Refine
Many NP-hard optimization problems that originate from classical graph theory, such as the maximum stable set problem and the maximum clique problem, have been extensively studied over the past decades and involve the choice of a subset of edges or vertices. There usually exist combinatorial methods that can be applied to solve them directly in the graph.
The most simple method is to enumerate feasible solutions and select the best. It is not surprising that this method is very slow oftentimes, so the task is to cleverly discard fruitless search space during the search. An alternative method to solve graph problems is to formulate integer linear programs, such that their solution yields an optimal solution to the original optimization problem in the graph. In order to solve integer linear programs, one can start with relaxing the integer constraints and then try to find inequalities for cutting off fractional extreme points. In the best case, it would be possible to describe the convex hull of the feasible region of the integer linear program with a set of inequalities. In general, giving a complete description of this convex hull is out of reach, even if it has a polynomial number of facets. Thus, one tries to strengthen the (weak) relaxation of the integer linear program best possible via strong inequalities that are valid for the convex hull of feasible integer points.
Many classes of valid inequalities are of exponential size. For instance, a graph can have exponentially many odd cycles in general and therefore the number of odd cycle inequalities for the maximum stable set problem is exponential. It is sometimes possible to check in polynomial time if some given point violates any of the exponentially many inequalities. This is indeed the case for the odd cycle inequalities for the maximum stable set problem. If a polynomial time separation algorithm is known, there exists a formulation of polynomial size that contains a given point if and only if it does not violate one of the (potentially exponentially many) inequalities. This thesis can be divided into two parts. The first part is the main part and it contains various new results. We present new extended formulations for several optimization problems, i.e. the maximum stable set problem, the nonconvex quadratic program with box
constraints and the p-median problem. In the second part we modify a very fast algorithm for finding a maximum clique in very large sparse graphs. We suggest and compare three alternative versions of this algorithm to the original version and compare their strengths and weaknesses.