Refine
Document Type
- Conference Proceedings (3)
- Article (1)
Keywords
- Adaptation (1)
- Angola (1)
- Anpassung (1)
- Climate Change (1)
- Degradation (1)
- Desertification (1)
- Desertifikation (1)
- Disturbance Index (1)
- Drought (1)
- Early Warning (1)
Dry tropical forests undergo massive conversion and degradation processes. This also holds true for the extensive Miombo forests that cover large parts of Southern Africa. While the largest proportional area can be found in Angola, the country still struggles with food shortages, insufficient medical and educational supplies, as well as the ongoing reconstruction of infrastructure after 27 years of civil war. Especially in rural areas, the local population is therefore still heavily dependent on the consumption of natural resources, as well as subsistence agriculture. This leads, on one hand, to large areas of Miombo forests being converted for cultivation purposes, but on the other hand, to degradation processes due to the selective use of forest resources. While forest conversion in south-central rural Angola has already been quantitatively described, information about forest degradation is not yet available. This is due to the history of conflicts and the therewith connected research difficulties, as well as the remote location of this area. We apply an annual time series approach using Landsat data in south-central Angola not only to assess the current degradation status of the Miombo forests, but also to derive past developments reaching back to times of armed conflicts. We use the Disturbance Index based on tasseled cap transformation to exclude external influences like inter-annual variation of rainfall. Based on this time series, linear regression is calculated for forest areas unaffected by conversion, but also for the pre-conversion period of those areas that were used for cultivation purposes during the observation time. Metrics derived from linear regression are used to classify the study area according to their dominant modification processes.rnWe compare our results to MODIS latent integral trends and to further products to derive information on underlying drivers. Around 13% of the Miombo forests are affected by degradation processes, especially along streets, in villages, and close to existing agriculture. However, areas in presumably remote and dense forest areas are also affected to a significant extent. A comparison with MODIS derived fire ignition data shows that they are most likely affected by recurring fires and less by selective timber extraction. We confirm that areas that are used for agriculture are more heavily disturbed by selective use beforehand than those that remain unaffected by conversion. The results can be substantiated by the MODIS latent integral trends and we also show that due to extent and location, the assessment of forest conversion is most likely not sufficient to provide good estimates for the loss of natural resources.
Abstracts book of oral presentations and poster contributions for the mid-term conference of the Interreg IVB NWE project ForeStClim. The international conference took place in Nancy (France) from 20. to 22. September 2010. The topics of the conference sessions were as follows:rnSession 1: Projecting forest sites and stand shiftsrnSession 2: Climate change and water: modelling across spatial and temporal scalesrnSession 3: Addressing climate change in practical silvicultural decision support
In addition to flood disasters on major rivers, damage caused by the flooding of smaller and medium-sized tributaries is also of considerable significance. To ensure that flood protection measures are effective, engineering flood prevention measures on the rivers must be supported by integrated catchment management. This includes decentralised water retention measures implemented in the sectors of forestry, agriculture and in residential areas. Within this scope new instruments have to be elaborated and introduced, such as GIS-based systems and systems for the evaluation of economic consequences and eco-efficiency of flood damage precaution measures associated with land-use. These are extremely significant for improving information management, the prevention of advice to the general public and for the acceptance of flood precaution measures. The conference intends to promote scientific exchange between specialists working on all areas concerning integrated catchment management. This includes the methodology for identification of catchment types prone to flooding hazards, the control and validation of land-use concepts for decentralised water retention as well as its combination and upscaling procedures up to mesoscale catchments. As catchment management is not only the concern of natural scientists the strategies for enhancing catchment management and the development of decision-support tools will also be important topics of the conference. ***Addenda *1. The articles from page 136 to 161 belong to session 5 *2. Article page 107: Ancient irrigation strategies: land use and hazard mitigation in Ma-´rib, Yemen (New list of authors: Ueli Brunner (a) , Michael Schütz (b), Dana Pietsch (c), Peter Kühn (c), Thomas Scholten (c), Iris Gerlach (d))
In past years, desertification and land degradation have been acknowledged as a major threat to human welfare world-wide, and their environmental and societal implications have sparked the formulation of the UN Convention to Combat Desertification (UNCCD). Any measure taken against desertification, or the design of dedicated early warning systems, must take into account both the spatial and temporal dimensions of process driving factors. Equally important, past and present reactions of ecosystems to physical and socio-economical disturbances or management interventions need to be understood. In this context, remote sensing and geoinformation processing support the required assessment, monitoring and modelling approaches, and hence provide an essential contribution to the scientific component of the struggle against desertification. Supported by DG Research of the European Commission, the Remote Sensing Department of the University of Trier convened RGLDD to promote scientific exchange between specialists working on the interface of remote sensing, geoinformation processing, desertification/land degradation research and its socio-economic implications. Although targeted at the scientific community, contributions with application perspectives were of crucial importance and both an overview of the current state of the art as well as operational opportunities were presented. Hosted at the Robert-Schuman Haus in Trier, the conference gained widespread attention and attracted an international audience from all parts of the world, which underlines the global dimension of land degradation and desertification processes. Based on a rigorous review of submitted abstracts, more than 100 contributions were accepted for oral and poster presentation, which are found in these proceedings edition in full paper form. Please note: This document is optimised for screen resolution, to receive a high-resolution version please contact the editors.