Refine
Document Type
- Article (2)
- Conference Proceedings (1)
- Doctoral Thesis (1)
Keywords
- Degradation (2)
- Fernerkundung (2)
- Geoinformation Processing (2)
- Land Degradation (2)
- Modellierung (2)
- Remote Sensing (2)
- Satellitenfernerkundung (2)
- Angola (1)
- Beweidung (1)
- Desertification (1)
- Desertifikation (1)
- Disturbance Index (1)
- Drought (1)
- Early Warning (1)
- Entwaldung (1)
- Feuer (1)
- Geodatenverarbeitung (1)
- Geoinformationssystem (1)
- Griechenland (1)
- Landdegradation (1)
- Landnutzung (1)
- Landsat (1)
- MODIS (1)
- Mediterrane Rangelands (1)
- Mediterranean Rangelands (1)
- Mittelmeerraum (1)
- Modelling (1)
- Monitoring (1)
- Provinz Copperbelt (1)
- Sambia (1)
- Spanien (1)
- Spektroradiometrie (1)
- Trockenwald (1)
- UNCCD (1)
- Wüstenkonvention (1)
- Zeitreihenanalyse (1)
- degradation (1)
- dry tropical forest (1)
- miombo woodland (1)
- regeneration (1)
- sub-Saharan Africa (1)
- time series analysis (1)
Dry tropical forests undergo massive conversion and degradation processes. This also holds true for the extensive Miombo forests that cover large parts of Southern Africa. While the largest proportional area can be found in Angola, the country still struggles with food shortages, insufficient medical and educational supplies, as well as the ongoing reconstruction of infrastructure after 27 years of civil war. Especially in rural areas, the local population is therefore still heavily dependent on the consumption of natural resources, as well as subsistence agriculture. This leads, on one hand, to large areas of Miombo forests being converted for cultivation purposes, but on the other hand, to degradation processes due to the selective use of forest resources. While forest conversion in south-central rural Angola has already been quantitatively described, information about forest degradation is not yet available. This is due to the history of conflicts and the therewith connected research difficulties, as well as the remote location of this area. We apply an annual time series approach using Landsat data in south-central Angola not only to assess the current degradation status of the Miombo forests, but also to derive past developments reaching back to times of armed conflicts. We use the Disturbance Index based on tasseled cap transformation to exclude external influences like inter-annual variation of rainfall. Based on this time series, linear regression is calculated for forest areas unaffected by conversion, but also for the pre-conversion period of those areas that were used for cultivation purposes during the observation time. Metrics derived from linear regression are used to classify the study area according to their dominant modification processes.rnWe compare our results to MODIS latent integral trends and to further products to derive information on underlying drivers. Around 13% of the Miombo forests are affected by degradation processes, especially along streets, in villages, and close to existing agriculture. However, areas in presumably remote and dense forest areas are also affected to a significant extent. A comparison with MODIS derived fire ignition data shows that they are most likely affected by recurring fires and less by selective timber extraction. We confirm that areas that are used for agriculture are more heavily disturbed by selective use beforehand than those that remain unaffected by conversion. The results can be substantiated by the MODIS latent integral trends and we also show that due to extent and location, the assessment of forest conversion is most likely not sufficient to provide good estimates for the loss of natural resources.
The process of land degradation needs to be understood at various spatial and temporal scales in order to protect ecosystem services and communities directly dependent on it. This is especially true for regions in sub-Saharan Africa, where socio economic and political factors exacerbate ecological degradation. This study identifies spatially explicit land change dynamics in the Copperbelt province of Zambia in a local context using satellite vegetation index time series derived from the MODIS sensor. Three sets of parameters, namely, monthly series, annual peaking magnitude, and annual mean growing season were developed for the period 2000 to 2019. Trend was estimated by applying harmonic regression on monthly series and linear least square regression on annually aggregated series. Estimated spatial trends were further used as a basis to map endemic land change processes. Our observations were as follows: (a) 15% of the study area dominant in the east showed positive trends, (b) 3% of the study area dominant in the west showed negative trends, (c) natural regeneration in mosaic landscapes (post shifting cultivation) and land management in forest reserves were chiefly responsible for positive trends, and (d) degradation over intact miombo woodland and cultivation areas contributed to negative trends. Additionally, lower productivity over areas with semi-permanent agriculture and shift of new encroachment into woodlands from east to west of Copperbelt was observed. Pivot agriculture was not a main driver in land change. Although overall greening trends prevailed across the study site, the risk of intact woodlands being exposed to various disturbances remains high. The outcome of this study can provide insights about natural and assisted landscape restoration specifically addressing the miombo ecoregion.
Two areas were selected to represent major process regimes of Mediterranean rangelands. In the County of Lagads (Greece), situated east of the city of Thessaloniki, livestock grazing with sheep and goats is a major factor of the rural economy. In suitable areas, it is complemented by agricultural use. The region of Ayora (Spain) is located west of the city of Valencia. It is one of regions most affected by fires in Spain. First of all, long time series of satellite data were compiled for both regions on the basis of Landsat sensors, which cover the time until 1976 (Ayora) and 1984 (Lagadas) with one image per year. Using a rigorous processing scheme, the data were geometrically and radiometrically corrected Specific attention was given to an exact sensor calibration, the radiometric intercalibration of Landsat-TM and "MSS. Proportional cover of photosynthetically active vegetation was identified as a suitable quantitative indicator for assessing the state of rangelands. Using Spectral Mixture Analysis (SMA) it was inferred for all data sets. The extensive data base procured this way enabled to map fire events in the Ayora area based on sequential diachronic sets and provide fire dates, perimeter as well as fire recurrence for each pixel. The increasing fire frequency in the past decades is in large parts attributed to the accelerated abandonment of the area that leads to an encroachment of shrublands and the accumulation of combustible biomass. On the basis of the fire mapping results, a spatial and temporal stratification of the data set allowed to asses plant recovery dynamics on the landscape level through linear trend analysis. The long history of fire events in the Mediterranean frequently leads to processes of auto-succession. Following an initial dominance of herbaceous vegetation this commonly leads to similar plant communities as the ones present before the fire. On a temporal axis, this results in typical exponential post-fire trajectories which could also be shown in this study. The analysis of driving factors for post-fire dynamics confirmed the importance of aspect and slope. Locations with lower amounts of solar irradiation and favourable water supply yielded faster recovery rates and higher post-fire vegetation cover levels. In most cases, the vegetation cover levels observed before the fire were not reached within the post-fire observation period. In the area of Lagadas, linear trend analysis and additional statistical parameters were used to infer a degradation index. This could be used to illustrate a complex pattern of stability, regeneration and degradation of vegetation cover. These different processes and states are found in close proximity and are clearly determined by topography and elevation. Following a sequence of analyses, it was found that in particular steep, narrow valleys show positive trends, while negative trends are more abundant on plain or gently undulating areas. Considering the local grazing regime, this spatial differentiation was related to the accessibility of specific locations. Subsequently, animal numbers on community level were used to calculate efficient stocking rates and assess the temporal development of their relation with vegetation cover. This calculation of temporal trajectories illustrated that only some communities show the expected negative relation. To the contrary, a positive relation or even changing relation patterns are observed. This signifies recent concentration and intensification processes in the grazing scheme, as a result of which animals are kept in sheds, where additional feedstuffs are provided. In these cases, free roaming of livestock animals is often confined to some hours every day, which explains the spatial preference of easily accessible areas by the shepherds. Beyond these temporal trends, it was analysed whether the grazing pattern is equally reflected in a spatial trend. Making use of available geospatial information layers, the efforts required to reach each location was expressed as a cost. Then, cost zones could be defined and woody vegetation cover as a grazing indicator could be inferred for the different zones. Animal sheds were employed as starting features for this piospheric analysis, which could be mapped from very high spatial resolution Quickbird image data. The result was a clearly structured gradient showing increasing woody vegetation cover with increasing cost distance. On the basis of these two pilot studies, the elements of a monitoring and interpretation framework identified at the beginning of the work were evaluated and a formal interpretation scheme was presented.
In past years, desertification and land degradation have been acknowledged as a major threat to human welfare world-wide, and their environmental and societal implications have sparked the formulation of the UN Convention to Combat Desertification (UNCCD). Any measure taken against desertification, or the design of dedicated early warning systems, must take into account both the spatial and temporal dimensions of process driving factors. Equally important, past and present reactions of ecosystems to physical and socio-economical disturbances or management interventions need to be understood. In this context, remote sensing and geoinformation processing support the required assessment, monitoring and modelling approaches, and hence provide an essential contribution to the scientific component of the struggle against desertification. Supported by DG Research of the European Commission, the Remote Sensing Department of the University of Trier convened RGLDD to promote scientific exchange between specialists working on the interface of remote sensing, geoinformation processing, desertification/land degradation research and its socio-economic implications. Although targeted at the scientific community, contributions with application perspectives were of crucial importance and both an overview of the current state of the art as well as operational opportunities were presented. Hosted at the Robert-Schuman Haus in Trier, the conference gained widespread attention and attracted an international audience from all parts of the world, which underlines the global dimension of land degradation and desertification processes. Based on a rigorous review of submitted abstracts, more than 100 contributions were accepted for oral and poster presentation, which are found in these proceedings edition in full paper form. Please note: This document is optimised for screen resolution, to receive a high-resolution version please contact the editors.