Refine
Keywords
In this psycho-neuro-endocrine study the molecular basis of different variants of steroid receptors as well as highly conserved non steroidal receptors was investigated. These nuclear receptors (NRs) are important key regulators of a wide variety of different physiological and pathophysiological challenges ranging from inflammation and stress to complex behaviour and disease. NRs control gene transcription in a ligand dependent manner and are embedded in the huge interaction network of the neuroendocrine and immune system. Two receptors, the glucocorticoid receptor (GR) and the chicken ovalbumin upstream promoter-transcription factorII (Coup-TFII), both expressed in the immune and nervous system, were investigated regarding possible splice variants and their implication in the control of gene transcription. Both NRs are known to interact and modulate each other- target gene regulation. This study could be shown that both NRs have different splice variants that are expressed in a tissue specific manner. The different 5-´alternative transcript variants of the human GR were in silico identified in other species and evidence for a highly conserved and tightly controlled function was provided. Investigations of the N-terminal transactivation domain of the GR showed a deletion suggesting an altered glucocorticoid-dependent transactivation profile. The newly identified alternative transcript variant of Coup-TFII leads to a DNA binding deficient Coup-TFII isoform that is highly expressed in the brain. This Coup-TFII isoform alters Coup-TFII target gene expression and is suggested to interact with GR via its ligand binding domain resulting in an impaired GR target gene regulation in the nervous system. In this thesis it was demonstrated that NR variants are important for the understanding of the enormous regulatory potential of this receptor family and have to be taken into account for the development of therapeutic strategies for complex diseases such as stress related and neurodegenerative disorders.