Refine
Keywords
- Kleinman (1) (remove)
Extension of inexact Kleinman-Newton methods to a general monotonicity preserving convergence theory
(2011)
The thesis at hand considers inexact Newton methods in combination with algebraic Riccati equation. A monotone convergence behaviour is proven, which enables a non-local convergence. Above relation is transferred to a general convergence theory for inexact Newton methods securing the monotonicity of the iterates for convex or concave mappings. Several application prove the pratical benefits of the new developed theory.