Refine
Keywords
- Parametric Bootstrap (1) (remove)
In politics and economics, and thus in the official statistics, the precise estimation of indicators for small regions or parts of populations, the so-called Small Areas or domains, is discussed intensively. The design-based estimation methods currently used are mainly based on asymptotic properties and are thus reliable for large sample sizes. With small sample sizes, however, this design based considerations often do not apply, which is why special model-based estimation methods have been developed for this case - the Small Area methods. While these may be biased, they often have a smaller mean squared error (MSE) as the unbiased design based estimators. In this work both classic design-based estimation methods and model-based estimation methods are presented and compared. The focus lies on the suitability of the various methods for their use in official statistics. First theory and algorithms suitable for the required statistical models are presented, which are the basis for the subsequent model-based estimators. Sampling designs are then presented apt for Small Area applications. Based on these fundamentals, both design-based estimators and as well model-based estimation methods are developed. Particular consideration is given in this case to the area-level empirical best predictor for binomial variables. Numerical and Monte Carlo estimation methods are proposed and compared for this analytically unsolvable estimator. Furthermore, MSE estimation methods are proposed and compared. A very popular and flexible resampling method that is widely used in the field of Small Area Statistics, is the parametric bootstrap. One major drawback of this method is its high computational intensity. To mitigate this disadvantage, a variance reduction method for parametric bootstrap is proposed. On the basis of theoretical considerations the enormous potential of this proposal is proved. A Monte Carlo simulation study shows the immense variance reduction that can be achieved with this method in realistic scenarios. This can be up to 90%. This actually enables the use of parametric bootstrap in applications in official statistics. Finally, the presented estimation methods in a large Monte Carlo simulation study in a specific application for the Swiss structural survey are examined. Here problems are discussed, which are of high relevance for official statistics. These are in particular: (a) How small can the areas be without leading to inappropriate or to high precision estimates? (b) Are the accuracy specifications for the Small Area estimators reliable enough to use it for publication? (c) Do very small areas infer in the modeling of the variables of interest? Could they cause thus a deterioration of the estimates of larger and therefore more important areas? (d) How can covariates, which are in different levels of aggregation be used in an appropriate way to improve the estimates. The data basis is the Swiss census of 2001. The main results are that in the author- view, the use of small area estimators for the production of estimates for areas with very small sample sizes is advisable in spite of the modeling effort. The MSE estimates provide a useful measure of precision, but do not reach in all Small Areas the level of reliability of the variance estimates for design-based estimators.