Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Keywords
- Waldinventur (4)
- Fernerkundung (3)
- Luftbild (2)
- Luxemburg (2)
- ALS (1)
- Baum (1)
- Biomonitoring (1)
- Classification approach (1)
- Eifel (1)
- Forest cover mapping (1)
- GEOBIA (1)
- GPS (1)
- Geodatenverarbeitung (1)
- Geoinformation Processing (1)
- Geoinformationssystem (1)
- Klassifikationsverfahren (1)
- Laubwald (1)
- LiDAR (1)
- Lidar (1)
- Maschinelles Lernen (1)
- Mittelgebirge (1)
- Nadelwald (1)
- Nationalpark Hunsrück-Hochwald (1)
- OpenStreetMap (1)
- Orientierung (1)
- Prognosekarte (1)
- Remote Sensing (1)
- Satellitenfernerkundung (1)
- Wald (1)
- Waldtyp (1)
- aerial imagery (1)
- co-registration (1)
- forest inventory (1)
- foss (1)
- geobia (1)
- image segmentation (1)
- individual tree detection (1)
- machine-learning (1)
- open data (1)
- phototropism (1)
- point set registration (1)
- region growing (1)
- segmentation (1)
- sentinel-2 (1)
- stem detection (1)
- tree inclination (1)
- tree matching (1)
Institute
- Raum- und Umweltwissenschaften (5) (remove)
Up-to-date information about the type and spatial distribution of forests is an essential element in both sustainable forest management and environmental monitoring and modelling. The OpenStreetMap (OSM) database contains vast amounts of spatial information on natural features, including forests (landuse=forest). The OSM data model includes describing tags for its contents, i.e., leaf type for forest areas (i.e., leaf_type=broadleaved). Although the leaf type tag is common, the vast majority of forest areas are tagged with the leaf type mixed, amounting to a total area of 87% of landuse=forests from the OSM database. These areas comprise an important information source to derive and update forest type maps. In order to leverage this information content, a methodology for stratification of leaf types inside these areas has been developed using image segmentation on aerial imagery and subsequent classification of leaf types. The presented methodology achieves an overall classification accuracy of 85% for the leaf types needleleaved and broadleaved in the selected forest areas. The resulting stratification demonstrates that through approaches, such as that presented, the derivation of forest type maps from OSM would be feasible with an extended and improved methodology. It also suggests an improved methodology might be able to provide updates of leaf type to the OSM database with contributor participation.
Extension of an Open GEOBIA Framework for Spatially Explicit Forest Stratification with Sentinel-2
(2022)
Spatially explicit information about forest cover is fundamental for operational forest management and forest monitoring. Although open-satellite-based earth observation data in a spatially high resolution (i.e., Sentinel-2, ≤10 m) can cover some information needs, spatially very high-resolution imagery (i.e., aerial imagery, ≤2 m) is needed to generate maps at a scale suitable for regional and local applications. In this study, we present the development, implementation, and evaluation of a Geographic Object-Based Image Analysis (GEOBIA) framework to stratify forests (needleleaved, broadleaved, non-forest) in Luxembourg. The framework is exclusively based on open data and free and open-source geospatial software. Although aerial imagery is used to derive image objects with a 0.05 ha minimum size, Sentinel-2 scenes of 2020 are the basis for random forest classifications in different single-date and multi-temporal feature setups. These setups are compared with each other and used to evaluate the framework against classifications based on features derived from aerial imagery. The highest overall accuracies (89.3%) have been achieved with classification on a Sentinel-2-based vegetation index time series (n = 8). Similar accuracies have been achieved with classification based on two (88.9%) or three (89.1%) Sentinel-2 scenes in the greening phase of broadleaved forests. A classification based on color infrared aerial imagery and derived texture measures only achieved an accuracy of 74.5%. The integration of the texture measures into the Sentinel-2-based classification did not improve its accuracy. Our results indicate that high resolution image objects can successfully be stratified based on lower spatial resolution Sentinel-2 single-date and multi-temporal features, and that those setups outperform classifications based on aerial imagery only. The conceptual framework of spatially high-resolution image objects enriched with features from lower resolution imagery facilitates the delivery of frequent and reliable updates due to higher spectral and temporal resolution. The framework additionally holds the potential to derive additional information layers (i.e., forest disturbance) as derivatives of the features attached to the image objects, thus providing up-to-date information on the state of observed forests.
Determining the exact position of a forest inventory plot—and hence the position of the sampled trees—is often hampered by a poor Global Navigation Satellite System (GNSS) signal quality beneath the forest canopy. Inaccurate geo-references hamper the performance of models that aim to retrieve useful information from spatially high remote sensing data (e.g., species classification or timber volume estimation). This restriction is even more severe on the level of individual trees. The objective of this study was to develop a post-processing strategy to improve the positional accuracy of GNSS-measured sample-plot centers and to develop a method to automatically match trees within a terrestrial sample plot to aerial detected trees. We propose a new method which uses a random forest classifier to estimate the matching probability of each terrestrial-reference and aerial detected tree pair, which gives the opportunity to assess the reliability of the results. We investigated 133 sample plots of the Third German National Forest Inventory (BWI, 2011"2012) within the German federal state of Rhineland-Palatinate. For training and objective validation, synthetic forest stands have been modeled using the Waldplaner 2.0 software. Our method has achieved an overall accuracy of 82.7% for co-registration and 89.1% for tree matching. With our method, 60% of the investigated plots could be successfully relocated. The probabilities provided by the algorithm are an objective indicator of the reliability of a specific result which could be incorporated into quantitative models to increase the performance of forest attribute estimations.
Das Ziel dieser Forschungsarbeit liegt in der Entwicklung einer innovativen Klassifikationsstrategie zur satellitengestützten Forstinventur in einem europäischen Mittelgebirgsraum. Über die Ableitung von thematischen Karten der flächenscharfen Verbreitung von fünf Baumartengruppen (Eiche, Buche, Fichte, Douglasie und Kiefer) sowie drei Entwicklungsphasen (Qualifizierung, Dimensionierung und Reife) werden wichtige für eine nachhaltige Bewirtschaftung von Wäldern erforderliche Grundlagendaten bereitgestellt. rnDie nachhaltige Bewirtschaftung der Vielfachfunktionen von Wäldern (Nutz-, Schutz- und Erholungsfunktionen) sowie der steigende Informationsbedarf in Folge nationaler und internationaler Monitoring- und Berichtspflichten (u.a. Montréal Prozess und Kyoto Protokoll) erfordern aktuelle und flächendeckende Informationen über den Zustand der Wälder. In diesem Kontext können fernerkundliche Daten und Methoden zur Unterstützung konventioneller terrestrischer Verfahren zum Einsatz kommen.rnDas Untersuchungsgebiet dieser Studie umfasst den südlichen und östlichen Teil der rheinland-pfälzischen Eifel mit einer Fläche von mehr als 5200 km-², davon rund 2080 km-² bewaldet. Die naturräumliche Heterogenität, die wuchsklimatischen Unterschiede, die Variabilität von Relief und Topographie, die große Zahl vorkommender Baumarten sowie die kulturhistorische Waldentwicklung in der Eifel stellen eine besondere Herausforderung für satellitengestützte Inventurmethoden dar.rnDurch die bevorzugte Verwendung von Referenzdaten aus der unmittelbaren räumlichen Umgebung eines zu klassifizierenden Bereichs wird bei der Parametrisierung des Klassifikationsansatzes die jeweilige naturräumliche und wuchsklimatische Charakteristik berücksichtigt. Der Vergleich dieses räumlich adaptiven Klassifikationsansatzes mit einer konventionellen Maximum-Likelihood Klassifikation zeigt, dass eine Verbesserung der Klassifikationsgenauigkeit um 12 Prozentpunkte erreicht werden konnte. Die Adaptierung der Klassifikationsstrategie an die naturräumlichen und wuchsklimatischen Bedingungen sowie die Anpassung an bestehende Erhebungsmethoden und Datenorganisation bilden die Grundlage für eine erfolgreiche Anwendung des Verfahrens in einem heterogenen Mittelgebirgsraum. Die hohe erreichte Gesamtgenauigkeit des Klassifikationsergebnisses von rund 74% (über 87% für die fünf Hauptbaumarten) erlaubt die Einbindung der Methode in operationelle Erhebungsverfahren zur Unterstützung der terrestrischen Forstinventur.
Although gravitropism forces trees to grow vertically, stems have shown to prefer specific orientations. Apart from wind deforming the tree shape, lateral light can result in prevailing inclination directions. In recent years a species dependent interaction between gravitropism and phototropism, resulting in trunks leaning down-slope, has been confirmed, but a terrestrial investigation of such factors is limited to small scale surveys. ALS offers the opportunity to investigate trees remotely. This study shall clarify whether ALS detected tree trunks can be used to identify prevailing trunk inclinations. In particular, the effect of topography, wind, soil properties and scan direction are investigated empirically using linear regression models. 299.000 significantly inclined stems were investigated. Species-specific prevailing trunk orientations could be observed. About 58% of the inclination and 19% of the orientation could be explained by the linear models, while the tree species, tree height, aspect and slope could be identified as significant factors. The models indicate that deciduous trees tend to lean down-slope, while conifers tend to lean leeward. This study has shown that ALS is suitable to investigate the trunk orientation on larger scales. It provides empirical evidence for the effect of phototropism and wind on the trunk orientation.