Refine
Keywords
- model for economic-ecological assessment (1) (remove)
Die zukünftige Landwirtschaft steht vor großen Herausforderungen: Zum einen sollen mit knapper werdenden Ressource wie Wasser und Boden mehr Menschen ernährt, die Wirtschaftlichkeit gesteigert und Pflanzen zur Energiegewinnung sowie für die Industrie erzeugt werden. Zum anderen sollen Umweltbelastungen deutlich verringert werden, damit die Landwirtschaft nicht ihre eigene Grundlage zerstört und Anpassungsstrategien für das zukünftige Klima gefunden werden. Die Erstellung eines Modells, mit deren Hilfe die Auswirkungen von Klimavariabilität, Standortbedingung, verschiedenartiger Kultivierung, Umwelteinflüsse und nachhaltigem Wirtschaften auf das Pflanzenwachstum simuliert werden können, also eine ökonomisch-ökologischen Bewertung vorgenommen werden kann, ist daher das Hauptziel vorliegender Dissertation. Zur Erlangung dieses Ziels sollte ein ökologisches (STICS) und ein ökonomische Modell (Produktionsfunktion) miteinander gekoppelt werden. Eine Sensitivitätsanalyse des Pflanzenwachstumsmodells STICS verdeutlicht, dass dieses Modell geeignet ist den Einfluss unterschiedlicher Bewirtschaftungsmethoden und Klimakenngrößen auf das Pflanzenwachstum bzw. den Ertrag sowie die Bodenfruchtbarkeit, z.B. über die Nitratauswaschung, realitätsnah abzubilden. Die Voraussetzung dafür ergibt sich auch aus dem Verwenden des statistischen Klimamodells WETTREG 2010, welches hochaufgelöste Klimadaten, die in Anzahl der Klimaelemente und zeitlicher Auflösung der Messreihen von Klimastationen gleichen, liefert. Die natürliche Variabilität des Klimas wird damit gut widergeben und Aussagen über zukünftiges Wachstum und Pflanzenentwicklung sowie Auswirkungen von Extremwetterlagen berechenbar. Die Ergebnisse des Pflanzenwachstumsmodells dienen als Grundlage einer Produktionsfunktion des Cobb-Douglas-Typs. Der graphische Zusammenhang, die Verteilung der Produktionsfaktoren und die Regressionsergebnisse zeigen allerdings, dass eine einfache lineare Regression zur Bestimmung der Funktion auf Mittel- und Summenwertbasis zu schlechten Ergebnissen, insbesondere hinsichtlich der Anpassung an Extremereignisse, führt. Die Klimafaktoren Niederschlag bzw. Wasser und Temperatur, aber auch die Nachhaltigkeit im Sinne der Erhaltung der Bodenfruchtbarkeit können in der Funktion nicht eindeutig bestimmt werden. Anhand von Simulationen mit künstlichen Klimadaten, d.h. stetig steigenden Temperaturen und immer gleicher Verteilung des Niederschlags (gute und schlechte Verteilung), konnten die Fehlerquellen herauskristallisiert und die fehlenden Faktoren in der Produktionsfunktion gefunden werden. Ein Lösungsansatz ist das Einbeziehen von Stressindizes für Wasser- und Stickstoffmangel, welche die zeitliche Verteilung von Niederschlag und Temperatur bzw. deren Auswirkungen auf das Pflanzenwachstum darstellen. Zudem ist über den Stickstoffstress die Verfügbarkeit von Nitrat für die Pflanze ableitbar und kann in der Produktionsfunktion miteinbezogen werden. Die Ergebnisse der Regression mit Berücksichtigung der Wasser- und Stickstoffstressindizes zeigen deutlich bessere Ergebnisse. Die Variabilität kann deutlich erhöht und die zeitliche Verteilung von Niederschlag und Temperatur sowie die Bodenfruchtbarkeit berücksichtigt werden. Allerdings ist die Anpassung gerade in den extremen Bereichen (überdurchschnittlich niedrige oder hohe Ernten) zu systematisch. Das Pflanzenwachstumsmodell wird demnach nicht durch eine einfache Produktionsfunktion ersetzbar, da es wichtige Informationen zu Ertrag, Einfluss der Klimavariabilität auf den Ertrag, Umwelteinflüssen, wie Stickstoffaustrag, oder Stressindizes liefert. Vielmehr wird erst durch Verwendung des Pflanzenwachstumsmodells die direkte Abhängigkeit zwischen Bewirtschaftung, Ertrag und Nachhaltigkeit im Sinne der Erhaltung der Bodenfruchtbarkeit bzw. der Vermeidung hoher Nitratauswaschung deutlich. Eine nicht angepasste Bewirtschaftung, z.B. Überdüngung und/oder hohe Bewässerung, führt sowohl zu mehr Nitrataustrag als auch zu niedrigerem Ertrag sowie höheren Kosten. Deutlich wird die Unersetzbarkeit des Pflanzenwachstumsmodells durch eine einfache Kostenanalyse. Hierbei konnte die Unrentabilität sehr intensiver Bewirtschaftung und Rentabilität einer zusätzlichen Bewässerung nur unter Berücksichtigung der Nitratauswaschung und klimatischer Gegebenheiten herausgestellt werden. Erst durch das Zusammenspiel von ökologischem und ökonomischem Modell werden die Auswirkungen von Klimavariabilität, Standortbedingung, verschiedenartiger Kultivierung und nachhaltigem Wirtschaften auf das Pflanzenwachstum berechenbar. Eine ökologisch-ökonomische Bewertung, wie die Beurteilung von Auswirkungen bestimmter Klimaelemente (Wasser, Temperatur) auf Pflanzenwachstum und Ertrag, Adaptionsstrategien, effizienter und ressourcenschonender Bewirtschaftung, Rentabilität, Umweltbelastung oder Nachhaltigkeit wird damit letztendlich möglich.