Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Keywords
- Abflussprozess (1)
- Bewegungsmessung (1)
- Experiment (1)
- LARSIM (1)
- Modellierung (1)
- Parametrisierung (1)
- Prozess (1)
- Rutschung (1)
- Wasserhaushalt (1)
- Wasserhaushaltsmodellierung (1)
Laboratory landslide experiments enable the observation of specific properties of these natural hazards. However, these observations are limited by traditional techniques: frequently used high-speed video analysis and wired sensors (e.g. displacement). These techniques lead to the drawback that either only the surface and 2D profiles can be observed or wires confine the motion behaviour. In contrast, an unconfined observation of the total spatiotemporal dynamics of landslides is needed for an adequate understanding of these natural hazards.
The present study introduces an autonomous and wireless probe to characterize motion features of single clasts within laboratory-scale landslides. The Smartstone probe is based on an inertial measurement unit (IMU) and records acceleration and rotation at a sampling rate of 100 Hz. The recording ranges are ±16 g (accelerometer) and ±2000∘ s−1 (gyroscope). The plastic tube housing is 55 mm long with a diameter of 10 mm. The probe is controlled, and data are read out via active radio frequency identification (active RFID) technology. Due to this technique, the probe works under low-power conditions, enabling the use of small button cell batteries and minimizing its size.
Using the Smartstone probe, the motion of single clasts (gravel size, median particle diameter d50 of 42 mm) within approx. 520 kg of a uniformly graded pebble material was observed in a laboratory experiment. Single pebbles were equipped with probes and placed embedded and superficially in or on the material. In a first analysis step, the data of one pebble are interpreted qualitatively, allowing for the determination of different transport modes, such as translation, rotation and saltation. In a second step, the motion is quantified by means of derived movement characteristics: the analysed pebble moves mainly in the vertical direction during the first motion phase with a maximal vertical velocity of approx. 1.7 m s−1. A strong acceleration peak of approx. 36 m s−2 is interpreted as a pronounced hit and leads to a complex rotational-motion pattern. In a third step, displacement is derived and amounts to approx. 1.0 m in the vertical direction. The deviation compared to laser distance measurements was approx. −10 %. Furthermore, a full 3D spatiotemporal trajectory of the pebble is reconstructed and visualized supporting the interpretations. Finally, it is demonstrated that multiple pebbles can be analysed simultaneously within one experiment. Compared to other observation methods Smartstone probes allow for the quantification of internal movement characteristics and, consequently, a motion sampling in landslide experiments.
Die in einem Einzugsgebiet herrschende räumliche Inhomogenität wird im Wasserhaushaltsmodell LARSIM (Large Area Runoff Simulation Modell) in den einzelnen Modellkomponenten unterschiedlich stark berücksichtigt. Insbesondere die räumliche Verteilung der Abflussprozesse wurde bisher nicht berücksichtigt, weil keine flächenhaft verfügbare Information über eben diese Verteilung vorlag. Für das Einzugsgebiet der Nahe liegt nun seit dem Jahr 2007 eine Bodenhydrologische Karte vor, die flächenhaft den bei ausreichenden Niederschlägen zu erwartenden Abflussprozess ausweist. In der vorliegenden Dissertation wird die Nutzung dieser Prozessinformation bei der Parametrisierung des Bodenmoduls von LARSIM beschrieben: Für drei Prozessgruppen " gesättigter Oberflächenabfluss, Abfluss im Boden, Tiefenversickerung " werden mittels zweier neuer Parameter P_Bilanz und P_Dämpfung inhomogene Parametersätze aus empirisch ermittelten Kennfeldern gewählt, um die Prozessinformation bei der Abflussbildung im Modell zu berücksichtigen. Für die Abbildung der Prozessintensitäten in den Gebietsspeichern werden zwei unterschiedliche Ansätze vorgestellt, die sich in ihrer Komplexität unterscheiden. In der ersten Variante werden fünf Oberflächenabflussspeicher für unterschiedlich schnell reagierende Prozessgruppen eingeführt, in der zweiten Variante wird der erste Ansatz mit dem ursprünglichen Schwellenwert zur Aufteilung in schnelle und langsame Oberflächenabflusskomponenten kombiniert. Es wird gezeigt, dass die Parametrisierung mit den beiden neuen Parametern P_Bilanz und P_Dämpfung einfacher, effektiver und effizienter ist, da beide Parameter minimale Interaktionen aufweisen und in ihrer Wirkungsweise leicht verständlich sind, was auf die ursprünglichen Bodenparameter nicht zutrifft. Es wird ein Arbeitsfluss vorgestellt, in dem die neuen Parameter in Kombination mit Signature Measures und unterschiedlichen Darstellungen der Abflussdauerlinie gemeinsam genutzt werden können, um in wenigen Arbeitsschritten eine Anpassung des Modells in neuen Einzugsgebieten vorzunehmen. Die Methode wurde durch Anwendung in drei Gebieten validiert. In den drei Gebieten konnte in wenigen Kalibrierungsschritten die Simulationsgüte der ursprünglichen Version erreicht und " je nach Zielsetzung " übertroffen werden. Hinsichtlich der Gütemaße zeigte sich bei der Variante, in der die Gebietsspeicher nicht modifiziert wurden, aber kein eindeutiges Bild, ob die ursprüngliche Parametrisierung oder die neue grundsätzlich überlegen ist. Neben der Auswertung der Validierungszeiträume wurden dabei auch die simulierten Ganglinien in geschachtelten Gebieten betrachtet. Die Version, in der die Gebietsspeicher modifiziert wurden, zeigt hingegen vor allem im Validierungszeitraum tendenziell bessere Simulationsergebnisse. Hinsichtlich der Abbildung der Abflussprozesse ist das neue Verfahren dem alten deutlich überlegen: Es resultiert in plausiblen Anteilen von Abflusskomponenten, deren Verteilung und Abhängigkeit von Speicherkapazitäten, Landnutzungen und Eingangsdaten systematisch ausgewertet wurden. Es zeigte sich, dass vor allem die Speicherkapazität des Bodens einen signifikanten Einfluss hat, der aber im hydrologischen Sinn richtig und hinsichtlich der Modellannahmen plausibel ist. Es wird deutlich gemacht, dass die Einschränkungen, die sich ergeben haben, aufgrund der Modellannahmen zustande kommen, und dass ohne die Änderung dieser Annahmen keine bessere Abbildung möglich ist. Für die Zukunft werden Möglichkeiten aufgezeigt, wie die Annahmen modifiziert werden können, um eine bessere Abbildung zu erzielen, indem der bereits bestehende Infiltrationsansatz in die Methode integriert wird.