Refine
Year of publication
- 2020 (90) (remove)
Document Type
- Contribution to a Periodical (30)
- Doctoral Thesis (27)
- Article (17)
- Working Paper (9)
- Part of Periodical (6)
- Book (1)
Keywords
- Luxemburg (19)
- Demokratie (18)
- Deutschland (18)
- Schule (17)
- Klassensprecher (16)
- Politische Bildung (16)
- Schülervertretung (16)
- Forschungsdaten (4)
- Management (4)
- Gesundheit (3)
Institute
- Politikwissenschaft (32)
- Geographie und Geowissenschaften (11)
- Fachbereich 4 (10)
- Psychologie (6)
- Fachbereich 1 (4)
- Fachbereich 6 (3)
- Ethnologie (1)
- Fachbereich 2 (1)
- Fachbereich 5 (1)
- Informatik (1)
- Mathematik (1)
- Soziologie (1)
- Wirtschaftswissenschaften (1)
Die Mitglieder im Schülercomité vertreten die Schülerschaft in verschiedenen Gremien einer Schule sowie auch auf regionaler oder nationaler Ebene. Dabei treffen die Jugendlichen auf Vertreter*innen von Schulleitung, Lehrer*innen, Eltern oder auch Politiker*innen und können auf Augenhöhe mit den Erwachsenen diskutieren und mitbestimmen. Dazu braucht es Vorbereitung. Die beiden hier vorgestellten Übungen können dabei helfen.
Les membres du comité des élèves représentent les élèves dans les différents organes d’une école ainsi qu’au niveau régional ou national. Les jeunes y rencontrent des représentant·e·s de la direction de l’école, des enseignant·e·s, des parents ou des responsables politiques avec qui ils·elles peuvent discuter sur un pied d’égalité et collaborer. Tout cela nécessite une préparation. Les deux exercices présentés ici peuvent s’avérer utiles à cet égard.
Die Polargebiete sind geprägt von harschen Umweltbedingungen mit extrem kalten Temperaturen und Winden. Besonders während der polaren Nacht werden Temperaturen von bis zu -89.2°C}$ auf dem Antarktischen Plateau beobachtet. Infolge der starken Abkühlung beginnt das Ozeanwasser zu gefrieren und die Eisproduktion beginnt. Der Antarktische Ozean ist dabei von einer ausgeprägten zwischen- und innerjährlichen Variabilität geprägt und die Eisbedeckung variiert zwischen 2.07 * 10^6 km^2 im Sommer und 20.14 * 10^6 km^2 im Winter. Die Eisproduktion und Eisschmelze beeinflussen die atmosphärische und ozeanische Zirkulation. Dynamische Prozesse führen zur Bildung von Rissen im Eis und letztlich zum Entstehen von Eisrinnen (leads). Leads sind langgestreckte Risse die mindestens einige Meter breit und hunderte Meter bis hunderte Kilometer lang sein können. In diesen Eisrinnen ist das warme Ozeanwasser in Kontakt mit der kalten Atmosphäre, wodurch die Austauschraten fühlbarer und latenter Wärme, Feuchtigkeit und von Gasen stark erhöht sind. Eisrinnen tragen zur Eisproduktion in den Polargebieten bei und sind Habitat für zahlreiche Tiere. Eisrinnen, zentraler Bestandteil der präsentierten Studie, sind bis heute nur unzureichend im Südpolarmeer erforscht und beobachtet. Daher ist es Ziel einen Algorithmus zu entwickeln, um Eisrinnen in Fernerkundungsdaten automatisiert zu identifizieren. Dabei kommen thermal-Infrarot Satellitendaten des Moderate-Resolution Imaging Spectroradiometer (MODIS) zum Einsatz, welches auf den beiden Satelliten Aqua und Terra montiert ist und seit 2000 (Terra) bzw. 2002 (Aqua) Satellitenbilder bereitstellt. Die einzelnen Satellitenbilder beinhalten die Eisoberflächentemperatur des MOD/MYD 29 Produktes, welche in einem zweistufigen Algorithmus für den Zeitraum April bis September 2003 bis 2019 prozessiert werden.
Im ersten Schritt werden potentielle Eisrinnen anhand der lokalen positiven Temperaturanomalie identifiziert. Aufgrund von Artefakten werden weitere temperatur- und texturbasierte Parameter abgeleitet und zu täglichen Kompositen zusammengefügt. Diese werden in der zweiten Prozessierungsstufe verwendet, um Wolkenartefakte von echten Eisrinnen-Observationen zu trennen. Hier wird Fuzzy Logic genutzt und eine Antarktis-spezifische Konfiguration wird definiert. In diesem werden ausgewählte Eingabedaten aus dem ersten Prozessierungslevel genutzt, um einen finalen Proxy, den Lead Score (LS), zu berechnen. Der LS wird abschließend mittels manueller Qualitätskontrolle in eine Unsicherheit überführt. Die darüber identifizierten Artefakte können so zusätzlich zur MODIS-Wolkenmaske genutzt werden.
Auf Basis der Eisrinnenbeobachtungen wird ein klimatologischer Referenzdatensatz erstellt, der die repräsentative Eisrinnenverteilung im Antarktischen Ozean für die Wintermonate April bis September, 2003 bis 2019 zeigt. In diesem ist sichtbar, dass Eisrinnen in manchen Gegenden systematischer auftreten als in anderen. Das sind vor allem die Regionen entlang der Küstenregion, des kontinentalen Schelfabhangs und einigen Erhebungen und Kanälen in der Tiefsee. Dabei sind die erhöhten Frequenzen entlang des Schelfabhangs besonders interessant und der Einfluss von atmosphärischen und ozeanischen Einflüssen wird untersucht. Ein regionales Eis-Ozeanmodell wird genutzt, um ozeanische Einflüsse in Zusammenhang mit erhöhten Eisrinnenfrequenzen zu setzen.
In der vorliegenden Studie wird außerdem ein umfangreicher Überblick über die großskalige Variabilität von Antarktischem Meereis gegeben. Tägliche Eiskonzentrationsdaten, abgeleitet aus passiven Mikrowellendaten, werden aus dem Zeitraum 1979 bis 2018 für die Klassifikation genutzt. Der dk-means Algorithmus wird verwendet, um zehn repräsentative Eisklassen zu identifizieren. Die geographische Verteilung dieser Klassen wird als Karte dargestellt, in der der typische jährliche Eiszyklus je Klasse sichtbar ist.
Veränderungen in dem räumlichen Auftreten von Eisklassen werden identifiziert und qualitativ interpretiert. Positive Abweichungen hin zu höheren Eisklassen werden im Weddell- und dem Ross-Meer und einigen Regionen in der Ostantarktis identifiziert. Negative Abweichungen sind im Amundsen-Bellingshausen-Meer vorhanden. Der neu entwickelte (Climatological Sea Ice Anomaly Index) wird genutzt, um Klassenabweichungen in der Zeitreihe zu identifizieren. Damit werden drei Jahre (1986, 2007, 2014) für eine Fallstudie ausgewählt und in Relation zu atmosphärischen Daten aus ERA-Interim und Eisdrift-Daten untersucht. Für die beiden Jahre 1986 und 2007 können bestimmte atmosphärische Zirkulationsmuster identifiziert werden, die die entsprechende Eisklassifikation beeinflusst haben. Für das Jahr 2014 können keine besonders ausgeprägten atmosphärischen Anomalien ausgemacht werden.
Der Eisklassen-Datensatz kann in Zukunft als Ergänzung zu vorhandenen Studien und für die Validierung von Meereismodellen genutzt werden. Dabei sind vor allem Anwendungen in Bezug auf den Eisrinnen-Datensatz möglich.
The presence of sea ice leads in the sea ice cover represents a key feature in polar regions by controlling the heat exchange between the relatively warm ocean and cold atmosphere due to increased fluxes of turbulent sensible and latent heat. Sea ice leads contribute to the sea ice production and are sources for the formation of dense water which affects the ocean circulation. Atmospheric and ocean models strongly rely on observational data to describe the respective state of the sea ice since numerical models are not able to produce sea ice leads explicitly. For the Arctic, some lead datasets are available, but for the Antarctic, no such data yet exist. Our study presents a new algorithm with which leads are automatically identified in satellite thermal infrared images. A variety of lead metrics is used to distinguish between true leads and detection artefacts with the use of fuzzy logic. We evaluate the outputs and provide pixel-wise uncertainties. Our data yield daily sea ice lead maps at a resolution of 1 km2 for the winter months November– April 2002/03–2018/19 (Arctic) and April–September 2003–2019 (Antarctic), respectively. The long-term average of the lead frequency distributions show distinct features related to bathymetric structures in both hemispheres.
Digitale Medien können dabei helfen, Unterrichtsinhalte auf motivierende und anschauliche Weise zu thematisieren und demokratische Handlungskompetenzen von Schüler*innen zu trainieren. Die App „KonterBUNT. Einschreiten für Demokratie“ unterstützt Jugendliche bei der Auseinandersetzung mit menschenverachtenden Parolen.
Les médias numériques peuvent contribuer à aborder les contenus de l’enseignement de façon motivante et compréhensible et à développer les capacités d’action démocratique des élèves. L’application « KonterBUNT. Einschreiten für Demokratie » (Intervenir pour la démocratie) aide les jeunes à appendre à réagir aux propos méprisants.
Aufgrund oftmals erhöhter Arsen- und Schwermetallgehalte in den Oberböden von Auen ist eine Verwertung von Auenböden, zum Beispiel im Rahmen von Renaturierungsmaßnahmen, oftmals schwierig, da keine auenspezifische Bewertungsgrundlage für dieser Stoffgehalte vorliegt.
Am Beispiel der Lippeaue erfolgte auf Grundlage abgeleiteter Haupteinflussfaktoren für die Konzentration von Arsen- und Schwermetallen in den Oberböden die Ableitung von Hintergrundgehalten. Die Metall- und Schwermetallgehalte in den Oberböden der Lippeaue lagen i. d. R. erwartungsgemäß oberhalb der in der Praxis verwendeten Einstufungswerte (z. B. Vorsorgewerte der BBodSchV, Hintergrundwerte von NRW), die sich allerdings auf Standorte außerhalb der Aue beziehen.
Anhand von gewonnen Daten aus Projektarbeiten im Zuge der Umsetzung der EU-Wasserrahmenrichtlinie (z. B. bodenkundliche und ingenieurgeologische Profilaufnahme, bodenmechanische Laborversuche) und ergänzend durchgeführter Untersuchungen, wie z. B. Bodentypenkartierung und mineralogische Untersuchungen, erfolgte eine detaillierte Standortcharakterisierung der Böden in der Lippeaue.
Auf Basis der abgeleiteten Hintergrundgehalte wurden unter Berücksichtigung der ermittelten Bodenkennwerte und Einflussgrößen auenspezifische Einbauregeln abgeleitet. Mit dem Ziel einer praktikablen Anwendbarkeit wurde eine auf die wesentlichen Kenngrößen reduzierte Bewertungsmatrix erarbeitet. Bei geplanten baulichen Eingriffen in den Boden kann nun mit den lippeauenspezifischen Einbauwerten für Arsen und Schwermetalle anhand konventioneller Parameter für jeden Standort ermittelt werden, ob besonders günstige oder ungünstige Bedingungen für einen potenziellen Wiedereinbau vorliegen. Die abgeleiteten Hintergrundgehalte und Einbauwerte verstehen sich dabei als – auf Basis der aktuellen Datenlage abgeleitete – Handlungsempfehlung und Orientierung zur Bewertung von Böden im Hinblick auf einen gebietsübergreifenden Wiedereinbau in der Lippeaue.
Traditionell werden Zufallsstichprobenerhebungen so geplant, dass nationale Statistiken zuverlässig mit einer adäquaten Präzision geschätzt werden können. Hierbei kommen vorrangig designbasierte, Modell-unterstützte (engl. model assisted) Schätzmethoden zur Anwendung, die überwiegend auf asymptotischen Eigenschaften beruhen. Für kleinere Stichprobenumfänge, wie man sie für Small Areas (Domains bzw. Subpopulationen) antrifft, eignen sich diese Schätzmethoden eher nicht, weswegen für diese Anwendung spezielle modellbasierte Small Area-Schätzverfahren entwickelt wurden. Letztere können zwar Verzerrungen aufweisen, besitzen jedoch häufig einen kleineren mittleren quadratischen Fehler der Schätzung als dies für designbasierte Schätzer der Fall ist. Den Modell-unterstützten und modellbasierten Methoden ist gemeinsam, dass sie auf statistischen Modellen beruhen; allerdings in unterschiedlichem Ausmass. Modell-unterstützte Verfahren sind in der Regel so konstruiert, dass der Beitrag des Modells bei sehr grossen Stichprobenumfängen gering ist (bei einer Grenzwertbetrachtung sogar wegfällt). Bei modellbasierten Methoden nimmt das Modell immer eine tragende Rolle ein, unabhängig vom Stichprobenumfang. Diese Überlegungen veranschaulichen, dass das unterstellte Modell, präziser formuliert, die Güte der Modellierung für die Qualität der Small Area-Statistik von massgeblicher Bedeutung ist. Wenn es nicht gelingt, die empirischen Daten durch ein passendes Modell zu beschreiben und mit den entsprechenden Methoden zu schätzen, dann können massive Verzerrungen und / oder ineffiziente Schätzungen resultieren.
Die vorliegende Arbeit beschäftigt sich mit der zentralen Frage der Robustheit von Small Area-Schätzverfahren. Als robust werden statistische Methoden dann bezeichnet, wenn sie eine beschränkte Einflussfunktion und einen möglichst hohen Bruchpunkt haben. Vereinfacht gesprochen zeichnen sich robuste Verfahren dadurch aus, dass sie nur unwesentlich durch Ausreisser und andere Anomalien in den Daten beeinflusst werden. Die Untersuchung zur Robustheit konzentriert sich auf die folgenden Modelle bzw. Schätzmethoden:
i) modellbasierte Schätzer für das Fay-Herriot-Modell (Fay und Herrot, 1979, J. Amer. Statist. Assoc.) und das elementare Unit-Level-Modell (vgl. Battese et al., 1988, J. Amer. Statist. Assoc.).
ii) direkte, Modell-unterstützte Schätzer unter der Annahme eines linearen Regressionsmodells.
Das Unit-Level-Modell zur Mittelwertschätzung beruht auf einem linearen gemischten Gauss'schen Modell (engl. mixed linear model, MLM) mit blockdiagonaler Kovarianzmatrix. Im Gegensatz zu bspw. einem multiplen linearen Regressionsmodell, besitzen MLM-Modelle keine nennenswerten Invarianzeigenschaften, so dass eine Kontamination der abhängigen Variablen unvermeidbar zu verzerrten Parameterschätzungen führt. Für die Maximum-Likelihood-Methode kann die resultierende Verzerrung nahezu beliebig groß werden. Aus diesem Grund haben Richardson und Welsh (1995, Biometrics) die robusten Schätzmethoden RML 1 und RML 2 entwickelt, die bei kontaminierten Daten nur eine geringe Verzerrung aufweisen und wesentlich effizienter sind als die Maximum-Likelihood-Methode. Eine Abwandlung von Methode RML 2 wurde Sinha und Rao (2009, Canad. J. Statist.) für die robuste Schätzung von Unit-Level-Modellen vorgeschlagen. Allerdings erweisen sich die gebräuchlichen numerischen Verfahren zur Berechnung der RML-2-Methode (dies gilt auch für den Vorschlag von Sinha und Rao) als notorisch unzuverlässig. In dieser Arbeit werden zuerst die Konvergenzprobleme der bestehenden Verfahren erörtert und anschließend ein numerisches Verfahren vorgeschlagen, das sich durch wesentlich bessere numerische Eigenschaften auszeichnet. Schließlich wird das vorgeschlagene Schätzverfahren im Rahmen einer Simulationsstudie untersucht und anhand eines empirischen Beispiels zur Schätzung von oberirdischer Biomasse in norwegischen Kommunen illustriert.
Das Modell von Fay-Herriot kann als Spezialfall eines MLM mit blockdiagonaler Kovarianzmatrix aufgefasst werden, obwohl die Varianzen des Zufallseffekts für die Small Areas nicht geschätzt werden müssen, sondern als bereits bekannte Größen betrachtet werden. Diese Eigenschaft kann man sich nun zunutze machen, um die von Sinha und Rao (2009) vorgeschlagene Robustifizierung des Unit-Level-Modells direkt auf das Fay-Herriot Model zu übertragen. In der vorliegenden Arbeit wird jedoch ein alternativer Vorschlag erarbeitet, der von der folgenden Beobachtung ausgeht: Fay und Herriot (1979) haben ihr Modell als Verallgemeinerung des James-Stein-Schätzers motiviert, wobei sie sich einen empirischen Bayes-Ansatz zunutze machen. Wir greifen diese Motivation des Problems auf und formulieren ein analoges robustes Bayes'sches Verfahren. Wählt man nun in der robusten Bayes'schen Problemformulierung die ungünstigste Verteilung (engl. least favorable distribution) von Huber (1964, Ann. Math. Statist.) als A-priori-Verteilung für die Lokationswerte der Small Areas, dann resultiert als Bayes-Schätzer [=Schätzer mit dem kleinsten Bayes-Risk] die Limited-Translation-Rule (LTR) von Efron und Morris (1971, J. Amer. Statist. Assoc.). Im Kontext der frequentistischen Statistik kann die Limited-Translation-Rule nicht verwendet werden, weil sie (als Bayes-Schätzer) auf unbekannten Parametern beruht. Die unbekannten Parameter können jedoch nach dem empirischen Bayes-Ansatz an der Randverteilung der abhängigen Variablen geschätzt werden. Hierbei gilt es zu beachten (und dies wurde in der Literatur vernachlässigt), dass die Randverteilung unter der ungünstigsten A-priori-Verteilung nicht einer Normalverteilung entspricht, sondern durch die ungünstigste Verteilung nach Huber (1964) beschrieben wird. Es ist nun nicht weiter erstaunlich, dass es sich bei den Maximum-Likelihood-Schätzern von Regressionskoeffizienten und Modellvarianz unter der Randverteilung um M-Schätzer mit der Huber'schen psi-Funktion handelt.
Unsere theoriegeleitete Herleitung von robusten Schätzern zum Fay-Herriot-Modell zeigt auf, dass bei kontaminierten Daten die geschätzte LTR (mit Parameterschätzungen nach der M-Schätzmethodik) optimal ist und, dass die LTR ein integraler Bestandteil der Schätzmethodik ist (und nicht als ``Zusatz'' o.Ä. zu betrachten ist, wie dies andernorts getan wird). Die vorgeschlagenen M-Schätzer sind robust bei Vorliegen von atypischen Small Areas (Ausreissern), wie dies auch die Simulations- und Fallstudien zeigen. Um auch Robustheit bei Vorkommen von einflussreichen Beobachtungen in den unabhängigen Variablen zu erzielen, wurden verallgemeinerte M-Schätzer (engl. generalized M-estimator) für das Fay-Herriot-Modell entwickelt.
Primary focal hyperhidrosis (PFH, OMIM %144110) is a genetically influenced condition characterised by excessive sweating. Prevalence varies between 1.0–6.1% in the general population, dependent on ethnicity. The aetiology of PFH remains unclear but an autosomal dominant mode of inheritance, incomplete penetrance and variable phenotypes have been reported. In our study, nine pedigrees (50 affected, 53 non-affected individuals) were included. Clinical characterisation was performed at the German Hyperhidrosis Centre, Munich, by using physiological and psychological questionnaires. Genome-wide parametric linkage analysis with GeneHunter was performed based on the Illumina genome-wide SNP arrays. Haplotypes were constructed using easyLINKAGE and visualised via HaploPainter. Whole-exome sequencing (WES) with 100x coverage in 31 selected members (24 affected, 7 non-affected) from our pedigrees was achieved by next generation sequencing. We identified four genome-wide significant loci, 1q41-1q42.3, 2p14-2p13.3, 2q21.2-2q23.3 and 15q26.3-15q26.3 for PFH. Three pedigrees map to a shared locus at 2q21.2-2q23.3, with a genome-wide significant LOD score of 3.45. The chromosomal region identified here overlaps with a locus at chromosome 2q22.1-2q31.1 reported previously. Three families support 1q41-1q42.3 (LOD = 3.69), two families share a region identical by descent at 2p14-2p13.3 (LOD = 3.15) and another two families at 15q26.3 (LOD = 3.01). Thus, our results point to considerable genetic heterogeneity. WES did not reveal any causative variants, suggesting that variants or mutations located outside the coding regions might be involved in the molecular pathogenesis of PFH. We suggest a strategy based on whole-genome or targeted next generation sequencing to identify causative genes or variants for PFH.
"Ich habe nichts zu verstecken ... oder doch?!" - Ein Praxisleitfaden zur Diskussion in der Klasse
(2020)
Durch das Zusammenspiel von Big Data und künstlicher Intelligenz eröffnen sich ganz neue Möglichkeiten, auch im Bereich der öffentlichen Sicherheit. Immer mehr Städte weltweit machen davon Gebrauch und setzen auf Kameras mit computergesteuerter Gesichtserkennung. Nicht jeder ist damit einverstanden. Wie kann man die aktuelle gesellschaftliche Debatte um öffentliche Sicherheit und Privatsphäre mit Jugendlichen besprechen?