Refine
Keywords
- Interozeption (1) (remove)
During the last decade, anatomic and physiological neuroscience research has yielded extensive information on the physiological regulators of short-term satiety, visceral and interoceptive sensation. Distinct neural circuits regulate the elements of food ingestion physiologically. The general aim of the current studies is to elucidate the peripheral neural pathways to the brain in healthy subjects to establish the groundwork for the study of the pathophysiology of bulimia nervosa (BN). We aimed to define the central activation pattern during non-nutritive gastric distension in humans, and aimed to define the cognitive responses to this mechanical gastric distension. We estimated regional cerebral blood flow with 15O-water positron emission tomography during intragastric balloon inflation and deflation in 18 healthy young women of normal weight. The contrast between inflated minus deflated in the exploratory analysis revealed activation in more than 20 brain regions. The analysis confirmed several well known areas in the central nervous system that contribute to visceral processing: the inferior frontal cortex, representing a zone of convergence for food related stimuli; the insula and operculum referred to as "visceral cortex"; the anterior cingulate gyrus (and insula), processing affective information; and the brainstem, a site of vagal relay for visceral afferent stimuli. Brain activation in the left ventrolateral prefrontal cortex was reproducible. This area is well known for higher cognitive processing, especially reward-related stimuli. The ventrolateral prefrontal cortex with the insular regions may provide a link between the affective and rewarding components of eating and disordered eating as observed in BN and binge-eating obesity. Gastric distension caused a significant rapid, reversible, and reproducible increase in the feelings of fullness, sleepiness, and gastric discomfort as well as a significant rapid, reversible, and reproducible decrease in the feeling of hunger. We showed that mechanical activation of the neurocircuitry involved in meal termination led to the described phenomena. The current brain activation studies of non-painful, proximal gastric distension could provide groundwork in the field of abnormal eating behavior by suggesting a link between visceral sensation and abnormal eating patterns. A potential treatment for disordered eating and obesity could alter the conscious and unconscious perception and interoceptive awareness of gastric distension contributing to meal termination.