In this thesis an implementation of the integrated approach is proposed, where the imputation step and the estimation step are jointly modelled through a fully Bayesian MCMC estimation. It is based on a linear regression model for Z given Y and accounts for both a linear regression model and a random effects model for Y. Furthermore, it yields its validity when the instrumental variable assumption (IVA) holds. The IVA corresponds to: (a) Z is independent of a subset X’ of X given Y and X*, where X* = X\X’ and (b) Y is correlated with X’ given X*. The proof, that the joint Bayesian modelling of both the model for Z and the model for Y through an MCMC simulation converges to a proper distribution is provided in this thesis. In a first model-based simulation study, the proposed integrated Bayesian procedure is assessed with regard to the data situation, convergence issues, and underlying assumptions. Special interest lies in the investigation of the interplay of the Y and the Z model within the imputation process. It turns out that failure scenarios can be distinguished by comparing the CIA and the IVA in the completely observed dataset.
Finally, both approaches to statistical matching, i.e. the classical approach and the integrated approach, are subject to an extensive comparison in (1) a model-based simulation study and (2) a simulation study based on the AMELIA dataset, which is an openly available very large synthetic dataset and, by construction, similar to the EU-SILC survey. As an additional integrated approach, a Bayesian additive regression trees (BART) model is considered for modelling Y. These integrated procedures are compared to the classical approach represented by predictive mean matching in the form of multiple imputations by chained equation. Suitably chosen, the first simulation framework offers the possibility to clarify aspects related to the underlying assumptions by comparing the IVA and the CIA and by evaluating the impact of the matching variables. Thus, within this simulation study two related aspects are of special interest: the assumptions underlying each method and the incorporation of additional matching variables. The simulation on the AMELIA dataset offers a close-to-reality framework with the advantage of knowing the whole setting, i.e. the whole data X, Y and Z. Special interest lies in investigating assumptions through adding and excluding auxiliary variables in order to enhance conditional independence and assess the sensitivity of the methods to this issue. Furthermore, the benefit of having an overlap of units in data A and B for which information on X, Y, Z is available is investigated. It turns out that the integrated approach yields better results than the classical approach when the CIA clearly does not hold. Moreover, even when the classical approach obtains unbiased results for the regression coefficient of Y in the model for Z, it is the method relying on BART that over all coefficients performs best.
Concluding, this work constitutes a major contribution to the clarification of assumptions essential to any statistical matching procedure. By introducing graphical models to identify existing approaches to statistical matching combined with the subsequent analysis of the matched dataset, it offers an extensive overview, categorisation and extension of theory and application. Furthermore, in a setting where none of the assumptions are testable (since X, Y and Z are not observed together), the integrated approach is a valuable asset by offering an alternative to the CIA.
Insekten stellen die artenreichste Klasse des Tierreichs dar, wobei viele der Arten bedroht sind. Das liegt neben dem Klimawandel vor allem an der sich in den letzten Jahrzehnten stark verändernden landwirtschaftlichen Nutzung von Flächen, was zu Lebensraumzerstörung und Habitatfragmentierung führt. Die intensivere Bewirtschaftung von Gunstflächen einerseits, sowie die Flächenaufgabe unrentabler Flächen andererseits, hat schwerwiegende Folgen für Insekten, die an extensiv genutzte Kulturflächen angepasst sind, was besonders durch den abnehmenden Anteil an Spezialisten deutlich wird. Eine Region, die aufgrund des kleinräumigen Nebeneinanders von naturnahen Bereichen und anthropogen geschaffenen Kulturflächen (entlang eines großen Höhengradienten) eine wichtige Rolle für die Biodiversität besitzt, speziell als Lebensraum für Spezialisten aller Artengruppen, sind die Alpen. Auch hier stellt der landwirtschaftliche Nutzungswandel ein großes Problem dar, weshalb es einen nachhaltigen Schutz der extensiv genutzten Kulturlebensräume bedarf. Um zu klären, wie eine nachhaltige Berglandwirtschaft zukünftig erhalten bleiben kann, wurden im ersten Kapitel der Promotion die Regelungsrahmen der internationalen, europäischen, nationalen und regionalen Gesetze näher betrachtet. Es zeigt sich, dass der multifunktionale Ansatz der Alpenkonvention und des zugehörigen Protokolls „Berglandwirtschaft“ nur eine geringe normative Konkretisierung aufweisen und daher nicht im ausreichenden Maße in der Gemeinsamen Agrarpolitik der EU sowie im nationalen Recht umgesetzt werden; dadurch können diese einer negativen Entwicklung in der Berglandwirtschaft nicht ausreichend entgegenwirken. Neben diesen Rechtsgrundlagen fehlt es jedoch auch an naturwissenschaftlichen Grundlagen, um die Auswirkungen des landwirtschaftlichen Nutzungswandels auf alpine und arktische Tierarten zu beurteilen. Untersuchungen mit Charakterarten für diese Kulturräume sind somit erforderlich, wobei Tagfalter aufgrund ihrer Sensibilität gegenüber Umweltveränderungen geeignete Indikatoren sind. Deshalb wurden im zweiten Kapitel der Promotion die beiden Schwestertaxa Boloria pales und B. napaea untersucht, die für arktische und / oder alpine Grünlandflächen typisch sind. Die bisher unbekannte Phylogeographie beider Arten wurde daher mit zwei mitochondrialen und zwei Kerngenen über das gesamte europäische Verbreitungsgebiet untersucht. In diesem Zusammenhang die zwischen- und innerartlichen Auftrennungen analysiert und datiert sowie die ihnen unterliegenden Ausbreitungsmuster entschlüsselt. Um spezielle Anpassungsformen an die arktischen und alpinen Lebensräume der Arten zu entschlüsseln und die Folgen der landwirtschaftlichen Nutzungsänderung richtig einordnen zu können, wurden mehrere Populationen beider Arten freilandökologisch untersucht. Während B. pales über den gesamten alpinen Sommer schlüpfen kann und proterandrische Strukturen zeigt, ist B. napaea durch das Fehlen der Proterandie und ein verkürztes Schlupfzeitfenster eher an die kürzeren, arktischen Sommer angepasst. Obwohl beide Arten die gleichen Nektarquellen nutzen, gibt es aufgrund verschiedener Bedürfnisse Unterschiede in den Nektarpräferenzen zwischen den Geschlechtern; auch innerartliche Unterschiede im Dispersionsverhalten wurden gefunden. Populationen beider Arten können eine kurze Beweidung überleben, wobei der Zeitpunkt der Beweidung von Bedeutung ist; eine Nutzung gegen Ende der Schlupfphase hat einen größeren Einfluss auf die Population. Daneben wurde ein deutlicher Unterschied zwischen Flächen mit langfristiger und fehlender Beweidung gefunden. Neben einer geringen Populationsdichte, gibt es auf ganzjährig beweideten Flächen einen größeren Druck, den Lebensraum zu verlassen und die zurückgelegten Flugdistanzen sind hier auch deutlich größer.
Der digitale Fortschritt der vergangenen Jahrzehnte beruht zu einem großen Teil auf der Innovationskraft junger aufstrebender Unternehmen. Während diese Unternehmen auf der einen Seite ihr hohes Maß an Innovativität eint, entsteht für diese zeitgleich auch ein hoher Bedarf an finanziellen Mitteln, um ihre geplanten Innovations- und Wachstumsziele auch in die Tat umsetzen zu können. Da diese Unternehmen häufig nur wenige bis keine Unternehmenswerte, Umsätze oder auch Profitabilität vorweisen können, gestaltet sich die Aufnahme von externem Kapital häufig schwierig bis unmöglich. Aus diesem Umstand entstand in der Mitte des zwanzigsten Jahrhunderts das Geschäftsmodell der Risikofinanzierung, des sogenannten „Venture Capitals“. Dabei investieren Risikokapitalgeber in aussichtsreiche junge Unternehmen, unterstützen diese in ihrem Wachstum und verkaufen nach einer festgelegten Dauer ihre Unternehmensanteile, im Idealfall zu einem Vielfachen ihres ursprünglichen Wertes. Zahlreiche junge Unternehmen bewerben sich um Investitionen dieser Risikokapitalgeber, doch nur eine sehr geringe Zahl erhält diese auch. Um die aussichtsreichsten Unternehmen zu identifizieren, sichten die Investoren die Bewerbungen anhand verschiedener Kriterien, wodurch bereits im ersten Schritt der Bewerbungsphase zahlreiche Unternehmen aus dem Kreis potenzieller Investmentobjekte ausscheiden. Die bisherige Forschung diskutiert, welche Kriterien Investoren zu einer Investition bewegen. Daran anschließend verfolgt diese Dissertation das Ziel, ein tiefergehendes Verständnis darüber zu erlangen, welche Faktoren die Entscheidungsfindung der Investoren beeinflussen. Dabei wird vor allem auch untersucht, wie sich persönliche Faktoren der Investoren, sowie auch der Unternehmensgründer, auf die Investitionsentscheidung auswirken. Ergänzt werden diese Untersuchungen zudem durch die Analyse der Wirkung des digitalen Auftretens von Unternehmensgründern auf die Entscheidungsfindung von Risikokapitalgebern. Des Weiteren verfolgt diese Dissertation als zweites Ziel einen Erkenntnisgewinn über die Auswirkungen einer erfolgreichen Investition auf den Unternehmensgründer. Insgesamt umfasst diese Dissertation vier Studien, die im Folgenden näher beschrieben werden.
In Kapitel 2 wird untersucht, inwiefern sich bestimmte Humankapitaleigenschaften des Investors auf dessen Entscheidungsverhalten auswirken. Mithilfe vorangegangener Interviews und Literaturrecherchen wurden insgesamt sieben Kriterien identifiziert, die Risikokapitalinvestoren in ihrer Entscheidungsfindung nutzen. Daraufhin nahmen 229 Investoren an einem Conjoint Experiment teil, mithilfe dessen gezeigt werden konnte, wie wichtig die jeweiligen Kriterien im Rahmen der Entscheidung sind. Von besonderem Interesse ist dabei, wie sich die Wichtigkeit der Kriterien in Abhängigkeit der Humankapitaleigenschaften der Investoren unterscheiden. Dabei kann gezeigt werden, dass sich die Wichtigkeit der Kriterien je nach Bildungshintergrund und Erfahrung der Investoren unterscheidet. So legen beispielsweise Investoren mit einem höheren Bildungsabschluss und Investoren mit unternehmerischer Erfahrung deutlich mehr Wert auf die internationale Skalierbarkeit der Unternehmen. Zudem unterscheidet sich die Wichtigkeit der Kriterien auch in Abhängigkeit der fachlichen Ausbildung. So legen etwa Investoren mit einer fachlichen Ausbildung in Naturwissenschaften einen deutlich stärkeren Fokus auf den Mehrwert des Produktes beziehungsweise der Dienstleistung. Zudem kann gezeigt werden, dass Investoren mit mehr Investitionserfahrung die Erfahrung des Managementteams wesentlich wichtiger einschätzen als Investoren mit geringerer Investitionserfahrung. Diese Ergebnisse ermöglichen es Unternehmensgründern ihre Bewerbungen um eine Risikokapitalfinanzierung zielgenauer auszurichten, etwa durch eine Analyse des beruflichen Hintergrunds der potentiellen Investoren und eine damit einhergehende Anpassung der Bewerbungsunterlagen, zum Beispiel durch eine stärkere Schwerpunktsetzung besonders relevanter Kriterien.
Die in Kapitel 3 vorgestellte Studie bedient sich der Daten des gleichen Conjoint Experiments aus Kapitel 2, legt hierbei allerdings einen Fokus auf den Unterschied zwischen Investoren aus den USA und Investoren aus Kontinentaleuropa. Dazu wurden Subsamples kreiert, in denen 128 Experimentteilnehmer in den USA angesiedelt sind und 302 in Kontinentaleuropa. Die Analyse der Daten zeigt, dass US-amerikanische Investoren, im Vergleich zu Investoren in Kontinentaleuropa, einen signifikant stärkeren Fokus auf das Umsatzwachstum der Unternehmen legen. Zudem legen kontinentaleuropäische Investoren einen deutlich stärkeren Fokus auf die internationale Skalierbarkeit der Unternehmen. Um die Ergebnisse der Analyse besser interpretieren zu können, wurden diese im Anschluss mit vier amerikanischen und sieben europäischen Investoren diskutiert. Dabei bestätigen die europäischen Investoren die Wichtigkeit der hohen internationalen Skalierbarkeit aufgrund der teilweise geringen Größe europäischer Länder und dem damit zusammenhängenden Zwang, schnell international skalieren zu können, um so zufriedenstellende Wachstumsraten zu erreichen. Des Weiteren wurde der vergleichsweise geringere Fokus auf das Umsatzwachstum in Europa mit fehlenden Mitteln für eine schnelle Expansion begründet. Gleichzeitig wird der starke Fokus der US-amerikanischen Investoren auf Umsatzwachstum mit der höheren Tendenz zu einem Börsengang in den USA begründet, bei dem hohe Umsätze als Werttreiber dienen. Die Ergebnisse dieses Kapitels versetzen Unternehmensgründer in die Lage, ihre Bewerbung stärker an die wichtigsten Kriterien der potenziellen Investoren auszurichten, um so die Wahrscheinlichkeit einer erfolgreichen Investitionsentscheidung zu erhöhen. Des Weiteren bieten die Ergebnisse des Kapitels Investoren, die sich an grenzüberschreitenden syndizierten Investitionen beteiligen, die Möglichkeit, die Präferenzen der anderen Investoren besser zu verstehen und die Investitionskriterien besser auf potenzielle Partner abzustimmen.
Kapitel 4 untersucht ob bestimmte Charaktereigenschaften des sogenannten Schumpeterschen Entrepreneurs einen Einfluss auf die Wahrscheinlichkeit eines zweiten Risikokapitalinvestments haben. Dazu wurden von Gründern auf Twitter gepostete Nachrichten sowie Information von Investitionsrunden genutzt, die auf der Plattform Crunchbase zur Verfügung stehen. Insgesamt wurden mithilfe einer Textanalysesoftware mehr als zwei Millionen Tweets von 3313 Gründern analysiert. Die Ergebnisse der Studie deuten an, dass einige Eigenschaften, die typisch für Schumpetersche Gründer sind, die Chancen für eine weitere Investition erhöhen, während andere keine oder negative Auswirkungen haben. So erhöhen Gründer, die auf Twitter einen starken Optimismus sowie ihre unternehmerische Vision zur Schau stellen die Chancen auf eine zweite Risikokapitalfinanzierung, gleichzeitig werden diese aber durch ein zu starkes Streben nach Erfolg reduziert. Diese Ergebnisse haben eine hohe praktische Relevanz für Unternehmensgründer, die sich auf der Suche nach Risikokapital befinden. Diese können dadurch ihr virtuelles Auftreten („digital identity“) zielgerichteter steuern, um so die Wahrscheinlichkeit einer weiteren Investition zu erhöhen.
Abschließend wird in Kapitel 5 untersucht, wie sich die digitale Identität der Gründer verändert, nachdem diese eine erfolgreiche Risikokapitalinvestition erhalten haben. Dazu wurden sowohl Twitter-Daten als auch Crunchbase-Daten genutzt, die im Rahmen der Erstellung der Studie in Kapitel 4 erhoben wurden. Mithilfe von Textanalyse und Paneldatenregressionen wurden die Tweets von 2094 Gründern vor und nach Erhalt der Investition untersucht. Dabei kann gezeigt werden, dass der Erhalt einer Risikokapitalinvestition das Selbstvertrauen, die positiven Emotionen, die Professionalisierung und die Führungsqualitäten der Gründer erhöhen. Gleichzeitig verringert sich allerdings die Authentizität der von den Gründern verfassten Nachrichten. Durch die Verwendung von Interaktionseffekten kann zudem gezeigt werden, dass die Steigerung des Selbstvertrauens positiv durch die Reputation des Investors moderiert wird, während die Höhe der Investition die Authentizität negativ moderiert. Investoren haben durch diese Erkenntnisse die Möglichkeit, den Weiterentwicklungsprozess der Gründer nach einer erfolgreichen Investition besser nachvollziehen zu können, wodurch sie in die Lage versetzt werden, die Aktivitäten ihrer Gründer auf Social Media Plattformen besser zu kontrollieren und im Bedarfsfall bei ihrer Anpassung zu unterstützen.
Die in den Kapiteln 2 bis 5 vorgestellten Studien dieser Dissertation tragen damit zu einem besseren Verständnis der Entscheidungsfindung im Venture Capital Prozess bei. Der bisherige Stand der Forschung wird um Erkenntnisse erweitert, die sowohl den Einfluss der Eigenschaften der Investoren als auch der Gründer betreffen. Zudem wird auch gezeigt, wie sich die Investition auf den Gründer selbst auswirken kann. Die Implikationen der Ergebnisse, sowie Limitationen und Möglichkeiten künftiger Forschung werden in Kapitel 6 näher beschrieben. Da die in dieser Dissertation verwendeten Methoden und Daten erst seit wenigen Jahren im Kontext der Venture Capital Forschung genutzt werden, beziehungsweise überhaupt verfügbar sind, bietet sie sich als eine Grundlage für weitere Forschung an.
For decades, academics and practitioners aim to understand whether and how (economic) events affect firm value. Optimally, these events occur exogenously, i.e. suddenly and unexpectedly, so that an accurate evaluation of the effects on firm value can be conducted. However, recent studies show that even the evaluation of exogenous events is often prone to many challenges that can lead to diverse interpretations, resulting in heated debates. Recently, there have been intense debates in particular on the impact of takeover defenses and of Covid-19 on firm value. The announcements of takeover defenses and the propagation of Covid-19 are exogenous events that occur worldwide and are economically important, but have been insufficiently examined. By answering open research questions, this dissertation aims to provide a greater understanding about the heterogeneous effects that exogenous events such as the announcements of takeover defenses and the propagation of Covid-19 have on firm value. In addition, this dissertation analyzes the influence of certain firm characteristics on the effects of these two exogenous events and identifies influencing factors that explain contradictory results in the existing literature and thus can reconcile different views.
In common shape optimization routines, deformations of the computational mesh
usually suffer from decrease of mesh quality or even destruction of the mesh.
To mitigate this, we propose a theoretical framework using so-called pre-shape
spaces. This gives an opportunity for a unified theory of shape optimization, and of
problems related to parameterization and mesh quality. With this, we stay in the
free-form approach of shape optimization, in contrast to parameterized approaches
that limit possible shapes. The concept of pre-shape derivatives is defined, and
according structure and calculus theorems are derived, which generalize classical
shape optimization and its calculus. Tangential and normal directions are featured
in pre-shape derivatives, in contrast to classical shape derivatives featuring only
normal directions on shapes. Techniques from classical shape optimization and
calculus are shown to carry over to this framework, and are collected in generality
for future reference.
A pre-shape parameterization tracking problem class for mesh quality is in-
troduced, which is solvable by use of pre-shape derivatives. This class allows for
non-uniform user prescribed adaptations of the shape and hold-all domain meshes.
It acts as a regularizer for classical shape objectives. Existence of regularized solu-
tions is guaranteed, and corresponding optimal pre-shapes are shown to correspond
to optimal shapes of the original problem, which additionally achieve the user pre-
scribed parameterization.
We present shape gradient system modifications, which allow simultaneous nu-
merical shape optimization with mesh quality improvement. Further, consistency
of modified pre-shape gradient systems is established. The computational burden
of our approach is limited, since additional solution of possibly larger (non-)linear
systems for regularized shape gradients is not necessary. We implement and com-
pare these pre-shape gradient regularization approaches for a 2D problem, which
is prone to mesh degeneration. As our approach does not depend on the choice of
forms to represent shape gradients, we employ and compare weak linear elasticity
and weak quasilinear p-Laplacian pre-shape gradient representations.
We also introduce a Quasi-Newton-ADM inspired algorithm for mesh quality,
which guarantees sufficient adaption of meshes to user specification during the rou-
tines. It is applicable in addition to simultaneous mesh regularization techniques.
Unrelated to mesh regularization techniques, we consider shape optimization
problems constrained by elliptic variational inequalities of the first kind, so-called
obstacle-type problems. In general, standard necessary optimality conditions cannot
be formulated in a straightforward manner for such semi-smooth shape optimization
problems. Under appropriate assumptions, we prove existence and convergence of
adjoints for smooth regularizations of the VI-constraint. Moreover, we derive shape
derivatives for the regularized problem and prove convergence to a limit object.
Based on this analysis, an efficient optimization algorithm is devised and tested
numerically.
All previous pre-shape regularization techniques are applied to a variational
inequality constrained shape optimization problem, where we also create customized
targets for increased mesh adaptation of changing embedded shapes and active set
boundaries of the constraining variational inequality.
Hybrid Modelling in general, describes the combination of at least two different methods to solve one specific task. As far as this work is concerned, Hybrid Models describe an approach to combine sophisticated, well-studied mathematical methods with Deep Neural Networks to solve parameter estimation tasks. To combine these two methods, the data structure of artifi- cially generated acceleration data of an approximate vehicle model, the Quarter-Car-Model, is exploited. Acceleration of individual components within a coupled dynamical system, can be described as a second order ordinary differential equation, including velocity and dis- placement of coupled states, scaled by spring - and damping-coefficient of the system. An appropriate numerical integration scheme can then be used to simulate discrete acceleration profiles of the Quarter-Car-Model with a random variation of the parameters of the system. Given explicit knowledge about the data structure, one can then investigate under which con- ditions it is possible to estimate the parameters of the dynamical system for a set of randomly generated data samples. We test, if Neural Networks are capable to solve parameter estima- tion problems in general, or if they can be used to solve several sub-tasks, which support a state-of-the-art parameter estimation method. Hybrid Models are presented for parameter estimation under uncertainties, including for instance measurement noise or incompleteness of measurements, which combine knowledge about the data structure and several Neural Networks for robust parameter estimation within a dynamical system.
Zeitgleich mit stetig wachsenden gesellschaftlichen Herausforderungen haben im vergangenen Jahrzehnt Sozialunternehmen stark an Bedeutung gewonnen. Sozialunternehmen verfolgen das Ziel, mit unternehmerischen Mitteln gesellschaftliche Probleme zu lösen. Da der Fokus von Sozialunternehmen nicht hauptsächlich auf der eigenen Gewinnmaximierung liegt, haben sie oftmals Probleme, geeignete Unternehmensfinanzierungen zu erhalten und Wachstumspotenziale zu verwirklichen.
Zur Erlangung eines tiefergehenden Verständnisses des Phänomens der Sozialunternehmen untersucht der erste Teil dieser Dissertation anhand von zwei Studien auf der Basis eines Experiments das Entscheidungsverhalten der Investoren von Sozialunternehmen. Kapitel 2 betrachtet daher das Entscheidungsverhalten von Impact-Investoren. Der von diesen Investoren verfolgte Investmentansatz „Impact Investing“ geht über eine reine Orientierung an Renditen hinaus. Anhand eines Experiments mit 179 Impact Investoren, die insgesamt 4.296 Investitionsentscheidungen getroffen haben, identifiziert eine Conjoint-Studie deren wichtigste Entscheidungskriterien bei der Auswahl der Sozialunternehmen. Kapitel 3 analysiert mit dem Fokus auf sozialen Inkubatoren eine weitere spezifische Gruppe von Unterstützern von Sozialunternehmen. Dieses Kapitel veranschaulicht auf der Basis des Experiments die Motive und Entscheidungskriterien der Inkubatoren bei der Auswahl von Sozialunternehmen sowie die von ihnen angebotenen Formen der nichtfinanziellen Unterstützung. Die Ergebnisse zeigen unter anderem, dass die Motive von sozialen Inkubatoren bei der Unterstützung von Sozialunternehmen unter anderem gesellschaftlicher, finanzieller oder reputationsbezogener Natur sind.
Der zweite Teil erörtert auf der Basis von zwei quantitativ empirischen Studien, inwiefern die Registrierung von Markenrechten sich zur Messung sozialer Innovationen eignet und mit finanziellem und sozialem Wachstum von sozialen Startups in Verbindung steht. Kapitel 4 erörtert, inwiefern Markenregistrierungen zur Messung von sozialen Innovationen dienen können. Basierend auf einer Textanalyse der Webseiten von 925 Sozialunternehmen (> 35.000 Unterseiten) werden in einem ersten Schritt vier Dimensionen sozialer Innovationen (Innovations-, Impact-, Finanz- und Skalierbarkeitsdimension) ermittelt. Darauf aufbauend betrachtet dieses Kapitel, wie verschiedene Markencharakteristiken mit den Dimensionen sozialer Innovationen zusammenhängen. Die Ergebnisse zeigen, dass insbesondere die Anzahl an registrierten Marken als Indikator für soziale Innovationen (alle Dimensionen) dient. Weiterhin spielt die geografische Reichweite der registrierten Marken eine wichtige Rolle. Aufbauend auf den Ergebnissen von Kapitel 4 untersucht Kapitel 5 den Einfluss von Markenregistrierungen in frühen Unternehmensphasen auf die weitere Entwicklung der hybriden Ergebnisse von sozialen Startups. Im Detail argumentiert Kapitel 5, dass sowohl die Registrierung von Marken an sich als auch deren verschiedene Charakteristiken unterschiedlich mit den sozialen und ökonomischen Ergebnissen von sozialen Startups in Verbindung stehen. Anhand eines Datensatzes von 485 Sozialunternehmen zeigen die Analysen aus Kapitel 5, dass soziale Startups mit einer registrierten Marke ein vergleichsweise höheres Mitarbeiterwachstum aufweisen und einen größeren gesellschaftlichen Beitrag leisten.
Die Ergebnisse dieser Dissertation weiten die Forschung im Social Entrepreneurship-Bereich weiter aus und bieten zahlreiche Implikationen für die Praxis. Während Kapitel 2 und 3 das Verständnis über die Eigenschaften von nichtfinanziellen und finanziellen Unterstützungsorganisationen von Sozialunternehmen vergrößern, schaffen Kapitel 4 und 5 ein größeres Verständnis über die Bedeutung von Markenanmeldungen für Sozialunternehmen.
Die Effekte diverser Hormone auf das Sozialverhalten von Männern und Frauen sind nicht vollständig geklärt, da eine genaue Messung dieser, sowie eine Ableitung kausaler Zusammenhänge, die Forschung seither vor Herausforderungen stellt. Umso wichtiger sind Studien, welche versuchen für konfundierende Aspekte zu kontrollieren und die hormonellen oder endokrinen Effekte auf das Sozialverhalten und die soziale Kognition zu untersuchen. Während Studien bereits Effekte von akutem Stress auf Sozialverhalten zeigten, sind die zugrundeliegenden neurobiologischen Mechanismen nicht vollständig bekannt, da hierfür ein rein pharmakologischer Ansatz von Nöten wäre. Die wenigen Studien, die einen solchen wählten, zeigen konträre Befunde. Bisherige Untersuchungen mit psychosozialen Stressoren lassen jedoch prosoziale Tendenzen nach Stress sowohl für Männer als auch für Frauen vermuten. Darüber hinaus sind auch Untersuchungen zu weiblichen Geschlechtshormonen und ihrem Einfluss auf Sozialverhalten sowie die soziale Kognition bei Frauen besonders herausfordernd durch die hormonellen Schwankungen während des Menstruationszyklus oder auch Veränderungen durch die Einnahme oraler Kontrazeptiva. Studien die sowohl Zyklusphasen als auch die Effekte von oralen Kontrazeptiva untersuchten, deuten aber bereits auf Unterschiede zwischen den verschiedenen Phasen, sowie Frauen mit natürlichem Zyklus und Einnahme oraler Kontrazeptiva hin.
Der theoretische Teil beschreibt die Grundlagen zur Stressreaktion des Menschen und die hormonellen Veränderungen weiblicher Geschlechtshormone. Folgend, soll ein Kapitel zur aktuellen Forschungslage zu Effekten von akutem Stress auf Sozialverhalten und die soziale Kognition einen Überblick über die bisherige Befundlage schaffen. Die erste empirische Studie, welche die Effekte von Hydrocortison auf das Sozialverhalten und die Emotionserkennung untersucht, soll anschließend in diese aktuelle Befundlage eingeordnet werden und zu der weniger erforschten Sparte der pharmakologischen Studien beitragen. Die zweite empirische Studie befasst sich folgend mit den Effekten weiblicher Geschlechtshormone auf Sozialverhalten und Empathie, genauer wie auch Zyklusphasen und orale Kontrazeptiva (über Hormone vermittelt) einen Einfluss bei Frauen nehmen. Abschließend sollen die Effekte von Stresshormonen bei Männern, und modulierende Eigenschaften weiblicher Geschlechtshormone, Zyklusphasen und oraler Kontrazeptiva bei Frauen, jeweils in Hinblick auf Sozialverhalten und die soziale Kognition diskutiert werden.
This thesis focus on threats as an experience of stress. Threats are distinguished from challenges and hindrances as another dimension of stress in challenge-hindrance models (CHM) of work stress (Tuckey et al., 2015). Multiple disciplines of psychology (e.g. stereotype, Fingerhut & Abdou, 2017; identity, Petriglieri, 2011) provide a variety of possible events that can trigger threats (e.g., failure expe-riences, social devaluation; Leary et al., 2009). However, systematic consideration of triggers and thus, an overview of when does the danger of threats arises, has been lacking to date. The explanation why events are appraised as threats is related to frustrated needs (e.g., Quested et al., 2011; Semmer et al., 2007), but empirical evidence is rare and needs can cover a wide range of content (e.g., relatedness, competence, power), depending on need approaches (e.g., Deci & Ryan, 2000; McClelland, 1961). This thesis aims to shed light on triggers (when) and the need-based mechanism (why) of threats.
In the introduction, I introduce threats as a dimension of stress experience (cf. Tuckey et al., 2015) and give insights into the diverse field of threat triggers (the when of threats). Further, I explain threats in terms of a frustrated need for positive self-view, before presenting specific needs as possible deter-minants in the threat mechanism (the why of threats). Study 1 represents a literature review based on 122 papers from interdisciplinary threat research and provides a classification of five triggers and five needs identified in explanations and operationalizations of threats. In Study 2, the five triggers and needs are ecologically validated in interviews with police officers (n = 20), paramedics (n = 10), teach-ers (n = 10), and employees of the German federal employment agency (n = 8). The mediating role of needs in the relationship between triggers and threats is confirmed in a correlative survey design (N = 101 Leaders working part-time, Study 3) and in a controlled laboratory experiment (N = 60 two-person student teams, Study 4). The thesis ends with a general discussion of the results of the four studies, providing theoretical and practical implications.
Forest inventories provide significant monitoring information on forest health, biodiversity,
resilience against disturbance, as well as its biomass and timber harvesting potential. For this
purpose, modern inventories increasingly exploit the advantages of airborne laser scanning (ALS)
and terrestrial laser scanning (TLS).
Although tree crown detection and delineation using ALS can be seen as a mature discipline, the
identification of individual stems is a rarely addressed task. In particular, the informative value of
the stem attributes—especially the inclination characteristics—is hardly known. In addition, a lack
of tools for the processing and fusion of forest-related data sources can be identified. The given
thesis addresses these research gaps in four peer-reviewed papers, while a focus is set on the
suitability of ALS data for the detection and analysis of tree stems.
In addition to providing a novel post-processing strategy for geo-referencing forest inventory plots,
the thesis could show that ALS-based stem detections are very reliable and their positions are
accurate. In particular, the stems have shown to be suited to study prevailing trunk inclination
angles and orientations, while a species-specific down-slope inclination of the tree stems and a
leeward orientation of conifers could be observed.
Agricultural monitoring is necessary. Since the beginning of the Holocene, human agricultural
practices have been shaping the face of the earth, and today around one third of the ice-free land
mass consists of cropland and pastures. While agriculture is necessary for our survival, the
intensity has caused many negative externalities, such as enormous freshwater consumption, the
loss of forests and biodiversity, greenhouse gas emissions as well as soil erosion and degradation.
Some of these externalities can potentially be ameliorated by careful allocation of crops and
cropping practices, while at the same time the state of these crops has to be monitored in order
to assess food security. Modern day satellite-based earth observation can be an adequate tool to
quantify abundance of crop types, i.e., produce spatially explicit crop type maps. The resources to
do so, in terms of input data, reference data and classification algorithms have been constantly
improving over the past 60 years, and we live now in a time where fully operational satellites
produce freely available imagery with often less than monthly revisit times at high spatial
resolution. At the same time, classification models have been constantly evolving from
distribution based statistical algorithms, over machine learning to the now ubiquitous deep
learning.
In this environment, we used an explorative approach to advance the state of the art of crop
classification. We conducted regional case studies, focused on the study region of the Eifelkreis
Bitburg-Prüm, aiming to develop validated crop classification toolchains. Because of their unique
role in the regional agricultural system and because of their specific phenologic characteristics
we focused solely on maize fields.
In the first case study, we generated reference data for the years 2009 and 2016 in the study
region by drawing polygons based on high resolution aerial imagery, and used these in
conjunction with RapidEye imagery to produce high resolution maize maps with a random forest
classifier and a gaussian blur filter. We were able to highlight the importance of careful residual
analysis, especially in terms of autocorrelation. As an end result, we were able to prove that, in
spite of the severe limitations introduced by the restricted acquisition windows due to cloud
coverage, high quality maps could be produced for two years, and the regional development of
maize cultivation could be quantified.
In the second case study, we used these spatially explicit datasets to link the expansion of biogas
producing units with the extended maize cultivation in the area. In a next step, we overlayed the
maize maps with soil and slope rasters in order to assess spatially explicit risks of soil compaction
and erosion. Thus, we were able to highlight the potential role of remote sensing-based crop type
classification in environmental protection, by producing maps of potential soil hazards, which can
be used by local stakeholders to reallocate certain crop types to locations with less associated
risk.
In our third case study, we used Sentinel-1 data as input imagery, and official statistical records
as maize reference data, and were able to produce consistent modeling input data for four
consecutive years. Using these datasets, we could train and validate different models in spatially
iv
and temporally independent random subsets, with the goal of assessing model transferability. We
were able to show that state-of-the-art deep learning models such as UNET performed
significantly superior to conventional models like random forests, if the model was validated in a
different year or a different regional subset. We highlighted and discussed the implications on
modeling robustness, and the potential usefulness of deep learning models in building fully
operational global crop classification models.
We were able to conclude that the first major barrier for global classification models is the
reference data. Since most research in this area is still conducted with local field surveys, and only
few countries have access to official agricultural records, more global cooperation is necessary to
build harmonized and regionally stratified datasets. The second major barrier is the classification
algorithm. While a lot of progress has been made in this area, the current trend of many appearing
new types of deep learning models shows great promise, but has not yet consolidated. There is
still a lot of research necessary, to determine which models perform the best and most robust,
and are at the same time transparent and usable by non-experts such that they can be applied
and used effortlessly by local and global stakeholders.
This thesis is concerned with two classes of optimization problems which stem
mainly from statistics: clustering problems and cardinality-constrained optimization problems. We are particularly interested in the development of computational techniques to exactly or heuristically solve instances of these two classes
of optimization problems.
The minimum sum-of-squares clustering (MSSC) problem is widely used
to find clusters within a set of data points. The problem is also known as
the $k$-means problem, since the most prominent heuristic to compute a feasible
point of this optimization problem is the $k$-means method. In many modern
applications, however, the clustering suffers from uncertain input data due to,
e.g., unstructured measurement errors. The reason for this is that the clustering
result then represents a clustering of the erroneous measurements instead of
retrieving the true underlying clustering structure. We address this issue by
applying robust optimization techniques: we derive the strictly and $\Gamma$-robust
counterparts of the MSSC problem, which are as challenging to solve as the
original model. Moreover, we develop alternating direction methods to quickly
compute feasible points of good quality. Our experiments reveal that the more
conservative strictly robust model consistently provides better clustering solutions
than the nominal and the less conservative $\Gamma$-robust models.
In the context of clustering problems, however, using only a heuristic solution
comes with severe disadvantages regarding the interpretation of the clustering.
This motivates us to study globally optimal algorithms for the MSSC problem.
We note that although some algorithms have already been proposed for this
problem, it is still far from being “practically solved”. Therefore, we propose
mixed-integer programming techniques, which are mainly based on geometric
ideas and which can be incorporated in a
branch-and-cut based algorithm tailored
to the MSSC problem. Our numerical experiments show that these techniques
significantly improve the solution process of a
state-of-the-art MINLP solver
when applied to the problem.
We then turn to the study of cardinality-constrained optimization problems.
We consider two famous problem instances of this class: sparse portfolio optimization and sparse regression problems. In many modern applications, it is common
to consider problems with thousands of variables. Therefore, globally optimal
algorithms are not always computationally viable and the study of sophisticated
heuristics is very desirable. Since these problems have a discrete-continuous
structure, decomposition methods are particularly well suited. We then apply a
penalty alternating direction method that explores this structure and provides
very good feasible points in a reasonable amount of time. Our computational
study shows that our methods are competitive to
state-of-the-art solvers and heuristics.
Even though in most cases time is a good metric to measure costs of algorithms, there are cases where theoretical worst-case time and experimental running time do not match. Since modern CPUs feature an innate memory hierarchy, the location of data is another factor to consider. When most operations of an algorithm are executed on data which is already in the CPU cache, the running time is significantly faster than algorithms where most operations have to load the data from the memory. The topic of this thesis is a new metric to measure costs of algorithms called memory distance—which can be seen as an abstraction of the just mentioned aspect. We will show that there are simple algorithms which show a discrepancy between measured running time and theoretical time but not between measured time and memory distance. Moreover we will show that in some cases it is sufficient to optimize the input of an algorithm with regard to memory distance (while treating the algorithm as a black box) to improve running times. Further we show the relation between worst-case time, memory distance and space and sketch how to define "the usual" memory distance complexity classes.
The Second Language Acquisition of English Non-Finite Complement Clauses – A Usage-Based Perspective
(2022)
One of the most essential hypotheses of usage-based theories and many constructionist approaches to language is that language entails the piecemeal learning of constructions on the basis of general cognitive mechanisms and exposure to the target language in use (Ellis 2002; Tomasello 2003). However, there is still a considerable lack of empirical research on the emergence and mental representation of constructions in second language (L2) acquisition. One crucial question that arises, for instance, is whether L2 learners’ knowledge of a construction corresponds to a native-like mapping of form and meaning and, if so, to what extent this representation is shaped by usage. For instance, it is unclear how learners ‘build’ constructional knowledge, i.e. which pieces of frequency-, form- and meaning-related information become relevant for the entrenchment and schematisation of a L2 construction.
To address these issues, the English catenative verb construction was used as a testbed phenomenon. This idiosyncratic complex construction is comprised of a catenative verb and a non-finite complement clause (see Huddleston & Pullum 2002), which is prototypically a gerund-participial (henceforth referred to as ‘target-ing’ construction) or a to-infinitival complement (‘target-to’ construction):
(1) She refused to do her homework.
(2) Laura kept reading love stories.
(3) *He avoids to listen to loud music.
This construction is particularly interesting because learners often show choices of a complement type different from those of native speakers (e.g. Gries & Wulff 2009; Martinez‐Garcia & Wulff 2012) as illustrated in (3) and is commonly claimed to be difficult to be taught by explicit rules (see e.g. Petrovitz 2001).
By triangulating different types of usage data (corpus and elicited production data) and analysing these by multivariate statistical tests, the effects of different usage-related factors (e.g. frequency, proficiency level of the learner, semantic class of verb, etc.) on the representation and development of the catenative verb construction and its subschemas (i.e. target-to and target-ing construction) were examined. In particular, it was assessed whether they can predict a native-like form-meaning pairing of a catenative verb and non-finite complement.
First, all studies were able to show a robust effect of frequency on the complement choice. Frequency does not only lead to the entrenchment of high-frequency exemplars of the construction but is also found to motivate a taxonomic generalisation across related exemplars and the representation of a more abstract schema. Second, the results indicate that the target-to construction, due to its higher type and token frequency, has a high degree of schematicity and productivity than the target-ing construction for the learners, which allows for analogical comparisons and pattern extension with less entrenched exemplars. This schema is likely to be overgeneralised to (less frequent) target-ing verbs because the learners perceive formal and semantic compatibility between the unknown/infrequent verb and this pattern.
Furthermore, the findings present evidence that less advanced learners (A2-B2) make more coarse-grained generalisations, which are centred around high-frequency and prototypical exemplars/low-scope patterns. In the case of high-proficiency learners (C1-C2), not only does the number of native-like complement choices increase but relational information, such as the semantic subclasses of the verb, form-function contingency and other factors, becomes also relevant for a target-like choice. Thus, the results suggests that with increasing usage experience learners gradually develop a more fine-grained, interconnected representation of the catenative verb construction, which gains more resemblance to the form-meaning mappings of native speakers.
Taken together, these insights highlight the importance for language learning and teaching environments to acknowledge that L2 knowledge is represented in the form of highly interconnected form-meaning pairings, i.e. constructions, that can be found on different levels of abstraction and complexity.
Due to the transition towards climate neutrality, energy markets are rapidly evolving. New technologies are developed that allow electricity from renewable energy sources to be stored or to be converted into other energy commodities. As a consequence, new players enter the markets and existing players gain more importance. Market equilibrium problems are capable of capturing these changes and therefore enable us to answer contemporary research questions with regard to energy market design and climate policy.
This cumulative dissertation is devoted to the study of different market equilibrium problems that address such emerging aspects in liberalized energy markets. In the first part, we review a well-studied competitive equilibrium model for energy commodity markets and extend this model by sector coupling, by temporal coupling, and by a more detailed representation of physical laws and technical requirements. Moreover, we summarize our main contributions of the last years with respect to analyzing the market equilibria of the resulting equilibrium problems.
For the extension regarding sector coupling, we derive sufficient conditions for ensuring uniqueness of the short-run equilibrium a priori and for verifying uniqueness of the long-run equilibrium a posteriori. Furthermore, we present illustrative examples that each of the derived conditions is indeed necessary to guarantee uniqueness in general.
For the extension regarding temporal coupling, we provide sufficient conditions for ensuring uniqueness of demand and production a priori. These conditions also imply uniqueness of the short-run equilibrium in case of a single storage operator. However, in case of multiple storage operators, examples illustrate that charging and discharging decisions are not unique in general. We conclude the equilibrium analysis with an a posteriori criterion for verifying uniqueness of a given short-run equilibrium. Since the computation of equilibria is much more challenging due to the temporal coupling, we shortly review why a tailored parallel and distributed alternating direction method of multipliers enables to efficiently compute market equilibria.
For the extension regarding physical laws and technical requirements, we show that, in nonconvex settings, existence of an equilibrium is not guaranteed and that the fundamental welfare theorems therefore fail to hold. In addition, we argue that the welfare theorems can be re-established in a market design in which the system operator is committed to a welfare objective. For the case of a profit-maximizing system operator, we propose an algorithm that indicates existence of an equilibrium and that computes an equilibrium in the case of existence. Based on well-known instances from the literature on the gas and electricity sector, we demonstrate the broad applicability of our algorithm. Our computational results suggest that an equilibrium often exists for an application involving nonconvex but continuous stationary gas physics. In turn, integralities introduced due to the switchability of DC lines in DC electricity networks lead to many instances without an equilibrium. Finally, we state sufficient conditions under which the gas application has a unique equilibrium and the line switching application has finitely many.
In the second part, all preprints belonging to this cumulative dissertation are provided. These preprints, as well as two journal articles to which the author of this thesis contributed, are referenced within the extended summary in the first part and contain more details.
Algorithmen als Richter
(2022)
Die menschliche Entscheidungsgewalt wird durch algorithmische
Entscheidungssysteme herausgefordert. Verfassungsrechtlich besonders
problematisch ist dies in Bereichen, die das staatliche Handeln betreffen.
Eine herausgehobene Stellung nimmt durch den besonderen Schutz der
Art. 92 ff. GG die rechtsprechende Gewalt ein. Lydia Wolff fragt daher danach, welche Antworten das Grundgesetz auf digitale Veränderungen in diesem Bereich bereithält und wie sich ein Eigenwert menschlicher Entscheidungen in der Rechtsprechung angesichts technischen Wandels darstellen lässt.
Das Werk erörtert hierzu einen Beitrag zum verfassungsrechtlichen
Richterbegriff und stellt diesen etablierten Begriff in einen Kontext neuer digitaler Herausforderungen durch algorithmische Konkurrenz.
This socio-pragmatic study investigates organisational conflict talk between superiors and subordinates in three medical dramas from China, Germany and the United States. It explores what types of sociolinguistic realities the medical dramas construct by ascribing linguistic behaviour to different status groups. The study adopts an enhanced analytical framework based on John Gumperz’ discourse strategies and Spencer-Oatey’s rapport management theory. This framework detaches directness from politeness, defines directness based on preference and polarity and explains the use of direct and indirect opposition strategies in context.
The findings reveal that the three hospital series draw on 21 opposition strategies which can be categorised into mitigating, intermediate and intensifying strategies. While the status identity of superiors is commonly characterised by a higher frequency of direct strategies than that of subordinates, both status groups manage conflict in a primarily direct manner across all three hospital shows. The high percentage of direct conflict management is related to the medical context, which is characterised by a focus on transactional goals, complex role obligations and potentially severe consequences of medical mistakes and delays. While the results reveal unexpected similarities between the three series with regard to the linguistic directness level, cross-cultural differences between the Chinese and the two Western series are obvious from particular sociopragmatic conventions. These conventions particularly include the use of humour, imperatives, vulgar language and incorporated verbal and para-verbal/multimodal opposition. Noteworthy differences also appear in the underlying patterns of strategy use. They show that the Chinese series promotes a greater tolerance of hierarchical structures and a partially closer social distance in asymmetrical professional relationships. These disparities are related to different perceptions of power distance, role relationships, face and harmony.
The findings challenge existing stereotypes of Chinese, US American and German conflict management styles and emphasise the context-specific nature of verbal conflict management in every culture. Although cinematic aspects affect the conflict management in the fictional data, the results largely comply with recent research on conflict talk in real-life workplaces. As such, the study contributes to intercultural trainings in medical contexts and provides an enhanced analytical framework for further cross-cultural studies on linguistic strategies.
Modellbildung und Umsetzung von Methoden zur energieeffizienten Nutzung von Containertechnologien
(2021)
Die Nutzung von Cloud-Software und skalierten Web-Apps sowie Web-Services hat in den letzten Jahren extrem zugenommen, was zu einem Anstieg der Hochleistungs-Cloud-Rechenzentren führt. Neben der Verbesserung der Dienste spiegelt sich dies auch im weltweiten Stromverbrauch von Rechenzentren wider, der derzeit etwas mehr als 1% (entspricht etwa 200 TWh) beträgt. Prognosen sagen für die kommenden Jahre einen massiven Anstieg des Stromverbrauchs von Cloud-Rechenzentren voraus. Grundlage dieser Bewegung ist die Beschleunigung von Administration und Entwicklung, die unter anderem durch den Einsatz von Containern entsteht. Als Basis für Millionen von Web-Apps und -Services beschleunigen sie die Skalierung, Bereitstellung und Aktualisierung von Cloud-Diensten.
In dieser Arbeit wird aufgezeigt, dass Container zusätzlich zu ihren vielen technischen Vorteilen Möglichkeiten zur Reduzierung des Energieverbrauchs von Cloud-Rechenzentren bieten, die aus
einer ineffizienten Konfiguration von Containern sowie Container-Laufzeitumgebungen resultieren. Basierend auf einer Umfrage und einer Auswertung geeigneter Literatur werden in einem ersten Schritt wahrscheinliche Probleme beim Einsatz von Containern aufgedeckt. Weiterhin wird die Sensibilität von Administratoren und Entwicklern bezüglich des Energieverbrauchs von Container-Software ermittelt. Aufbauend auf den Ergebnissen der Umfrage und der Auswertung werden anhand von Standardszenarien im Containerumfeld die Komponenten des de facto Standards Docker untersucht. Anschließend wird ein Modell, bestehend aus Messmethodik, Empfehlungen für eine effiziente
Konfiguration von Containern und Tools, beschrieben. Die Messmethodik sollte einfach anwendbar sein und gängige Technologien in Rechenzentren unterstützen. Darüber hinaus geben die Handlungsempfehlungen sowohl Entwicklern als auch Administratoren die Möglichkeit zu entscheiden, welche Komponenten von Docker im Sinne eines energieeffizienten Einsatzes und in Abhängigkeit vom Einsatzszenario der Container genutzt werden sollten und welche weggelassen werden könnten. Die resultierenden Container können im Sinne der Energieeffizienz auf Servern und gleichermaßen auf PCs und Embedded Systems (als Teil von IoT und Edge Cloud) eingesetzt werden und somit nicht nur dem zuvor beschriebenen Problem in der Cloud entgegenwirken.
Die Arbeit beschäftigt sich zudem mit dem Verhalten von skalierten Webanwendungen. Gängige Orchestrierungswerkzeuge definieren statische Skalierungspunkte für Anwendungen, die in den meisten Fällen auf der CPU-Auslastung basieren. Es wird dargestellt, dass dabei weder die tatsächliche Erreichbarkeit noch der Stromverbrauch der Anwendungen berücksichtigt werden. Es wird der Autoscaler des Open-Source-Container-Orchestrierungswerkzeugs Kubernetes betrachtet, der um ein neu entwickeltes Werkzeug erweitert wird. Es wird deutlich, dass eine dynamische Anpassung der Skalierungspunkte durch eine Vorabauswertung gängiger Nutzungsszenarien sowie Informationen über deren Stromverbrauch und die Erreichbarkeit bei steigender Last erreicht werden kann.
Schließlich folgt eine empirische Untersuchung des generierten Modells in Form von drei Simulationen, die die Auswirkungen auf den Energieverbrauch von Cloud-Rechenzentren darlegen sollen.
Die Dissertation weist nach, dass der Gerichtshof der Europäischen Union (im Folgenden: EuGH) das mitgliedstaatliche Ausgestaltungsermessen bei der Umsetzung von Richtlinien i. S. d. Art. 288 Abs. 3 AEUV, die weitreichendste Form richtlinieninhaltlich vorgesehener Umsetzungsspielräume der Mitgliedstaaten, in unterschiedlicher Art und Weise beschränkt und dabei teilweise gegen Vorgaben des primären Unionsrechts verstößt. Soweit Rechtsverstöße festgestellt werden, macht die Dissertation weiterführend Vorschläge für eine Korrektur der betroffenen unionsgerichtlichen Begrenzungsansätze im Hinblick auf das mitgliedstaatliche Ausgestaltungsermessen bei der Richtlinienumsetzung. Hierzu geht die Dissertation wie folgt vor: Ausgehend von vier in der Einleitung (Kapitel 1) aufgeworfenen Forschungsleitfragen stellt die Dissertation in Kapitel 2 die untersuchungsrelevanten unionsrechtlichen Grundlagen der Rechtsaktsform der Richtlinie dar. Dabei wird insbesondere auf die unionsvertragliche Verteilung der Kompetenzen zwischen der EU und ihren Mitgliedstaaten bei der kooperativ-zweistufigen Richtlinienrechtsetzung eingegangen und eine restriktive Auslegung des Terminus‘ „Ziel“ i. S. d. Art. 288 Abs. 3 AEUV entwickelt (sog. kompetenzinhaltsbestimmender modifiziert-enger Zielbegriff). In Kapitel 3 arbeitet die Dissertation die in der Richtlinienpraxis vorkommenden Grundformen richtlinieninhaltlich vorgesehener mitgliedstaatlicher Entscheidungsbefugnisse bei der Richtlinienumsetzung heraus und bestimmt das Ausgestaltungsermessen begrifflich als die weitreichendste Form mitgliedstaatlicher Umsetzungsspielräume. Kapitel 4 widmet sich zunächst der Ermittlung der Ansätze des EuGH zur Begrenzung des mitgliedstaatlichen Ausgestaltungsermessens. Dabei wird deutlich, dass das Unionsgericht durch seine Rechtsprechung nicht nur die Entstehung mitgliedstaatlichen Ausgestaltungsermessens begrenzt. Eine exemplarische Analyse der EuGH-Rechtsprechung zu Art. 4 Abs. 2 UAbs. 1 S. 1 und S. 2 lit. b der UVP-Richtlinie 2011/92/EU und seiner Vorgängernormen zeigt vielmehr, dass und wie der EuGH auch den Umfang des nach dem auslegungserheblichen Wortlaut einer Richtlinie bestehenden mitgliedstaatlichen Ausgestaltungsermessens begrenzt. Die hiernach ermittelten Begrenzungsansätze werden sodann einer rechtlichen Bewertung im Hinblick auf die Vorgaben des primären Unionsrechts einschließlich des in Kapitel 2 entwickelten restriktiven Zielbegriffs i. S. d. Art. 288 Abs. 3 AEUV unterzogen. Da einzelne Begrenzungsansätze des EuGH sich mit dem primären Unionsrecht als nicht vereinbar erweisen, werden insoweit schließlich Vorschläge für eine unionsrechtskonforme Korrektur dieser Rechtsprechung gemacht. Die Zusammenfassung der Forschungsergebnisse in Form einer thesenartigen Beantwortung der in der Einleitung aufgeworfenen vier Forschungsleitfragen findet sich in Kapitel 5.
Der vorliegende Text ist als Mantelpapier im Rahmen einer kumulativen Dissertation an der Universität Trier angenommen worden. Er dient der Zusammenfassung, Reflexion und erweiterten theoretischen Betrachtung der empirischen Einzelbeiträge, die alle einen Einzelaspekt des Gesamtgeschehens „Innovationslabor zur Unterstützung unternehmerischen Lernens und der Entwicklung sozialer Dienstleistungsinnovationen“ behandeln. Dabei wird das Innovationslabor grundsätzlich als Personalentwicklungsmaßnahme aufgefasst. In einem gedanklichen Experiment werden die Ergebnisse auf Organisationen der Erwachsenen- und Weiterbildung übertragen.
Das Besondere dieses Rahmenpapiers ist die Verbindung eines relationalen Raumverständnisses mit der lerntheoretischen Untermauerung des Gegenstandes „Innovationslabor“ aus der Perspektive der Organisationspädagogik und Erwachsenenbildung. Die Ergebnisse zeigen den Lernraum Labor als abseits des Arbeitslebens, als semi-autonom angebundenen Raum, wo Lernprozesse auf unterschiedlichen Ebenen stattfinden und angestoßen werden. Das Labor wird als heterotoper (Lern-)Raum diskutiert. Neu ist auch der Einbezug einer kritischen Perspektive, die bislang im Diskurs um Innovationslabore fehlte: Das Labor wird als prekärer Lernraum charakterisiert. Somit liegt mit dieser Arbeit nun eine grundlegende Ausarbeitung des Labors als Lernraum vor, die zahlreiche weitere Anschlussmöglichkeiten für Forschung ermöglicht.
The main focus of this work is to study the computational complexity of generalizations of the synchronization problem for deterministic finite automata (DFA). This problem asks for a given DFA, whether there exists a word w that maps each state of the automaton to one state. We call such a word w a synchronizing word. A synchronizing word brings a system from an unknown configuration into a well defined configuration and thereby resets the system.
We generalize this problem in four different ways.
First, we restrict the set of potential synchronizing words to a fixed regular language associated with the synchronization under regular constraint problem.
The motivation here is to control the structure of a synchronizing word so that, for instance, it first brings the system from an operate mode to a reset mode and then finally again into the operate mode.
The next generalization concerns the order of states in which a synchronizing word transitions the automaton. Here, a DFA A and a partial order R is given as input and the question is whether there exists a word that synchronizes A and for which the induced state order is consistent with R. Thereby, we study different ways for a word to induce an order on the state set.
Then, we change our focus from DFAs to push-down automata and generalize the synchronization problem to push-down automata and in the following work, to visibly push-down automata. Here, a synchronizing word still needs to map each state of the automaton to one state but it further needs to fulfill some constraints on the stack. We study three different types of stack constraints where after reading the synchronizing word, the stacks associated to each run in the automaton must be (1) empty, (2) identical, or (3) can be arbitrary.
We observe that the synchronization problem for general push-down automata is undecidable and study restricted sub-classes of push-down automata where the problem becomes decidable. For visibly push-down automata we even obtain efficient algorithms for some settings.
The second part of this work studies the intersection non-emptiness problem for DFAs. This problem is related to the problem of whether a given DFA A can be synchronized into a state q as we can see the set of words synchronizing A into q as the intersection of languages accepted by automata obtained by copying A with different initial states and q as their final state.
For the intersection non-emptiness problem, we first study the complexity of the, in general PSPACE-complete, problem restricted to subclasses of DFAs associated with the two well known Straubing-Thérien and Cohen-Brzozowski dot-depth hierarchies.
Finally, we study the problem whether a given minimal DFA A can be represented as the intersection of a finite set of smaller DFAs such that the language L(A) accepted by A is equal to the intersection of the languages accepted by the smaller DFAs. There, we focus on the subclass of permutation and commutative permutation DFAs and improve known complexity bounds.
Surveys play a major role in studying social and behavioral phenomena that are difficult to
observe. Survey data provide insights into the determinants and consequences of human
behavior and social interactions. Many domains rely on high quality survey data for decision
making and policy implementation including politics, health, business, and the social
sciences. Given a certain research question in a specific context, finding the most appropriate
survey design to ensure data quality and keep fieldwork costs low at the same time is a
difficult task. The aim of examining survey research methodology is to provide the best
evidence to estimate the costs and errors of different survey design options. The goal of this
thesis is to support and optimize the accumulation and sustainable use of evidence in survey
methodology in four steps:
(1) Identifying the gaps in meta-analytic evidence in survey methodology by a systematic
review of the existing evidence along the dimensions of a central framework in the
field
(2) Filling in these gaps with two meta-analyses in the field of survey methodology, one
on response rates in psychological online surveys, the other on panel conditioning
effects for sensitive items
(3) Assessing the robustness and sufficiency of the results of the two meta-analyses
(4) Proposing a publication format for the accumulation and dissemination of metaanalytic
evidence
The Eurosystem's Household Finance and Consumption Survey (HFCS) collects micro data on private households' balance sheets, income and consumption. It is a stylised fact that wealth is unequally distributed and that the wealthiest own a large share of total wealth. For sample surveys which aim at measuring wealth and its distribution, this is a considerable problem. To overcome it, some of the country surveys under the HFCS umbrella try to sample a disproportionately large share of households that are likely to be wealthy, a technique referred to as oversampling. Ignoring such types of complex survey designs in the estimation of regression models can lead to severe problems. This thesis first illustrates such problems using data from the first wave of the HFCS and canonical regression models from the field of household finance and gives a first guideline for HFCS data users regarding the use of replicate weight sets for variance estimation using a variant of the bootstrap. A further investigation of the issue necessitates a design-based Monte Carlo simulation study. To this end, the already existing large close-to-reality synthetic simulation population AMELIA is extended with synthetic wealth data. We discuss different approaches to the generation of synthetic micro data in the context of the extension of a synthetic simulation population that was originally based on a different data source. We propose an additional approach that is suitable for the generation of highly skewed synthetic micro data in such a setting using a multiply-imputed survey data set. After a description of the survey designs employed in the first wave of the HFCS, we then construct new survey designs for AMELIA that share core features of the HFCS survey designs. A design-based Monte Carlo simulation study shows that while more conservative approaches to oversampling do not pose problems for the estimation of regression models if sampling weights are properly accounted for, the same does not necessarily hold for more extreme oversampling approaches. This issue should be further analysed in future research.
In der vorliegenden Arbeit wurden die Einsatzmöglichkeiten von Carbon Footprints in Großküchen untersucht. Dabei wurden sowohl methodische Aspekte und Herausforderungen ihrer Erhebung untersucht als auch mögliche Kennzeichnungsformate (Label) evaluiert.
Zunächst wurde am Beispiel Hochschulgastronomie eine vollständige Carbon Footprint Studie nach DIN 14067 für sechs exemplarische Gerichte (PCF) sowie angelehnt an DIN 14064 für den Mensabetrieb (CCF) durchgeführt. Es zeigte sich, dass die gewichteten durchschnittlichen Emissionen pro Teller, unter Einbezug der verwendeten Rohstoffe und des Energiebedarfs, 1,8 kg CO2eq pro Teller betragen (Mgew=1,78 kg CO2eq; [0,22-3,36]). Zur Vereinfachung des Erhebungsprozesses wurden anknüpfend an diese Ergebnisse Pauschalisierungsansätze zur vereinfachten Emissionsallokation im Gastrosektor evaluiert und in Form eines appgestützten Berechnungstools umgesetzt. Es konnte verifiziert werden, dass der Energiebedarf und die daraus resultierenden Emissionen unabhängig von der Beschaffenheit der Gerichte auf die Anzahl produzierter Gerichte alloziert werden können und die Ausgabewerte dennoch hinreichend belastbar sind (Abweichung <10 %).
In dieser Studie konnte gezeigt werden, dass am untersuchten Standort Skaleneffekte hinsichtlich der Anzahl produzierter Gerichte und Strombedarf pro Gericht auftreten. Beide Faktoren korrelieren stark negativ miteinander (r=-.78; p<.05). Zur Verifikation der Ergebnisse wurde eine Datenabfrage unter allen deutschen Studierendenwerken (N=57) hinsichtlich des Energiebedarfs und der Produktionsmengen in Hochschulmensen durchgeführt. Aus den Daten von 42 Standorten konnten für das Jahr 2018 prognostizierte Gesamtemissionen in Höhe von 174.275 Tonnen CO2eq, verursacht durch etwa 98 Millionen verkaufte Gerichte, ermittelt werden. Im Gegensatz zur durchgeführten Standort-Studie konnten die Skaleneffekte, d.h. sinkender Strombedarf pro Teller bei steigender Produktionszahl, bei der deutschlandweiten Datenerhebung statistisch nicht nachgewiesen werden
(r=-.29; p=.074).
Im Anschluss wurden mögliche Label-Formate für Carbon Footprints evaluiert, indem vier vorbereitete Label unterschiedlicher Beschaffenheit (absolute Zahlen, einordnend, vergleichend und wertend) in sechs Fokusgruppen mit insgesamt 17 Teilnehmer:innen im Alter zwischen 20 und 31 Jahren (M=25,12; SD=3,31) diskutiert wurden. Im Ergebnis zeigte sich, dass bei den Teilnehmer:innen ein breiter Wunsch nach der Ausweisung absoluter Zahlen bestand. Zur besseren Einordnung sollte ein Label zudem einordnende Elemente enthalten. Wertende Label in Form von Ampelsymbolen oder Smileys mit unterschiedlichen Emotionen wurden überwiegend abgelehnt. Ableitend aus den Erkenntnissen konnten zwei synthetisierende Label-Vorschläge entwickelt werden.
The daily dose of health information: A psychological view on the health information seeking process
(2021)
The search for health information is becoming increasingly important in everyday life, as well as socially and scientifically relevant Previous studies have mainly focused on the design and communication of information. However, the view of the seeker as well as individual
differences in skills and abilities has been a neglected topic so far. A psychological perspective on the process of searching for health information would provide important starting points for promoting the general dissemination of relevant information and thus improving health behaviour and health status. Within the present dissertation, the process of seeking health information was thus divided into sequential stages to identify relevant personality traits and skills. Accordignly, three studies are presented that focus on one stage
of the process respectively and empirically test potential crucial traits and skills: Study I investigates possible determinants of an intention for a comprehensive search for health information. Building an intention is considered as the basic step of the search process.
Motivational dispositions and self-regulatory skills were related to each other in a structural equation model and empirically tested based on theoretical investigations. Model fit showed an overall good fit and specific direct and indirect effects from approach and avoidance
motivation on the intention to seek comprehensively could be found, which supports the theoretical assumptions. The results show that as early as the formation of intention, the psychological perspective reveals influential personality traits and skills. Study II deals with the subsequent step, the selection of information sources. The preference for basic characteristics of information sources (i.e., accessibility, expertise, and interaction) is related to health information literacy as a collective term for relevant skills and intelligence as a personality trait. Furthermore, the study considers the influence of possible over- or underestimation of these characteristics. The results show not only a different predictive
contribution of health literacy and intelligence, but also the relevance of subjective and objective measurement.
Finally, Study III deals with the selection and evaluation of the health information previously found. The phenomenon of selective exposure is analysed, as this can be considered problematic in the health context. For this purpose, an experimental design was implemented in which a varying health threat was suggested to the participants. Relevant information was presented and the selective choice of this information was assessed. Health literacy was tested
as a moderator in a function of the induced threat and perceived vulnerability, triggering defence motives on the degree of bias. Findings show the importance of the consideration of the defence motives, which could cause a bias in the form of selective exposure. Furthermore, health literacy even seems to amplify this effect.
Results of the three studies are synthesized, discussed and general conclusions are drawn and implications for further research are determined.
The ability to acquire knowledge helps humans to cope with the demands of the environment. Supporting knowledge acquisition processes is among the main goals of education. Empirical research in educational psychology has identified several processes mediated through that prior knowledge affects learning. However, the majority of studies investigated cognitive mechanisms mediating between prior knowledge and learning and neglected that motivational processes might also mediate the influence. In addition, the impact of successful knowledge acquisition on patients’ health has not been comprehensively studied. This dissertation aims at closing knowledge gaps on these topics with the use of three studies. The first study is a meta-analysis that examined motivation as a mediator of individual differences in knowledge before and after learning. The second study investigated in greater detail the extent to which motivation mediated the influence of prior knowledge on knowledge gains in a sample of university students. The third study is a second-order meta-analysis synthesizing the results of previous meta-analyses on the effects of patient education on several health outcomes. The findings of this dissertation show that (a) motivation mediates individual differences in knowledge before and after learning; (b) interest and academic self-concept stabilize individual differences in knowledge more than academic self-efficacy, intrinsic motivation, and extrinsic motivation; (c) test-oriented instruction closes knowledge gaps between students; (d) students’ motivation can be independent of prior knowledge in high aptitude students; (e) knowledge acquisition affects motivational and health-related outcomes; and (f) evidence on prior knowledge and motivation can help develop effective interventions in patient education. The results of the dissertation provide insights into prerequisites, processes, and outcomes of knowledge acquisition. Future research should address covariates of learning and environmental impacts for a better understanding of knowledge acquisition processes.
Teamwork is ubiquitous in the modern workplace. However, it is still unclear whether various behavioral economic factors de- or increase team performance. Therefore, Chapters 2 to 4 of this thesis aim to shed light on three research questions that address different determinants of team performance.
Chapter 2 investigates the idea of an honest workplace environment as a positive determinant of performance. In a work group, two out of three co-workers can obtain a bonus in a dice game. By misreporting a secret die roll, cheating without exposure is an option in the game. Contrary to claims on the importance of honesty at work, we do not observe a reduction in the third co-worker's performance, who is an uninvolved bystander when cheating takes place.
Chapter 3 analyzes the effect of team size on performance in a workplace environment in which either two or three individuals perform a real-effort task. Our main result shows that the difference in team size is not harmful to task performance on average. In our discussion of potential mechanisms, we provide evidence on ongoing peer effects. It appears that peers are able to alleviate the potential free-rider problem emerging out of working in a larger team.
In Chapter 4, the role of perceived co-worker attractiveness for performance is analyzed. The results show that task performance is lower, the higher the perceived attractiveness of co-workers, but only in opposite-sex constellations.
The following Chapter 5 analyzes the effect of offering an additional payment option in a fundraising context. Chapter 6 focuses on privacy concerns of research participants.
In Chapter 5, we conduct a field experiment in which, participants have the opportunity to donate for the continuation of an art exhibition by either cash or cash and an additional cashless payment option (CPO). The treatment manipulation is completed by framing the act of giving either as a donation or pay-what-you-want contribution. Our results show that donors shy away from using the CPO in all treatment conditions. Despite that, there is no negative effect of the CPO on the frequency of financial support and its magnitude.
In Chapter 6, I conduct an experiment to test whether increased transparency of data processing affects data disclosure and whether the results change if it is indicated that the implementation of the GDPR happened involuntarily. I find that increased transparency raises the number of participants who do not disclose personal data by 21 percent. However, this is not the case in the involuntary-signal treatment, where the share of non-disclosures is relatively high in both conditions.
This thesis contributes to the economic literature on India and specifically focuses on investment project (IP) location choice. I study three topics that naturally arise in sequence: geographic concentration of investment projects, the determinants of the location choices, and the impact these choices have on project success.
In Chapter 2, I provide the analysis of geographic concentration of IPs. I find that investments were concentrated over the period of observation (1996–2015), although the degree of concentration was decreasing. Additionally, I analyze different subsamples of the data set by ownership (Indian private, Indian public and foreign) and project status (completed or dropped). Foreign projects in all industries are more concentrated than private and public, while for the latter categories I identify only minor differences in concentration levels. Additionally, I find that the location patterns of completed and dropped investments are similar to that of the overall distribution and the distributions of their respective industries with completed IPs being somewhat more concentrated.
In Chapter 3, I study the determinants of project location choices with the focus on an important highway upgrade, the Golden Quadrilateral (GQ). In line with the existing literature, the GQ construction is connected to higher levels of investment in the affected non-nodal GQ districts in 2002–2016. I also provide suggestive evidence on changes in firm behavior after the GQ construction: Firms located in the non-nodal GQ districts became less likely to invest in their neighbor districts after the GQ completion compared to firms located in districts unaffected by the GQ construction.
Finally, in Chapter 4, I investigate the characteristics of IPs that may contribute to discontinuation of their implementation by comparing completed investments to dropped ones, defined as abandoned, shelved, and stalled investments as identified on the date of the data download. Controlling for local and business cycle conditions, as well as various investor and project characteristics, I show that projects located in close proximity to the investor offices (i.e., in the same district) are more likely to achieve the completion stage than more remote projects.
While women's evolving contribution to entrepreneurship is irrefutable, in almost all nations, gender disparity is an existing reality of entrepreneurship. Social and economic outcomes make women entrepreneurship an important area for scholars and governments. In attempts to find reasons for this gender disparity, academic scholars evaluated various factors and recognised perceptual variables as having outstanding explanatory value in understanding women's entrepreneurship. To advance our knowledge of gender disparity in entrepreneurship, the present study explores the influence of entrepreneurial perceptual variables on women's entrepreneurship and considers the critical role of country-level institutional contexts on the women's entrepreneurial propensity. Therefore, this study examines the impact of perceptual variables in different nations. It also offers connections between entrepreneurial perceptions, women entrepreneurship, and institutional contexts as a critical topic for future studies.
Drawing on the importance of perceptual factors, this dissertation investigates whether and how their perception of entrepreneurial networks influences the individuals' decision to initiate a new venture. Prior scholars considered exposure to entrepreneurial role models as one of the most influential factors on the women's inclination towards entrepreneurship; thus, a systemized analysis makes it possible to identify existing research gaps related to this perception. Hence, to draw a clear picture of the relationship between entrepreneurial role models and entrepreneurship, this dissertation provides a systemized overview of prior studies. Subsequently, Chapter 2 structures the existing literature on entrepreneurial role models and reveals that past literature has focused on the different types of role models, the stage of life at which the exposure to role models occurs, and the context of the exposure. Current discourse argues that the women's lower access to entrepreneurial role models negatively influences their inclination towards entrepreneurship.
Additionally, although the research on women entrepreneurship has proliferated in recent years, little is known about how entrepreneurial perceptual variables form women's propensity towards entrepreneurship in various institutional contexts. The work of Koellinger et al. (2013), hereafter KMS, is one of the most influential papers that investigated the influence of perceptual variables, and it showed that a lower rate of women entrepreneurship is associated with a lower level of their entrepreneurial network, perceived entrepreneurial capability, and opportunity evaluation and with a higher fear of entrepreneurial failure. Thus, this dissertation replicates the work of KMS. Chapter 3 explicitly investigates the influence of the above perceptions on women's entrepreneurial propensity. This research has drawn data from the Global Entrepreneurship Monitor, a cross-national individual-level data set (2001-2006) covering 236,556 individuals across 17 countries. The results of this chapter suggest that gender disparities in entrepreneurial propensity are conditioned by differences in entrepreneurial perceptual variables. Women's lower levels of perceived entrepreneurial capability, entrepreneurial role models and opportunity evaluation and their higher fear of failure lead to lower entrepreneurial propensity.
To extend and generalise the relationship between perceptions and women's entrepreneurial propensity, in Chapter 4, two studies are conducted based on replicated research. Extension 1 generalises the results of KMS by using the same analysis on more recent data. Accordingly, this research implemented the same analysis on 372,069 individuals across the same countries (2011-2016). The recent data show that although gender disparity became significantly weaker, the gender gap is still in men's favour. However, similarly to the replicated study, this research revealed that perceptual factors explain a larger part of the gender disparity. To strengthen prior empirical evidence, in extension 2, utilising a sample of 1,029,863 individuals from 71 countries (2011-2016), the study conducted the same measures and analysis in a more global setting. By including developing countries, gender disparity in entrepreneurial propensity decreased significantly. The study revealed that the relative significance of the influences of perceptions' differs significantly across nations; however, perceptions have a worldwide effect. Moreover, this research found that the ratio of nascent women entrepreneurs in less developed countries to those in more developed nations is 2. More precisely, a higher level of economic development negatively influences the impact of perceptions on women's entrepreneurial propensity.
Whereas prior scholars increasingly underlined the importance of perceptions in explaining a large part of gender disparities in entrepreneurship, most of the prior investigations focused on nascent (early-stage) entrepreneurship, and evidence on the relationship between perceptions and other types of self-employment, such as innovative entrepreneurship, is scant. Innovation is a confirmed key driver of a firm's sustainability, higher competitive capability, and growth. Therefore, Chapter 5 investigates the influence of perceptions on women's innovative entrepreneurship. The chapter points out that entrepreneurial perceptions are the main determinants of the women's decision to offer a new product or service. This chapter also finds that women's innovative entrepreneurship is associated with the country's specific economic setting.
Overall, by underlining the critical role of institutional contexts, this dissertation provides considerable insights into the interaction between perceptions and women entrepreneurship, and its results have implications for policymakers and practitioners, who may find it helpful to consider women entrepreneurship in systemized challenges. Formal and informal barriers affect women's entrepreneurial perceptions and can differ from one country to the other. In this sense, it is crucial to design operational plans to mitigate formal and stereotypical challenges, and thus, more women will be able to start a business, particularly in developing countries in which women significantly comprise a smaller portion of the labour markets. This type of policy could write the "rules of the game" such that these rules enhance the women's propensity towards entrepreneurship.
In vielen Branchen und vor allem in großen Unternehmen gehört eine Unterstützung von Geschäftsprozessen durch Workflow-Management-Systeme zum gelebten Alltag. Im Zentrum steht dabei die Steuerung kontrollflussorientierter Abläufe, während Prozesse mit einem Schwerpunkt auf Daten, Informationen und Wissen meist außen vor bleiben. Solche wissensintensive Prozesse (engl.: knowledge intensive processes) (KiPs) sind Untersuchungsgegenstand in vielen aktuellen Studien, welche ein derzeit aktives Forschungsgebiet formen.
Im Vordergrund solcher KiPs steht dabei das durch die mitwirkenden Personen eingebrachte Wissen, welches in einem wesentlichen Maß die Prozessausführung beeinflusst, hierdurch jedoch die Bearbeitung komplexer und meist hoch volatiler Prozesse ermöglicht. Hierbei handelt es sich zumeist um entscheidungsintensive Prozesse, Prozesse zur Wissensakquisition oder Prozesse, die zu einer Vielzahl unterschiedlicher Prozessabläufe führen können.
Im Rahmen dieser Arbeit wird ein Ansatz entwickelt und vorgestellt, der sich der Modellierung, Visualisierung und Ausführung wissensintensiver Prozesse unter Verwendung Semantischer Technologien widmet. Hierzu werden als die zentralen Anforderungen zur Ausführung von KiPs Flexibilität, Adaptivität und Zielorientierung definiert. Daran anknüpfend werden drei zentrale Grundprinzipien der Prozessmodellierung identifiziert, welche in der ersten Forschungsfrage aufgegriffen werden: „Können die drei Grundprinzipien in einem einheitlichen datenzentrierten, deklarativen, semantischen Ansatz (welcher mit ODD-BP bezeichnet wird) kombiniert werden und können damit die zentralen Anforderungen von KiPs erfüllt werden?”
Die Grundlage für ODD-BP bildet ein Metamodell, welches als Sprachkonstrukt fungiert und die Definition der angestrebten Prozessmodelle erlaubt. Darauf aufbauend wird mit Hilfe von Inferenzierungsregeln ein Verfahren entwickelt, welches das Schlussfolgern von Prozesszuständen ermöglicht und somit eine klassische Workflow-Engine überflüssig macht. Zudem wird eine Methodik eingeführt, die für jede in einem Prozess mitwirkende Person eine maßgeschneiderte, adaptive Prozessvisualisierung ermöglicht, um neben dem Freiheitsgrad der Flexibilität auch eine fundierte Prozessunterstützung bei der Ausführung von KiPs leisten zu können. All dies erfolgt innerhalb einer einheitlichen Wissensbasis, die zum einen die Grundlage für eine vollständige semantische Prozessmodellierung bildet und zum anderen die Möglichkeit zur Integration von Expertenwissen eröffnet. Dieses Expertenwissen kann einen expliziten Beitrag bei der Ausführung wissensintensiver Prozesse leisten und somit die Kollaboration von Mensch und Maschine durch Technologien der symbolischen KI ermöglichen. Die zweite Forschungsfrage greift diesen Aspekt auf: „Kann in dem ODD-BP Ansatz ontologisches Wissen so integriert werden, dass dieses in einer Prozessausführung einen Beitrag leistet?”
Das Metamodell sowie die entwickelten Methoden und Verfahren werden in einem prototypischen, generischen System realisiert, welches grundsätzlich für alle Anwendungsgebiete mit KiPs geeignet ist. Zur Validierung des ODD-BP Ansatzes erfolgt eine Ausrichtung auf den Anwendungsfall einer Notrufabfrage aus dem Leitstellenumfeld. Im Zuge der Evaluation wird gezeigt, wie dieser wissensintensive Ablauf von einer flexiblen, adaptiven und zielorientierten Prozessausführung profitiert. Darüber hinaus wird medizinisches Expertenwissen in den Prozessablauf integriert und es wird nachgewiesen, wie dieses zu verbesserten Prozessergebnissen beiträgt.
Wissensintensive Prozesse stellen Unternehmen und Organisationen in allen Branchen und Anwendungsfällen derzeit vor große Herausforderungen und die Wissenschaft und Forschung widmet sich der Suche nach praxistauglichen Lösungen. Diese Arbeit präsentiert mit ODD-BP einen vielversprechenden Ansatz, indem die Möglichkeiten Semantischer Technologien dazu genutzt werden, eine eng verzahnte Zusammenarbeit zwischen Mensch und Maschine bei der Ausführung von KiPs zu ermöglichen. Die zur Evaluation fokussierte Notrufabfrage innerhalb von Leitstellen stellt zudem einen höchst relevanten Anwendungsfall dar, da in einem akuten Notfall in kürzester Zeit Entscheidungen getroffen werden müssen, um weitreichenden Schaden abwenden und Leben retten zu können. Durch die Berücksichtigung umfassender Datenmengen und das Ausnutzen verfügbaren Expertenwissens kann so eine schnelle Lagebewertung mit Hilfe der maschinellen Unterstützung erreicht und der Mensch beim Treffen von richtigen Entscheidungen unterstützt werden.