Refine
Keywords
- k-Means-Algorithmus (1) (remove)
This thesis is concerned with two classes of optimization problems which stem
mainly from statistics: clustering problems and cardinality-constrained optimization problems. We are particularly interested in the development of computational techniques to exactly or heuristically solve instances of these two classes
of optimization problems.
The minimum sum-of-squares clustering (MSSC) problem is widely used
to find clusters within a set of data points. The problem is also known as
the $k$-means problem, since the most prominent heuristic to compute a feasible
point of this optimization problem is the $k$-means method. In many modern
applications, however, the clustering suffers from uncertain input data due to,
e.g., unstructured measurement errors. The reason for this is that the clustering
result then represents a clustering of the erroneous measurements instead of
retrieving the true underlying clustering structure. We address this issue by
applying robust optimization techniques: we derive the strictly and $\Gamma$-robust
counterparts of the MSSC problem, which are as challenging to solve as the
original model. Moreover, we develop alternating direction methods to quickly
compute feasible points of good quality. Our experiments reveal that the more
conservative strictly robust model consistently provides better clustering solutions
than the nominal and the less conservative $\Gamma$-robust models.
In the context of clustering problems, however, using only a heuristic solution
comes with severe disadvantages regarding the interpretation of the clustering.
This motivates us to study globally optimal algorithms for the MSSC problem.
We note that although some algorithms have already been proposed for this
problem, it is still far from being “practically solved”. Therefore, we propose
mixed-integer programming techniques, which are mainly based on geometric
ideas and which can be incorporated in a
branch-and-cut based algorithm tailored
to the MSSC problem. Our numerical experiments show that these techniques
significantly improve the solution process of a
state-of-the-art MINLP solver
when applied to the problem.
We then turn to the study of cardinality-constrained optimization problems.
We consider two famous problem instances of this class: sparse portfolio optimization and sparse regression problems. In many modern applications, it is common
to consider problems with thousands of variables. Therefore, globally optimal
algorithms are not always computationally viable and the study of sophisticated
heuristics is very desirable. Since these problems have a discrete-continuous
structure, decomposition methods are particularly well suited. We then apply a
penalty alternating direction method that explores this structure and provides
very good feasible points in a reasonable amount of time. Our computational
study shows that our methods are competitive to
state-of-the-art solvers and heuristics.