Refine
Keywords
Similarity-based retrieval of semantic graphs is a core task of Process-Oriented Case-Based Reasoning (POCBR) with applications in real-world scenarios, e.g., in smart manufacturing. The involved similarity computation is usually complex and time-consuming, as it requires some kind of inexact graph matching. To tackle these problems, we present an approach to modeling similarity measures based on embedding semantic graphs via Graph Neural Networks (GNNs). Therefore, we first examine how arbitrary semantic graphs, including node and edge types and their knowledge-rich semantic annotations, can be encoded in a numeric format that is usable by GNNs. Given this, the architecture of two generic graph embedding models from the literature is adapted to enable their usage as a similarity measure for similarity-based retrieval. Thereby, one of the two models is more optimized towards fast similarity prediction, while the other model is optimized towards knowledge-intensive, more expressive predictions. The evaluation examines the quality and performance of these models in preselecting retrieval candidates and in approximating the ground-truth similarities of a graph-matching-based similarity measure for two semantic graph domains. The results show the great potential of the approach for use in a retrieval scenario, either as a preselection model or as an approximation of a graph similarity measure.
Reconstructing invisible deviating events: A conformance checking approach for recurring events
(2022)
Conformance checking enables organizations to determine whether their executed processes are compliant with the intended process. However, if the processes contain recurring activities, state-of-the-art approaches unfortunately have difficulties calculating the conformance. The occurrence of complex temporal rules can further increase the complexity of the problem. Identifying this limitation, this paper presents a novel approach towards dealing with recurring activities in conformance checking. The core idea of the approach is to reconstruct the missing events in the event log using defined rules while incorporating specified temporal event characteristics. This approach then enables the use of native conformance checking algorithms. The paper illustrates the algorithmic approach and defines the required temporal event characteristics. Furthermore, the approach is applied and evaluated in a case study on an event log for melanoma surveillance.