Refine
Keywords
In dem Gebiet der Informationsextraktion angesiedelt kombiniert diese Arbeit mehrere Verfahren aus dem Bereich des maschinellen Lernens. Sie stellt einen neuen Algorithmus vor, der teil-überwachtes Lernen mit aktivem Lernen verknüpft. Ausgangsbasis ist die Analyse der Daten, indem sie in mehrere Sichten aufgeteilt werden. Hier werden die Eingaben verschiedener Personen unterteilt. Jeweils getrennt voneinander erzeugt der Algorithmus mittels Klassifizierern Modelle, die aus den individuellen Auszeichnungen der Personen aufgebaut werden. Um die dafür benötigte Datenmenge zu erhalten wird Crowdsourcing genutzt, dass es ermöglicht eine große Anzahl an Personen zu erreichen. Die Personen erhalten die Aufgabe, Texte zu annotieren. Einerseits wird dies initial für einen historischen Textkorpus vorgenommen. Dabei wird aufgeführt, welche Schritte notwendig sind, um die Annotationsaufgabe in Crowdsourcing-Portalen zur Bearbeitung anzubieten und durchzuführen. Andererseits wird ein aktueller Datensatz von Kurznachrichten genutzt. Der Algorithmus wird auf diese Beispieldatensätze angewandt. Durch Experimente wird die Ermittlung der optimalen Parameterauswahl durchgeführt. Außerdem werden die Ergebnisse mit den Resultaten bisheriger Algorithmen verglichen.