Refine
Year of publication
- 2020 (90) (remove)
Document Type
- Contribution to a Periodical (30)
- Doctoral Thesis (27)
- Article (17)
- Working Paper (9)
- Part of Periodical (6)
- Book (1)
Keywords
- Luxemburg (19)
- Demokratie (18)
- Deutschland (18)
- Schule (17)
- Klassensprecher (16)
- Politische Bildung (16)
- Schülervertretung (16)
- Forschungsdaten (4)
- Management (4)
- Gesundheit (3)
Institute
- Politikwissenschaft (32)
- Geographie und Geowissenschaften (11)
- Fachbereich 4 (10)
- Psychologie (6)
- Fachbereich 1 (4)
- Fachbereich 6 (3)
- Ethnologie (1)
- Fachbereich 2 (1)
- Fachbereich 5 (1)
- Informatik (1)
- Mathematik (1)
- Soziologie (1)
- Wirtschaftswissenschaften (1)
Currently, new business models created in the sharing economy differ considerably and they differ in the formation of trust as well. If and how trust can be created is shown by a comparison of two examples which diverge in their founding philosophy. The chosen example of community-based economy, Community Supported Agriculture (CSA), no longer trusts the capitalist system and therefore distances itself and creates its own environment including a new business model. It is implemented within rather small groups where trust is created by personal relations and face-to-face communication. On the contrary, the example of a platform economy, the accommodation-provider company Airbnb, shows trust in the system and pushes technological innovations through the use of platform applications. It promotes trust and confidence in the progress of technology. For the conceptual analysis, the distinction between personal trust and system trust defined by Niklas Luhmann is adopted. The analysis describes two different modes of trust formation and how they push distrust or improve trust. Grounded on these analyses, assumptions on the process of trust formation within varying models of the sharing economy are formulated as well as a hypothesis about possible developments is introduced for further research.
The study analyzes the long-term trends (1998–2019) of concentrations of the air pollutants ozone (O3) and nitrogen oxides (NOx) as well as meteorological conditions at forest sites in German midrange mountains to evaluate changes in O3 uptake conditions for trees over time at a plot scale. O3 concentrations did not show significant trends over the course of 22 years, unlike NO2 and NO, whose concentrations decreased significantly since the end of the 1990s. Temporal analyses of meteorological parameters found increasing global radiation at all sites and decreasing precipitation, vapor pressure deficit (VPD), and wind speed at most sites (temperature did not show any trend). A principal component analysis revealed strong correlations between O3 concentrations and global radiation, VPD, and temperature. Examination of the atmospheric water balance, a key parameter for O3 uptake, identified some unusually hot and dry years (2003, 2011, 2018, and 2019). With the help of a soil water model, periods of plant water stress were detected. These periods were often in synchrony with periods of elevated daytime O3 concentrations and usually occurred in mid and late summer, but occasionally also in spring and early summer. This suggests that drought protects forests against O3 uptake and that, in humid years with moderate O3 concentrations, the O3 flux was higher than in dry years with higher O3 concentrations.
Although gravitropism forces trees to grow vertically, stems have shown to prefer specific orientations. Apart from wind deforming the tree shape, lateral light can result in prevailing inclination directions. In recent years a species dependent interaction between gravitropism and phototropism, resulting in trunks leaning down-slope, has been confirmed, but a terrestrial investigation of such factors is limited to small scale surveys. ALS offers the opportunity to investigate trees remotely. This study shall clarify whether ALS detected tree trunks can be used to identify prevailing trunk inclinations. In particular, the effect of topography, wind, soil properties and scan direction are investigated empirically using linear regression models. 299.000 significantly inclined stems were investigated. Species-specific prevailing trunk orientations could be observed. About 58% of the inclination and 19% of the orientation could be explained by the linear models, while the tree species, tree height, aspect and slope could be identified as significant factors. The models indicate that deciduous trees tend to lean down-slope, while conifers tend to lean leeward. This study has shown that ALS is suitable to investigate the trunk orientation on larger scales. It provides empirical evidence for the effect of phototropism and wind on the trunk orientation.
Soil degradation due to erosion is a significant worldwide problem at different spatial (from pedon to watershed) and temporal scales. All stages and factors in the erosion process must be detected and evaluated to reduce this environmental issue and protect existing fertile soils and natural ecosystems. Laboratory studies using rainfall simulators allow single factors and interactive effects to be investigated under controlled conditions during extreme rainfall events. In this study, three main factors (rainfall intensity, inclination, and rainfall duration) were assessed to obtain empirical data for modeling water erosion during single rainfall events. Each factor was divided into three levels (− 1, 0, + 1), which were applied in different combinations using a rainfall simulator on beds (6 × 1 m) filled with soil from a study plot located in the arid Sistan region, Iran. The rainfall duration levels tested were 3, 5, and 7 min, the rainfall intensity levels were 30, 60, and 90 mm/h, and the inclination levels were 5, 15, and 25%. The results showed that the highest rainfall intensity tested (90 mm/h) for the longest duration (7 min) caused the highest runoff (62 mm3/s) and soil loss (1580 g/m2/h). Based on the empirical results, a quadratic function was the best mathematical model (R2 = 0.90) for predicting runoff (Q) and soil loss. Single-factor analysis revealed that rainfall intensity was more influential for runoff production than changes in time and inclination, while rainfall duration was the most influential single factor for soil loss. Modeling and three-dimensional depictions of the data revealed that sediment production was high and runoff production lower at the beginning of the experiment, but this trend was reversed over time as the soil became saturated. These results indicate that avoiding the initial stage of erosion is critical, so all soil protection measures should be taken to reduce the impact at this stage. The final stages of erosion appeared too complicated to be modeled, because different factors showed differing effects on erosion.
Up-to-date information about the type and spatial distribution of forests is an essential element in both sustainable forest management and environmental monitoring and modelling. The OpenStreetMap (OSM) database contains vast amounts of spatial information on natural features, including forests (landuse=forest). The OSM data model includes describing tags for its contents, i.e., leaf type for forest areas (i.e., leaf_type=broadleaved). Although the leaf type tag is common, the vast majority of forest areas are tagged with the leaf type mixed, amounting to a total area of 87% of landuse=forests from the OSM database. These areas comprise an important information source to derive and update forest type maps. In order to leverage this information content, a methodology for stratification of leaf types inside these areas has been developed using image segmentation on aerial imagery and subsequent classification of leaf types. The presented methodology achieves an overall classification accuracy of 85% for the leaf types needleleaved and broadleaved in the selected forest areas. The resulting stratification demonstrates that through approaches, such as that presented, the derivation of forest type maps from OSM would be feasible with an extended and improved methodology. It also suggests an improved methodology might be able to provide updates of leaf type to the OSM database with contributor participation.
Climate change is expected to cause mountain species to shift their ranges to higher elevations. Due to the decreasing amounts of habitats with increasing elevation, such shifts are likely to increase their extinction risk. Heterogeneous mountain topography, however, may reduce this risk by providing microclimatic conditions that can buffer macroclimatic warming or provide nearby refugia. As aspect strongly influences the local microclimate, we here assess whether shifts from warm south-exposed aspects to cool north-exposed aspects in response to climate change can compensate for an upward shift into cooler elevations.
A lack of ability to inhibit prepotent responses, or more generally a lack of impulse control, is associated with several disorders such as attention-deficit/hyperactivity disorder and schizophrenia as well as general damage to the prefrontal cortex. A stop-signal task (SST) is a reliable and established measure of response inhibition. However, using the SST as an objective assessment in diagnostic or research-focused settings places significant stress on participants as the task itself requires concentration and cognitive effort and is not particularly engaging. This can lead to decreased motivation to follow task instructions and poor data quality, which can affect assessment efficacy and might increase drop-out rates. Gamification—the application of game-based elements in nongame settings—has shown to improve engaged attention to a cognitive task, thus increasing participant motivation and data quality.
Ability self-concept (SC) and self-efficacy (SE) are central competence-related self-perceptions that affect students’ success in educational settings. Both constructs show conceptual differences but their empirical differentiation in higher education has not been sufficiently demonstrated. In the present study, we investigated the empirical differentiation of SC and SE in higher education with N = 1,243 German psychology students (81% female; age M = 23.62 years), taking into account central methodological requirements that, in part, have been neglected in prior studies. SC and SE were assessed at the same level of specificity, only cognitive SC items were used, and multiple academic domains were considered. We modeled the structure of SC and SE taking into account a multidimensional and/or hierarchical structure and investigated the empirical differentiation of both constructs on different levels of generality (i.e., domain-specific and domain-general). Results supported the empirical differentiation of SC and SE with medium-sized positive latent correlations (range r = .57 - .68) between SC and SE on different levels of generality. The knowledge about the internal structure of students’ SC and SE and the differentiation of both constructs can help us to develop construct-specific and domain-specific intervention strategies. Future empirical comparisons of the predictive power of SC and SE can provide further evidence that both represent empirical different constructs.
The presence of sea ice leads in the sea ice cover represents a key feature in polar regions by controlling the heat exchange between the relatively warm ocean and cold atmosphere due to increased fluxes of turbulent sensible and latent heat. Sea ice leads contribute to the sea ice production and are sources for the formation of dense water which affects the ocean circulation. Atmospheric and ocean models strongly rely on observational data to describe the respective state of the sea ice since numerical models are not able to produce sea ice leads explicitly. For the Arctic, some lead datasets are available, but for the Antarctic, no such data yet exist. Our study presents a new algorithm with which leads are automatically identified in satellite thermal infrared images. A variety of lead metrics is used to distinguish between true leads and detection artefacts with the use of fuzzy logic. We evaluate the outputs and provide pixel-wise uncertainties. Our data yield daily sea ice lead maps at a resolution of 1 km2 for the winter months November– April 2002/03–2018/19 (Arctic) and April–September 2003–2019 (Antarctic), respectively. The long-term average of the lead frequency distributions show distinct features related to bathymetric structures in both hemispheres.
The parameterization of the boundary layer is a challenge for regional climate models of the Arctic. In particular, the stable boundary layer (SBL) over Greenland, being the main driver for substantial katabatic winds over the slopes, is simulated differently by different regional climate models or using different parameterizations of the same model. However, verification data sets with high-resolution profiles of the katabatic wind are rare. In the present paper, detailed aircraft measurements of profiles in the katabatic wind and automatic weather station data during the experiment KABEG (Katabatic wind and boundary-layer front experiment around Greenland) in April and May 1997 are used for the verification of the regional climate model COSMO-CLM (CCLM) nested in ERA-Interim reanalyses. CCLM is used in a forecast mode for the whole Arctic with 15 km resolution and is run in the standard configuration of SBL parameterization and with modified SBL parameterization. In the modified version, turbulent kinetic energy (TKE) production and the transfer coefficients for turbulent fluxes in the SBL are reduced, leading to higher stability of the SBL. This leads to a more realistic representation of the daily temperature cycle and of the SBL structure in terms of temperature and wind profiles for the lowest 200 m.