Refine
Year of publication
- 2008 (1) (remove)
Keywords
- Biomonitoring (1)
- Classification approach (1)
- Eifel (1)
- Fernerkundung (1)
- Forest cover mapping (1)
- Geodatenverarbeitung (1)
- Geoinformation Processing (1)
- Geoinformationssystem (1)
- Klassifikationsverfahren (1)
- Mittelgebirge (1)
- Prognosekarte (1)
- Remote Sensing (1)
- Waldinventur (1)
Das Ziel dieser Forschungsarbeit liegt in der Entwicklung einer innovativen Klassifikationsstrategie zur satellitengestützten Forstinventur in einem europäischen Mittelgebirgsraum. Über die Ableitung von thematischen Karten der flächenscharfen Verbreitung von fünf Baumartengruppen (Eiche, Buche, Fichte, Douglasie und Kiefer) sowie drei Entwicklungsphasen (Qualifizierung, Dimensionierung und Reife) werden wichtige für eine nachhaltige Bewirtschaftung von Wäldern erforderliche Grundlagendaten bereitgestellt. rnDie nachhaltige Bewirtschaftung der Vielfachfunktionen von Wäldern (Nutz-, Schutz- und Erholungsfunktionen) sowie der steigende Informationsbedarf in Folge nationaler und internationaler Monitoring- und Berichtspflichten (u.a. Montréal Prozess und Kyoto Protokoll) erfordern aktuelle und flächendeckende Informationen über den Zustand der Wälder. In diesem Kontext können fernerkundliche Daten und Methoden zur Unterstützung konventioneller terrestrischer Verfahren zum Einsatz kommen.rnDas Untersuchungsgebiet dieser Studie umfasst den südlichen und östlichen Teil der rheinland-pfälzischen Eifel mit einer Fläche von mehr als 5200 km-², davon rund 2080 km-² bewaldet. Die naturräumliche Heterogenität, die wuchsklimatischen Unterschiede, die Variabilität von Relief und Topographie, die große Zahl vorkommender Baumarten sowie die kulturhistorische Waldentwicklung in der Eifel stellen eine besondere Herausforderung für satellitengestützte Inventurmethoden dar.rnDurch die bevorzugte Verwendung von Referenzdaten aus der unmittelbaren räumlichen Umgebung eines zu klassifizierenden Bereichs wird bei der Parametrisierung des Klassifikationsansatzes die jeweilige naturräumliche und wuchsklimatische Charakteristik berücksichtigt. Der Vergleich dieses räumlich adaptiven Klassifikationsansatzes mit einer konventionellen Maximum-Likelihood Klassifikation zeigt, dass eine Verbesserung der Klassifikationsgenauigkeit um 12 Prozentpunkte erreicht werden konnte. Die Adaptierung der Klassifikationsstrategie an die naturräumlichen und wuchsklimatischen Bedingungen sowie die Anpassung an bestehende Erhebungsmethoden und Datenorganisation bilden die Grundlage für eine erfolgreiche Anwendung des Verfahrens in einem heterogenen Mittelgebirgsraum. Die hohe erreichte Gesamtgenauigkeit des Klassifikationsergebnisses von rund 74% (über 87% für die fünf Hauptbaumarten) erlaubt die Einbindung der Methode in operationelle Erhebungsverfahren zur Unterstützung der terrestrischen Forstinventur.