Refine
Keywords
- Numerics (1) (remove)
Differential equations yield solutions that necessarily contain a certain amount of regularity and are based on local interactions. There are various natural phenomena that are not well described by local models. An important class of models that describe long-range interactions are the so-called nonlocal models, which are the subject of this work.
The nonlocal operators considered here are integral operators with a finite range of interaction and the resulting models can be applied to anomalous diffusion, mechanics and multiscale problems.
While the range of applications is vast, the applicability of nonlocal models can face problems such as the high computational and algorithmic complexity of fundamental tasks. One of them is the assembly of finite element discretizations of truncated, nonlocal operators.
The first contribution of this thesis is therefore an openly accessible, documented Python code which allows to compute finite element approximations for nonlocal convection-diffusion problems with truncated interaction horizon.
Another difficulty in the solution of nonlocal problems is that the discrete systems may be ill-conditioned which complicates the application of iterative solvers. Thus, the second contribution of this work is the construction and study of a domain decomposition type solver that is inspired by substructuring methods for differential equations. The numerical results are based on the abstract framework of nonlocal subdivisions which is introduced here and which can serve as a guideline for general nonlocal domain decomposition methods.