Refine
Keywords
- statistical modelling (1) (remove)
Survey data can be viewed as incomplete or partially missing from a variety of perspectives and there are different ways of dealing with this kind of data in the prediction and the estimation of economic quantities. In this thesis, we present two selected research contexts in which the prediction or estimation of economic quantities is examined under incomplete survey data.
These contexts are first the investigation of composite estimators in the German Microcensus (Chapters 3 and 4) and second extensions of multivariate Fay-Herriot (MFH) models (Chapters 5 and 6), which are applied to small area problems.
Composite estimators are estimation methods that take into account the sample overlap in rotating panel surveys such as the German Microcensus in order to stabilise the estimation of the statistics of interest (e.g. employment statistics). Due to the partial sample overlaps, information from previous samples is only available for some of the respondents, so the data are partially missing.
MFH models are model-based estimation methods that work with aggregated survey data in order to obtain more precise estimation results for small area problems compared to classical estimation methods. In these models, several variables of interest are modelled simultaneously. The survey estimates of these variables, which are used as input in the MFH models, are often partially missing. If the domains of interest are not explicitly accounted for in a sampling design, the sizes of the samples allocated to them can, by chance, be small. As a result, it can happen that either no estimates can be calculated at all or that the estimated values are not published by statistical offices because their variances are too large.