Refine
Keywords
- Affektstörung (1)
- Angststörung (1)
- Motor mimicry (1)
- Netzwerkanalyse (1)
- Prognose (1)
- Prognosis (1)
- Therapieabbruch (1)
- early response (1)
- growth mixture modeling (1)
- motion energy analysis (1)
There are large health, societal, and economic costs associated with attrition from psychological services. The recently emerged, innovative statistical tool of complex network analysis was used in the present proof-of-concept study to improve the prediction of attrition. Fifty-eight patients undergoing psychological treatment for mood or anxiety disorders were assessed using Ecological Momentary Assessments four times a day for two weeks before treatment (3,248 measurements). Multilevel vector autoregressive models were employed to compute dynamic symptom networks. Intake variables and network parameters (centrality measures) were used as predictors for dropout using machine-learning algorithms. Networks for patients differed significantly between completers and dropouts. Among intake variables, initial impairment and sex predicted dropout explaining 6% of the variance. The network analysis identified four additional predictors: Expected force of being excited, outstrength of experiencing social support, betweenness of feeling nervous, and instrength of being active. The final model with the two intake and four network variables explained 32% of variance in dropout and identified 47 out of 58 patients correctly. The findings indicate that patients" dynamic network structures may improve the prediction of dropout. When implemented in routine care, such prediction models could identify patients at risk for attrition and inform personalized treatment recommendations.
Objective: Attunement is a novel measure of nonverbal synchrony reflecting the duration of the present moment shared by two interaction partners. This study examined its association with early change in outpatient psychotherapy.
Methods: Automated video analysis based on motion energy analysis (MEA) and cross-correlation of the movement time-series of patient and therapist was conducted to calculate movement synchrony for N = 161 outpatients. Movement-based attunement was defined as the range of connected time lags with significant synchrony. Latent change classes in the HSCL-11 were identified with growth mixture modeling (GMM) and predicted by pre-treatment covariates and attunement using multilevel multinomial regression.
Results: GMM identified four latent classes: high impairment, no change (Class 1); high impairment, early response (Class 2); moderate impairment (Class 3); and low impairment (Class 4). Class 2 showed the strongest attunement, the largest early response, and the best outcome. Stronger attunement was associated with a higher likelihood of membership in Class 2 (b = 0.313, p = .007), Class 3 (b = 0.251, p = .033), and Class 4 (b = 0.275, p = .043) compared to Class 1. For highly impaired patients, the probability of no early change (Class 1) decreased and the probability of early response (Class 2) increased as a function of attunement.
Conclusions: Among patients with high impairment, stronger patient-therapist attunement was associated with early response, which predicted a better treatment outcome. Video-based assessment of attunement might provide new information for therapists not available from self-report questionnaires and support therapists in their clinical decision-making.