Refine
Year of publication
Document Type
- Doctoral Thesis (17)
- Article (7)
- Conference Proceedings (1)
Keywords
- Fernerkundung (25) (remove)
It has been the overall aim of this research work to assess the potential of hyperspectral remote sensing data for the determination of forest attributes relevant to forest ecosystem simulation modeling and forest inventory purposes. A number of approaches for the determination of structural and chemical attributes from hyperspectral remote sensing have been applied to the collected data sets. Many of the methods to be found in the literature were up to now just applied to broadband multispectral data, applied to vegetation canopies other than forests, reported to work on the leaf level or with modelled data, not validated with ground truth data, or not systematically compared to other methods. Attributes that describe the properties of the forest canopy and that are potentially open to remote sensing were identified, appropriate methods for their retrieval were implemented and field, laboratory and image data (HyMap sensor) were acquired over a number of forest plots. The study on structural attributes compared statistical and physical approaches. In the statistical section, linear predictive models between vegetation indices derived from HyMap data and field measurements of structural forest stand attributes were systematically evaluated. The study demonstrates that for hyperspectral image data, linear regression models can be applied to quantify leaf area index and crown volume with good accuracy. For broadband multispectral data, the accuracy was generally lower. The physically-based approach used the invertible forest reflectance model (INFORM), a combination of well established sub-models FLIM, SAIL and LIBERTY. The model was inverted with HyMap data using a neural network approach. In comparison to the statistical approach, it could be shown that the reflectance model inversion works equally well. In opposition to empirically derived prediction functions that are generally limited to the local conditions at a certain point in time and to a specified sensor type, the calibrated reflectance model can be applied more easily to different optical remote sensing data acquired over central European forests. The study on chemical forest attributes evaluated the information content of HyMap data for the estimation of nitrogen, chlorophyll and water concentration. A number of needle samples of Norway spruce were analysed for their total chlorophyll, nitrogen and water concentrations. The chemical data was linked to needle spectra measured in the laboratory and canopy spectra measured by the HyMap sensor. Wavebands selected in statistical models were often located in spectral regions that are known to be important for chlorophyll detection (red edge, green peak). Predictive models were applied on the HyMap image to compute maps of chlorophyll concentration and nitrogen concentration. Results of map overlay operations revealed coherence between total chlorophyll and zones of stand development stage and between total chlorophyll and zones of soil type. Finally, it can be stated that the hyperspectral remote sensing data generally contains more information relevant to the estimation of the forest attributes compared to multispectral data. Structural forest attributes, except biomass, can be determined with good accuracy from a hyperspectral sensor type like HyMap. Among the chemical attributes, chlorophyll concentration can be determined with good accuracy and nitrogen concentration with moderate accuracy. For future research, additional dimensions have to be taken into account, for instance through exploitation of multi-view angle data. Additionally, existing forest canopy reflectance models should be further improved.
In past years, desertification and land degradation have been acknowledged as a major threat to human welfare world-wide, and their environmental and societal implications have sparked the formulation of the UN Convention to Combat Desertification (UNCCD). Any measure taken against desertification, or the design of dedicated early warning systems, must take into account both the spatial and temporal dimensions of process driving factors. Equally important, past and present reactions of ecosystems to physical and socio-economical disturbances or management interventions need to be understood. In this context, remote sensing and geoinformation processing support the required assessment, monitoring and modelling approaches, and hence provide an essential contribution to the scientific component of the struggle against desertification. Supported by DG Research of the European Commission, the Remote Sensing Department of the University of Trier convened RGLDD to promote scientific exchange between specialists working on the interface of remote sensing, geoinformation processing, desertification/land degradation research and its socio-economic implications. Although targeted at the scientific community, contributions with application perspectives were of crucial importance and both an overview of the current state of the art as well as operational opportunities were presented. Hosted at the Robert-Schuman Haus in Trier, the conference gained widespread attention and attracted an international audience from all parts of the world, which underlines the global dimension of land degradation and desertification processes. Based on a rigorous review of submitted abstracts, more than 100 contributions were accepted for oral and poster presentation, which are found in these proceedings edition in full paper form. Please note: This document is optimised for screen resolution, to receive a high-resolution version please contact the editors.
Two areas were selected to represent major process regimes of Mediterranean rangelands. In the County of Lagads (Greece), situated east of the city of Thessaloniki, livestock grazing with sheep and goats is a major factor of the rural economy. In suitable areas, it is complemented by agricultural use. The region of Ayora (Spain) is located west of the city of Valencia. It is one of regions most affected by fires in Spain. First of all, long time series of satellite data were compiled for both regions on the basis of Landsat sensors, which cover the time until 1976 (Ayora) and 1984 (Lagadas) with one image per year. Using a rigorous processing scheme, the data were geometrically and radiometrically corrected Specific attention was given to an exact sensor calibration, the radiometric intercalibration of Landsat-TM and "MSS. Proportional cover of photosynthetically active vegetation was identified as a suitable quantitative indicator for assessing the state of rangelands. Using Spectral Mixture Analysis (SMA) it was inferred for all data sets. The extensive data base procured this way enabled to map fire events in the Ayora area based on sequential diachronic sets and provide fire dates, perimeter as well as fire recurrence for each pixel. The increasing fire frequency in the past decades is in large parts attributed to the accelerated abandonment of the area that leads to an encroachment of shrublands and the accumulation of combustible biomass. On the basis of the fire mapping results, a spatial and temporal stratification of the data set allowed to asses plant recovery dynamics on the landscape level through linear trend analysis. The long history of fire events in the Mediterranean frequently leads to processes of auto-succession. Following an initial dominance of herbaceous vegetation this commonly leads to similar plant communities as the ones present before the fire. On a temporal axis, this results in typical exponential post-fire trajectories which could also be shown in this study. The analysis of driving factors for post-fire dynamics confirmed the importance of aspect and slope. Locations with lower amounts of solar irradiation and favourable water supply yielded faster recovery rates and higher post-fire vegetation cover levels. In most cases, the vegetation cover levels observed before the fire were not reached within the post-fire observation period. In the area of Lagadas, linear trend analysis and additional statistical parameters were used to infer a degradation index. This could be used to illustrate a complex pattern of stability, regeneration and degradation of vegetation cover. These different processes and states are found in close proximity and are clearly determined by topography and elevation. Following a sequence of analyses, it was found that in particular steep, narrow valleys show positive trends, while negative trends are more abundant on plain or gently undulating areas. Considering the local grazing regime, this spatial differentiation was related to the accessibility of specific locations. Subsequently, animal numbers on community level were used to calculate efficient stocking rates and assess the temporal development of their relation with vegetation cover. This calculation of temporal trajectories illustrated that only some communities show the expected negative relation. To the contrary, a positive relation or even changing relation patterns are observed. This signifies recent concentration and intensification processes in the grazing scheme, as a result of which animals are kept in sheds, where additional feedstuffs are provided. In these cases, free roaming of livestock animals is often confined to some hours every day, which explains the spatial preference of easily accessible areas by the shepherds. Beyond these temporal trends, it was analysed whether the grazing pattern is equally reflected in a spatial trend. Making use of available geospatial information layers, the efforts required to reach each location was expressed as a cost. Then, cost zones could be defined and woody vegetation cover as a grazing indicator could be inferred for the different zones. Animal sheds were employed as starting features for this piospheric analysis, which could be mapped from very high spatial resolution Quickbird image data. The result was a clearly structured gradient showing increasing woody vegetation cover with increasing cost distance. On the basis of these two pilot studies, the elements of a monitoring and interpretation framework identified at the beginning of the work were evaluated and a formal interpretation scheme was presented.
Soil and water conservation are cross-sectional assignments. The respective objectives of the individual interest groups cause conflicts of use and lead to different assessments of the soil's potential. Necessary decisions and the practical implementation of soil and water conservation measures require the use of data. These data, which are both spatial and temporal, characterise past, present and, in the case of predictions, also future environmental conditions. The multitude of relevant data necessitates the use of geographic information systems as an instrument for successful resource management. With the use of problem-oriented case studies, it was possible to show that an improved understanding of the system is necessary for both optimisation of the site-specific resource management within the framework of Precision Farming and for the assessment of local to regional conflicts of use with regard to land usage and soil and water conservation. By changing the method, sufficient respective measures regarding documentation, prevention and risk assessment were able to be introduced and implemented. With the objective of practical implementation of a sustainable resource management, the possibilities of short- to long-term initiation of self-organised systems through the networking of available (geo-)information as well as the respective interest groups involved in the conflict of use formed the focal point of this investigation. The creation of networks linking agriculture, water extractors and nature conservation promotes necessary synergies and emergences, due to increased communication. Not the conveyance of knowledge alone, but rather new forms of understanding cause the interest groups involved to change their behaviour, thus facilitating efficient resource management for the interests of soil and water conservation.
Considering actual climatic and land use changes the problem of available water resources or the estimation of potential flood risks gain eco-political and economical relevance. Adequate assessments, thus, require precise process-based hydrological knowledge. Spatially distributed hydrological modelling enables a both abstractive and realistic description of hydrological processes, and therefore contributes to the understanding of the hydrological system- responses. Referring to the example of the mesoscale Ruwer basin (a tributary to the Mosel river), a modified version of the distributive modelling system PRMS/MMS (Precipitation Runoff Modeling System/Modular Modeling System) is applied to calculate spatially and temporally explicit water budgets. To achieve modelling results as precise as possible, integration of detailed land use information (spatial distribution of the existing land use classes, crop- and site-specific growth patterns) is necessary. This information is derived here by analysis of multitemporal, geometrically and radiometrically pre-processed Landsat TM-data. This enables separation of different land use classes and differentiated quantification of the leaf area index (LAI). The LAI is estimated by a spectral unmixing approach using statistically optimized endmember sets, referring to the example of winter grain and grassland plots. As a result, numerical inputs (coefficients for calculating evapotranspiration, interception storages) and extracted non-numerical (classified) information can be provided for hydrological modelling. The version of PRMS applied in this study allows important land use terms to be parameterized in high temporal resolution. Using model input derived from the available satellite data, simulation results are obtained that prove to be realistic compared to gauge data and with respect to their spatial differentiation. Results differ significantly from those obtained by using parameters from literature or by experience without distinguishing specific and site-dependent growth patterns. It can be concluded that the quality of modelling results notably improves by integration and quantitative analysis of remote sensing data; thus, these methods are a significant contribution to physically-based hydrological modelling.